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Abstract

We analyze the strategic interaction between mitigation (public

good) and adaptation (private good) strategies in a climate agreement.

We show that adaptation can lead to larger self-enforcing agreements,

associated with higher global mitigation levels and welfare if it causes

mitigation levels between different countries to be no longer strate-

gic substitutes but complements. Thus, the fear that adaptation will

reduce the incentives to mitigate carbon emissions may be unwar-

ranted. We argue that our results extend to many important public

goods. The purchase of private goods may not crowd out the provision

of public goods, as this is commonly believed.
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1 Introduction

Climate change is probably one of the most important challenges of human

mankind. The Kyoto Protocol signed in 1997 was the first global treaty

with specific mitigation targets but turned out to be not sufficient to address

global warming. After several years of negotiations, a successor protocol was

recently signed in Paris. However, most scholars doubt that the Paris accord

will be sufficient to keep the increase of the global surface temperature below

2 degrees Celsius, a widespread accepted target to avoid severe interference

with the climate system.

Clearly, mitigation to address the cause of global warming is costly, partic-

ipation in a climate treaty is voluntary and compliance is difficult to enforce.

Due to the slow progress of curbing global warming, and the first visible

impacts of climate change, in particular in developing countries, adaptation

measures (like building dykes against flooding and installing air-conditioning

devices against heat) have received more attention in recent years. This is

reflected in the negotiations leading to the Paris accord but also in the sci-

entific community, as for instance summarized by various recent reports by

the Internal Panel on Climate Change (IPCC). In contrast to mitigation (i.e.

reducing emissions), which can be viewed as a non-excludable public good,

adaptation (i.e. amelioration of climate damages) is typically viewed as a

private good; it only benefits the country in which adaptation measures are

implemented. The key research question which we try to answer is: how does

adaptation, as an additional strategy to mitigation, affect the prospects of

international policy coordination to tackle climate change?

At the outset, the answer is not straightforward when considering the fol-

lowing points. Firstly, adding adaptation to the set of strategies will reduce

the costs of addressing the impacts of global warming. This should facilitate

cooperation. Secondly, anything else being equal, the optimal mix of both

strategies will lead to lower mitigation levels as we show. This means that

the need for policy coordination related to the pure public good “mitigation”
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is reduced. Put differently, the positive spillovers from cooperation are re-

duced. On the one hand, for a given coalition, this may negatively impact

on the global welfare gains from cooperation. On the other hand, this may

also reduce the free-rider incentive, and hence larger stable coalitions may be

stable. Thirdly, the benefits of each strategy are not independent of the level

of the other strategy. The benefits from mitigation are high (low) if there is

a low (high) level of adaptation and vice versa, the benefits from adaptation

are high (low) if there is a low (high) level of mitigation. Thus, mitiga-

tion and adaptation interact strategically. We show that reaction functions

in mitigation space may be upward sloping in the presence of adaptation

for any number of countries and for any degree of cooperation. The main

contribution of the paper is to analyze how this affects the properties of

coalition formation game and whether this can lead to larger self-enforcing

agreements. Moreover, under those conditions when agreements are large in

the presence of adaptation, we evaluate whether they are also more success-

ful in welfare terms. This is important because membership in an agreement

cannot measure success per se.

Our paper is related to four strands of literature. Firstly, there is large

body of literature on the game-theoretic analysis of international environ-

mental agreements (IEAs), which can be traced back to Barrett (1994) and

Carraro and Siniscalco (1993) and of which the most influential papers have

been collected in a volume by Finus and Caparros (2015), including a compre-

hensive overview. Our model is particularly related to those recent papers,

which analyze the impact of additional strategies to mitigation on the success

of coalition formation, like R&D investment to reduce mitigation costs (El-

Sayed and Rubio 2014, Battaglini and Harstad, 2016 and Harstad 2012) or to

generate breakthrough technologies with zero emissions (Barrett 2006, and

Hoel and de Zeeuw 2010). In terms of strategic implications, there are two

interesting links. Because adaptation leads to lower equilibrium mitigation

levels, the positive effect on free-rider incentives and hence on participation
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in stable coalitions is similar to the concept of modest emission reductions

as analyzed in Barrett (2002), and Finus and Maus (2008). Moreover, like

the papers (e.g. Finus and Rübbelke 2013) on ancillary benefits, strategies

impact not only on public but also on private benefits (i.e. impure public

goods).1 However, ancillary benefits imply one strategy (mitigation) hav-

ing two independent effects (private and public), whereas in a mitigation-

adaptation game there are two strategies, a private and a public strategy,

with impacts that are linked. The most obvious connection is of course to

those recent papers which study mitigation and adaptation in a strategic

context. Different from for instance Buob and Stephan (2011), Ebert and

Welsch (2011, 2012), Zehaie (2009), Eisenack and Kähler (2016), we allow

for more than two players and study the formation of agreements. Different

from some recent work by Barrett (2008) and Benchekroun et al. (2016)

who study IEAs, we work in a much more general framework, which also

allows for the possibility of strategic complementarities in mitigation space,

and derive most of our results analytically.

Secondly, there is a literature on non-convexities of negative externalities,

including early contributions by Baumol and Bradford (1972), Laffont (1976)

and Starrett (1972). This literature does not consider agreement formation

but points to the strategic interaction between public and private actions,

which can result in non-convexities. Noticing that any public bad game

can be recasted in a public good game framework, where the latter is the

setting of this paper, this means non-concave payoffs. We show that in our

model, in the presence of amelioration, the conditions for upward-sloping

reaction functions in public good provision space are exactly those related

to the convexity of an agent’s payoff functions with respect to other players’

provision levels.

1Ancillary benefits, also called co-benefits and secondary benefits in the environmental
economics literature, refers to the fact that some mitigation measures will reduce local
pollutants as a by-product. In the public goods literature, this phenomenon has been
referred to as joint production (e.g. Cornes and Sandler 1984).
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Thirdly, there is a large literature on the private provision of public goods

(e.g. Bergstrom, Blume and Varian 1986, Cornes and Hartley 2007, and

Fraser 1992). “Private” means non-cooperative with the possibility of coop-

erative agreements normally not being considered in this literature. Typi-

cally, agents maximize a utility function subject to a linear budget constraint,

with utility being derived from the total level of public provision (which is the

sum of individual contributions) and a private numeraire good.2 Central con-

clusions which emerge are the underprovision of the public good in the non-

cooperative equilibrium compared to a Pareto-optimal provision, the theorem

of income neutrality, implying that a redistribution of income (within bound-

aries) will not affect the equilibrium total public good provision, and the fact

that the difference between equilibrium provision and first best increases with

the number of agents. The typical assumption is that both goods are nor-

mal goods, which gives rise to downward sloping reaction functions in public

good provision levels. This assumption is convenient to prove uniqueness of

the equilibrium public good provision vector. It has typically two further

implications. The cross derivative of utility with respect to the public and

private good is assumed to be of minor importance and the typical text book

illustration assumes a Cobb-Douglas utility function which gives rise to pos-

itive cross derivatives (and downward sloping reaction functions). However,

downward sloping reaction functions, usually associated with the term easy

riding, is not the only possibility as pointed out by Cornes and Sandler (1986,

ch. 5). Moreover, it does not seem unrealistic to consider the possibility that

the public good can be a superior good which would allow for the possi-

bility of upward sloping reaction functions. For some environmental goods

there is some evidence (e.g. Bergstrom and Goodman (1973), Boercherding

and Deacon (1972) and Selden and Song (1994)) of income elasticities larger

2This refers to the standard assumption of a pure public good with a summation tech-
nology. Alternative assumptions, like impure public goods are considered for instance in
Cornes and Sandler (1994) and a departure from the summation technology, like weakest-
link and best-shot technologies are analyzed for instance in Hirschleifer (1983).
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than 1. Our model essentially captures this possibility. However, different

from most of the public goods literature, we do not assume a linear budget

constraint with constant prices, but, in the tradition of the IEA literature,

consider (strictly) convex cost functions of private and public good provision

and hence non-constant marginal costs.3 It is important to note that in the

mitigation-adaptation context it is very plausible to assume that the cross

derivative is negative. However, we will show that the absolute value of the

derivative is what matters and not the sign to have upward sloping reaction

functions in the public good provision space.

The importance of the cross derivative for public good provision extends

much beyond the specific context we consider in this paper. For instance,

member states of the European Community can either coordinate on pol-

icy issues like security, anti-terrorism, migration and social policy or pursue

those issues nationally. That is, financial resources can either be transferred

to Brussels or remain with national governments. In practice, national and

international policy measures co-exist and the benefit of national (interna-

tional) policy measures is often diminished by the quality of international (na-

tional) measures. Citizens can vote for improved flood protection through

their local government or can invest directly into the protection of their

houses. Similarly, they can vote for the improvement of the local policy force

or invest in devices to secure their private homes. Money can be devoted

to build and maintain a public or a private swimming pool and farmers can

invest either in their own machinery and irrigation devices or to become a

member of a cooperative with access to shared facilities. In each of these

examples, it is likely that the benefit of the private investment impinges on

the benefits of the public investment and vice versa, i.e. the cross derivative

is negative. In other cases, it can be expected that the cross derivative is

positive. Public spending on improved infrastructure may increase the value

3This generalization comes at the cost that the problem can no longer be viewed in
terms of income elasticities.
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of houses and hence makes the private investment in flood protection and

security more valuable for home owners.

Fourthly, there is quite some literature that investigates complementar-

ities in strategic games. From the survey by Vives (2005), it appears that

complementarity does not need to be the result of special assumptions but

there are many interesting economic problems with this feature, though the

analysis is usually more complex, requires different tools for the analysis and

may suffer from multiple equilibria. For our problem, it turns out that a

slight modification of standard theorems is sufficient for the analysis and

simple conditions give existence and uniqueness of equilibria.

In what follows, we set out our model and its assumptions in Section

2. We present results of our two stage coalition formation model in reverse

order according to backwards induction in Section 3 and 4, respectively, and

summarize our main results and policy conclusions in Section 5.

2 Model

We consider n players, which are countries in our context, i = 1, 2, ... , n,

with the payoff function of country i in the pure mitigation game (M-game)

given by:

Πi(Q, qi) = Bi(Q)− Ci(qi) (1)

and in the mitigation-adaptation game (M+A-game) by:

Πi(Q, qi, xi) = Bi(Q, xi)− Ci(qi)−Di(xi) (2)

where it will turn out throughout the paper that the M+A-game can be

viewed as a generalization of the M-game. We denote the set of players by

N . In the richer M+A-game, country i can not only choose its individual

mitigation level qi but also its adaptation level xi within its (compact and
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convex) strategy space qi ∈ [0,
−
qi] and xi ∈ [0,

−
xi] with

−
xi and

−
qi suffi-

ciently large. Country i’s payoff comprises benefits, Bi, which depend on

total mitigation, Q =
∑n

j=1 qj, and in the M+A-game additionally also on

its individual adaptation level, xi; the cost of mitigation is denoted by Ci,

and the cost of adaptation by Di.

If there is no misunderstanding, we drop the index i as we assume that

players are ex-ante symmetric, i.e. they have the same payoff function; if we

need to stress that players are ex-post asymmetric, e.g. because they chose

different strategies, we will use the index. Apart from assuming that all

functions, including their first and second derivatives, are continuous in their

variable(s), we make the following assumptions regarding the components of

the payoff functions (with the understanding that all derivatives with respect

to x are only relevant in the M+A-game) where subscripts denote derivatives,

e.g. BQ = ∂B
∂Q

and BQQ = ∂2B
∂Q2 .

General Assumptions

Both Games:

a) BQ > 0, BQQ ≤ 0, Cq > 0, Cqq > 0.

b) limQ→0 BQ > limq→0 Cq > 0.

M+A-Game:

c) Bx > 0, Bxx ≤ 0, Dx > 0, Dxx ≥ 0.

If Bxx = 0, then Dxx > 0 and vice versa: if Dxx = 0, then Bxx < 0.

d) BxQ = BQx < 0.

e) limx→0 Bx > limx→0 Dx > 0.

From a technical point of view, assumptions a and c reflect the standard

assumptions of concave benefit and convex cost functions. We allow for the

possibility that benefit functions can be linear such that we can revisit some

simple examples, which have been considered in the literature on IEAs in the

8



context of a pure mitigation game. We assume cost functions of mitigation to

be strictly convex in order to ensure unique equilibrium mitigation levels. For

adaptation, it turns out that this is not necessary. However, in assumption

c, we state that if benefit functions are linear in adaptation, then adaptation

cost functions must be strictly convex and vice versa. These properties of the

benefit and cost functions together with assumption b and e rule out corner

solutions as for instance in Kolstad (2007) in a pure mitigation game and in

Barrett (2008) in a mitigation-adaptation game.

From an economic point of view, assumption a stresses that mitigation is

a pure public good, i.e. the marginal benefit from mitigation depends on the

sum of all (and not on individual) mitigation efforts. In contrast, assumption

c stresses that adaptation is a pure private good, i.e. the marginal benefit

from adaptation depends on the individual adaptation level of a country

(and not on those of others). The interdependency between mitigation and

adaptation is captured through assumption d. The marginal benefit from

mitigation (adaptation) decreases with the level of adaptation (mitigation).

For simplicity, such an interdependency is assumed away on the cost side. In

order to stress this, we assume for clarity two separate cost functions.

The strategic interaction between countries is directly related to the

(pure) public good nature of mitigation. Mitigation in country i generates

benefits in country i but also in all other countries. Thus, mitigation levels

generate positive externalities. Adaptation levels generate no direct exter-

nalities. However, they indirectly influence the strategic interaction among

countries because, as will become apparent below: the higher the adaptation

level in a country, the lower will be its mitigation level, irrespective whether

country i acts independently or joins an agreement.

Finally note that the assumption of ex-ante symmetric players is very

much in the tradition of the literature on coalition formation in general (Bloch

2003 and Yi 1997 for overviews) and on IEAs in particular (Finus and

Caparros 2015 for an overview) due to the complexity of coalition formation.
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This does not preclude that players are ex-post asymmetric. As will become

apparent below, signatories and non-signatories will typically choose different

mitigation levels and hence will receive different payoffs.

We assume the General Assumptions to hold throughout the paper. If we

make further assumptions, we will mention them explicitly. Our two-stage

coalition formation game unfolds as follows.

Definition 1: Coalition Formation Game

Stage 1

All countries choose simultaneously whether to join coalition P ⊆ N or

to remain a singleton player. Countries i ∈ P are called signatories and

countries j /∈ P are called non-signatories.

Stage 2

All non-signatories j /∈ P choose their economic strategies in order to

maximize their individual payoff and all signatories i ∈ P do so in order to

maximize the aggregate payoff to all coalition members. Choices of all players

are simultaneous.

M-Game: Mitigation levels are chosen simultaneously.

M+A-game: Version 1: Mitigation and adaptation are chosen simulta-

neously. Version 2: Mitigation and adaptation are chosen sequentially; all

players choose first mitigation and then adaptation.

Stage 1 is the cartel formation game, which originates from the literature

in industrial organization (d’Aspremont et al., 1983) and has been widely

applied in this literature (e.g. Deneckere and Davidson 1985, Donsimoni et

al. 1986 and Poyago-Theotoky 1995; see Bloch 2003 and Yi 1997 for surveys)

but also in the literature on IEAs (e.g. Barrett 1994, Carraro and Siniscalco

1993 and, Rubio and Ulph 2006; see Finus and Caparros 2015 for a survey).

This game has also been called open membership single coalition game as

membership in coalition P is open to all players and players have only the
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choice between joining coalition P or remaining a singleton.4 Open mem-

bership may be defended on two grounds. In the context of the provision

of a public good, it appears that one is more concerned about players leav-

ing a coalition than joining it. Moreover, to the best of our knowledge, all

international environmental treaties are of the open membership type. The

assumption of a single coalition simplifies the analysis but is also in line with

the historical records of IEAs with a single treaty.

Stage 2 follows the standard assumption in the literature on coalition

formation (see Bloch 2003 and Yi 2003 for surveys): the coalition acts as a

kind of meta player (Haeringer 2004), internalizing the externality among its

members, whereas non-signatories act selfishly, maximizing their own payoff.

We also follow the mainstream assumption and assume that signatories and

non-signatories choose their economic strategies simultaneously.5 In the M-

game, the second stage is simple: an equilibrium mitigation vector q∗(P ) is

derived, given that coalition P has formed. In the M+A-game, Version 1

and 2 reflect different possible assumptions about the timing of mitigation

and adaptation. As both versions lead to the same second stage equilibrium

economic strategies as we show below, our results are robust.6

The two-stage coalition formation game is solved by backwards induction.

In the second stage, given that some coalition P ⊆ N has formed in the first

stage, in the M+A-game, Version 1 determines simultaneously an equilib-

4Surveys of coalition games with other membership rules, including exclusive member-
ship and multiple coalitions, are provided in Bloch (2003) and Yi (1997) and a systematic
comparison of equilibrium coalition structures under different membership rules is con-
ducted in Finus and Rundshagen (2009).

5Again, see Bloch (2003) and Yi (2003) on this. This has been called Nash-Cournot
assumption in the literature on IEAs and has been contrasted with the assumption of a
sequential choice, called Stackelberg assumption, where signatories act as a Stackelberg
leader. The Stackelberg assumption has been considered for instance in Barrett (1994)
and Rubio and Ulph (2006) in a pure mitigation game.

6In principle, we could also consider a Version 3 in which the timing is reversed com-
pared to Version 2. Version 3 is considered in Zehaie (2009). However, assuming first
adaptation and then mitigation is not in line with the historical development in climate
change policy.
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rium mitigation vector q∗(P ) and an equilibrium adaptation vector x∗(P )

as a Nash equilibrium between coalition P and all remaining players not in

P . Version 2 may be broken down into stage 2a and 2b. In stage 2b the

equilibrium adaptation vector is determined, again, as a Nash equilibrium

between coalition P and the remaining singletons. Equilibrium adaptation

levels in stage 2b will depend on the levels of mitigation chosen in stage 2a,

which in turn depend on which coalition P has formed in stage 1. Hence, in

stage 2b, we can write x∗(q(P )). Substituting this into the payoff function

(1), payoffs in stage 2a are only a function of mitigation levels. This allows

us to solve stage 2a for equilibrium mitigation levels, q∗(P ).

It is clear that we want for technical reasons for each possible coalition

P a unique equilibrium strategy vector to exist. This allows us to write

Π∗
i (P ) instead of Πi(q

∗(P )) in the M-game. and, accordingly, Π∗
i (P ) instead

of Πi(q
∗(P ),x∗(P )) in the M+A-game. Even though we provide sufficient

conditions for existence and uniqueness only in the next section, we make

already use of this assumption in order to save on notation and define a

stable coalition P ∗ as follows:

internal stability: Π∗
i (P

∗) ≥ Π∗
i (P

∗ \ {i}) ∀i ∈ P ∗

external stability: Π∗
j(P

∗) ≥ Π∗
j(P

∗ ∪ {j}) ∀j /∈ P ∗

It is evident that the conditions of internal and external stability de facto

define a Nash equilibrium in membership strategies in the first stage. Each

player i who announced to join coalition P ∗ should have no incentive to

(unilaterally) change her strategy by leaving coalition P ∗ and each player j

who announced not to join coalition P ∗ should have no incentive to (uni-

laterally) change his strategy and join coalition P ∗, given the equilibrium

announcements of all other players.

Note that by the construction of the coalition game, the equilibrium eco-
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nomic strategy vectors in the second stage correspond to the Nash equilib-

rium known from games without coalition formation if coalition P is empty

or contains only one player. We also call this “no cooperation”. By the same

token, if coalition P comprises all players, i.e. the grand coalition forms,

P = N , this corresponds to the “social optimum”. We also call this “full

cooperation”. Any non-trivial coalition (i.e. a coalition of at least two play-

ers) which comprises more than one player but less than all players may be

viewed as partial cooperation.

In order to evaluate the outcomes and to analyze the driving forces of

coalition formation, we define some useful properties where p denotes the

cardinality of P , i.e. the size of coalition P .

Definition 2: Superadditivity, Positive Externality and

Cohesiveness

i) A game is (strictly) cohesive if for all P ⊂ N :

∑

k∈N

Π∗
k({N}) ≥ (>)

∑

k∈P

Π∗
k(P ) +

∑

l∈{N\P}

Π∗
l (P ).

(ii) A game is (strictly) fully cohesive if for all P ⊆ N , p ≥ 2 and all i ∈ P :

∑

k∈P

Π∗
k(P )+

∑

l∈{N\P}

Π∗
l (P ) ≥ (>)

∑

k∈{P\{i}}

Π∗
k(P \{i})+

∑

l∈{N\P∪{i}}

Π∗
l (P \{i}).

(iii) A coalition game exhibits a (strict) positive externality if for all

P ⊂ N , p ≥ 2 and for all j ∈ N \ P :

Π∗
j(P ) ≥ (>)Π∗

j(P \ {i}).

(iv) A coalition game is (strictly) superadditive if for all P ⊆ N , p ≥ 2 and
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all i ∈ P :

∑

k∈P

Π∗
k(P ) ≥ (>)

∑

k∈{P\{i}}

Π∗
k(P \ {i}) + Π∗

i (P \ {i}).

Typically, a game with externalities is strictly cohesive, with the under-

standing that in a game with externalities the strategy of at least one player

has an impact on the payoff of at least one other player. The reason is that

the grand coalition internalizes all externalities by assumption. Hence, co-

hesiveness motivates the choice of the social optimum as a normative bench-

mark, and it is the basic motivation to investigate stability and outcomes

of cooperative agreements. A stronger normative motivation is related to

full cohesiveness as it provides a sound justification to search for large sta-

ble coalitions even if the grand coalition is not stable due to large free-rider

incentives. The fact that large coalitions, including the grand coalition, may

not be stable in coalition games with positive externalities is well-known in

the literature (e.g. see the overviews by Bloch 2003 and Yi 1997). Exam-

ples of positive externality games include output and price cartels and the

pure mitigation game. The positive externality can be viewed as a benefit

generated by the coalition, which also accrues to outsiders as these benefits

are non-excludable. This property makes it attractive to stay outside the

coalition. This may be true despite superadditivity, a property which makes

joining a coalition attractive. In the context of the pure mitigation game,

stable coalitions are typically small because with increasing coalitions, the

positive externality effect dominates the superadditivity effect.7 Whether

this is also the case if adaptation is available as a second strategy is one of

the key research question of this paper.

Finally note that all four properties are related to each other. For in-

7This is quite different in negative externality games. In Weikard (2009) it is shown
that in a coalition game with negative externalities and superadditivity the grand coalition
is the unique stable equilibrium.
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stance, a coalition game which is superadditive and exhibits positive exter-

nalities is fully cohesive and a game which is fully cohesive is cohesive.

3 Second Stage of Coalition Formation

3.1 Equivalence of Version 1 and 2 and Symmetry

In this subsection, we establish the equivalence between Version 1 and 2 in

Definition 1 and some basic implications of the ex-ante symmetry assumption

regarding equilibrium mitigation and adaptation levels in the second stage.

We assume the existence of a unique interior second stage equilibrium for

which we establish sufficient conditions in Subsection 3.2.

Lemma 1: Equivalence of Version 1 and 2 in the M+A-Game

In the M+A-game, Version 1 and 2 are equivalent in terms of an interior

second stage equilibrium.

Proof. Version 1: The first order conditions in terms of mitigation are

given by

pBQ(Q, x) = Cq(q) (3)

where we may recall that p denotes the size of coalition P ⊆ N . For non-

signatories we have p = 1 and for signatories p ≥ 2 if a non-trivial coalition

forms. The first order conditions for non-signatories and signatories in terms

of adaptation are the same and are given by

Bx(Q, x) = Dx(x) . (4)

Version 2: In the last stage, stage 2b, when signatories and non-signatories

simultaneously choose their adaptation levels, the first order conditions of

non-signatories and signatories are given by (4). These first order conditions

implicitly determine adaptation x as a function of total mitigation Q. Hence,
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using x(Q), the maximization problem, which signatories and non-signatories

face in stage 2a, when choosing their mitigation levels, leads to the first order

conditions p
[
BQ(Q, x(Q)) +Bx(Q, x(Q)) ∂x

∂Q

]
− Cq(q) − Dx(x(Q)) ∂x

∂Q
= 0,

again with p = 1 and p ≥ 2 for non-signatories and signatories, respectively,

which, using the first order conditions (4) and rearranging terms, imply (3)

above.

The proof above made already use of the assumption of ex-ante symmetric

players for notational simplicity but holds generally, also for asymmetric play-

ers. The first order conditions (3) and (4) are instructive in several respects,

with the main conclusions summarized in Lemma 2 below. Firstly, only the

strict convexity of the cost function of mitigation (General Assumptions, part

a) ensures that mitigation levels among signatories are unique. From (4) it

is evident that this is not required for adaptation. Secondly, the first order

conditions in terms of adaptation are the same for non-signatories and signa-

tories because adaptation is a private good. However, one should therefore

not mistakenly conclude that policy coordination is not required in terms of

adaptation. We will show later that equilibrium adaptation levels decrease in

the size of the coalition and hence obtain their lowest levels in the social op-

timum. Moreover, adaptation influences optimal mitigation levels. Thirdly,

all non-signatories choose the same mitigation level q∗j/∈P
(p) and all signato-

ries choose the same mitigation level q∗i∈P (p) for all p, 1 ≤ p ≤ n. Moreover,

q∗j /∈P (p) < q∗i∈P (p) for all p, 1 < p < n and hence Π∗
j /∈P (p) > Π∗

i∈P (p). Finally,

in the M-game, there is only one set of first order conditions, namely (3) and

hence what we concluded in the last point is also true.

Lemma 2: Symmetry and Equilibrium Mitigation and Adapta-

tion

Consider an arbitrary coalition and an interior second stage equilibrium.

M-Game: For all p, 1 < p < n: q∗j /∈P (p) < q∗i∈P (p) with q∗j /∈P (p) = q∗l /∈P (p)

for all j, l /∈ P and q∗i∈P (p) = q∗k∈P (p) for all i, k ∈ P .
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M+A-game: x∗
i∈P (p) = x∗

j /∈P (p) for all p, 1 ≤ p ≤ n and all i, j ∈ N .

Moreover, for all p, 1 < p < n : q∗j /∈P (p) < q∗i∈P (p) with q∗j /∈P (p) = q∗l /∈P (p)

for all j, l /∈ P and q∗i∈P (p) = q∗k∈P (p) for all i, k ∈ P .

Both games: Π∗
j /∈P (p) > Π∗

i∈P (p) for all p, 1 < p < n.

Proof. Follows from the discussion above and the first order conditions

(3) and (4) in the proof of Lemma 1. q∗j /∈P (p) < q∗i∈P (p) follows from (3) and

from Cqq > 0, noting that this implies pCq(qj /∈P ) = Cq(qi∈P ). Finally, all

players have the same benefits and costs, except signatories who have higher

mitigation costs than non-signatories.

The importance of Lemma 2 derives from the fact that it compactly

summarizes the implications of the simplification which are associated with

the assumption of ex-ante symmetric players.

3.2 Existence of a Unique Interior Second Stage Equi-

librium

In this subsection, we derive sufficient conditions for the existence of a unique

interior second stage equilibrium for every possible coalition P of size p,

1 ≤ p ≤ n. We use the concept of replacement functions, which Cornes and

Hartley (2007) have shown is a convenient and elegant tool to establish ex-

istence of a unique Nash equilibrium in aggregative games. We only have to

slightly modify their approach in two respects. Firstly, we view the second

stage equilibrium as a Nash equilibrium between coalition P , acting de facto

as a single player, and all non-signatories, who play as singletons. Secondly,

in the M+A-game, and different from the M-game and the cases considered

in Cornes and Hartley’s paper, we need to account for the possibility of

upward-sloping replacement functions as explained below. In the following,

we introduce the concept of reaction and replacement functions and sketch

the arguments to establish existence and uniqueness of an interior equilib-

rium, providing additional formal details in the proof of Proposition 1. We
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consider first the more comprehensive and interesting M+A-game, and briefly

comment on the simpler M-game in passing. We know from the definition

of the payoff function that the strategy space of each player is compact and

convex and payoffs of all players are continuous and bounded in the entire

strategy space. Hence, an equilibrium exists.

We first observe that the first order conditions in terms of adaptation (4)

implicitly define the equilibrium adaptation levels as a function of total miti-

gation, x(Q). Consequently, the first order conditions in terms of mitigation

(3) can be written as pBQ(Q, x(Q)) = Cq(q). Now if we let Q = qi + Q−i,

each first order condition implicitly defines qi as a function of Q−i, which is

the reaction function of player i. Hence, generally, for any coalition P ⊆ N

we have qi∈P = ri∈P (Q−i) for signatories and qj /∈P = rj /∈P (Q−j) for non-

signatories (setting p = 1 in the first order conditions of non-signatories).

Clearly, reaction functions are well-known and well-suited to study the strate-

gic interaction among players and we will use them in the next subsection

for exactly this reason. However, for the purpose at hand, and given that we

consider more than two players and more than one strategy, the concept of

replacement functions is much simpler.

For instance, if we use the first order conditions directly and derive

the individual replacement function of signatories, qi∈P = Ri∈P (Q), and

of non-signatories qj /∈P = Rj /∈P (Q). The aggregate replacement function is

simply derived by summing over all individual replacement functions, i.e.

Q = R(Q) =
∑

i∈N Ri(Q). The idea is illustrated in Figure 1 for the as-

sumption of downward sloping replacement functions.8

“Figure 1 about here”

“Figure 2 about here”

The graphical determination of the second stage equilibrium works as

follows. Firstly, the aggregate replacement function is derived as the verti-

8The graph assumes linear replacement functions but this does not necessarily has to
be the case and is not crucial for the following arguments.
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cal summation of all individual replacement functions. Notice that due to

symmetry all individual replacement functions of signatories are the same,

and the same applies for all non-signatories. Secondly, the intersection of the

aggregate replacement function with the 450-degree line, point E, determines

the aggregate equilibrium mitigation level because there Q∗ = R(Q∗) by def-

inition. Thirdly, one draws a vertical line from point E down to Q∗ on the

abscissa. Finally, from the intersection point with the individual replacement

functions, points e and f in the graph, one draws horizontal lines to the or-

dinate which gives the equilibrium individual mitigation level of signatories

q∗i∈P and non-signatories, q∗j /∈P .

We note that if all individual replacement functions are continuous and

downward sloping over the entire strategy space, also the aggregate replace-

ment function will have this property. If all replacement functions start at a

positive value on the ordinate, all equilibrium mitigation levels will be strictly

positive. Finally, the aggregate replacement function will intersect only once

with the 450-degree line if its slope is negative over the entire domain.

The idea of upward sloping reaction functions is illustrated in Figure 2.

The procedure of determining the equilibrium works exactly the same, as

discussed above. However, now the absolute value of the slope of the aggre-

gate replacement function matters. Figure 2 illustrates that the aggregate

replacement function could have a slope larger than 1 everywhere, in which

case it will never intersect with the 450-degree line. Hence, the conditions

which ensure that the aggregate replacement function has a slope less than

1 are those which ensure a unique interior equilibrium.

Additional Assumption

Let A := BQQ +
(BxQ)2

Dxx−Bxx
in the M+A-game. For all players i ∈ N and

xi ∈ [0,
−
xi] and qi ∈ [0,

−
qi]:

A

[
p2

Cqq(qi∈P )
+

(n− p)

Cqq(qj /∈P )

]
< 1 .
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The left-hand side term in the inequality listed in the Additional Assump-

tion above is the slope of the aggregate replacement function. The sign of

this slope is related to the term AM+A := BQQ+
(BxQ)2

Dxx−Bxx
in the M+A-game,

which would be AM := BQQ in the M-game. If A < 0, replacement func-

tions are downward sloping and no further assumptions for uniqueness are

necessary. This is also true if A = 0 in which case individual and aggregate

replacement functions are horizontal lines and hence also intersect with the

450-degree line only once. In the M-game BQQ ≤ 0 and hence uniqueness

follows immediately. In the M+A-game, AM+A can also be negative or equal

to zero, but could also be positive. It is for this last possibility why we intro-

duce the Additional Assumption as a sufficient condition which ensures that

the slope is strictly smaller than 1 over the entire strategy space.

Proposition 1: Existence of a Unique Interior Equilibrium in

the Second Stage

Consider an arbitrary coalition of size p, 1 ≤ p ≤ n.

M-Game: A unique interior equilibrium in the second stage always exists.

M+A-game: A sufficient condition for the existence of a unique interior

equilibrium in the second stage, is either A ≤ 0 or if A > 0, then the

Additional Assumption holds.

Proof. The left-hand side term in the Additional Assumption is the slope

of the aggregate replacement function in the M+A-game. From pBQ(Q, x(Q)) =

Cq(qi∈P ) we have qi∈P = Ri∈P (Q) = C−1
q (pBQ(Q, x(Q))). Ri∈P (Q) is con-

tinuous in Q and qi∈P is strictly positive if Q approaches zero because

limQ→0 BQ > limq→0 Cq > 0 from our General Assumptions. From the

theorem of inverse functions, we have
dC−1

q (q)

dq
= 1

Cqq(q)
and hence the slope

of individual replacement functions of signatories is given by R
′
i∈P (Q) =

d(C−1
q (pBQ(Q,x(Q))))

dQ
= 1

Cqq(qi∈N )

d(pBQ(Q,x(Q)))

dQ
=

(
1

Cqq(qi∈P )
pA

)
because

d(BQ(Q,x(Q)))

dQ
=

A and of non-signatories by R
′

j /∈P (Q) = 1
Cqq(qi∈P )

A respectively. In more de-

tail,
d(BQ(Q,x(Q)))

dQ
= BQQ + BQx

dx
dQ

with dx
dQ

=
BxQ

Dxx−Bxx
from Bxx(Q, x)dx +
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BxQ(Q, x)dQ − Dxx(x)dx = 0. For the aggregate replacement function,

accordingly, we derive R
′
(Q) = A

[
p2

Cqq(qi∈P )
+ (n−p)

Cqq(qj /∈P )

]
. Finally, if Q∗ is

unique, x∗(Q∗) is unique because x = fi∈N(Q) is continuously downward

sloping over the entire strategy space and limx→0 Bx > limx→0 Dx > 0 from

our General Assumptions ensures an interior equilibrium.

The importance of term A will also become apparent in the next subsec-

tion.

3.3 Strategic Interaction Between Mitigation and Adap-

tation

In this subsection, we analyze the strategic interaction among players in

terms of mitigation and the strategic relation between mitigation and adap-

tation for a given coalition P ⊆ N of size p, 1 ≤ p ≤ n. For this, we

derive the slopes of the reaction functions which have been defined in the

previous Subsection 3.2. For the subsequent analysis, we need to make only

two additional remarks. Firstly, one can view the coalition as one player

and because of symmetry all non-signatories as another player. Hence,

we can define the aggregate reaction function of signatories by Qi∈P =

r(Qj /∈P ) and of non-signatories by Qj /∈P = r(Qi∈P ), with Qi∈P = pqi∈P and

Qj /∈P = (n − p)qj /∈P the total mitigation of signatories and non-signatories,

respectively, in order to capture the strategic interaction between these two

groups in a compact way. Secondly, the first order condition (4), Bx(Q, x) =

Dx(x), which is identical for all players, implicitly defines optimal adaptation

as a function of total mitigation, x = fi∈N(Q), as already used in the proof

of Proposition 1 above.

Proposition 2: Slopes of Reaction Functions in Mitigation and

Adaptation Space

Consider an arbitrary coalition of size p, 1 ≤ p ≤ n, and let primes

denote the slopes of reaction functions. Further let A := BQQ +
(BxQ)2

Dxx−Bxx
in
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the M+A-game and A := BQQ in the M-game.

Strategic interaction between mitigation levels in the M-game

and M+A-game

The slopes of individual and aggregate reaction functions of signatories

are given by r
′
i∈P (Q−i) = pA

Cqq(qi∈P )−pA
and r

′
(Qj /∈P ) = p2A

Cqq(qi∈P )−p2A
, re-

spectively, and the slopes of non-signatories’ reaction functions are given by

r
′

j /∈P (Q−j) =
A

Cqq(qj /∈P )−A
and r

′
(Qi∈P ) =

(n−p)A
Cqq(qj /∈P )−(n−p)A

.

That is, reaction functions are always weakly downward sloping in the M-

game. In the M+A-game, reaction functions are (weakly) downward sloping

if A ≤ 0 and are (strictly) upward sloping if A > 0.

Strategic interaction between mitigation and adaptation in the

M+A-game

For each possible coalition, the slope of the individual reaction function

x = fi∈N(Q) is given by f
′
i∈N(Q) =

BQx

Dxx−Bxx
< 0.

Proof. The derivation follows the same lines as described for replacement

functions in Subsection 3.2, in particular the proof of Proposition 1 and is

therefore omitted.

The first statement sheds light whether mitigation levels are strategic

substitutes or complements. In the M-game, they are always substitutes if

we exclude the case BQQ = 0 in which case reaction functions are orthogonal.

In the M+A-game, this is also the case provided the term A := BQQ+
(BxQ)2

Dxx−Bxx

is negative, again with orthogonal reaction functions for the special case if

A = 0. However, if A > 0, then reaction functions are upward sloping and

mitigation strategies are strategic complements.9 Because BQQ ≤ 0, A > 0

if
(BxQ)2

Dxx−Bxx
> 0 is sufficiently large, which captures the interaction between

mitigation and adaptation. Intuitively, this is evident when considering

the first order condition (3), pBQ(qi + Q−i, x(qi + Q−i)) = Cq(qi), using

9It is easy to show that the signs of the slopes of reaction and replacement functions are
the same, they only depend on the sign of the term A. The possibility of upward sloping
reaction functions has been pointed out by Ebert and Welsch (2011, 2012) in a two-player
model.
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Q = qi + Q−i. Increasing Q−i in a comparative static way (and hence Q)

has a direct negative effect on BQ, namely reducing BQ because of BQQ < 0.

Anything else being equal, this would call for a lower Cq(qi) in order for the

equality to be able to hold and hence a lower qi because Cqq > 0. However,

there is also the indirect effect, which increases BQ and hence calls for a

higher qi. Increasing Q−i increases Q and calls for a lower x(Q), which in

turn increases BQ because BQx < 0. This second indirect effect is exactly
(BxQ)2

Dxx−Bxx
. It is important to note that even if the indirect effect dominates

the direct effect, the sufficient conditions for the existence and uniqueness

of second stage equilibria, as stated in the Additional Assumptions, do not

need to be violated. Moreover, only the magnitude but not the the sign of

the cross derivative BxQ matters.

An alternative way of viewing this problem is by noticing that the second

derivative of the payoff function (2) with respect to other players’ mitigation

levels, after inserting x(Q), is exactly term A. Thus, if A > 0, the payoff

function is not concave but convex in other players mitigation level.

Upward sloping reaction functions could lead to more optimistic outcomes

in a coalition formation game (i.e. larger coalitions). The intuition is that

if mitigation levels are strategic substitutes, any additional increase of sig-

natories’ mitigation efforts is countervailed by a decrease of non-signatories’

mitigation efforts. In the context of climate change, this has been called

(carbon) leakage which makes it less attractive to join an agreement. Thus,

upward sloping reaction functions may be viewed as a form of anti-leakage

or matching, which may be conducive to form large stable coalitions.

The idea to relate the success of coalition formation to the slopes of

reaction function is interesting. However, we have to be aware that up to

now results have only been established for a given coalition P but nothing

has been concluded how mitigation and adaptation changes with the degree

of cooperation, which is the crucial point for the analysis of stable coalitions.

We will analyze this in Section 4.
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The last statement in Proposition 2 gives a clear answer to the question

whether adaptation and total mitigation are substitutes or complements.

They are always substitutes, irrespective of the degree of cooperation. Be-

cause the concept of substitutes and complements is not uniquely defined in

the literature, Proposition 3 adds two variants to this.

Proposition 3: Alternative Views of the Strategic Interaction

between Mitigation and Adaptation

Consider an arbitrary coalition of size p, 1 ≤ p ≤ n and an interior

second stage equilibrium in the M+A-game.

(1) Individual mitigation levels of non-signatories and signatories and

hence also the total mitigation level are strictly lower in the M+A-game than

in the M-game.

2) Consider payoff function (1) but let the mitigation cost function be

given by γC(q) and the adaptation cost function by δD(x) where γ > 0

and δ > 0 are strictly positive parameters. Then individual mitigation levels

of signatories and non-signatories and hence also the total mitigation level

decrease (increase) in γ ( δ) and adaptation levels increase (decrease) in γ

( δ).

Proof. The first statement can be proved by using BQx < 0 from the

General Assumptions, noting that x > 0 in an interior equilibrium, and

showing (using (3)) that the contradiction QM+A∗(p) ≥ QM∗
(p) is false. For

individual mitigation levels one uses again (3) with QM+A∗(p) ≥ QM∗(p) and

BQQ ≤ 0 and Cqq > 0 from the General Assumptions. The second state-

ment is proved by using the first order conditions (3) and (4), the General

Assumptions and ∂x(Q)
∂Q

< 0 as established in Proposition 2.

From the first statement we can conclude that if adaptation is available as

a second strategy, less mitigation is required. Since mitigation concerns the

public good part in this strategic game, one may conjecture that the incentive

to leave a coalition could be less pronounced in the M+A-game than in the
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M-game. The driving force would be similar like in Barrett (2002) and Finus

and Maus (2008) who show that modest emission reduction lead to larger

stable coalitions. We test this conjecture in the next section.

The second statement relates changes of equilibrium strategies to price

effects. If mitigation costs increase uniformly across players, then players will

reduce their mitigation levels and increase their adaptation levels.

Thus, without doubt, considering Proposition 2 and 3 together, in our

model, adaptation and mitigation are strategic substitutes. The result hinges

on the certainly plausible assumption that the cross-derivative BxQ is neg-

ative. This would be different for BxQ > 0, which, as argued in the in-

troduction, could be possible for some other interesting public-private good

problems.

4 First Stage of Coalition Formation

In this section, we analyze stable coalitions. In a first step, we look at the

general properties of coalition formation. The purpose is to find out whether

the general properties in the M+A-game are fundamentally different from

those in the M-game. It will turn out that properties can be established

under more general conditions in the M+A-game than in the M-game, there

are differences in the two games, but they are not sufficiently pronounced to

draw general conclusions about the size and the success of stable coalitions

in the two games. Therefore, in a second step, we look at two specific payoff

functions, which reveal interesting differences in both games.

4.1 General Properties

Proposition 4 summarizes what we know in terms of mitigation and adapta-

tion levels when the degree of cooperation changes, i.e. the size of coalition

P (denoted by p) increases. Note that any discrete change of p (because the
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number of signatories must be an integer value) is captured by a continuous

change and hence we can use the differential with respect to p.

Proposition 4: Equilibrium Mitigation and Adaptation and the

Degree of Cooperation

Consider an arbitrary coalition of size p, 1 ≤ p < n, and let

A := BQQ+
(BxQ)2

Dxx−Bxx
><= 0 in the M+A-game and A := BQQ ≤ 0 in the M-

game. Further assume the Additional Assumption to hold in the M+A-game

and let an asterisk denote equilibrium values for a given p.

Mitigation in the M+A-game and M-game

a) Non-signatories:

i)
dq∗

j /∈P
(p)

dp
> 0 if and only if A > 0 ;

ii)
dQ∗

j /∈P
(p)

dp
>< 0 if A > 0 and

dQ∗
j /∈P

(p)

dp
< 0 if A ≤ 0;

b) Signatories:

i)
dq∗i∈P (p)

dp
> 0 if A ≥ 0 and

dq∗i∈P (p)

dp
>< 0 if A < 0;

ii)
dQ∗

i∈P (p)

dp
> 0;

c) Aggregate: dQ∗(p)
dp

> 0.

Adaptation in the M+A-game

d) Signatories and non-signatories: dx∗

dp
< 0.

Proof. See Appendix 1.

Generally speaking, the change of equilibrium mitigation levels of signa-

tories and non-signatories (statements a and b) resulting from a change of

the coalition size are mostly (though not always) related to the sign of the

term A and hence to the sign of the slopes of the reaction functions. Part ai

confirms that non-signatories will decrease (increase) mitigation levels when

the degree of cooperation increases if reaction functions are downward (up-

ward) sloping. If a non-signatory joins the coalition, the total mitigation level

of signatories, Qi∈P , increases (Part bii), and the remaining individual non-

signatories match this behavior if mitigation levels are strategic complements

and undermine this effort if they are substitutes.
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Clearly, moving from p to p+ 1, means one non-signatory less and hence

if individual non-signatories’ equilibrium provision levels qj /∈P drop (or re-

main constant) as p increases (which happens if A ≤ 0), the total provision

level of non-signatories, Qj /∈P , will drop. However, if mitigation levels are

strategic complements, then there are two opposing effects and hence overall

predictions are generally not possible (Part aii).

Interestingly, despite signatories’ total mitigation level always increases

with the degree of cooperation (Part bii), individual mitigation levels do not

necessarily have to increase (Part bi). On the one hand, one more member

calls for higher individual provision levels because more players internalize

the externality among them. On the other hand, before the expansion of

the coalition, the new member had lower marginal mitigation costs than the

old members; now when joining the coalition, the equalization of marginal

mitigation costs (as a result of cost-effectiveness within the coalition) calls

for a higher mitigation level of the new member but could call for lower

mitigation levels of old members compared to the initial situation provided

A < 0.

At the aggregate things are clear-cut: total mitigation level increases

with the size of the coalition (Part c). As total mitigation and adapta-

tion are strategic substitutes, it is not surprising that the opposite holds for

adaptation levels (Part d). This suggests that not only in the M-game, total

mitigation increases with the degree of cooperation and obtains its highest

level in the social optimum, but also in the M+A-game. Because of the

substitutional relation between adaptation and mitigation, for any degree

of cooperation, total mitigation will be lower in the M+A-game than in the

M-game as already observed in Proposition 3. Hence, the main difference be-

tween the M+A-game and the M-game relates to the fact that non-signatories

may increase their mitigation levels and hence match signatories behavior if

the term A is positive in the M+A-game.

We now conduct a similar analysis in terms of payoffs (see Proposition 5
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below) which are ultimately relevant when it comes to evaluate the success of

coalition formation (normative dimension) and the incentive to form stable

coalitions (positive dimension). The normative dimension relates to cohe-

siveness and full cohesiveness and the positive dimension to the properties

superadditivity and positive externality. Whereas (strict) cohesiveness holds

trivially in an externality game, full cohesiveness is much more difficult to

establish except if A ≥ 0. In the M-game, we know this is only the case

if BQQ = 0 whereas in the M+A-game this does not constitute a special

case. However, in the case of A < 0, things are less straightforward. The

reason is that if mitigation levels are strategic substitutes, an expansion of

the coalition means on the one hand higher total mitigation levels but on the

other hand an increasing difference between signatories’ and non-signatories’

mitigation levels and hence an increasing difference in marginal mitigation

costs, a source of inefficiency.

Note that A ≥ 0 is also a sufficient condition for superadditivity to hold,

which together with the positive externality property give directly full co-

hesiveness. Again, superadditivity could fail for some p if A < 0 as will

become apparent from example 2 in Subsection 4.2 (see in particular foot-

note 11). Typically, this is the case if the absolute value of A is large and if

p is small because then the leakage effect is particularly strong (i.e. reaction

functions are steep and there are many non-signatories, countervailing sig-

natories’ efforts to increase mitigation). Clearly, superadditivity cannot be

violated over the entire range of p as otherwise cohesiveness could not hold.

Proposition 5: Equilibrium Payoffs and the Degree of Coopera-

tion

Let A := BQQ +
(BxQ)2

Dxx−Bxx
><= 0 in the M+A-game and A := BQQ ≤ 0

in the M-game. Further assume the Additional Assumption to hold in the

M+A-game.

a) Both games are (strictly) cohesive.

b) In both games the positive externality property (strictly) holds.
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c) In both games a sufficient condition for (strict) superadditivity is A ≥ 0

which is also sufficient for (strict) full cohesiveness.

Proof. See Appendix 2.

There are three conclusions which can be derived from Proposition 5.

Firstly, at a general level, the incentive structure to form large stable coali-

tions does not appear to be fundamentally different in the two games because

both exhibit the positive externality property. Secondly, the normative mo-

tivation to search for large stable coalition can be established under sufficient

conditions which are less restrictive in the M+A-game than in the M-game

because A ≥ 0 does not require linear benefit functions (BQQ = 0) in the

M+A-game. Thirdly, the same applies to superadditivity, a condition which

is crucial for the stability of coalitions. In order to highlight the importance

of superadditivity for stability, we provide Proposition 6.

Proposition 6: The Role of Superadditivity for Stable Coalitions

a) A non-trivial stable coalition exists in a game which is superadditive.

b) If a coalition of size p ≥ 2 is internally stable, then the move from

p− 1 to p is superadditive.

c) If the move from p− 1 to p is superadditive, then the payoff of signa-

tories increases through this move .

Proof. Superadditivity implies pΠ∗
i∈P (p) ≥ (p−1)Π∗

i∈P (p−1)+Π∗
j /∈P (p−

1). a) If p = 2, Π∗
i∈P (p−1) = Π∗

j /∈P (p−1) and hence 2Π∗
i∈P (p) ≥ 2Π∗

j /∈P (p−1)

or Π∗
i∈P (p) ≥ Π∗

j /∈P (p−1) which is the condition for internal stability. Hence,

p = 2 is internally stable if the move from p − 1 to p is superadditive. If

p = 2 is externally stable we are done. If not, then p = 3 must be internally

stable. Repeating this argument means that eventually a coalition must

be externally stable, noting that the grand coalition is externally stable by

definition. b) and c). We rewrite the general condition for superadditivity

which gives Π∗
i∈P (p)+(p−1) · (Π∗

i∈P (p)− Π∗
i∈P (p− 1)) ≥ Π∗

j /∈P (p−1), noting

that we have Π∗
j /∈P (p − 1) > Π∗

i∈P (p − 1) from Lemma 2 and that internal
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stability implies Π∗
i∈P (p) ≥ Π∗

j /∈P (p− 1).

Part a of Proposition 6 is interesting in that it establishes sufficient con-

ditions for the existence of a non-trivial coalition. However, at this level

of generality, it is not clear how large stable coalitions will be and whether

they are larger in the M+A-game than in the M-game and if so on what this

depends. Part b is similar in spirit, looking at superadditivity and internal

stability in the neighborhood of a coalition of size p. The problem is that

superadditivity is only a necessary condition but not a sufficient condition

for internal stability. Part c reminds us that because non-signatories’ pay-

offs increase with the degree of cooperation due to the positive externality

property, we need for internal stability that also signatories’ payoffs increases

in the neighborhood of p for which superadditivity is a sufficient condition.

However, even if signatories’ payoffs constantly increase in p for all p, it is

still difficult to predict stable coalitions. The reason is that starting from

p = 1 in which case Π∗
i∈P (1) = Π∗

j /∈P (1), gradually increasing p, we need that

Π∗
i∈P (p) increases faster than Π∗

j /∈P (p − 1) in order to have large internally

stable coalitions. The central question is, however, what “faster” means.

The answer is not straightforward because Π∗
i∈P (p) < Π∗

j /∈P (p) for any p from

Lemma 2 and hence the “fast increase” of Π∗
i∈P (p) must happen within a

very short interval to have internal stability at p, i.e. Π∗
i∈P (p) ≥ Π∗

j /∈P (p−1).

Finally, to make things even worse, we cannot rule out the possibility that

Π∗
i∈P (p) decreases first and then increases in p and we still may have a stable

coalition at the increasing part of Π∗
i∈P (p). It is because of this lack of ana-

lytical tractability at the general level why all papers which analyzed stable

coalitions in the M-game have considered specific payoff functions and often

used simulations.

4.2 Examples

We consider two specific payoff functions which we call example 1 and 2.

Both examples assume quadratic costs functions. Example 1 assumes a linear
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benefit function with the following payoff function

ΠM
i(1) = bQ− c

2
q2i (5)

in the M-game and

ΠM+A
i(1) = b(1− γxi)Q+ a(1− λQ)xi −

c

2
q2i −

d

2
x2
i (6)

in the M+A-game where the parameters a, b, c, d, γ and λ are assumed

to be strictly positive. In example 1, AM = 0 and AM+A > 0 . Example 2

assumes again a linear benefit function in terms of adaptation but a quadratic

benefit function in terms of mitigation, such that we have AM < 0 and

AM+A ><= 0 where the sign of AM+A depends on the parameter values.

ΠM
i(2) = (aQ− b

2
Q2)− c

2
q2i (7)

ΠM+A
i(2) = (aQ− b

2
Q2) + xi(e− fQ)− c

2
q2i −

d

2
x2
i (8)

Again, we assume all parameters a, b, c, d, e, and f to be strictly positive.

For both examples we need to impose conditions such that the examples are

in line with the General Assumptions and that the Additional Assumption

in the M+A-game hold. This includes conditions to ensure interior second

stage equilibria for every p. Those conditions as well as all subsequent results

are spelled out in detail in Appendix 3. At an analytical level, the following

results can be derived.
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Proposition 7: Stable Coalitions in Example 1 and 2

Assume the General Assumptions as well as the Additional Assumptions

to hold for example 1 and 2.

a) In example 1, A = 0 and p∗ = 2 and p∗ = 3 in the M-game, where

the second Pareto-dominates the first equilibrium. In the M+A-game, A > 0

and p∗ ≥ 3.

b) In example 2, A < 0 and p∗ = 1 or p∗ = 2 in the M-game. In the

M+A-game, p∗ ≥ 3 if A ≥ 0.

Proof. See Appendix 3.

Both examples confirm the intuition that if reaction functions are upward

sloping in the M+A-game, stable coalitions will be (weakly) larger in the

M+A-game than in the M-game. However, in order to obtain further conclu-

sions, we need to conduct simulations. For example 1, we would like to find

out whether stable coalitions will be strictly larger in the M+A-game than

in the M-game. This is simulation run 1. For example 2, we conduct three

simulation runs. Simulation runs 2 and 3 assume A > 0 in the M+A-game,

illustrating that only if the absolute value of A is large enough will stable

coalitions be strictly larger than p∗ = 3. Finally, simulation run 4 assumes

A < 0 in the M+A-game, like in the M-game, illustrating that then stable

coalitions can even be smaller in the M+A-game than in the M-game.10,11

Apart from determing stable coalitions, the simulation runs allow us to draw

interesting conclusions regarding global mitigation levels and payoffs.

The main results are displayed in Table 1 to 4. The legend describes

the range of parameters considered in the simulation runs. Simulation set

1 lists the total number of simulations and set 2 the number of valid runs,

10For simulation run 4, the term A in the M+A-game is always smaller in absolute terms
than in the M-game but coalitions can be smaller. This stresses that the intuition a less
negatively sloped reaction function leads to larger coalitions is wrong. It also highlights
the need for simulations.

11Since p∗ = 1 for some parameter values in the M+A-game in simulation run 4, super-
additivity must fail when forming a two player coalition. Note that this does not contradict
Proposition 5, which establishes superadditivity for A ≥ 0.
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i.e. those simulations which observe the conditions listed in Appendix 3. If

different stable coalitions emerge, set 2 is grouped according to the size of

stable coalitions. For instance, in Table 1, set 2 contains 2620 simulations

of which 2616 deliver a stable coalition of size 3 and 4 simulations deliver

a stable coalition of size 10 in the M+A-game, which is the grand coalition

in the example because n = 10. (All 2620 simulations deliver a coalition of

size 3 in the M-game, as predicted by Proposition 7. ) The average coalition

size over all 2620 simulations is denoted by an upper bar in the last column.

Generally, upper bars denote averages over valid simulation runs.

The interpretation of A, Q
∗
(p∗) and x

∗(p∗) are obvious where the latter

two being the averages in stable coalitions of size p∗. I
SO

(I
CO

) is the average

of index ISO = Π∗SO

Π∗NE (ICO = Π∗CO

Π∗NE ), a relative welfare measure, with Π∗SO,

Π∗CO and Π∗NE denoting the total payoff in the social optimum, equilibrium

coalition and the Nash equilibrium, with the superscripts SO, CO and NE,

respectively, where the first two coincide if p∗ = n and the last two coincide if

p∗ = 1. The larger ISO, the larger the difference between the social optimum

and the Nash equilibrium in relative terms and hence the larger is the need for

cooperation. Index ICO measures the success of stable coalitions in relative

terms, also relating it to the Nash equilibrium. The following comments and

conclusions apply to all four simulation runs.

Firstly note that for a given p, Q∗ is lower in the M+A-game than in

the M-game because adaptation is available as a second strategy as we

know from the previous theoretical analysis (Proposition 3). Of course, if

stable coalitions are larger in the M+A-game than in the M-game, then

Q∗(p∗M+A) > Q∗(p∗M) is possible and the same applies to averages (e.g.

Simulation run 1: Q
∗
(p∗M+A = 10 > Q

∗
(p∗M = 3) and Simulation run 3:

Q
∗
(p∗M+A = 10 > Q

∗
(p∗M = 2)). However, in terms overall averages, in the

examples, even in simulation runs 1 and 3, Q
∗
(p∗M+A < Q

∗
(p∗M) because

the average coalition sizes over all simulations is not sufficiently larger in the

M+A-game compared to the M-game (simulation runs 1, 2 and 3) and may
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even be smaller as in simulation run 4.

Secondly, in absolute terms, global welfare in the social optimum, stable

coalitions and Nash equilibrium is higher in the M+A-game than in the M-

game.12 This does not only hold for averages as displayed in the tables but

holds for every simulation run. Regarding the social optimum, this is obvious

because in the absence of any strategic interaction, having more strategies

available in the M+A-game than in the M-game must lead to a higher global

payoff. More remarkable is that this also holds in the Nash equilibrium

and even for stable coalitions in simulation run 4 for those parameter values

where stable coalitions in the M+A-game are smaller than in the M-game.

Even though adaptation helps to reduce the costs to address climate change,

mutual positive externalities across players are generated through mitigation,

which is higher in the M-game than in the M+A-game for every coalition p,

1 ≤ p ≤ n as stated in Proposition 3. So the cost effect appears to be

stronger than the externality effect in our example.

Thirdly, the ratio of aggregate payoffs in the M+A and M-game decreases

when going from the Nash equilibrium to stable coalitions and finally to the

social optimum in which this ratio is close to 1. This suggest that adaptation

as an additional strategy is particular useful if there is no cooperation, but

its value decreases with the degree of cooperation. The intuition is that

cooperation is about coordinating mitigation levels across players, and hence

the value of adaptation decreases with the degree of cooperation.

Fourthly, and reiterating the last point, the indexes ISO and ICO are

smaller in the M+A-game than in the M-game, and this applies not only

to averages as displayed in the tables, but is also true for every individual

simulation For the index ICO this is even true for those case where the grand

coalition forms in the M+A-game whereas a much smaller coalition emerges

in the M-game (simulation runs 1 and 3). Thus, in relative terms the need

12Generally speaking, welfare comparisons between the two games are not valid. They
are valid for our two examples because by design ΠM+A

i (xi = 0) = ΠM
i .
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for cooperation, measured by ISO and the success of cooperation, measured

by ICO, are lower in the M+A-game than in the M-game.

The overall message is clear: under those conditions when reaction func-

tions are upward sloping in the M+A-game, stable coalitions as well as total

welfare may be larger in the M+A-game than in the M-game, and even total

public good provision levels may be larger despite adaptation if differences

in coalitions sizes are pronounced enough. However, the importance of adap-

tation decreases with the degree of cooperation and the relative gains from

forming stable agreements may well be smaller in the M+A-game than in

the M-game.

5 Conclusion

In this paper, we have analyzed how adaptation, as an additional strategy to

mitigation, affects the prospects of international policy coordination to tackle

climate change. More specifically, we have studied the strategic interaction

between mitigation and adaptation strategies in the canonical model of inter-

national environmental agreements (IEAs). We have shown that these two

strategies are strategic substitutes considering various definitions of substi-

tutability, regardless whether countries behave non-cooperatively, partially

cooperative or fully cooperative. Moreover, different from a pure mitigation

game, adaptation may cause mitigation levels between different countries to

be strategic complements. In those cases there is no easy-riding and the

game is transformed into a matching game. We showed that this may lead

to larger stable coalitions with even the grand coalition being stable. Also

the associate global welfare may be higher with adaptation. However, adap-

tation reduces the importance of cooperation and hence the success of stable

agreements may be small in relative welfare terms. Thus, effectively, adap-

tation may be more important in a non-cooperative than in a cooperative

setting, though it facilitates cooperation.
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In the Introduction, we pointed out that our analysis applies not only to

climate change but also to many other economic problems involving private

and public goods and their strategic interaction. Examples included interna-

tional policy coordination versus national policies related to anti-terrorism,

migration and social policy issues. It is therefore important to recall that

most of our interesting results do not depend on the sign of the cross deriva-

tive of the benefits from public and private good provision but only on the

fact that the magnitude of the cross derivative is of sufficient importance.

Of course, if the cross derivative between the public and the private good

were positive, private and public good would no longer be strategic substi-

tutes but complements. However, the case that public good provision levels

are strategic complements could still emerge and our sufficient conditions for

existence and uniqueness of equilibrium strategies for every possible coali-

tion structure would directly carry over. Also the fact that the public good

is underprovided as long as the grand coalition does not form is still valid.

Only the welfare implications of cooperation may be expected to be higher

because also the provision of the private good increased with cooperation if

the cross derivative would be positive.

Our model made a couple of assumptions in order to capture the main

driving forces analytically. For instance, we considered one of the most

widespread coalition games and stability concepts (internal and external sta-

bility in a cartel formation game) but could have considered other concepts

(Bloch 1997, Finus and Rundshagen 2009 and Yi 1997). Internal and exter-

nal stability implies that after a player leaves the coalition, the remaining

coalition members remain in the coalition. In the context of a positive ex-

ternality game, this is the weakest possible punishment after a deviation and

hence implies the most pessimistic assumption about stability. This appears

to be a good benchmark because we could show that with adaptation larger

coalitions can be stable, including the grand coalition. What would certainly

be interesting is to depart from the assumption of symmetric players in or-
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der to capture better the current discussion whether industrialized countries

should support developing countries not only in their mitigation but also their

adaptation efforts (Lazkano et al. (2016)) Will support in adaptation buy

more mitigation? In this context one could assume that coalition members

can pool their adaptation activities as a club, arriving an additional benefit

compared to non-signatories from the cost-effective production of adapta-

tion. Essentially, this would require to model in kind-transfers apart from

monetary transfers in a coalition formation model with heterogenous agents.
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Figure 1: Downward-sloping Replacement Functions
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Figure 2: Upward-sloping Replacement Functions
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Table 1: Example 1, Simulation Run 1

p∗M+A (p∗M) p∗M+A (p∗M)
−
p
∗M+A

(
−
p
∗M

)

3 (3) 10 (3) 3.01 (3)

Set 2 2616 4 2620
−
A M+A 28.23 36.15 28.24

M 0 0 0

Q
∗
(p∗) M+A 0.37 5.65 0.38

M 1.25 1.42 1.25

x∗(p∗) M+A 0.72 0.36 0.72

Π
∗SO

M+A 14290.3923 14847.1821 14291.24

M 13539.5394 14742.3964 13540.84
M+A
M

1.0655 1.0071 1.0654

Π
∗CO

M+A 11731.25 14847.18 11736.01

M 3872.31 4216.32 3872.83
M+A
M

3.0997 3.5214 3.1003

Π
∗NE

M+A 11586.4640 14646.2079 11591.13

M 2572.5125 2801.0502 2572.86
M+A
M

4.6122 5.2288 4.6131

I
SO

M+A 1.25 1.01 1.25

M 5.26 5.26 5.26

I
CO

M+A 1.0135 1.0138 1.01

M 1.5 1.5 1.5

N = 10, and a = 3000, γ = λ = 0.1, parameter b moves

from 300 to 500 in steps of 10, and parameters c and d move

from 3000 to 5000 in steps of 100. Set 1= 9261, Set 2= 2620.
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Table 2: Example 2, Simulation Run 2

p∗M+A (p∗M) =
−
p
∗M+A

(
−
p
∗M

)

3 (2)

Set 2 18676
−
A M+A 2.277

M −0.5651

Q
∗
(p∗) M+A 0.03

M 0.04

x∗(p∗) M+A 0.43

Π
∗SO

M+A 4.0820

M 3.8082
M+A
M

1.0805

Π
∗CO

M+A 2.7102

M 0.9056
M+A
M

3.0658

Π
∗NE

M+A 2.5771

M 0.7698
M+A
M

3.4364

I
SO

M+A 1.5820

M 4.9577

I
CO

M+A 1.0515

M 1.1765

N = 10, and a = 2.5, e = 1, parameter b moves from 0.1 to 1 in steps

of 0.1, parameter c moves from 500 to 1000 in steps of 10, parameter d

moves from 2 to 2.3 in steps of 0.1, and parameter f moves from 2 to

3 in steps of 0.1. Set 1= 22440, Set 2= 18676.
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Table 3: Example 2, Simulation Run 3

p∗M+A (p∗M) p∗M+A (p∗M)
−
p
∗M+A

(
−
p
∗M

)

3 (2) 10 (2) 3.1 (2)

Set 2 3961 6 3967
−
A M+A 4.305 5.03 4.306

M −0.5569 −0.35 −0.5566

Q
∗
(p∗) M+A 0.01 0.25 0.01

M 0.04 0.06 0.04

x∗(p∗) M+A 1.03 0.5 1.03
−
π
SO

M+A 5.3591 5.6250 5.3595

M 3.9775 5.5804 3.98
M+A
M

1.3894 1.008 1.3888

Π
∗CO

M+A 5.2316 5.62 5.2322

M 0.9480 1.3188 0.9485
M+A
M

5.7268 4.2682 5.7246

Π
∗NE

M+A 5.2240 5.5562 5.2245

M 0.8055 1.1208 0.806
M+A
M

6.7292 4.9612 6.7265

I
SO

M+A 1.0264 1.0124 1.0264

M 4.9499 4.9827 4.9499

I
CO

M+A 1.0014 1.0124 1.0014

M 1.1764 1.1767 1.1764

N = 10, and a = 2.5, e = 1, parameters b and d move from 0.1 to

1 in steps of 0.1, parameter c moves from 500 to 1000 in steps of 10,

and parameter f moves from 2 to 3 in steps of 0.1. Set 1= 56100, Set

2= 3967.
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Table 4: Example 2, Simulation Run 4

p∗M+A (p∗M) p∗M+A (p∗M)
−
p
∗M+A

(
−
p
∗M

)

1 (2) 2 (2) 1.07 (2)

Set 2 1596 105 1701
−
A M+A −511.66 −106.66 −486.66

M −525 −120 −500

Q
∗
(p∗) M+A 4.45 9.36 4.75

M 5.65 10.83 5.97

x∗(p∗) M+A 3.04 2.71 3.02
−
π
SO

M+A 298094 591165 316184

M 180424 550479 203266
M+A
M

1.9511 1.0920 1.8981

Π
∗CO

M+A 273464 426031 282881

M 154390 351579 166562
M+A
M

2.0426 1.2463 1.9934

Π
∗NE

M+A 273464 401993 281397

M 148462 320745 159096
M+A
M

2.1012 1.2923 2.0513

I
SO

M+A 1.0762 1.4540 1.0995

M 1.169 1.7124 1.2025

I
CO

M+A 1 1.0578 1.0036

M 1.0328 1.0958 1.0367

N = 10, and c = d = 3000, e = 10000, f = 200, parameter a moves

from 3000 to 5000 in steps of 100, and parameter b moves from 100 to

900 in steps of 10. Set 1= 1701, Set 2= 1701.
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Appendix (all or partly online)
Appendix 1: Proof of Proposition 4

In order to save on notation, we drop the asterisk and p as an argument

in equilibrium mitigation and adaptation levels. Moreover, we will omit the

arguments in the benefit function because they are the same for signatories

and non-signatories, but keep them for the mitigation cost function because

qi∈P > qj /∈P for every p, 1 < p < n, from Lemma 2. We use three pieces of

information in order to obtain the following results.

1. Total differentiating the first order conditions (3), pBQ(Q, x(Q)) =

Cq(qi), using x(Q) and recalling that
dBQ(Q, x(Q))

dQ
= A, gives dp · BQ +

p · A · dQ = Cqq(qi∈P ) · dqi for signatories with p ≥ 2 and A · dQ =

Cqq(qj /∈P ) · dqj /∈P for non-signatories with p = 1.

2. Noting that the first order conditions (3) imply p ·Cq(qj /∈P ) = Cq(qi∈P ),

total differentiation gives dp·Cq(q j /∈P )+p·Cqq(qj /∈P )·dqj /∈P = Cqq(qi∈P )·
dqi∈P .

3. dQi∈P

dp
= qi∈P + p · dqi∈P

dp
,

dQj /∈P

dp
= −qj /∈P + (n − p) · dqj /∈P

dp
and dQ

dp
=

dQi∈P

dp
+

dQj /∈P

dp
.

Now, some basic manipulations lead to the following results. ai)
dqj /∈P

dp
=

A
C(qj /∈P )

dQ
dp
, implying because Cqq(qj /∈P ) > 0 and dQ

dp
> 0 as we show below that

the sign depends on the sign ofA. aii)
dQj /∈P

dp
=

−qj /∈P

(
1− Ap2

Cqq(qi∈P )

)
+

(n−p)A
Cqq(qj /∈P )

(
qi∈P+p

Cq(qj /∈P )

Cqq(qi∈P )

)

1−A

(
p2

Cqq(qi∈P )
+ n−p

Cqq(qj /∈P )

)

where 1 − A
(

p2

Cqq(qi∈P )
+ n−p

Cqq(qj /∈P )

)
> 0 by the Additional Assumptions and

hence the denominator is always positive. We note that
(
1− Ap2

Cqq(qi∈P )

)
> 0

by the Additional Assumptions. Consequently, if A ≤ 0, the nominator is

negative and hence
dQj /∈P

dp
< 0 follows. If A > 0, the expression cannot be

signed because an increase in p by one unit implies one non-signatory less but

qj /∈P increases in p as shown above. bi) dqi∈P

dp
=

BQ

Cqq(qi∈P )
+ dQ

dp
Ap

C(qi∈P )
where
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we note that the first term on the R.H.S. is positive by the General Assump-

tions and the sign of the second term depends on A. Hence if A ≥ 0, then
dqi∈P

dp
> 0, otherwise if A < 0 this expression cannot be signed. bii) dQi∈P

dp
=

(qi∈P−qj /∈P )+p
Cq(qj /∈P )

Cqq(qi∈P )
+qi∈P

(
1− Ap2

Cqq(qi∈P )

)
− (n−p)A

Cqq(qj /∈P )

(
qi∈P+p

Cq(qj /∈P )

Cqq(qi∈P )

)

1−A

(
p2

Cqq(qi∈P )
+ n−p

Cqq(qj /∈P )

) where the de-

nominator is positive by the Additional Assumptions, qi∈P − qj /∈P > 0 by

Lemma 2, 1− Ap2

Cqq(qi∈P )
> 0 by the Additional Assumptions, and p

Cq(qj /∈P )

Cqq(qi∈P )
> 0

by the General Assumptions. Consequently, if A ≤ 0, the nominator is

positive and dQi∈P

dp
> 0 is evident. If A > 0, we use simply dQi∈P

dp
=

qi∈P + p
[

BQ

Cqq(qi∈P )
+ Ap

Cqq(qi∈P )
dQ
dp

]
> 0. c) dQ

dp
=

(qi∈P−qj /∈P )+p
Cq(qj /∈P )

Cqq(qi∈P )

1− A
Cqq(qj /∈P )

[
p2

Cqq(qj /∈P )

Cqq(qi∈P )
+(n−p)

]

where we notice that the nominator is obviously positive and the denomina-

tor is positive by the Additional Assumptions. d) dx
dp

=
BxQ

Dxx−Bxx

dQ
dp

where the

first term on the R.H.S is negative by the General Assumptions and dQ
dp

> 0

as shown above. Q.E.D.

Appendix 2: Proof of Proposition 5

a) Obvious and hence omitted. b) Derivations similar to those described

in the proof of Proposition 4 deliver
dΠ∗

j /∈P

dp
= BQ

[
dQ∗

dp

(
1− A

Cqq(qj /∈P )

)]
which

is positive because dQ∗

dp
> 0 from Proposition 4 and

(
1− A

Cqq(qj /∈P )

)
> 0 by

the Additional Assumptions in the M+A-game and because of A := BQQ ≤ 0

in the M-game. c) Superadditivity implies pΠ∗
i∈P (p) ≥ (p− 1)Π∗

i∈P (p− 1) +

Π∗
j /∈P (p − 1), 1 < p ≤ n. Consider the M+A-game. Step 1: On the right-

hand side of the inequality, the equilibrium values are Q∗(p− 1), q∗i∈P (p− 1),

q∗j /∈P (p− 1) and x∗(p− 1) with q∗i∈P (p− 1) > q∗j /∈P (p− 1). Now, we deduct ε

from all signatories’ mitigation levels and set one non-signatory j’s mitigation

level to exactly the same value, i.e. q′∗j /∈P (p− 1) = q∗i∈P (p− 1)− ε, keeping all

other non-signatories mitigation level constant, choosing ε such thatQ∗(p−1)

does not change. (Hence, ε =
(q∗i∈P (p−1)−q∗

j /∈P
(p−1))

p
.) Hence, benefits do not

change, but costs will drop because pC(q∗i∈P (p− 1)− ε) < (p− 1)C(q∗i∈P (p−
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1) + C(q∗j /∈P (p− 1). We denote the payoff derived from the marginal change

in step 1 for the p players by Π
sup(1)
i∈P (p) and hence can conclude pΠ

sup(1)
i∈P (p) >

(p − 1)Π∗
i∈P (p − 1) + Π∗

j /∈P (p − 1). Step 2: If A ≥ 0, for all other non-

signatories k /∈ j, q∗k/∈P (p − 1) ≤ q∗k/∈P (p) and because ∂Πi

∂qk
> 0, we have

from step 2, Π
sup(2)
i∈P ≥ Π

sup(1)
i∈P . Step 3: max

q,x
pΠi∈P (p) = pΠ∗

i∈P (p) ≥ pΠ
sup(2)
i∈P .

(Hence, moving from the right-hand side to the left-hand side of the SAD-

condition the aggregate payoff of the enlarged coalition increases because

total costs among the p players decrease (step 1), all outsiders increase their

mitigation level (step 2) and the players in the enlarged coalition can freely

choose adaptation (step 3).) A slight modification of this proof applies to

the M-game for A = 0. Q.E.D.

Appendix 3: Proof of Example 1 and 2

Example 1

For example 1, in the M+A-game, we have:

• BQ = b− Λxi with Λ = bγ + aλ;

• BQQ = 0;

• BQx = −Λ < 0;

• Bx = a− ΛQ;

• Bxx = 0;

• Cq = cqi and Cqq = c, and Dx = dxi and Dxx = d;

• A = BQQ +
(BQx)

2

Dxx − Bxx

=
(−Λ)2

d
=

Λ2

d
> 0;

• The Additional Assumption is most restrictive if p = n: An2

Cqq
< 1 ⇔

(cd− n2Λ2) > 0;
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• q∗(p) = p(db−Λa)
cd−Λ2(n−p+p2)

and x∗(p) = ca−bΛ(n−p+p2)
cd−Λ2(n−p+p2)

with ∂q∗(p)
p

> 0 and
∂x∗(p)

p
< 0 if C5 to C7 below hold, noting that n2 ≥ n−p+p2 for p ≤ n

with n− p+ p2 increasing in p.

We need to assume the following conditions to hold:

• C1: 1 − γxi > 0 where xi takes on the largest value in the Nash

equilibrium;

• C2: 1 − λQ > 0 where Q takes on the largest value in the social

optimum;

• C3: BQ = b− Λxi > 0 where xi takes on the largest value in the Nash

equilibrium;

• C4: Bx = a − ΛQ where Q takes on the largest value in the social

optimum;

• C5: cd− n2Λ2;

• C6: db− Λa > 0;

• C7: ca− n2bΛ > 0

where C1 and C2 are required for the payoff function to make sense,

C3 and C4 are required to be in line with the General Assumptions, C5

is the sufficient condition for existence and uniqueness of a second stage

equilibrium, which is most restrictive in the social optimum in the example,

and C6 and C7 are required to have an interior equilibrium for every p,

1 ≤ p ≤ n. Inserting the maximum values in C3 and C4, it will be apparent

that these two conditions are captured by C6 and C7, respectively, and hence

can be dropped.

In the M-game, we find q∗(p) = pb
c
where no conditions need to be im-

posed.
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Internal stability in the M+A-game, IS = Πi∈P (p) − Πi/∈P (p − 1), for

p = 3 is given by

IS =
−4c(db− Λa)Ψ

(−cd+ Λ2n+ 6Λ2)2(−cd+ Λ2n+ 2Λ2)2
(9)

where the denominator is clearly positive and db−Λa > 0 from C6 above.

Hence, IS ≥ 0 if Ψ ≤ 0 which is given by:

Ψ = (Λ4(db− Λa))n2 + ((db− Λa)Λ2(3Λ2 − cd))n+ (Λ2cd(db− Λa)). (10)

Ψ ≤ 0 iff Λ2n2+(3Λ2−cd)n+cd ≤ 0 or Λ2n2+3nΛ2 ≤ cd(n−1). Because

cd > Λ2n2 from C5 above, we need Λ2n2 +3nΛ2 ≤ Λ2n2(n− 1) which is true

for n ≥ 3. Inserting n = 3 directly into Ψ above gives also Ψ < 0. Hence, if

n ≥ 3, IS > 0 for p = 3 and hence p = 2 cannot be externally stable. If p = 3

is externally stable, p∗ = 3, otherwise some p∗ > 3 must be stable, noting

that the grand coalition is externally stable by definition. In the M-game, it

is easy to check that p∗ = 3 which Pareto-dominates p∗ = 2.

Example 2

In the M+A-game, we have:

• BQ = a− bQ− fxi;

• BQQ = −b < 0;

• BQx = −f < 0;

• Bx = e− fQ;

• Bxx = 0;

• Cq = cqi and Cqq = c, and Dx = dxi and Dxx = d;

• A = BQQ +
(BQx)

2

Dxx − Bxx

= (−b) +
(−f)2

d
=

f 2 − bd

d
with A < 0 if

f 2 − bd < 0 and A ≥ 0 if f 2 − bd ≥ 0;
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• The Additional Assumption is most restrictive if p = n: An2

cqq
< 1 ⇔

cd− n2(f 2 − bd) > 0;

• q∗(p) = p(ad−ef)
cd−(n−p+p2)(f2−bd)

and x∗(p) = ce−(n−p+p2)(af−be)
cd−(n−p+p2)(f2−bd)

with ∂q∗(p)
p

> 0

and ∂x∗(p)
p

< 0 if C3 to C5 below hold, noting that n2 ≥ n− p+ p2 for

p ≤ n with n− p+ p2 increasing in p.

We need to assume the following conditions to hold:

• C1: a− bQ− fxi > 0 where Q (resp. xi) takes on the largest value in

the social optimum (resp. Nash equilibrium);

• C2: e − fQ > 0 where Q takes on the largest value in the social

optimum;

• C3: cd− n2(f 2 − bd) > 0;

• C4: ad− ef > 0;

• C5: ce− n2(af − be) > 0

where C1 and C2 are required to be in line with the General Assumptions,

C3 is the sufficient condition for existence and uniqueness of an equilibrium,

which is most restrictive in the social optimum in this example, C4 and C5

are required to have an interior equilibrium for every p, 1 ≤ p ≤ n. Inserting

the maximum values in C1, it turns out that C4 captures C1 and hence C1

can be dropped.

In the M-game, we have q∗(p) = pa
p2b+c

where no conditions need to be

imposed.

Internal stability in the M+A-game, IS = Πi∈P (p) − Πi/∈P (p − 1), for

p = 3 is given by:

IS = − 4c(ad− ef)2(−f 2 + bd)((−f 2 + bd)n(n+ 3) + cd(n− 1))

(cd+ 6bd− 6f 2 − nf 2 + ndb)2(cd+ 2bd− 2f 2 − nf 2 + ndb)2
(11)
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where the denominator is clearly positive. Assume A = 0 and hence

IS = 0. Assume now A > 0, and hence f 2 > bd, then IS ≥ 0 iff (−f 2 +

bd)n(n + 3) + cd(n − 1) > 0. Because cd > n2(f 2 − bd) due to C3, we have

(−f 2 + bd)n(n+3)+ cd(n− 1) > (−f 2 + bd)n(n+3)+ n2(f 2 − bd)(n− 1) =

(f 2 − bd)n(n2 − 2n− 3) ≥ 0 if n ≥ 3.

Internal stability in the M-game is given by:

IS = − a2c(p− 1)Ω

2(c+ bp2 + bn− bp)2(c+ bp2 − 3bp+ 2b+ bn)2
(12)

where the denominator is clearly positive. IS ≥ 0 iff Ω < 0 where

Ω = p5b2 − 5b2p4 + 2p3cb+ 2p3nb2 + 7b2p3 − 8cbp2 − 4b2p2n− 3b2p2(13)

+n2b2p− 2b2pn+ 6cbp+ 2npcb+ pc2 − 2cbn− 3c2 − 4bc+ b2n2

Now we have:

∂Ω

∂p
= 5b2p3(p− 4) + cbp(6p− 16) + b2pn(6p− 8) + b2p(21p− 6) (14)

+b2n(n− 2) + (6bc+ 2cbn+ c2)

which is clearly positive for p ≥ 4. Inserting p = 3, p = 2 and p = 1

will also confirm that this term is positive, i.e. ∂Ω
∂p

> 0 for all p, 1 ≤ p ≤ n.

Hence, we check Ω for p = 3 and find:

12nb2 − 4cb+ 4b2n2 + 4cbn > 0 (15)

for n ≥ 3 and hence IS < 0 for p = 3. For p = 2, it is easily checked that

Ω ≤ 0 and hence IS ≥ 0 is possible, depending on the parameter values.
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