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Abstract. Systems composed of large numbers of interacting agents often admit an

effective coarse-grained description in terms of a multidimensional stochastic dynamical

system, driven by small-amplitude intrinsic noise. In applications to biological,

ecological, chemical and social dynamics it is common for these models to posses

quantities that are approximately conserved on short timescales, in which case system

trajectories are observed to remain close to some lower-dimensional subspace. Here,

we derive explicit and general formulae for a reduced-dimension description of such

processes that is exact in the limit of small noise and well-separated slow and fast

dynamics. The Michaelis-Menten law of enzyme-catalysed reactions, and the link

between the Lotka-Volterra and Wright-Fisher processes are explored as a simple

worked examples. Extensions of the method are presented for infinite dimensional

systems and processes coupled to non-Gaussian noise sources.
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1. Introduction

To bridge the gap between observing the interactions of individuals and predicting the

dynamics of whole populations is one of the core challenges of theoretical biology. Until

recently, the established norm has been to take as the starting point of the analysis

a continuum description for the dynamics of very large populations, usually written

as a set of ordinary differential equations for population density. These equations

would be motivated by assumptions such as the laws of mass-action (telling us how

to derive reaction rates), and large numbers (suggesting that random fluctuations

are negligible for large populations). Real populations, however, are of finite size

and composed of discrete individuals whose interactions are not wholly predictable.

Following an asymptotic expansion in system size, it is possible to rigorously map

[1] from a microscopic description of interacting individuals to a system of stochastic

differential equations that incorporate intrinsic noise arising from the discrete nature

of the population and the random timing of events. It has been repeatedly shown

that this noise can significantly alter the dynamics of a system at the population scale;

important examples include the modelling of ecology [2, 3], epidemic spread [4, 5], and

pattern formation [6, 7, 8].

Whilst the addition, or more precisely recognition, of stochasticity in population

models can lead to richer dynamics and more relevant biological predictions, the

theoretical analysis becomes far more complicated. The early development of this

field focused heavily on stochastic effects present near isolated stable fixed points,

where solvable linear descriptions hold true. More recently, a new direction of research

into non-linear noise effects has opened up, exploiting approximation techniques based

on dimension reduction. Several groups have independently found and exploited a

natural separation of scales emerging in certain models of interacting populations

[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Loosely speaking, it is often

the case in biological models that the total size of a population adapts much more

rapidly than its composition, as is evident in the disparate timescales of ecology and

evolution. In dynamical systems terminology, it is observed that trajectories remain in

the neighbourhood of a lower-dimensional manifold; a subspace of the system state space

in which the total size of the population is a function of its composition. Intrinsic noise

drives small perturbations from this manifold, which are quickly suppressed by a large

deterministic drift back (see, for example, the trajectories of Michaelis-Menten dynamics

in Fig. 1). The works cited above pursue various related approximation strategies,

allowing for a simplified, often solvable, effective model to be derived that describes

motion along the lower-dimensional manifold.

This is a kind of timescale separation that cannot be put by hand into a model as

there is a complex feedback between the fast and slow degrees of freedom, which must

be carefully computed. The result of system size expansion applied to an interacting

population model with a separation of timescales will be an SDE for the system state x

that typically has the form ẋ = f + εh+
√
µGη(t) . Here f describes the fast (outer)
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Figure 1. Thin Red: Simulation of a single stochastic trajectory of an SDE of the

type (1), with f , h and G corresponding to the Michaelis-Menten model (33, 34).

Thick Blue: The slow manifold for this system, which the stochastic trajectory stays

close to after the fast initial transient carrying it away from the initial condition (1, 0).

Dashed Black: The flow field of the outer drift term f , to which the fast motion is

approximately parallel.

dynamics, h the slow (inner) dynamics, and η(t) the noise, with coupling martix G.

The small parameters ε and µ control the separation of timescales and strength of the

noise. In this article we will consider the situation that the outer system ẋ = f has

a manifold of fixed points to which the full stochastic system is attracted, and along

which the slow (ε) and noisy (µ) elements compete to drive the dynamics. As shown in

[9]–[21], a host of surprising effects can arise from the interplay between the noise and

the fast/slow dynamics.

Various theories of time scale separation in stochastic systems have been developed

over decades of research in the mathematics and theoretical physics literature. In physics

it has been common to work with Fokker-Planck equation, which gives a formulation

of a stochastic processes in terms of the PDE for the evolution of probability density.

Timescale separation in this setting amounts to integrating out one or more degrees of

freedom from the PDE to reduce its dimension, see [22] for an introduction. Physicists

might understand this process through its natural analogue in quantum mechanics,

the Born-Oppenheimer approximation [23]. In most applications the Fokker-Planck

equation will not be exactly separable, necessitating the application by hand of a

carefully chosen projection operator, an approach going back to the work of Zwanzig

[24]. Alternatively, working directly with the SDE description, stochastic versions of

centre manifold theory [25] and local normal forms [26, 27] have been developed under

the assumption of ergodicity. The most relevant theory for our setting — SDEs derived

from system size expansion — is contained in the rigorous treatments of Katzenberger

and Funaki [28, 29], proving the convergence of the homogenised slow/fast stochastic
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Case Procedure

Outer system (ε = µ = 0) is solvable Use equations (3, 4) and (8, 9)

Manifold is one-dimensional Use equations (9) and (15, 16)

Manifold has co-dimensional one Use equations (23) and (24)

Manifold is m-dimensional Use equations (9) and (17 – 21)

Table 1. Quick reference table of equations applying to different cases of slow-manifold

reduction.

system to one of lower dimension that is restricted to the slow manifold, which is valid in

the long-term, in a slow timescale. We give a more detailed statement of Katzenberger’s

theorem in Appendix A, however, the results of these works are somewhat difficult to

apply in practice as they are formulated in terms of a quantity (the flow map of the fast

outer system), which is general has no closed analytical solution.

In this article we present for the first time a computationally explicit formulation

of the rigorous theory of Katzenberger, in terms of quantities that can be directly

computed. The end product is a single robust, systematic and provably correct

procedure for timescale separation in stochastic dynamical systems with intrinsic noise,

which we believe will be of considerable general use. Our main results are contained

Section 2, where we describe a map from a high-dimensional system of equations (1)

to a lower-dimensional one (2), via explicit formulae that are summarised in Table 1.

The subsections contain (i) a new explicit derivation of the theory for one-dimensional

manifolds using a perturbation expansion, which we hope should be useful for readers

wishing to gain intuition about the method, (ii) the general procedure for arbitrary

dimension, and (iii) explicit closed-form expressions for the case of manifolds of co-

dimension one. In Section 3 we present three exploratory examples: (i) we demonstrate

the basic theory for the well understood example of Michaelis-Menten kinetics for

enzyme catalysed reactions, (ii) we use our expressions for co-dimension one manifolds

to give a new derivation of the relationship between Wright-Fisher diffusion and near

neutral Lotka-Volterra dynamics, and (iii) we present a new extension of the method to

infinite dimensional processes. Appendices contain technical details.

2. Reduced model description

We consider Langevin stochastic differential equations of the general type

dx

dt
= f(x) + εh(x) +

√
µG(x)η(t) , (1)

where the state variable x = (x1, . . . , xd)
T is an d-dimensional vector, and there are

s independent Itô white noise sources η(t) = (η1(t) , . . . , ηs(t))
T . The vector-valued

functions f : Rd → Rd and h : Rd → Rd are the ‘outer’ and ‘inner’ parts of the drift

respectively, and the matrix valued function G : Rd → Rd,s specifies the coupling of
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state variables to noise sources. We assume throughout that f is twice differentiable,

but place no constraints on the other functions. The parameters ε and µ determine the

separation of timescales and the strength of the noise, respectively.

We do not assume an a priori separation into slow and fast variables, as is common

in the literature, as in the applications that motivate us, an appropriate change of

variables is frequently neither evident nor analytically tractable (although see [9] for an

example where the coordinates can be globally constructed, and [30, 31, 32] for some

recent advances in computational methods to identify the change of variable), and our

method does not require that they be known.

We are interested in the case when ε and µ are small and f possesses an attracting

m-dimensional submanifold of equilibria Γ ⊂ Rd (i.e. f(x̃) = 0 for all x̃ ∈ Γ). For

simplicity, we assume that this manifold is unique, connected, and globally attracting

(i.e. it is a normally hyperbolic slow manifold, see e.g [33]); then we expect solutions

of (1) to rapidly approach and remain very close to Γ. In fact, it has been rigorously

proved by Katzenberger [28] that the trajectories of x ∈ Rd converge those of a stochastic

variable x̃ ∈ Γ with dynamics

dx̃

dt
= εP (x̃)h(x̃) + µg(x̃) +

√
µP (x̃)G(x̃)η(t) , (2)

where P is a certain projection matrix derived from f , and g is a new contribution to the

drift arising from the way in which fluctuations away from the manifold are suppressed;

as our examples illustrate, unlike the deterministic situation, it is not sufficient to simply

restrict (1) to Γ to obtain the slow dynamics. Our purpose here is to derive explicit

expressions for P and g. Readers with a specific problem in mind may wish to jump

straight to the appropriate result, which can be found by referring to Table 1.

Before we proceed with our main task, we give a brief sketch of the derivation of (2).

Examining (1) when ε and µ are small, one might imagine a picture in which the state of

the system is quickly carried onto the manifold by the fast outer drift term f . Following

this fast initial transient, it may then receive multiple stochastic ‘kicks’ carrying it away

from the manifold, each time only to return again via the paths described by f . See

Figure 1 for an illustrative example. This intuition can be made concrete by considering

the flow map of the outer system. Let x be a point in the state space and consider the

deterministic initial value problem
dξx
dt

= f(ξx)

ξx(0) = x .
(3)

Since the centre manifold is globally attractive, all trajectories lead eventually to Γ and

we may thus define the asymptotic phase [33], π : Rd → Γ, giving the endpoint of the

deterministic trajectories

π(x) = lim
t→∞

ξx(t) , (4)

where ξx is the solution of (3).
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If we take the point x to be the current location of the random variable governed

by equation (1), then π(x) defines another random variable that tracks the motion of x

but is constrained to the manifold. Application of Itô’s formula [34] gives the Langevin

equations for each spatial coordinate:

d

dt
πi(x) =

∑
j

∂πi
∂xj

dxj
dt

+
µ

2

∑
s,j,k

Gjs(x)Gks(x)
∂2πi
∂xj∂xk

= ε
∑
j

∂πi
∂xj

hj(x) +
µ

2

∑
s,j,k

Gjs(x)Gks(x)
∂2πi
∂xj∂xk

+
√
µ
∑
s,j

Gjs(x)
∂πi
∂xj

ηs(t) .

(5)

where the contribution from f has vanished because π(x) is contained in the slow

manifold where f = 0‡. Unfortunately equation (5) is not closed since it relies on full

knowledge of the random variable x. However, if we believe that x remains very close

to Γ (as is the case when ε and µ are small) then we might be motivated to consider a

new random variable x̃ ∈ Γ which we assume is a close approximation to both x and

π(x). Substituting x̃ for both these quantities in (5), we obtain the closed expression

dx̃i
dt

= ε
∑
j

Pij(x̃)hj(x̃) +
µ

2

∑
s,j,k

Gjs(x̃)Gks(x̃)Qijk(x̃) +
√
µ
∑
s,j

Pij(x̃)Gjs(x̃)ηs(t) , (7)

where P is a matrix and Q an array defined by

Pij(x̃) =
∂

∂xj
πi(x)

∣∣∣∣
x=x̃

, Qijk(x̃) =
∂2

∂xj∂xk
πi(x)

∣∣∣∣
x=x̃

. (8)

Equivalently we may rewrite (7) as equation (2), where the additional drift term is

g(x̃) =
1

2

∑
s,j,k

Gjs(x̃)Gks(x̃)Qijk(x̃). (9)

The projection P (x̃)§ is entirely determined by the first order terms of (1), and

typically it can be straightforwardly reconstructed from knowledge of the eigenvectors

‡ The component f vanishes as π(ξx(t)) = π(x) for all t, and thus

0 =
d

dt

∣∣∣
t=0

πi(ξx(t)) =
∑
j

∂πi
∂xj

dξj
dt

∣∣∣
t=0

=
∑
j

∂πi
∂xj

fj(x) . (6)

§ For x̃ ∈ Γ, the matrix P (x̃) is a projection: since Γ is composed of fixed points, π(π(x)) = π(x)

and π(x̃) = x̃; thus, using the chain rule,

Pij(x̃) =
∂

∂xj
πi(x)

∣∣∣∣
x=x̃

=
∂

∂xj
πi(π(x))

∣∣∣∣
x=x̃

=
∑
k

∂

∂xk
πi(π(x))

∂

∂xj
πk(π(x))

∣∣∣∣
x=x̃

=
∑
k

Pik(x̃)Pkj(x̃).

Moreover, since for X ∈ Rd, Γ(t) = π(x̃+ tX) is a one-parameter curve in Γ with γ̇(0) = P (x̃)X, we

see that the image of P (x̃) is the tangent plane to Γ at x̃. One may similarly show that the kernel of

the projection is the image of J(x̃).
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Figure 2. Left: Here, the variation in the angle between the fast (dashed) and

slow (solid) subspaces creates a bias in the location of the return to the manifold of a

perturbation away from it; an upward perturbation returns quite close on the left of the

origin, but an equally likely downward perturbation is carried far to the right. Centre:

The same effect can occur as a result of curvature of the manifold. In this figure the

flow fields are parallel, but the manifold curves, resulting in the same rightwards bias

in the projected system. Right: Curvature of the flow field may also induce bias, even

when the angle of intersection is constant.

of the Jacobian matrix of f . The calculation of the noise-induced drift term g is

more complicated, having contributions from three possible sources: variation of the

alignment of the flow field, curvature of the manifold, and curvature of the flow field.

Each of these mechanisms can induce a bias in the direction of flow of the reduced

dimension system, as illustrated in Figure 2. In the following subsections we will present

explicit procedures for computing P and Q.

2.1. One-dimensional manifolds

The simplest case to treat is that of a one-dimensional manifold, as the second-order

perturbation expansion is explicitly solvable. Suppose that the slow manifold Γ is a

curve parameterised by the first spatial co-ordinate of the system‖. That is, there exists

function γ such that

x ∈ Γ ⇔ x = γ(x1) . (10)

In this case the dynamics of the reduced system x̃ defined in (2) are determined entirely

by the first component, so we need only to compute the partial derivatives of π1. For

ease of notation we will drop the subscript 1 from now on, writing x̃ := x̃1 as well as

Pj := P1j(γ(x̃1)) and Qjk := Q1jk(γ(x̃1)).

We undertake a second-order perturbation theory, informed by the intuition that

a small perturbation may move the system away from the manifold, before it returns

via the outer flow field. Consider a point x = γ(x̃) on the manifold; by definition it is

unmoved by the action of the outer flow field, so π(x) = γ(x̃). To access expressions

for Pj and Qjk, we will consider the relationship between the small perturbations ∆x

‖ Note that we have chosen this case for simplicity of presentation, and not all 1D manifolds can in

fact be tackled in this way (e.g. a circular manifold would fail here). The more general case of a

manifold described by an arbitrary parameterised curve is not substantially different, however, as we

only ever require the local properties of the projection π, and for smooth manifolds there is always a

local coordinate system in which the problem can be set up in the required format.
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Figure 3. Illustration of the perturbation calculation for a 1D manifold γ

parameterised by a coordinate x̃. We imagine the system with initial state x = γ(x̃)

recieves a small perturbation ∆x (red arrow), and then relaxes back to the manifold

via the flow line of the fast system (blue arrow). This process is equivalent to making

a corresponding perturbation ∆x̃ to the slow manifold coordinate.

and ∆x̃ such that π(x+ ∆x) = γ(x̃+ ∆x̃).

On the one hand, because we set the problem up so that π1(x) = x̃, Taylor

expansion gives

∆x̃ =
∑
j

Pj∆xj +
1

2

∑
j,k

Qjk∆xj∆xk + . . . (11)

Alternatively, we can consider the two-step process of making a pertubation to the

system state and then following the outer flow field back to the manifold – see Figure 3

for an illustration. If we make second order approximations to the flow field and

the manifold, then the ∆x̃ computed by this method must match that of (11). This

correspondence will allow us to solve for Pj and Qjk.

Near the point x ∈ Γ we can approximate the action of π by constructing

the quadratic expansion of the preimage. Specifically, it can be shown that in the

neighbourhood of x, the collection of nearby points that would be mapped to x by π

(i.e. the invariant foliation [33], π−1(x) = {y : π(y) = x}) is approximated to second

order by the set of points y such that

v(x̃)T (y − γ(x̃)) + (y − γ(x̃))TΘ(x̃)(y − γ(x̃)) = 0 , (12)

where v(x̃) is a perpendicular vector to the flow field near x = γ(x̃) and Θ(x̃) a matrix

describing the curvature of the flow field near the same point. In Appendix B we give

an explicit derivation of these quantities from f ; for now we assume they are known.

Recall that we are seeking the perturbation ∆x̃ such that π(x+ ∆x) = γ(x̃+ ∆x̃), to
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second order. We make the following Taylor expansions of various orders:[
x+ ∆x− γ(x̃+ ∆x̃)

]
`

= ∆x` − γ′`∆x̃−
1

2
γ′′` (∆x̃)2 + . . .

=
∑
k

(δk,` − γ′`Pk)∆xk −
1

2

∑
j,k

(γ′`Qjk + γ′′` PjPk) ∆xj∆xk +O(∆x3)[
v(x̃+ ∆x̃)

]
`

= v` + v′`∆x̃+ . . . = v` + v′`
∑
j

Pj∆xj +O(∆x2)[
Θ(x̃+ ∆x̃)

]
jk

= Θjk +O(∆x) .

(13)

Here we use [. . . ]l and [. . . ]jk to indicate the lth (resp. j, kth) entry of the vector or

matrix in brackets, δk,l to indicate the Kronecker delta function, and drop the argument

x̃ from γ′`, γ
′′
` , v`, v

′
` and Θjk to avoid clutter. Following (12), the requirement that

π(x+ ∆x) = γ(x̃+ ∆x̃) to second order becomes

0 = v(x̃+ ∆x̃)T
(
x+ ∆x− γ(x̃+ ∆x̃)

)
+
(
x+ ∆x− γ(x̃+ ∆x̃)

)T
Θ(x̃+ ∆x̃)

(
x+ ∆x− γ(x̃+ ∆x̃)

)
+O(∆x3)

=
∑
`

[
v` + v′`

∑
j

Pj∆xj

][∑
k

(δk,` − γ′`Pk)∆xk −
1

2

∑
j,k

(γ′`Qjk + γ′′` PjPk) ∆xj∆xk

]
+
∑
j,k

Θjk∆xj∆xk +O(∆x3)

=
∑
k

{∑
`

v`(δk,` − γ′`Pk)
}

∆xk

+
1

2

∑
j,k

{∑
`

v′`(δk,` + δj,` − 2γ′`Pk)Pj −
∑
`

v` (γ′`Qjk + γ′′` PjPk) + 2Θjk

}
∆xj∆xk

+O(∆x3) .

(14)

Since the perturbation ∆x was arbitrary, we require each term in curly brackets above

to be equal to zero. From the first order terms we conclude that

Pk =
vk∑
` v`γ

′
`

, (15)

and from the second order that

Qjk =
1∑
` v`γ

′
`

(
v′kPj + v′jPk + 2Θjk −

∑
`

(2v′`γ
′
` + v`γ

′′
` )PjPk

)
. (16)

Written this way, the separate contributions from variation of the flow field (terms

involving v′), curvature of flow field (Θ), and curvature of the manifold (the γ′′ term)

are clearly visible.
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In higher dimensions, the above perturbation expansion is less useful, as it produces

a larger system of equations which lacks an explicit solution. A different line of attack

is necessary.

2.2. General case

If the linearisation of the flow field φt is known in the neighbourhood of the manifold

then P can be reconstructed easily. Specifically, around a point z ∈ Γ the state space

Rd can be decomposed into a product of ‘slow’ and ‘fast’ subspaces of dimension m

and d−m, respectively. The slow subspace is the tangent plane to the manifold at the

given point; a perturbation in one of these directions is unaffected by the action of f .

Conversely, the fast subspace comprises perturbation directions that collapse quickly

back to the manifold. The projection matrix P (z) acts as the identity on the slow

subspace and as zero on the fast subspace.

Unfortunately, no such simple formulation is available for Q(z) in general. This

problem was explored in [13], where the following method was developed. This result is

explained fully in Appendix C, for now we simply present the computational steps.

Procedure for calculating P and Q at a point z ∈ Γ

(i) Compute the Jacobian matrix J of f ,

Jij =
∂fi
∂xj

∣∣∣∣
x=z

,

and diagonalise it, writing

J = WΛW−1 . (17)

where W = (w1 · · ·wn) is a matrix of eigenvectors forming a basis of Rd, with

the m slow directions written first. Λ is a diagonal matrix of eigenvalues with

λ1 = · · · = λm = 0 and Re(λm+1), . . . ,Re(λn) < 0. Also compute the pseudo-

inverse

J+ = WΛ+W−1 , (18)

where Λ+ is the diagonal matrix with eigenvalues λ+1 = · · · = λ+n , where

λ+ =

{
0 if λ = 0

1/λ if λ 6= 0 .

(ii) For each i, compute the Hessian of fi, Hi, defined by

Hijk =
∂fi(x)

∂xj∂xk

∣∣∣∣
x=z

.

Then find the (matrix-valued) solution Xi of the Lyapunov equation

JTXi +XiJ = −Hi . (19)

NB: this is a linear problem that is straightforwardly solved [35].
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(iii) Finally, the projection matrix is given by

P = I − J+J . (20)

and for Q we have

Qijk =
∑
l

−J+
il [P

THlP ]jk + Pil[Xl − J+THlP − P THlJ
+]jk . (21)

In the case when f is of gradient form i.e., f = ∇U for a scalar potential U , then

a smilar procedure gives an elegant closed form for the induced drift [29, 36].

2.3. Co-dimension one manifolds

We now use the results of the previous section to obtain explicit expressions for the

derivatives in the case when Γ is a (d−1)-dimensional manifold. In this case, in a small

neighbourhood around any point z ∈ Γ, the flow field can be decomposed as f = φ r,

into a scalar part φ : Rd → R that vanishes on Γ, and a non-vanishing vector part

r : Rd → Rd. Using this decomposition we compute an expression for the Jacobian

around a point¶ :

J(x) = φ(x)
∂r

∂x
+ r(x)∇φ(x)T ,

In particular, evaluated at the point z on the manifold we have J = r∇φT . Meaning

that r is, up to scalar multiple, the unique eigenvector corresponding to

λ = ∇φTr ,

which is the sole non-zero eigenvalue of J . Note that here and hereafter we drop the

argument z to avoid notational clutter. As r spans the non-zero eigenspaces, it is

straightforward to check that the pseudo-inverse may be written as

J+ =
1

λ
J . (22)

We conclude from (20) that

P = I − J+J = I − 1

λ
J . (23)

¶ Given a scalar function ψ of x = (x1, . . . , xd), we write

∇ψ =

(
∂ψ

∂x1
, . . . ,

∂ψ

∂xd

)
,

and use ∂ψ
∂x for the matrix with i, jth entry

∂2ψ

∂xi∂xj
.

When Ψ is a vector-valued function, we write ∂Ψ
∂x for its Jacobian matrix, reserving J for the Jacobian

matrix of f .
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To determine Q, it thus remains to solve (19),

JTXi +XiJ = −Hi ,

for H and insert into (21). As we show in Appendix C, in this case, equation (C.9) can

be explicitly solved in closed form to give

Xijk = −
∂φ
∂xj

∂φ
∂xk

2λ3
rT
∂2fi
∂x2

r.

Finally, observing that ∂2fi
∂xj∂xk

= ∂ri
∂xj

∂φ
∂xk

+ ri
∂2φ

∂xj∂xk
, substituting the above into (21)

and considerable algebraic simplification yields

Qijk = −1

λ

(
[P T ∂

2φ

∂x2
P ]jkri +

∂φ

∂xj
[P

∂r

∂x
]ik +

∂φ

∂xk
[P

∂r

∂x
]ij

)
+

1

λ2
∂φ

∂xj

∂φ

∂xk
[P

∂r

∂x
r]i.

(24)

3. Worked examples

3.1. Simple example: Michaelis-Menten kinetics

The Michaelis-Menten law is perhaps one of the most widely-applied examples of

timescale separation. It is a model for the net rate of production in a chemical reaction

that is catalysed by an enzyme, in which it is assumed that the process of enzyme

binding and unbinding occurs very much faster than the catalytic reaction of interest.

Using the notation of chemical reactions, one may write

E + S
kf−⇀↽−
kr
C

kcat−−→ E + P , (25)

where E symbolises the enzyme, S the substrate, C the enzyme-substrate complex,

and P the product. The parameters kf and kr give the rate of binding (forward)

and unbinding (reverse) of the enzyme to the substrate, while kcat specifies the rate of

catalysis.

Assuming the reaction takes place in a domain of infinite volume, one may write

rate the deterministic equations

dS

dt
= −kfES + krC ,

dE

dt
= −kfES + (kr + kcat)C ,

dC

dt
= kfES − (kr + kcat)C ,

dP

dt
= kcatC ,

(26)

where S, C, P and E now represent the concentrations of the various reactants.

Note that this system has only two degrees of freedom due to conservation relations
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E + C = E0 and S + C + P = S0, where E0 and S0 are the initial concentrations

of the enzyme and substrate, respectively. If kf , kr � kcat we might approximate the

concentration of the complex C by the equilibrium value it would have if kcat were

actually zero:

kfES − krC ≈ 0 ⇒ C ≈ E0
S

k + S
, (27)

where k = kr/kf . Introducing v∗ = kcatE0, on the slower timescale the net production

rate is then found to be
dP

dt
=

v∗ S

k + S
. (28)

This is the Michaelis-Menten law.

In finite volume domains chemical reactions are subject to random fluctuations

arising from the discrete nature of the molecules involved. A more appropriate

description in these circumstances is a stochastic differential equation, with noise terms

that are derived from the instantaneous reaction rates (each possible reaction introduces

its own source of noise). For the reaction described above in (25) occurring in a domain

of volume V , equations are derived following Kurtz [1] :

dS

dt
= −kf (E0 − C)S + krC −

√
kf (E0 − C)S

V
ηf (t) +

√
krC

V
ηr(t) ,

dC

dt
= kf (E0 − C)S − (kr + kcat)C +

√
kf (E0 − C)S

V
ηf (t)

−
√
krC

V
ηr(t)−

√
kcatC

V
ηcat(t) .

(29)

(In fact this step is not strictly necessary; we could choose to work directly with the

process of particle numbers, as described in Appendix A). Following similar lines to

[37] a dimensionless form may be found by rescaling time t 7→ kfE0t and introducing

variables

x =

(
S/S0

C/E0

)
, (30)

and parameters

ε =
kcat
kfE0

> 0 , µ =
1

S0V
, α =

kr
kfS0

> 0 , β =
S0

E0

> 0 . (31)

The result is a system of exactly the form of equation (1):

dx

dt
= f(x) + εh(x) +

√
µG(x)η(t) , (32)

where

f(x) =

(
−x1 + (x1 + α)x2
β(x1 − (x1 + α)x2)

)
, h(x) =

(
0

−x2

)
, (33)
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and

G(x) =

(
−
√

(1− x2)x1
√
αx2 0

β
√

(1− x2)x1 −β
√
αx2 −

√
εβx2

)
, η(t) =

 ηf (t)

ηr(t)

ηcat(t)

 . (34)

The slow manifold in this case is the curve x1 − x2(x1 + α) = 0, along which f(x) = 0.

See Figure 1 for an illustration.

Let us take x̃ = x1 as the slow variable and proceed to calculate a reduced system

in terms of x̃ only. As the manifold is one-dimensional, we are able to simply follow the

procedure laid out above. We begin by writing down the formula for the slow manifold

and its x̃ derivatives:

γ(x̃) =

(
x̃
x̃

x̃+α

)
γ ′(x̃) =

(
1
α

(x̃+α)2

)
γ ′′(x̃) =

(
0
−2α

(x̃+α)3

)
. (35)

Next, we find the Jacobian matrix on the manifold

J(x) =

(
x2 − 1 x1 + α

β(1− x2) −β(x1 + α)

)
⇒ J(x̃) =

(
x̃

x̃+α
− 1 x̃+ α

β(1− x̃
x̃+α

) −β(x̃+ α)

)
.

(36)

Diagonalising J(x̃) we find the left eigenvector v(x̃) corresponding to the eigenvalue

zero, and its x̃ derivative:

v(x̃) =

(
β

1

)
v′(x̃) =

(
0

0

)
. (37)

Following equation (15) we obtain

P1(x̃) =
(x̃+ α)2

α + β(x̃+ α)2

(
β 1

)
, (38)

and from equation (16)

Q1(x̃) = 2α

(
(x̃+ α)

α + β(x̃+ α)2

)3
(
β2 β

β 1

)
. (39)

where P1 and Q1 indicate the vector (resp. matrix) obtained by fixing the first

coordinate at the value 1. Plugging these results into the general formula (7) gives

the reduced model

dx̃

dt
= −ε x̃(x̃+ α)

α + β(x̃+ α)2
+εµ

αβx̃(x̃+ α)2

(α + β(x̃+ α)2)3
− (x̃+ α)2

α + β(x̃+ α)2

√
εµ

βx̃

x̃+ α
ηcat(t) . (40)

Figure 4 shows the dynamics of x̃ compared with those of x1 in the full system for a

single realisation of the noise. At first sight equation (40) is considerably more complex

than the traditional Michaelis-Menten law, however, carefully transforming back to the
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Figure 4. Trajectories of x1, x̃ and π1(x) from a single stochastic simulation of the

Michaelis-Menten model (29), simulated using the Euler-Maryuama method (see e.g.

[38]). The inset shows details of the fluctuations near the point (100, 0.8). Note that

the reduced dimension model for x̃ given by equation (40) captures the dynamics of the

full system under the projection π (hence the extremely close agreement between the

solid and dashed black lines above). The original coordinate x1 is subject to additional

noise in the kernel of the projection. Parameters are kf = 20, kr = 20, kcat = 0.05,

V = 1000, S0 = 1, E0 = 0.5.

original coordinates, we will find a simple result. First for the dynamics of S = S0x̃,

recalling the time change t 7→ t/kfE0 and returning to the original parameter names,

we obtain from (40) the SDE

dS

dt
= − v∗S(k + S)

ke + (k + S)2
+

v∗keS(k + S)2

(ke + (k + S)2)3V
− (k + S)2

ke + (k + S)2

√
v∗S

V (k + S)
ηcat(t) (41)

where v∗ = kcatE0, k = kr/kf and ke = E0k. Next for C = E0x̃/(x̃ + α), applying Itô’s

lemma to (40) gives

dC

dt
= − v∗keS

(k + S)(ke + (k + S)2)
− v∗keS(k + S)2

(ke + (k + S)2)3V
− ke
ke + (k + S)2

√
v∗S

V (k + S)
ηcat(t).

(42)

Finally, from the conservation rule S + C + P = S0 we can combine (41) and (42) to

obtain the simple form

dP

dt
=

v∗S

k + S
+

√
v∗S

V (k + S)
ηcat(t) . (43)

Applying our constructive approach to Katzenberger’s results, we have thus obtained

a detailed description of the system dynamics, which takes into account the non-
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perpendicular nature of the projection onto the slow manifold. This is in contrast

to a näıve quasi-steady state approximation, where one would simply substitute C =

S/(k + S) into (29). The difference between these approaches may explain some of the

issues with the quasi-steady state approximation raised in [39, 40].

3.2. Co-dimension one: the Wright-Fisher diffusion as a limit of a near-neutral

stochastic Lotka-Volterra process

Consider a well mixed-population of d interacting species in an environment of carrying

capacity K: there are K “slots” in the environment that at most one individual may

occupy. Let Xi denote the number of individuals of species i, and suppose that each

individual of species i gives birth at rate bi and dies at rate di. Further, suppose that the

offspring is only viable if it lands in an empty patch, or if it lands in an occupied patch

and out-competes the resident; say that an individual of type i successfully displaces a

resident of type j with probability cij. Then, there are three types of events:

(i) Xi increases by 1 at rate biXi

(
1−

∑
j Xj

K

)
,

(ii) Xi decreases by 1 at rate diXi, or,

(iii) Xi increases by 1 and Xj decreases by 1 at rate biXi

(
cijXj

K

)
.

This gives a stochastic model of a population with density-dependent competition;

n.b. the total population size is not fixed at K, but is rather allowed to fluctuate

stochastically with an upper bound of K, as we allow the possibility of empty slots in

the environment.

Let xi(t) denote the density of species i (i.e. Xi(t)
K

). As in the previous section, this

system may be approximated by a system of stochastic differential equations,

dxi
dt

=

(
(bi − di)−

∑
j

(bi − bicij + bjcji)xj

)
xi

+

√
bixi(1−

∑
j xj)

K
ηb,i(t)−

√
dixi
K

ηd,i(t)t

+
∑
j

√
bicijxixj

K
ηi,j(t)−

∑
j

√
bjcjixixj

K
ηj,i(t).

We will be interested in finding a non-trivial diffusion when K is very large, and thus

choose our small parameter is µ = 1
K

. To explore the link between population genetics

and population dynamics, we will further postulate that there exist values ε1, . . . , εd so

that

bi = b
(

1 +
εi
K

)
, di = d+

νi
K
, and cij = c+

aij
K
,

for all i, j; this corresponds to the weak selection hypothesis of classical population

genetics [41], intended to capture the often small effect of point mutations: all species
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differ in their demographic rates and their ability to compete for sites by terms of O
(

1
K

)
.

Then, ε = 1
K

,

fi(x) = xi

(
(b− d)− b

K∑
j=1

xj

)
,

and

hi(x) = xi

(
(bεi − dνi)− b

∑
j

((1− c)εi − cεj − aij + aij)xj

)
Under these assumptions,

Γ =

{
x ∈ Rd :

K∑
j=1

xj = 1− d

b

}

and for x ∈ Γ, the derivatives (23) and (24) simplify to

Pij(x) = δij −
xi

1− d
b

and Qijk(x) = − 1

1− d
b

(
δij + δik −

2xi

1− d
b

)
,

whereas for x ∈ Γ,

hi(x) = xi

(
d(εi − νi) + c

∑
j

(εi − εj)xj + b
∑
j

(aij − aji)xj

)
.

A straightforward if lengthy calculation shows that g(x) = O
(

1
K2

)
.

Substituting into our general formula (7) then gives

dx̃i
dt

=
1

K

(
hi(x̃)− x̃i

1− d
b

∑
j

hj(x̃)

)

+
∑
j

(δij −
x̃i

1− d
b

)

(√
dx̃j
K

(ηb,j(t)− ηd,j(t)) +
∑
k

√
bcx̃jx̃k
K

(ηj,k(t)− ηk,j(t))

)
,

or, changing variables to pi = x̃i
1− d

b

, so pi is the proportion of species i,

dpi
dt

=
1

K
pi

(
si(p)−

∑
j

sj(p)pj

)

+
∑
j

(δij − pi)

 1√
1− d

b

√
dpj
K

(ηb,j(t)− ηd,j(t)) +
∑
k

√
bcpjpk
K

(ηj,k(t)− ηk,j(t))

 ,

where

si(p) = d(εi − νi) + c

(
1− d

b

)∑
j

(εi − εj)pj + (b− d)
∑
j

(aij − aji)pj.
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The corresponding Fokker-Planck equation for the density f(p, t) is then

∂f

∂t
= − 1

K

∂

∂pi

[
pi

(
si(p)−

∑
j

sj(p)pj

)
f

]
+

1

2

2
(
bc+ d

1− d
b

)
K

∂2

∂pi∂pj
[pi(δij − pj)f ]

which we recognise as the equation for the Wright-Fisher diffusion, where the (frequency

dependent) selection coefficient is si(p)
K

and the effective population size is Ne =
(1− d

b )K
2(c(b−d)+d) ;

(
1− d

b

)
K is the population size at the deterministic equilibrium, whereas

the other terms reflect variance in the total population size. This gives an alternate

derivation of the results presented in [9, 10, 12, 20].

3.3. Continuous degrees of freedom: example of competition-limited diffusion

The methods of Section 2 can readily be extended to infinite dimensional settings. Two

recent examples come from work exploring the role of stochasticity in spatial ecological

models [14, 19]. Here we work through a simple illustrative example of diffusing particles

coupled by a competitive birth-death interaction; we will show that this competition

acts to limit the speed of diffusion of the population. Interested readers are referred to

[42], where the continuum limit of this example has been studied in considerable depth.

Consider the following stochastic process. At time t there are N(t) individual

particles wandering in a one-dimensional space, each following their own Brownian

motion with diffusion constant D =
√

2ε. With rate one, each particle may

independently ‘reproduce’, creating a daughter particle that initially shares the location

of the parent, but thereafter moves independently. Particles ‘die’ with rate proportional

to their total number; specifically, the death rate for each particle is µ(N(t) − 1). We

assume the constants µ and ε are small, but of the same order.

Since the location of the particles does not influence the birth or death rates, it

is easy to see that the total number of particles follows a logistic growth law, quickly

reaching an equilibrium N(t) ≈ µ−1. The total population size remains at this level

while the spatial distribution of particles evolves slowly over a much longer timescale.

We are interested in the long-term behaviour of the distribution of particle locations.

Introduce the population density

u(x) = µ

N(t)∑
n=1

δ (x−Xn(t)) , (44)

where Xn is the location of particle n at time t, δ is the Dirac delta function, and

we suppress the dependence of u on t to reduce clutter. Simulations suggest that the

competitive interaction of the particles limits the extent to which they are able to diffuse

away from each other (Figure 5, left panel). This observation can be made quantitative

by computing the mean square distance between pairs of particles,

∆[u] := µ2
∑
n,m

(Xn(t)−Xm(t))2 =

∫∫
(x− y)2u(x)u(y) dx dy . (45)
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Figure 5. Simulation of competition-limited diffusion (dark red), contrasted with a

collection of N independent Brownian particles (light purple). The left panel shows

the particle trajectories, on the right is shown the mean square distance between pairs

of particles, together with the analytical approximation to E∆[v], (62). Parameters

are ε = 0.05, µ = 0.01.

The right panel of Figure 5 shows the time evolution of ∆ for the population, compared

to the growth ∆ ∼ t observed for independent diffusing particles. The solid lines show

our theoretical prediction for this phenomenon, which we will now derive using timescale

separation.

Following a system-size expansion [8], we find that the time-evolution of u(x) is

described to close approximation by the stochastic partial differential equation (SPDE)

∂

∂t
u(x) = ε

∂2

∂x2
u(x) + u(x)

(
1−

∫
u(y) dy

)
+

√
µu(x)

(
1 +

∫
u(y) dy

)
η(x, t) , (46)

where η(x, t) is spatio-temporal white noise and the integrals run over the real line.

Equation (46) has the same essential structure as our basic object of interest (1).

If we identify

f [u](x) = u(x)

(
1−

∫
u(y) dy

)
h[u](x) =

∂2

∂x2
u(x)

G[u](x, s) = δ(x− s)

√
u(x)

(
1 +

∫
u(y) dy

)
,

(47)

then (48) becomes

∂

∂t
u(x) = f [u](x) + εh[u](x) +

√
µ

∫
G[u](x, s)η(s, t) ds . (48)

The integral here is the analogue of the matrix-vector multiplicationG(x)η(t) appearing

in (1). The delta function appearing in G[u] means that the noise in our example is

spatially uncorrelated; this may not hold for other models.
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In this section we will show how the timescale separation techniques discussed above

may also be applied to equations of the form (48), applying the techniques without

rigorous justification.

First we examine the outer part ∂u/∂t = f [u]. In our example, the PDE

∂

∂t
u(x) = u(x)

(
1−

∫
u(y) dy

)
, (49)

is straightforward to solve:

u(x, t) =
u(x, 0) et

1 + (et − 1)
∫
u(y, 0) dy

, (50)

which describes the fast relaxation of u to a state in which it has total mass one. In

this infinite-dimensional setting, the map that describes the long-time limit of the outer

solution (previously defined in (4)) is an operator π, whose action is specified by

π[u](x) =
u(x)∫
u(y) dy

. (51)

We suppose that there exists a suitable space of functions U describing possible solutions

of (48). Exactly what kind of space is a deep question beyond our present focus.

The analogue of the slow manifold is the subspace V ⊂ U containing functions v

satisfying f [v] = 0, or equivalently for our example,
∫
v(y) dy = 1. We aim to derive an

equation describing slow stochastic evolution in V that well-approximates the behaviour

of solutions to the full system (48).

Where previous calculations involved partial differentiation, we now apply a

functional derivative. In analogue to the definitions in (8) we introduce

P [v](x, y) =
δ

δu(y)
π[u](x)

∣∣∣∣∣
u=v

, Q[v](x, y, z) =
δ2

δu(y)δu(z)
π[u](x)

∣∣∣∣∣
u=v

. (52)

The reduced system may then be written down:

∂

∂t
v(x) =

∫
P [v](x, y)

[
εh(y) dy +

√
µ

∫
G[v](y, s)η(s, t) ds

]
+
µ

2

∫∫∫
G[v](y, s)G[v](z, s)Q[v](x, y, z) dy dz ds .

(53)

For the example at hand we compute

δ

δu(y)
π[u](x) =

δ(x− y)∫
u(z) dz

− u(x)(∫
u(z) dz

)2 ,
δ2

δu(y)2
π[u](x) =

2u(x)(∫
u(z) dz

)3 − 2δ(x− y)(∫
u(z) dz

)2 , (54)

and thus

P [v](x, y) = δ(x− y)− v(x) , Q[v](x, y, y) = 2v(x)− 2δ(x− y) . (55)
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Note that we only need the z = y parts of Q[v](x, y, z) because of the delta function in

G. Plugging (47) and (55) into (53), we obtain the reduced model

∂

∂t
v(x) = ε

∂2

∂x2
v(x) +

√
2µ

∫ [
δ(x− y)− v(x)

]√
v(y)η(y, t) dy . (56)

Comparing (56) to the original equation (46) we see two main differences: the

non-linearity in the drift has vanished, but the noise is now spatially coupled.

To compute a prediction for the mean squared distance between particles, it is

simpler to work in Fourier space. Introducing ṽ(k) =
∫
e−2πikxv(x) dx, we note first

that

E∆[v] =

∫∫
z2e2πikz E|ṽ(k)|2 dk dz = − 1

4π2

∂2

∂k2
E|ṽ(k)|2

∣∣∣∣∣
k=0

(57)

Translating (56) to Fourier space we find

∂

∂t
ṽ(k) = −4επ2k2ṽ(k) +

√
2µ

∫
G̃[ṽ](k, x) η(x, t) dx , (58)

where

G̃[ṽ](k, x) =
(
e−2πikx − ṽ(k)

)√∫
e2πi`xṽ(`)d` . (59)

In mean, this process behaves exactly as a straightforward diffusion:

d

dt
E[ṽ(k)] = −4επ2k2 E[ṽ(k)] . (60)

However, the noise introduces a correction to the variance following Itô’s formula.

Specifically,

d

dt
E|ṽ(k)|2 = −8επ2k2E|ṽ(k)|2 +

1

2

∫∫∫
G̃[ṽ](`, x)G̃[ṽ](m,x)

δ2|ṽ(k)|2

δṽ(`)δṽ(m)
dx d` dm

= −8επ2k2E|ṽ(k)|2 + 2µ(1− E|ṽ(k)|2) .
(61)

Solving (61) and plugging into (57) gives the prediction

E∆[v] =
2ε

µ

(
1− e−2µt

)
. (62)

This result is shown as the dark red curve in Figure 5. In particular, notice that

whilst the mean square distance between diffusing particles grows indefinitely, in the

competition coupled process it attains a finite limit 2ε/µ.

4. Discussion

The purpose of this article has been to show the derivation and application of a

systematic computational framework for dimension reduction in stochastic dynamical
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systems that exhibit a separation of timescales via a globally stable normal hyperbolic

slow manifold i.e. in the limit of small noise the limiting deterministic dynamical

system defined by f possesses a single, connected and globally attractive manifold of

fixed points. The method is exact in the limit of small noise and well-separated slow

and fast dynamics, and experimentally found to be valid as an approximation scheme

over a sensible parameter range. We have also presented extensions of the method for

infinite dimensional systems and processes coupled to general noise sources.

In some applications more general scenarios may occur, we now briefly discuss two

of interest. Some models may exhibit more than one connected manifold of equilibria

or dynamic bifurcations, i.e., points where the critical manifold ceases to be normally

hyperbolic [43]; in this case the theory developed here will apply locally to trajectories

in the basin of attraction of each manifold individually, but further analysis will be

necessary to describe the statistics of noise-driven transitions between manifolds. A

possibly more exciting direction for further research is the analysis of noisy behaviour

around more general attractors such as limit cycles, limit tori and strange attractors.

In the case of limit cycles some work exists on stochastic extensions to Floquet theory

[44], however, this is a linear description that cannot capture any bias analogous to the

noise-induced drift in the slow manifold setting.

Finally, it is worth returning to discuss the motivation for this work. As mentioned

earlier, variations of the work of Katzenberger have been independently rediscovered by

several groups in recent years, almost all of whom have been interested in questions about

the role of noise in ecology and evolution. Historically, many theoretical results in this

field have been derived from models that assume for convenience a fixed population size.

In the deterministic limit this assumption is not important, but we are now beginning

to realise that the inclusion of noise can induce radically different and sometimes

unexpected behaviour. Mathematically, this is a consequence of the noise-induced drift

term g that appears in our equation (2), and more generally of the seemingly endless

capacity of Itô’s lemma to cause surprise. There have been some tentative explorations

of the possible evolutionary and ecological consequences of these effects [12, 45, 46], but

much more is yet to be discovered.
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Appendix A. Katzenberger’s Theorem

Above we developed our results in the context of Itô SDEs, however, [28] proved a

more general result that allows us to consider a much broader class of noise processes:

semimartingales. Semimartingales are the most general class of stochastic processes

for which one may define a stochastic integral and stochastic differential equations

(Brownian motion is included as a special case). Suitably adapted, most of the familiar

results for SDEs and white-noise integrals, including Itô’s formula, remain true in the

more general setting [47].

To define a semimartingale, we must first make a few auxiliary definitions. A

Markov process M(t) is a martingale if

E [M(t)|M(s)] = M(s).

A random variable τ taking values in [0,∞) is a stopping time if one can determine if

τ < t without knowledge of the future beyond t; an example of a stopping time is the

first time a diffusion started from 0 exits an interval [−a, a]. M(t) is a local martingale

if there is a sequence of stopping times τn →∞ such that M(min{t, τn}) is a martingale

for each n.

A function is càdlàg if it is continuous from the right and has left-hand limits at

every point.

The total variation of a function f on an interval [a, b] is

V a
b (f) = min

{ti}

∑
i

|f(ti+1)− f(ti)|,

where the minimum is over all partitions a = t0 < t1 < · · · < tn = b of [a, b]. A

stochastic process A(t) is of finite variation if it is càdlàg and has finite total variation

on all intervals [a, b] (note that A(t) is allowed to have jump discontinuities).

Finally, Z(t) is a semimartingale if it may be written as the sum of a local martingale

and a finite variation process,

Z(t) = M(t) + A(t).

Diffusion processes are the prototypical example of semimartingales, but the class is

much broader, and includes processes with jumps, such as Lévy processes; e.g. if N(t)

is a Poisson process, then M(t) = N(t)− t is a local martingale and A(t) = t is of finite

variation, so N(t) is a semimartingale. Integration with respect to a semimartingale is

defined analogously to the Stieltjes integral, except that we require the approximating

sum to converge in probability, and, as with the Itô integral, the integrand is always

evaluated at the left endpoint of each interval in the partition.

More generally, we can define vector and matrix valued martingales, local

martingales, finite variation processes and semimartingales, M(t), A(t), and Z(t), by

requiring the components, Mi(t) etc., have the corresponding property.

We can now formulate Katzenberger’s result. Let
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(i) Zn(t) be a convergent sequence of vector valued semimartingales such that the

jumps ∆Zn(t)→ 0 as n→∞,

(ii) An(t) be a sequence of non-decreasing finite variation processes such that ∆An(t)→
0, and ∫ b

a

dAn(s) = An(b)− An(a)→∞

as n → ∞; Katzenberger notes that most frequently in applications, An(t) = αnt

for some sequence αn → ∞ (n.b., in this formulation, this explosion in An(s)

corresponds to the drift becoming infinitely strong, rather than the noise infinitely

weak, as in (1). The two are equivalent, if one changes the timescale accordingly;

recall we had
dx

dt
= f(x) + εh(x) +

√
µG(x)η(t).

If instead, we consider the homogenised process x̃(t) = x(µ−1t), we get

dx̃

dt
=

1

µ
f(x̃) +

ε

µ
h(x̃) + G(x̃)η(t),

with a drift that blows up as µ→ 0).

(iii) f and Γ be as before,

(iv) Gn(x) be a sequence of matrix-valued functions converging to a limit G(x), and

(v) xn(t) be a sequence of stochastic processes satisfying the (semimartingale) SDE

dxn = f(xn) dAn +Gn(xn) dZn. (A.1)

Then, as before, subject to a few technical considerations, as n → ∞, xn converges to

a diffusion process on Γ satisfying

dz

dt
= g(z) + P (z)G(z)η(t) , (A.2)

where g is as in equation (9) and η is white noise.

Some care is required in understanding the sense of convergence in [28]; if xn(0)

converges weakly to z ∈ Γ in Rd (i.e., for all continuous functions F : Rd → R,

E[F (xn(0))] → E[F (z)]) then xn(t) converges weakly to z(t) in the space of càdlàg

functions:

E[F (xn(t))]→ E[F (z(t))]

for all continuous functions F from the space of càdlàg functions on [0,∞) to R
(see [48, 49] for a definition of the topology on càdlàg functions and results on weak

convergence). When xn(0) converges to a limit x that is in the basin of attraction

of Γ, but not in Γ, additional care is required: in this case, the process will jump

instantaneously from x to π(x) ∈ Γ, which is not compatible with convergence in the

weak topology on càdlàg functions. However, if one considers

x̂n(t) = xn(t)− ξ(An(t)) + π(x),
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Figure A1. Illustration of x̃1 on the fast timescale for a prototypical stochastic

dynamical system with a slow manifold Γ = {x : x1 = 1}. In the slow timescale the

initial transit to the manifold is compressed into an instantaneous jump at t = 0. For

reference, the system used is ẋ1 = x1(1 − x1) +
√
µx1(1 + x1)η(t), ẋ2 = x2(1 − x2)

with µ = 0.002, x1,2(0) = 0.01.

(recall, ξ(t) is the solution to the outer system, (3)) then x̂n(0)→ π(x) ∈ Γ and x̂n(t)

converges weakly to the diffusion z(t) on Γ as before; intuitively x̂n(t) is obtained by

removing the initial transient phase when xn(t) follows the trajectories of the outer

system, and starting the process instead from the endpoint of that trajectory, π(x) (see

Figure A1).

The term ξ(An(t)) makes explicit the time scale change that is only implicit in

(A.1): for simplicity, consider briefly the case when An(t) is differentiable and Zn(t) is

identically zero. Then, if ξ(t) solves dξ = f(ξ) dt,

ξ(An(t)) =

∫ An(t)

0

f(ξ(u)) du =

∫ t

0

f(ξ(An(u)))A′n(u) du =

∫ t

0

f(ξ(An(u))) dAn(u),

so, defining xn(t) = ξ(An(t)), we have dxn = f(xn) dAn i.e., (A.1) is describing the

evolution of a homogenized process in the slow time scale An(t). In particular, when

An(t) = αnt, the middle integral above gives us

xn(t) = αn

∫ t

0

f(xn(u)) du,

by which we see explicitly how a large drift is absorbed into a rescaled time.

Appendix A.1. Density dependent population processes

While Katzenberger’s result might seem unnecessarily abstract, it allows one to

apply the same slow-manifold reduction to a number of individual-based, discrete
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stochastic processes that include a number of well-known examples from applications.

In [50, 51, 1, 52], Kurtz introduced and studied what he called density dependent

population processes. While his original motivation was chemical reaction networks,

the class also includes many examples of interest in biology and epidemiology.

A sequence of Markov processes xn(t) is a density dependent population process if

xn takes values in 1
n
Zd, and, if q

(n)
x,y is the jump rate between x,y ∈ 1

n
Zd, then

q(n)x,y = nλn(y−x)(x)

for some non-negative function λl(x) on Rd, where l = n(y − x) ∈ Zd. More generally,

one can consider the case of functions λ
(n)
l (x) that depend on n, provided λ

(n)
l (x)

converges to a limit λl(x) sufficiently quickly as n→∞; see [53].

The parameter n corresponds to the “system size” in [54], and can be interpreted

differently according to the context, as e.g. total population size, area, or volume. For

example, consider the stochastic logistic process Xn(t) with birth and death rates

Q
(n)
X,X+1 = βX

(
1− X

n

)
Q

(n)
X,X−1 = δX.

Here, n plays the role of the carrying capacity in the deterministic logistic equation,

i.e. the number of individuals the environment can support: individuals have an

intrinsic per-capita birth rate β, but the offspring will only survive if it arrives in an

unoccupied spot in the habitat. Nondimensionalising, we might consider instead the

process xn(t) = 1
n
Xn(t), with rates

q
(n)

x,x+ 1
n

= nβx(1− x) q
(n)

x,x− 1
n

= nδx.

The latter is an example of a density-dependent population process, with

λ1(x) = βx(1− x) λ−1(x) = δx.

In [50], Kurtz shows that provided∑
l∈Zd

‖l‖ sup
x∈K

λl(x) <∞

for all closed and bounded sets K, then if

f(x) =
∑
l∈Zd

lλl(x)

is differentiable and xn(t)→ x0, then for any fixed T > 0,

lim
n→∞

sup
t≤T
|xn(t)− x(t)| = 0,

where x(t) is the solution of dx
dt

= f(x) with x(0) = x0.
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If one assumes that λl(x) is non-zero for only finitely many transitions, say l1, . . . , ls,

then, letting G(x) be the matrix with ith column li
√
λli(x), η(t) be an s-dimensional

Itô white noise, and zn(t) be the solution of

dzn
dt

= f(zn) +
1√
n
G(zn)η(t),

then for any fixed T > 0, there exists a constant CT such that

lim
n→∞

P
(

sup
t≤T
|xn(t)− zn(t)| > CT log n

n

)
= 0.

In our current setting, if f(x) is twice continuously differentiable and once again

has a globally attractive m-dimensional manifold of equilibria Γ, then the process

zn(t) = xn(nt) satisfies the conditions of [28], so that as n → ∞, zn(t) converges

to a diffusion z(t) satisfying equation (A.2) for f and G defined as above. This result

was applied to the study population genetic and epidemiological models in [12, 13].

Appendix B. Local representations of one-dimensional manifolds

In this section, we will discuss how one may obtain a parameterisation γ of a one-

dimensional slow manifold Γ and compute the quadratic expansion of the flow field (i.e.

the quantities v and Θ) in the neighbourhood of a point x ∈ Γ.

We start by fixing a basis of generalised eigenvectors of the Jacobian at x0, J(x0),

say w1, . . . ,wn, and letting W be the corresponding change of basis matrix with the

wi as columns. Let w1 to be the eigenvector corresponding to the eigenvalue 0 (which

we take to be unique up to scalar multiplication). Then,

W−1J(x0)W =

[
0

J2

]
, (B.1)

where J2 is a block-diagonal matrix, with each block acting invariantly on one of the

eigenspaces corresponding to the non-zero eigenvalues.

We introduce a new coordinate system

z = W−1 (x− x0) .

In this coordinate system, we will construct a parameterisation γ(z1) of Γ such that

that x0 = γ(0).

In the new coordinate system, the dynamics are then given by dz
dt

= f̂(z), where

f̂(z) = W−1f (x0 +Wz)

(thus, the Jacobian of f̂ at 0, say Ĵ , is W−1J(x0)W ). Setting z2 = (z2 . . . , zd), we

may write this as
dz1
dt

= ϕ1(z1, z2)

dz2
dt

= J2z2 +ϕ2(z, z2) .

(B.2)
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where ϕ2(z1, z2) = (ϕ2, . . . , ϕd) is quadratic. We may thus Taylor expand ϕi(z) about

0 as

ϕi(z) =
d∑

j,k=1

cijkzjzk +O
(
|z|3
)
.

Computing γ or Θ, is essentially the task of characterising the centre and stable

manifolds at x0 respectively. The centre manifold theorem (we follow the treatment in

[55]) tells us that at x0 the centre manifold is tangent tow1, whereas the stable manifold

is tangent to the space spanned by w2, . . . ,wd. Moreover, we may locally represent each

manifold as the graph of a function over the tangent space. In particular, in the new

coordinate system, there exists a function

γ2(z1) = (γ2(z1), . . . , γd(z1))

such that γ(z) = (z,γ2(z))T is a point on Γ for all z1 sufficiently close to 0, and a function

ϑ(z2) such that (z2, ϑ(z2)) is a point in the stable manifold near x0 for z2 sufficiently

close to 0. We will demonstrate the calculation of γ2(z1) below; the calculation of ϑ(z2)

is similar, so we will simply give the result. Finally, we will show how one obtains Θ

from ϑ(z2).

To begin, we observe that in our new coordinate system x0 is the origin and Γ is

tangent to the z1 axis (i.e. the span of w1), so we must have γ ′2(0) = dγ2
dz1

= 0. We thus

look for γ2(z1) of the form

γi(z1) = aiz
2
1 +O

(
z31
)
.

(as we shall only be interested in the first and second order derivatives of γ at x0 – i.e.

at z1 = 0 – this is adequate for our purposes).

Substituting into (B.2), for points on Γ we have

dz1
dt

= ϕ1(z1,γ2(z1))

d

dt
γ2(z1) = J2γ2(z1) +ϕ2(z1,γ2(z1)),

(B.3)

or, expanding the latter using the chain rule,

ϕ1(z1,γ2(z1))
dγ2
dz1

= J2γ2(z1) +ϕ2(z1,γ2(z1)).

Substituting our series expressions for the ϕi and hi, to lowest order this gives us

2ci11aiz
3
1 +O

(
z41
)

=

(
d∑
j=2

Ĵijaj + ci11

)
z21 +O

(
z31
)

i.e. we may obtain the quantities ai, i = 2, . . . , d by solving the system of equations

d∑
j=2

Ĵijaj = −ci11, i = 2, . . . , d.
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Noting that (a2, . . . , ad)
T = 1

2
d2γ2
dz21

(0) whereas (c111, . . . , cd11)
T = 1

2
∂2ϕ2

∂z21
(0), we can solve

the previous equation as
d2γ2
dz21

(0) = −Ĵ−1∂
2ϕ2

∂z21
(0).

To return to our original functions as expressed in the original coordinate system, we

first observe that for i = 2, . . . , d,

d2ϕi
dz21

(0) =
∂2f̂i
∂z21

(0),

whereas
∂2f̂

∂z21
(0) = W−1

d∑
j,k=1

∂2f

∂xj∂xk
(x0)Wj1Wk1.

In particular, recalling (B.1), we see that for i = 2, . . . , d, d2γi
dz21

(0) agrees with the ith

entry of

−W−1J+

d∑
j,k=1

∂2f

∂xj∂xk
(x0)Wj1Wk1,

i.e.

−
[
W T ∂

2 [W−1J+f ]i
∂x2

(x0)W

]
11

,

where, as before, J+ is the pseudo-inverse of J , which is defined by J−1 on the image

of J and is 0 on the kernel of J .

Thus,

γ(0) = x0

γ ′(0) = w1

γ ′′(0) =
d∑
i=2

d2γi
dz21

(0)wi = −
d∑
i=2

[
W T ∂

2 [W−1J+f ]i
∂x2

(x0)W

]
11

wi

and

γ(z1) = x0 + z1w1 −
1

2
z21

d∑
i=2

[
W T ∂

2 [W−1J+f ]i
∂x2

(x0)W

]
11

wi +O
(
z31
)

is the desired parametrisation of Γ in the z coordinates.

Proceeding similarly, we find that

ϑ(z2) = zT2 (ĴT )−1
∂2f̂1
∂z22

(0)z2

and (ĴT )−1 ∂
2f̂1
∂z22

(0) and

W T
(
JT
)+ ∂2 [W−1f ]1

∂x2
(x0)W
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have equal j, kth entry for all j, k = 2, . . . , d (the first row of the latter is zero, but the

first column need not be). Thus, if we set

Θ(x0) = P (x0)W
T
(
JT
)+ ∂2 [W−1f ]1

∂x2
(x0)W ,

then the stable manifold at x0 is thus the set of all points z such that

z1 = zT2 Θ(x0)z2.

Now, if we choose v(x0) so that

v(x0)
Twi =

{
1 if i = 1, and

0 otherwise,

then for a point x = x0 + ∆x, z1 = v(x0)
T∆x, whereas

z2 = ∆x−
(
v(x0)

T∆x
)
w1,

so that x is in the stable manifold at x0 (to lowest order in ∆x) provided

v(x0)
T∆x−

(
∆x−

(
v(x0)

T∆x
)
w1

)T
Θ(x0)

(
∆x−

(
v(x0)

T∆x
)
w1

)
= 0,

or, rearranging,

v(x0)
T∆x−∆xT

(
I −w1v(x0)

T
)T

Θ(x0)
(
I −w1v(x0)

T
)

∆x = 0.

Appendix C. Derivation of general case

First we examine the projection matrix P . Consider the outer system

dξ

dt
= f(ξ) , ξ(0) = x , (C.1)

where x lies close to a point z on the manifold. Varying the initial conditions yields

d

dt

∂ξi
∂xj

=
∂

∂xj
fi(ξ) =

∑
k

∂ξk
∂xj

∂

∂ξk
fi(ξ) =

∑
k

Jik(ξ)
∂ξk
∂xj

(C.2)

i.e.
d

dt

∂ξ

∂x
= J(ξ(t))

∂ξ

∂x

where J is the Jacobian matrix of f . Now, since ξ(0) = x,

∂ξ

∂x
(0,x) = I

and thus this variational equation has solution

∂ξi
∂xj

= Π(0, t)
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where Π(s, t) is the fundamental matrix solving

d

dt
Π(s, t) = J(ξ(x, t))Π(s, t), Π(s, s) = I.

When x is taken to be z ∈ Γ, since ξ(z, t) = z for all z ∈ Γ, we have

Π(s, t) = e(t−s)J(z).

so, in this case, ∂π
∂x

(z, t) = etJ(z) (i.e. informally, d
dt
∂ξ
∂x
≈ J(z) ∂ξ

∂x
. Under this

approximation the equation is linear and admits the solution ∂ξ
∂x

= etJ(z)).

From the definitions (4) and (8) we recover P by taking the limit of large t,

P (z) = lim
t→∞

etJ(z) . (C.3)

To compute the limit we consider the action of etJ(z) on an eigenvector of the Jacobian+.

If ui is tangent to the manifold then the corresponding eigenvalue λi is zero and so

etλi = 1 and P (z) leaves ui unchanged. Alternatively, if ui corresponds to a direction

of fast collapse then its eigenvalue is negative and etλi → 0, so ui is annihilated by P (z).

Let U = (u1, . . . ,um) be a basis of the tangent plane to the manifold at z (the

slow subspace) and let V = (v1, . . . ,vm) a basis of the orthogonal complement of the

fast subspace. Then we may write

P (z) = U(V TU)−1V T . (C.4)

In the above we assumed that the tangent plane to the manifold was precisely the kernel

of the Jacobian, in which case U would be the first m columns of the right eigenvector

matrix, and V T the bottom d −m rows of the left eigenvector matrix. This may not

hold if the manifold is not hyperbolic (for example if f has a component like −x3i , which

is stable but not linearly so), however, equation (C.4) remains true for all flow fields,

provided we somehow have access to bases U and V .

Let us move on to calculate Q. We start by obtaining some simple identities: first

note that by the definition of π, we have fi(π(x)) = 0 for all x. Differentiating this, we

obtain ∑
m

∂fi
∂xm

(π(x))
∂πm
∂xj

= 0, (C.5)

or, in matrix form, J(π(x))∂π
∂x

= 0. Replacing x by z ∈ Γ, and recalling that
∂π
∂x

(z) = P (z), we have

J(z)P (z) = 0,

i.e. J(z) annihilates all the slow directions, as we have already observed. Differentiating

(C.5), we obtain∑
m,n

∂2fi
∂xm∂xn

(π(x))
∂πm
∂xj

∂πn
∂xk

+
∑
m

∂fi
∂xm

(π(x))
∂2πm
∂xj∂xk

= 0,

+ To simplify the discussion we assume that J(z) is diagonalisable and that its kernel contains only

the tangent plane to the manifold. Neither assumption is necessary.
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which we can write in vector form as

Hjk

(
∂π

∂x

)
+ J(π(x))

∂2π

∂xj∂xk
= 0, (C.6)

where, for any n× n-matrix A, Hjk(A) is the vector with ith entry

Hijk(A) = eTj A
T ∂

2fi
∂x2

Aek,

where ej is the jth standard basis vector, and we have written ∂2fi
∂x2 for the Hessian matrix

with j, kth entry ∂2fi
∂xj∂xk

. i.e., since ∂π
∂xj

= ∂π
∂x
ej,

Hijk

(
∂π

∂x

)
=

(
∂π

∂xj

)T
∂2fi
∂x2

∂π

∂xk
=
∑
m,n

∂2fi
∂xm∂xn

(π(x))
∂πm
∂xj

∂πm
∂xk

.

Now, recalling that at z ∈ Γ, π(z) = z, ∂π
∂x

= P (z), and ∂2πi
∂xj∂xk

(z) = Qijk(z), we

can write (C.6) as

J(z)Qjk(z) = −Hjk(P (z)), (C.7)

where we continue with the convention that Qjk(z) is the vector with ith entry Qijk(z).

Applying P (z) to both sides of (C.7) gives

P (z)Hjk(P (z)) = 0

so we see Hjk(P (z)) is entirely contained in the eigenspace of fast directions. Notice

that restricted to the fast subspace, J(z) is a full-rank operator, so that, regarded as an

operator on the fast subspace, (C.7) has a unique solution, which we will write as

−J(z)+Hjk(P (z)).

where we recall that J(z)+ is the pseudo-inverse of J(z), which acts as the inverse of

J(z) when restricted to the fast directions and which annihilates all vectors in the slow

directions.

However, regarded as an equation on all of Rd, the solution to (C.7) is not unique,

but rather takes the form

Qjk(z) = −J(z)+Hjk(P (z)) + Sjk(z)

for some vector Sjk(z) in the slow directions.

To obtain Sjk(z), we proceed as we did to obtain P (z), differentiating (C.2) to

obtain
d

dt

∂2ξi
∂xj∂xk

=
∑
l

Jil(ξ)
∂2ξl

∂xj∂xk
+
∑
m,n

∂2fi
∂xm∂xn

(ξ)
∂ξm
∂xj

∂ξn
∂xk

which again write in vector form as

d

dt

∂2ξ

∂xj∂xk
= J(ξ)

∂2ξ

∂xj∂xk
+ Hjk

(
∂ξ

∂x

)
. (C.8)
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This may be formally solved by Duhamel’s principle to give

∂2ξ

∂xj∂xk
=

∫ t

0

Π(s, t)Hjk

(
∂ξ

∂x
(x, s)

)
ds

where Π(s, t) is the fundamental matrix from above.

As before, when x is taken to be a point z ∈ Γ, since ξ(z, t) = z for all z ∈ Γ, we

have Π(s, t) = e(t−s)J(z) and ∂π
∂x

(z, t) = etJ(z), and the solution to (C.8) simplifies to∫ t

0

e(t−s)J(z)Hjk

(
esJ(z)

)
ds.

Thus,

Qjk(z) = lim
t→∞

∂2ξ

∂xj∂xk
= lim

t→∞

∫ t

0

e(t−s)J(z)Hjk

(
esJ(z)

)
ds.

Now, etJ(z) → P (z) as t→∞, and

lim
t→∞

Hjk

(
etJ(z)

)
= Hjk(P (z)),

both of which are non-zero, so it is not immediately obvious that the integral above

converges. However, the information obtained above allows us to resolve these issues.

We start by observing that

Sjk(z) = P (z)Qjk(z) = lim
t→∞

∫ t

0

P (z)e(t−s)J(z)Hjk

(
esJ(z)

)
ds,

and, since e(t−s)J(z) acts like the identity matrix on the slow directions, P (z)e(t−s)J(z) =

P (z), so that

Sjk(z) = lim
t→∞

∫ t

0

P (z)Hjk

(
esJ(z)

)
ds = P (z)

∫ ∞
0

Hjk

(
esJ(z)

)
ds.

Moreover, we’ve already observed that P (z)Hjk(P (z)) = 0, so

Sjk(z) = P (z)

∫ ∞
0

Hjk

(
esJ(z)

)
−Hjk(P (z)) ds,

and we are left with evaluating the integral∫ ∞
0

Hijk

(
esJ(z)

)
−Hijk(P (z)) ds

=

∫ ∞
0

eTj e
sJ(z)T ∂

2fi
∂x2

(z)esJ(z)ek − eTj P (z)T
∂2fi
∂x2

(z)P (z)ek

= eTj

(∫ ∞
0

esJ(z)
T ∂2fi
∂x2

(z)esJ(z) − P (z)T
∂2fi
∂x2

(z)P (z) ds

)
ek.
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Now,∫ ∞
0

esJ(z)
T ∂2fi
∂x2

(z)esJ(z) − P (z)T
∂2fi
∂x2

(z)P (z) ds

=

∫ ∞
0

(esJ(z) − P (z))T
∂2fi
∂x2

(z)(esJ(z) − P (z)) ds

+

∫ ∞
0

(esJ(z) − P (z))T
∂2fi
∂x2

(z)P (z) ds+

∫ ∞
0

P (z)T
∂2fi
∂x2

(z)(esJ(z) − P (z)) ds,

and, since etJ(z) −P (z) vanishes on the slow directions, and acts as etJ(z) restricted to

the fast directions, ∫ ∞
0

esJ(z) − P (z) ds = −J(z)+

whereas

Xi(z) =

∫ ∞
0

(esJ(z) − P (z))T
∂2fi
∂x2

(z)(esJ(z) − P (z)) ds (C.9)

is the unique solution to the Lyapunov equation

J(z)TXi(z) +Xi(z)J(z) = −∂
2fi
∂x2

(z)

in the fast subspace [56]. Thus,

Sjk(z) = P (z)S̃jk(z),

where

S̃ijk(z) = eTj

(
Xi(z)− (J(z)+)T

∂2fi
∂x2

P (z)− P (z)T
∂2fi
∂x2

J(z)+
)
ek

and, finally,

Qjk(z) = −J(z)+Hjk(P (z)) + P (z)S̃jk(z).

Finally, we remark that in the co-dimension one case, (C.9) can be evaluated

directly. Adopting the notation of 2.3, we have f = φr, J = r∇φT , λ = ∇φTr,

and

P = I − 1

λ
J .

Then, for an arbitrary vector Y , JY = r∇φTY , so that

J2Y = r∇φTr∇φTY = λ(∇φTY )r,

JnY = λn−1(∇φTY )r, and

esJY =
∞∑
n=0

sn

n!
JnY

= Y + (∇φTY )rλn−1
∞∑
n=1

sn

n!

= Y +
(∇φTY )

λ
(eλt − 1)r.
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Thus, esJ − PY = (∇φTY )
λ

eλtr and, recalling that λ < 0, we have that

Xijk = eTj

(∫ ∞
0

eTi (esJ − P )T
∂2fi
∂x2

(esJ − P ) ds

)
ek

=
(∇φTej)(∇φTek)

λ2
rT
∂2fi
∂x2

r

∫ ∞
0

e2λt dt

= −
∂φ
∂xj

∂φ
∂xk

2λ3
rT
∂2fi
∂x2

r.
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