-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by University of Bath Research Portal

UNIVERSITY OF

BATH

Citation for published version:

Krause, A & Giansante, S 2018, 'Network-based computational techniques to determine the risk drivers of bank
failures during a systemic banking crisis', IEEE Transactions on Emerging Topics in Computational Intelligence ,
vol. 2, no. 3, pp. 174-184. https://doi.org/10.1109/TETCI.2018.2805319

DOI:
10.1109/TETCI.2018.2805319

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately

and investigate your claim.

Download date: 13. May. 2019


https://core.ac.uk/display/161918232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TETCI.2018.2805319
https://researchportal.bath.ac.uk/en/publications/networkbased-computational-techniques-to-determine-the-risk-drivers-of-bank-failures-during-a-systemic-banking-crisis(ce05fa66-dcaf-48b0-b5d3-520598946c52).html

IEEE TETCI - SPECIAL ISSUE ON DATA DRIVEN COMPUTATIONAL INTELLIGENCE FOR E-GOVERNANCE, SOCIO- POLITICAL AND ECONOMIC SYSTEMS 1

Network-based computational techniques to
determine the risk drivers of bank failures during a
systemic banking crisis

Andreas Krause and Simone Giansante

Abstract—This paper employs a computational model of sol-
vency and liquidity contagion assessing the vulnerability of banks
to systemic risk. We find that the main risk drivers relate to the
financial connections a bank has and the market concentration,
apart from the size of the bank triggering the contagion, while
balance sheets play only a minor role. We also find that market
concentration might facilitate banks to withstand liquidity shocks
better while exposing them to larger solvency chocks. Our results
are validated through an out-of-sample forecasting that shows
that both type I and type II prediction errors are reduced if we
include network characteristics in our prediction model.

Keywords—Solvency, liquidity, interbank loans, network topology,
banking crises, systemic risk, systemic crisis, bank failure

I. INTRODUCTION

Almost a decade after the financial crisis of 2007-2008
regulators, along with academics and practitioners, are de-
bating the risk drivers responsible for systemic risk events
in the banking sector. Systemic risk is defined as a negative
externality of a financial institution’s failure on the resilience
of other institutions, leading to system-wide instabilities. An
important factor of risk propagation is the high degree of
interconnections between financial institutions, for example
via interbank loans (mainly very short term borrowing and
lending among banks) or derivative positions (from basic
futures and swaps to more sophisticated credit derivatives).
Such complex bilateral interconnections make the assessment
of financial contagion and systemic risk a complex task. Recent
developments in banking regulation around the world, Basel
IIT internationally and the Dodd-Frank act in the U.S., to
name only the most prominent ones, have explicitly included
the concept of interconnectedness as important risk drivers to
assess bank resilience to distress.

In this paper we aim to shed light on the probability of bank
failures by directly testing their vulnerability within a model
of an interconnected banking system. [1] showed the relevance
of the network structure of interbank loans in the assessment
of systemic risk. While the focus of that paper was on the
emergence of contagion and its extent at the macro-level, we
employ their interbank model to evaluate the vulnerability of
individual banks to systemic risk. This study thereby comple-
ments the former contribution by focusing on the outcome for
individual banks rather than the banking system as a whole.
This allows us to assess more explicitly those aspects that

This research has been supported by research grant SC-51539 from the
British Academy.

drive systemic risk and work towards proposals for banking
regulations that aim at improve banks resilience to systemic
risk.

Our model represents a complex human system of banks
connected via a network of interbank loans. Although the
topology of the network and the balance sheet mechanism
during times of market distress are pre-defined conditions,
i.e no learning or adaptations are allowed, our computational
solutions unravel the complexity of the propagation of shocks
during financial distress by exposing the main risk drivers
responsible for the failure of banks.

In particular, we find that the failure of banks is determined
mainly by the connectedness of a bank in the network of inter-
bank loans as well as the market concentration; balance sheet
structures have a limited impact on the bank failure rate. When
distinguishing between failures arising from insolvency and
illiquidity we find that these results remain valid.! We assess
the validity of our results in an out-of-sample forecasting of
the failure of individual banks through the examination of type
I and type II errors, showing that the inclusion of network
characteristics reduces both error types.

The following section provides a brief overview of the
current research on the prediction of bank failures as well
as the importance of interbank loans for systemic risk before
we briefly outline the main features of the model in section
III. The way our computer experiments are conducted and the
resulting data processed for analysis is described in section IV.
The main results of our investigation are discussed in section
V with policy implications of these results being outlined in
section VI. Finally section VII concludes our findings and
makes numerous suggestions for further research.

II. LITERATURE REVIEW
This section provides a brief overview of the current state

of the literature on predicting bank failures and the role of
interbank loans for systemic risk.

A. The prediction of bank failures

In light of the financial crisis of 2007-2008 the focus in
banking research has been shifting towards systemic risk and
the failure of banks. While most of the emphasis in financial
regulation is on the prevention of the failure of an individual

!nsolvency refers to a situation where a bank accumulates losses exceeding
its capital and illiquidity where its liquid assets (e. g. cash) are insufficient to
meet all instant obligations (e. g. the repayment of loans due).
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bank as well as systemic risk, little attention has been paid
to which banks are actually failing in a process of contagion.
The latter denotes the loss propagation of a failing institution
to other banks.

Although not concerned with the effects of contagion per
se, there exists a sizeable literature on the prediction of bank
failures. This literature has mostly drawn on ideas developed in
the prediction of corporate bankruptcies and employs similar
techniques. It is most common to employ limited dependent
variable regressions (where dependent variables are 1 for a
bank failing and 0 otherwise) such as logit or probit to estimate
the probability of a bank failing, where the independent
variables are usually accounting ratios derived from balance
sheets and income statements of the banks investigated?. For
example, [3] employ a probit model and find that accounting
data obtained from the balance sheet and income statement
affect the probability of a bank failing during the U.S. Savings
and Loans Crises. Using a similar approach, [4] uses logit
and probit models to evaluate the failure of small banks in
the U.K. during the early 1990s; he also finds that accounting
ratios from the balance sheet and income statement are relevant
for the prediction of bank failures. [5] come to the same
conclusion for U.S. banks during the late 1980s and early
1990s.

More recent studies focused on the financial crisis of 2007-
2008 and used balance sheet and income statement proxies to
obtain a CAMELS rating, among them [6] for U.S. banks,
[7] for EU banks, and [8] in a more international setting.
All of them confirm the importance of CAMELS ratings® in
predicting banking failures. This research is complemented by
[9] for Southeast Asian countries around the Asian financial
crisis of 1997 through the inclusion of macroeconomic factors
are shown to play a significant role, too. Similarly, [10] include
market data such as abnormal returns of bank stocks into their
model of predicting bank failures in emerging markets during
the early 1990s.

A range of other techniques have been employed in place
of or alongside the logit and probit models, again adopted
from the prediction of corporate bankruptcies. Methodologies
include neural networks in [11] and [12], trait recognition in
[5], fuzzy sets in [13], proportional hazard models in [14],
and multi-dimensional scaling in [15]. It is noteworthy that the
above computational intelligence techniques explore elements
of learning and/or adaptation in corporate behaviour during
financial distress, whereas our computational solutions aim
at unravelling the complexity of shock propagation within a
network of connected banks. A good overview of a range of
methods used to predict bank failures can be found in [16].

A common feature of all these models is that they view
banks as isolated entities by focusing on their accounting
ratios. It is not taken into account that banks are highly inter-
connected with each other through interbank loans, derivatives
positions and payment systems. Hence the failure of one bank

can have an impact on the profits of other banks and even
threaten their very survival. Those systemic risk implications
have been ignored in the literature on bank failure prediction
thus far, although much of the empirical work referred to above
is conducted during time periods of sustained systemic risk.
Furthermore, it is clear from the data on bank failures that most
failures occur as part of banking crises rather than being an
isolated event. The inclusion of macroeconomic factors seems
not to be fully adequate to explain this finding as it only
considers common factors that might put a banking system
at higher risk of failure. This approach has a limited ability to
explain why in the same macroeconomic environment some
banks fail while others do not. It is therefore important to
consider the role of systemic risk for the prediction of bank
failures. This will in particular necessitate that consideration
is given to the role of financial connections between banks.

B. The role of interbank loans in systemic risk

Recently studies have explicitly analyzed the financial con-
nections between banks in several interbank markets, including
Italy [17], Germany [18], and the U.K. [19], among others.
Simulation techniques are usually employed to assess the
spread of any bank failures and quantify the threats that
systemically important institutions can pose to the whole
system*. The main balance sheet aspects investigated, liquidity
in [21], [22], and [17] as well as capital in [23], are considered
the most important risk drivers for the failure of individual
banks. Other studies focused more on the optimal network
structure [24] and the endogenous bank behavior in interbank
networks, such as [25] and [26], and are therefore of limited
value to understand the risk driver of bank failures.

Although the number of assumptions made in the above
literature on the network structure (properties of the banks and
how failures spread) can limit the assessment of systemic risk,
the main shortfall is represented by the contagion mechanism
employed in that it assesses liquidity and solvency shocks in
isolation.> The model presented in [1] fills this methodological
gap by combining both liquidity shortfalls (from a lender that
stops lending to its borrowers) and solvency shocks (from
a borrower that fails to repay its debt), and design it as a
computational dynamical system. Their numerical experiments
on a variety of realistic financial networks provide evidence of
the importance of the network structure of interbank loans in
driving systemic risk while the structure of the balance sheet
has only a secondary role. However, their analysis focused
on the probability and extent of contagion at the system
level only. This paper seeks to fill the gap in the literature
on the risk drivers of individual bank failure by employing
this dual-channel (liquidity-solvency) contagion mechanism of
[1] within a framework that looks at the banks’ individual
characteristics to determine the risk drivers of bank failure
during systemic risk crises.

2See [2] for an extensive review on market based systemic risk metrics.

3CAMELS is a measure for the solvency of a bank as used by the U.S.
deposit insurance company (FDIC) and is based on balance sheets as well as
income statements.

4A general overview of the issues surrounding such modeling techniques is
given by [20].

5The most widely used contagion mechanisms are those proposed by [27]
and [28].
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III. THE MODEL

In contrast to most contributions on systemic risk investi-
gating the spread of an initial failure, we focus here on the
properties of the banks that are actually failing in this process,
contrasting them with those that do not fail. While the details
of the model we use are given in [1], we here provide a brief
synopsis of its main aspects to aid the understanding of the
setting of our results.

Each bank has a balance sheet with total assets exogenously
given, consisting of cash reserves (cash holdings and other
highly liquid and risk-free assets such as treasury bonds), loans
to external customers, and loans to other banks (interbank
lending). The liabilities of each bank are made up of deposits
by customers, loans received from other banks (interbank
borrowing) and equity.® This highly stylized balance sheet
captures all the key aspects relevant for the model employed
here. We can easily extend the interpretation of interbank
borrowing and lending to encompass any financial connections
between banks, such as those arising from derivatives positions
or payment systems.

All interbank lending and borrowing consists of overnight
loans that can be recalled instantly and we can thus focus on
a single time period. In the case of an interbank loan being
recalled, banks are only able to recover a fraction of their
value to account for any costs associated with such recalls
or we can interpret this as the liquidity impact from selling
bank assets quickly.” All balance sheet items are assumed
to be fixed in this single time period model. Making such
restrictive assumptions enables us to focus on the impact
financial connections between banks have on the failures rather
than other factors that might result from the behaviour of
depositors or borrowers.

To model the interbank loans between banks we generate a
directed Albert-Barabasi scale-free network [30], where the
number of links are correlated with the total assets of the
banks. In such a network large banks have a large number
of links and are connected to most larger banks (as they also
have to find many other banks to link to) and a sizable fraction
of smaller banks. Smaller banks are more likely connected
to larger banks than smaller banks given the higher number
of links these banks have to fill. This network structure is
commonly used to model realistic social and financial networks
and is found to be empirically adequate. It induces a significant
degree of heterogeneity into the network as observed in real
interbank markets, namely a power-law distribution of the
number of connections a bank has. We analyze the impact
this network structure has on the propagation of failures.

The size of each interbank loan is determined to be propor-
tional to the size of both the lender and borrower: L;; = é’:i ,
where L;; denotes the loan from bank ¢ to bank j, lethe

6In accounting terms equity is classified as a liability and is thus positioned
on the liabilities side of any balance sheet. For convenience we retain this
convention also widely used in the economics and finance literature.

7[29] reports average recovery rates of around 70% during the Savings and
Loans Crises in the U.S. of the late 1980s, with a sizeable variation between
banks, thus suggesting that substantial, although not complete losses, are a
realistic prospect.

Notation used:

iy Set of banks that fail at step t

& Set of banks that fail from the solvency
mechanism at step t

E! Equity of bank i at time t

LY Interbank loan of bank i to bank j at time t

R! Cash reserves of bank i at time t

K Recovery rate

l,cgt—1  Indicator function which is 1 if j€ §* '

and zero otherwise

PROCEDURE  Solvency(E! ™', LI, RI™!, 371 k)

1 St = { i BTN Y L (1 k) < 0}
2 E! :max{Ef*1 Y epm LT —/{),O}
3 sz = Lt§;11 - 1j€3t,1L’;f11
END

Fig. 1. Pseudo code of the solvency mechanism

total interbank borrowing of bank j, and B; the total interbank
lending of bank .

We employ two mechanisms through which these financial
linkages between banks can transmit any shock. A bank
experiencing a loss from its borrowers that exceeds its equity
will become insolvent (solvency shock). This loss arises from
the failure of other banks and the losses associated with the
interbank loans granted to them. Any interbank loans from
failing banks are repaid, exclusive of the non-recoverable part,
and the recovered amount added to the cash reserves of the
granting bank (lender).

Figure 1 formalizes this solvency mechanism in a pseudo
code. We indicate by superscript ¢ the different steps contagion
will generally go through. Initially we consider whether the
equity Effl a bank has is sufficient to cover the losses arising
from the failure of banks in the previous step and record any
banks S! whose losses exceed their equity as failing (line
1). We adjust the equity E! of all banks for losses (line 2),
where those banks whose losses are less than their equity see
their equity reduced by the corresponding amount and those
banks failing having it reduced to zero. The interbank loans
L. of those banks that have previously failed are removed as
the bank is liquidated (line 3). Finally the amount recovered
from interbank loans HL;;I is paid to the loan granting bank
(lender) and added to its reserves R (line 4).

A bank that fails will call in, as lender, all their interbank
loans to its borrowers, causing potential liquidity shortfalls.
Repaying these called-in loans will reduce the cash reserves
of the affected banks (borrowers); if the cash reserves are
not sufficient to repay the called-in loans, the banks will
themselves call in a fraction of all their interbank loans from
their borrowers, proportional to the total amount of cash
required. If not enough cash can be raised by calling in loans,
the interbank loans are repaid proportionally to their size until
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Notation in addition of that used previously:

kg Set of banks that fail at step ¢

£t Set of banks that fail from the liquidity
mechanism at step ¢

1,c5¢-1  Indicator function which is 1 if j € '~

and zero otherwise
C! Amount of loans to be called in by bank ¢ at time ¢
E! Equity of bank 4 at time ¢

PROCEDURE  Liquidity(L}; ', R{™",§"")
1 Ct = max{zjegt,l L;:l _ 337170}

7 . ct t—1
2 ij:mln m,l}[/ij
t : R;il. Tt
3 Aj; = min Tff,’ 15 L
1 e ={i| R TG - X, AL
t—1
—Djegr Ly < 0}
5 Rf = max { RI™ 4+ 52, Al - %2, AL
t—1
—2jest-1 Lyi 70}
t t—1 t t—1
](;ND Lij = Lij - Aij - 1i€§t’1Lij

Fig. 2. Pseudo code of the liquidity mechanism

all cash reserves are used up.® If the cash reserves and the
amount received from the called-in loans are not sufficient,
the bank will be deemed illiquid and therefore failing. This
liquidity mechanism can thus trigger the solvency mechanism
if the recovery of interbank loans from such failing banks is
too small.

The above liquidity mechanism is formalized in a pseudo
code as shown in Figure 2. Banks that previously failed will
be wound up and during this liquidation they will call in the
interbank loans they have granted (as lender). A bank whose
interbank loans are called in (borrower) will have to repay this
amount from its cash reserves and raise any missing amount
from itself calling in interbank loans from its borrowers. The
amount of loans a bank needs to call in in excess of its reserves
C! is given in line 1. This amount is spread proportionally over
all interbank loans this bank has granted as lender to other
banks (borrowers) ij (line 2).° A bank receiving this and
similar requests from other banks to repay loans, will repay
these loans to the extent its reserves are sufficient and will

8We do not allow for a longer chains of interbank recalls, assuming that the
delay in completing this procedure would be too long before creditors would
require the bank to file for bankruptcy. For simplicity we do not assume
that banks unable to fulfill the full request of repaying interbank loans in
this secondary stage will be declared bankrupt and be wound up. We can
easily justify this assumption by proposing that interbank loan specifications
allow for some delay in early repayments, while in case of a bank filing for
bankruptcy such clauses in the interbank loan specifications are assumed to
be void.

9Formally a bank can only call in interbank loans from other banks that have
not defaulted. As our algorithm sets the interbank loans given to previously
failed banks to zero, we can for simplicity consider all possible banks in our
algorithm.

Notation:

&' : Set of banks that fail at ¢

£% : Set of banks that fail at ¢ due to the liquidity
&' : Set of banks that fail at ¢ due to the solvency

PROCEDURE  Contagion (E; ™', Li;*, R{™', 3", k)

1 F° = {trigger bank}
2 FOR §' # 0 DO
3 Solvency(E; ™', Li; ', RT3 k)
4 Liquidity (L} ', RS, 3°71)
5 F=6'ugt
6 §= Ut St
7 6=, &'
8 £=,¢
9 B=6n¢L
END
Fig. 3. Pseudo code of the complete contagion mechanism

pay the requested amounts in proportion of these requests, the
amount being Aﬁj (line 3).'° Taking into account the current
reserves R, the monies received from calling in loans Af ;» the
monies paid out to other banks calling in their loans A;i and
the amount recalled from failing banks Lzzl, we can determine
which banks L! are not able to repay their interbank loans in
full and will thus fail and be liquidated in the next stage (line
4). We then adjust the amount of reserves held by all banks R!,
failing and surviving, accordingly (line 5) and finally adjust the
interbank loans Lj; by the amounts recalled A?; and eliminate
those of failing banks liegt_1L§;1 (line 6).

We can now combine these two mechanisms to obtain the
full contagion mechanism as employed in this paper, see Figure
3. As pointed out in the coming section, we exogenously
trigger a banking crisis by failing a trigger bank (line 1). We
then continue to apply the solvency and liquidity mechanisms
through as many steps as required until no further failure is
observed (lines 2-5). As banks can fail from the solvency or
liquidity mechanism, a failure from the solvency mechanism
can trigger a subsequent failure from the liquidity mechanism
or vice versa (line 5) and we observe that solvency and
liquidity mechanisms are highly interactive. We can finally
determine all those banks that throughout the process failed
from either mechanism or both (lines 6-9).

We have thus established a contagion mechanism that allows
for the propagation of liquidity shortfalls as well as solvency
failures, which are strongly interacting with each other. A
potential banking crisis is triggered exogenously by failing
one bank. In our model we do not allow banks to react to
an unfolding crisis by unilaterally withdrawing interbank loans
from other banks. Such an extension is left for future research.

We would expect that a larger exposure to the interbank
market as borrower or lender would increase the likelihood of
failure as would reduced capital and cash reserves. Obviously

10For simplicity we do not allow for banks to call in loans in excess of
their actual requirements. Such strategic behavior of banks and its impact on
systemic risk is left for future consideration.
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a larger exposure to interbank borrowing (lending) makes,
ceteris paribus, losses that exceed the capital (cash reserves)
more likely. Similarly lower capital or cash reserves reduce
the cushion available to absorb losses and repayments, thus
increasing the risk of the bank failing. Our analysis below
investigates the validity of this straightforward conjecture,
alongside properties of the network of interbank loans, as well
as the influence of these aspects on the failure rate of banks.

IV. THE COMPUTER EXPERIMENTS

Due to the individual interactions between banks through
interbank loans, we cannot solve the model analytically but
have to rely on computer experiments on a large number of
banking systems with varying properties to assess our model.
Each banking system is initialized using a random set of
parameters as shown in Table I. The parameters range has been
specifically calibrated following the universal banking model
[31] to generate bank balance sheets representing the main
business models adopted by banks.!'" Given the randomness
of parameters used, we induce a large degree of heterogeneity
into our banking system, both in terms of bank sizes, their
balance sheet compositions and the number of banks included.
This allows us to investigate the effect these aspects have on
the propagation of bank failures. Note that any bank with
low equity or cash reserves could have been affected by an
idiosyncratic shock or be exposed to a macroeconomic shock
that may have affected this bank more than others.

We then apply the same mechanism to adjust these balance
sheets as in [1] to ensure that the balance sheets and the
network of interbank loans are consistent with each other. For
the triggering of a banking crisis, a single bank is chosen to
fail, taken to be either the largest bank (denoted by TRIGGER
=1), the second largest bank (TRIGGER = 2), or a bank
randomly chosen from each decile by asset size (TRIGGER =
3-12), excluding the largest two banks.!?

In total we generate 10,000 different banking systems, each
triggered by 12 different banks, allowing us to investigate ap-
proximately 60,000,000 individual banks. Of these 60,000,000

' The number of banks, asset sizes, and power law exponents are consistent
with modern banking systems around the world as reported in Section II-B.
The recovery rate captures all potential liquidation scenarios, ranging from
full recovery to full losses after liquidation. Finally, the range of the last
four parameters spans the major banks business models, such as traditional
retail-oriented banks (mainly deposit funding and investments into loans to the
public with low capital and liquidity buffers, usually less than 10% of total
assets), to more modern strategies including wholesale oriented models (a mix
of deposit and interbank loans on the liability side with well diversified asset
side as well as being well liquid and capitalized, usually above 10% of total
assets) up to investment oriented strategies (mainly wholesale debt coming
from interbank loans and other non-deposit debt) as reported in [32].

2While in some cases the failure of a single bank for exogenous reasons
can be realistic, e.g Barings Bank 1995 or Herstatt Bank 1974, it is more
common that banks fail due to a wider macroeconomic shock affecting a
wide range of banks. However, it is the purpose of this paper to focus on the
propagation of any failure that might occur. This way we avoid loosing the
focus of our analysis by having to consider the magnitude and cross-sectional
distribution of any macroeconomic shocks. Furthermore, even in the case of
a macroeconomic shock affecting all banks, it is often that only a single bank
will initially fail before this failures spreads, e. g. Lehman Brothers in the
U.S. or Northern Rock in the U.K. during the financial crisis of 2007-2008.

Parameter Distribution Range
Number of banks Uniform [13;1000]
Assets Power law [100; 10bn]
Power law exponent Uniform [1.5;5]
Recovery rate Uniform [051]
Equity relative to assets Uniform [0;0.25]
Cash reserves relative to assets Uniform [0;0.25]
Loans to public relative to assets ~ Uniform [0;1]
Deposits relative to assets Uniform [0;1]

TABLE 1. PARAMETER RANGES OF VARIABLES IN COMPUTER

EXPERIMENTS

banks we will randomly select 1,000,000 banks to conduct our
analysis such that regressions remain feasible and statistical
tests meaningful; we only select banks that have interbank
lending or borrowing, as otherwise no failure of these could
be observed in our model given that failures are only arising
from contagion.

We investigate whether an individual bank fails in our model
using a logit estimation with a range of explanatory variables
covering balance sheet ratios as well as network properties.
These explanatory variables briefly characterized in Table II in
the online appendix, together with their descriptive statistics. In
the following we will make use of these variables and identify
them as required in our analysis.

The potential explanatory variables considered are often
highly correlated, while still providing slightly different infor-
mation on the network or balance sheet structure. Using such
variables in a regression analysis does not only raise the prob-
lem of multi-collinearity but also makes the interpretation of
any results difficult. To overcome this difficulty, we performed
a principal components analysis and using the eigenvalue
criterion identified eight factors. These factors are identified
and the resulting rotated factor loadings are displayed in Table
IIT of the online appendix. [33] provides a comprehensive
overview of this technique and [1] provide more details of
the technique used in this setting.

For the remainder of our analysis we will focus on these
eight factors identified. The factors identified are MARKET
STRUCTURE which measures the size and concentration
of the the banking system, BORROWING which measures
the concentration of borrowing from other banks, LENDING
which measures the concentration of interbank lending, PO-
SITION which measures the connectedness of a bank in the
network, HUB which measures the integration of a bank in its
immediate neighborhood, BALANCE SHEET which measures
how reliant the bank is on interbank loans, RECOVERY which
is the recovery rate in case of bank failures, and TRIGGER
which measures the size of the initially failing bank.

V. RESULTS OF THE MODEL

We analyze our model using 1,000,000 banks chosen ran-
domly from our simulations as described above. Our aim is to
evaluate the determinants of a bank failing and to this effect
will employ a logit regression using as explanatory variables
the factors identified above. We also use some of the original
variables investigated in our analysis as a robustness check
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of our specification.!® Furthermore, we seek to establish the
determinants of the reason of failure, i. e. solvency or liquidity
problems. To this end we employ a multinomial logistic
regression, distinguishing between those two possibilities and
whether they are driven by different factors or variables.

We find that out of the 1,000,000 banks considered 4,832
failed, of which 4,174 failed from to the solvency mechanism
and 658 from the liquidity mechanism.'* Table IV in the online
appendix shows the fraction of banks failing, depending on the
size of the triggering bank, and we note that the smaller the
triggering bank is the less likely a bank is to fail.

A. Risk drivers of bank failures

We conduct a logit regression of the failure of a bank,
the results of which are detailed in Table V of the online
appendix using a range of specifications by changing the
variables included. This includes the factors identified in the
principal components analysis above, the original variables
of the balance sheet structure and network characteristics,
as well as a combination of these and find that results are
very consistent across different specifications, suggesting that
results are not sensitive to the exact variables we include in
our analysis.

Given the consistency of results, our analysis focuses on
the factors identified in the principal components analysis. We
find that the factors consisting of balance sheet items and
the recovery rate are the only factors not being statistically
significant or showing a low significance level. However,
given the sample size of 1,000,000, the relevance of statistical
significance is greatly diminished and instead we focus on the
size of the marginal effects (magnitude of the coefficients).
Inspecting those values, we see that, in order of importance,
the factors relevant are TRIGGER, MARKET STRUCTURE,
HUB, POSITION, LENDING, BORROWING, BALANCE
SHEET and RECOVERY. Even when including balance sheet
items explicitly into the regression they exhibit relatively
small marginal effects and thus do not have a significant
influence on whether a bank fails or not. Only the size of the
bank is also important in this specification. Furthermore, not
including TRIGGER as a variable does not change the results
significantly, although the goodness of fit reduces substantially,
suggesting that the size of the bank initiating the contagion is
an important determinant.

Our results imply that the main risk driver for a bank to
fail is the bank’s location in the network of interbank loans
rather than balance sheet structures, in addition to the market
concentration as represented by MARKET STRUCTURE.
This result is in contrast to current banking regulation that
seeks to regulate balance sheet structures more tightly but does
not monitor the financial links between banks in a meaningful

BIn future research it would be interesting to apply other methods of
assessing failure risks such as using models employing neural networks or
fuzzy systems to see whether the predictions can be improved further.

14We excluded those banks from our analysis that failed simultaneously
from the solvency and liquidity mechanism. As there were only 5 such banks
in our sample of 1,000,000, their exclusion does not affect our results and
including them as a separate category in the multinomial logit regression below
would not be useful given the small number of observations for this event.

way. Our results clearly show that it is important to consider
these aspects of systemic risk embedded in a banking system
for the failure of individual bank. Of course, the initial failure
of the triggering bank for exogenous reasons will most likely
be the result of a weakness in the balance sheet as implied here.
Hence a focus on balance sheet variables, as in the traditional
and current regulation, has its merits in reducing the likelihood
of any such failures. Our analysis here is concerned with the
spread of this initial failure and would therefore complement
any requirements to address the initial failure of a bank.

The obvious result, confirmed in our logit regression, is
that a larger trigger bank increases the probability of a bank
failing. The larger the failing bank is, the larger the losses
it will spread and it will spread among more banks (recall
that the size of a bank and the number of links are correlated
by construction in our model), thus potentially leading to
more banks failing and causing more subsequent cascades of
failures through the interbank loan network. Thus, irrespective
of network properties or balance sheet structures, a bank is
more likely to fail in this case.

The second most important risk driver is the market struc-
ture, i. e. how concentrated the banking market is. A more
concentrated market is one that is dominated by a small
number of relatively large banks; here the risk of failures is
relatively large as the failure of a large bank easily spreads to
smaller banks and might also affect another large bank, causing
its failure. This increased risk is reflected in the positive
coefficient of the logit regression.

The two main risk drivers above are not directly related
to properties of the individual banks themselves, but rather
another bank (the trigger bank) and a market characteristic
(the market concentration). However, the remaining risk drivers
capture aspects that are specific to individual banks. A bank
acting as a local hub is more likely to fail. The reasoning
for this result is that when acting as a local hub a bank will
be part of many paths in the money flow to other banks in
its neighborhood and therefore is exposed to a large number
of other banks. This increases the possibility of experiencing
contagion from their interbank loan connections, either through
the solvency or liquidity mechanism, thus leading to a positive
coefficient.

On the other hand, banks that have a more central position in
the network are less likely to fail. The reason for this observa-
tion is that while these banks might be central for the network
structure, e. g. by many shortest paths connecting two banks
going through this bank, they are typically not well connected
with other banks, exhibiting only few connections themselves.
Therefore they will only fail if by chance other banks in their
neighborhood fail and given that their neighborhood is small,
this is unlikely to happen.

The lending concentration increases the risk of a bank
failing. This is an obvious result as with fewer loans of larger
sizes, the risk of failure in case of one of the borrowers
failing is increased. The opposite effect can be observed for the
borrowing concentration, although the associated regression
coefficient is lower. A less concentrated borrowing exposes
the bank to multiple potential call-ins of these interbank loans
from other banks, thus increasing the risk of not being able to
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meet all those demands.

The balance sheet, i. e. degree of reliance on interbank
lending, plays only a very limited role in the determination
of bank failures. In most cases the amount of equity or cash is
sufficient to withstand the failure of a single bank, unless the
failing bank is relatively large. Once multiple banks - to which
connections exist - fail, the total losses easily exceed the equity
or cash holdings, regardless of the amount of equity held. Thus
balance sheet structures have only a limited impact on the
probability of failure, although as expected a more widespread
reliance on interbank loans increases the probability of default.
Interestingly, the recovery rate is not statistically significant as
losses quickly accumulate regardless of the recovery rate.

Adding additional variables does not change results substan-
tially and replacing the balance sheet factor with the individual
variables summarized in this factor shows consistent results.
The amount of interbank lending and equity are the only
statistically significant balance sheet items, implying again that
an increased exposure to interbank lending increases the risk
of failure while not surprisingly equity reduces it, a result
consistent with that using the factors alone. The other variable
that is statistically significant is the size of the bank. The larger
a bank is, the less likely its failure is. This result is to be
expected as larger banks will be less susceptible to losses given
their larger absolute amount of equity and cash to absorb any
losses.

These results on the importance of network properties as
risk drivers of individual bank failure are consistent with [1],
but we can also see which network properties make individual
banks particularly vulnerable to systemic risk rather than only
increase the risk to the system as a whole. We can deduct that
in order to protect itself from systemic risk, a bank should not
only reduce the amount of interbank lending and increase its
capital as would be expected (which will have a quite limited
effect), but also avoid being a hub in the network of interbank
loans while still retaining a central position. Changing these
properties would have a stronger impact than adjusting the
balance sheet. While it may be difficult for the bank to directly
influence their position in the network, which will also depend
on the behavior of other banks, it may also achieve some
reduction in its exposure to systemic risk by reducing the
concentration of its interbank lending while increasing the
concentration of its interbank borrowing.

The logit regressions conducted above only analyze the
determinants of the failure of banks, regardless of the mech-
anism leading to this failure. It would be of interest to
evaluate whether the two different mechanisms that can lead to
failures, the solvency and liquidity mechanism, are influenced
by different variables. To this effect the coming section will
employ a multinomial logit regression, designed to control for
this distinction between the reasons of bank failures.

B. Risk drivers of the reason for failure

In order to analyze whether the two failure mechanisms
employed in our model are influenced by different risk drivers,
we conducted a multinomial logit regression, consistent with
the logit regressions above, as shown in Table VI of the online

appendix; the categories used were “no fail” (the base case),
“failure due to the solvency mechanism” and failure due to
the liquidity mechanism”.

We observe that results are broadly consistent with the
previous logit regressions, in terms of the significance of
variables as well as signs and sizes. However, there are some
significant and important differences in the parameter estimates
between the two failure mechanisms that we will discuss in this
section.

Again, we focus on the regressions using the factors only.
If we concentrate on those factors whose parameters are
statistically significantly different from each other across the
failure mechanisms, we have to pay attention to the market
structure, borrowing, position and the trigger bank. Table VII
of the online appendix provides the test statistics for the
test of equality of coefficients across the two categories. The
interpretation of the signs of those variables that do not change
significantly between failure mechanisms will be identical to
that in the logit regression above and are therefore not repeated
here.

Firstly we observe that the influence of the trigger bank is
much smaller for banks succumbing to the liquidity mecha-
nism compared to the solvency mechanism. The influence in
solvency problems is significantly larger as the failing bank
directly imposes losses on any bank lending to the triggering
bank, which might cause their failure. On the other hand, the
calling in of interbank loans via the liquidity mechanism will
not result in a bank’s instant failure, but only if it cannot raise
sufficient cash itself. Hence, while the larger sized loans that
are called in will increase the likelihood of a liquidity problem,
this is much less pronounced than for a solvency problem as
it will also depend on the amount of loans that can be called
in whether a bank fails. Hence the link between the size of the
trigger bank and failure is less strong.

We secondly observe that the sign of the market structure
changes from positive for solvency problems to negative
for liquidity problems. Hence a more concentrated market
increases the risk of failure due to solvency but reduces the
risk of failure due to liquidity problems. The reason for this
observation is that in a concentrated market most banks, larger
as well as smaller banks, are lending to larger banks. Calling
in a loan from a large bank is more likely to be successful
and thus failure is avoided. Hence a more concentrated market
reduces the risk of failure due to liquidity problems. In
contrast, failures due to solvency problems are more likely
in concentrated markets as the failure of any large bank can
easily spread to other banks given its size and there are no
opportunities to mitigate this effect through calling in interbank
loans as in the case of liquidity problems.

We also observe that the borrowing concentration becomes
statistically significant for liquidity issues as should be ex-
pected because borrowing from a large number of different
banks increases the risk of failure due to any of these few
loans being called in, while for solvency problems this is
of no consequence. Similarly the lending concentration is
statistically insignificant for liquidity problems and statistically
significant for solvency problems, although the significance
level is lower than for the borrowing concentration.
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The impact of the position of a bank in the network is
much increased for liquidity problems compared to solvency
problems, thus a more central position in the network reduces
the risk of failure from liquidity problems more than for
solvency problems. This difference can again be attributed to
the different way the two mechanisms work, namely the ability
to call in interbank loans to avoid a liquidity problem. The
ability of banks to call in interbank loans is improved if they
are in a central position as the small number of connections
these banks have, will generally be with banks of a relatively
large size, thus making the calling in of loans more successful
on average.

When including balance sheet variables directly into the
regression rather than the balance sheet factor, we observe
that for solvency problems equity and cash are statistically
significant. We find not unsurprisingly that more equity results
in a lower risk of failure, although the impact is quite small; for
failures due to liquidity problems this impact is much reduced.
The same is true for the amount of cash held, where in the case
of a liquidity problem the failure rate increases as the amount
of cash held increases. However, it has to be noted that the
confidence level of all parameter estimates are not very high
given the sample size in our regression and coefficients are
small, hence the results may well be spurious.

These results clearly show that both failures, due to solvency
and liquidity problems, are driven mainly by network proper-
ties with only limited input from balance sheet structures. We
found that some differences between the strength of the impact
between the two failure mechanisms exist. In case of the
market concentration, the impact was reversed between them.
We see that apart from the market structure all variables affect
the failure rates of banks similarly, whether they fail through
the solvency or liquidity mechanism. Thus banks reduce their
exposure to systemic risk through either mechanism by the
same measures as outlined above. However, any regulation on
the market structure would have to consider the different effect
of reducing market concentration on the risks arising from the
solvency and liquidity mechanisms. As before, the influence
of balance sheet structures such as the exposure to interbank
borrowing and lending, as well as capital and cash reserves,
is relatively small compared to the network properties of the
interbank lending market.

The next section evaluates the out-of-sample forecasting
ability of the risk drivers in order to asses the importance of
network characteristics for the quality of predictions our model
is able to make.

C. Out-of-sample prediction of failure

While the above results suggest that the inclusion of network
properties of the interbank loan network increases not only the
goodness of fit of our models as measured by the pseudo-R?,
but also by the LR-test of the model specification, we will in
this section look explicitly at the ability of our model to predict
which banks are failing in order to assess the quality of the
models we used. To this end we selected another 1,000,000
banks randomly according to the same constraints as before
and conducted an out-of-sample forecasting of their failure

Type Il error
T

05
Type | error

Fig. 4. Type I (false negative) and type II (false positive) errors of a failure
prediction using a logit model. Model specifications (1) to (6) are characterized
by a different list of regressors reported in Table VI of the online appendix.

based on our model estimates. We construct the value of the
factors and use the parameter estimates of our regressions to
obtain an estimate of the probability of default, and in the case
of the multinomial logit also an estimate of the probability for
failure from each mechanism.

These probabilities of failure have then to be transformed
into a discrete prediction of “fail” and “no fail” (fail from
solvency”, "fail from liquidity”” and “no fail” for the multino-
mial logit model that we discuss further below). We denote
the predicted probability of a failure of bank ¢ by p; and in
the case of the logit model the predicted outcome X is given
as

if pi>T

if p < M

fail
Xi = { no fail
for some parameter m € [0;1]. The choice of this parameter
m will be important for the quality of our prediction, most
notably the type of prediction errors we obtain. We define type
I errors as the fraction of banks that are actually failing but are
predicted to not fail (false negative). On the other hand, type II
errors are defined as the fraction of banks that are predicted to
fail but are actually not failing (false positive). As we change
m we will affect these two types of errors; the higher 7 the
higher type I errors become and type II errors reduce. Figure 4
shows this trade-off between the two error types as we change
7 from 0 to 1.

From this Figure we clearly see that for those models that
include network characteristics of the interbank loans as risk
drivers, i. e. models (1), (4), and (5), type I and type II errors
are reduced compared to those excluding these variables, i. e.
models (2) and (3). This clearly suggests that the inclusion
of network characteristics improves the performance of the
model, giving an additional strong indication for the relevance
of these aspects in the prediction of individual bank failure
during times of systemic risk. We furthermore see that when
excluding the trigger bank from the model, the quality of
predictions reduces significantly as implied by the regressions.

The choice of m will have to be made exogenously. A
regulator will have to make a decision based on his own
criteria, e. g. by weighing the cost of not identifying a failing
bank (type I error) against the costs of providing assistance to
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a bank that will eventually not fail (type II error). The choice
will be determined depending on the relative costs of these
two errors. The regulator will choose a 7 that corresponds to
a lower type I error (higher type II error) if the former costs are
relatively high and higher type I errors (lower type II errors)
if the latter costs are higher.

We can now conduct a similar analysis for our multinomial
logit model that distinguishes between the two mechanisms
leading to failure. Here the analysis is complicated by the
fact that we have three possible outcomes and can thus not
base the prediction on a single threshold. Therefore, we use
a two-step method. In a first step we decide whether a bank
is predicted to fail; this is achieved by aggregating the two
different types of failure at this stage. The decision whether
a bank is predicted to fail is made by applying a threshold
wF as in our logit model. In a second step all those banks
that are predicted to fail are then predicted to either fail due
to solvency problems or liquidity problems by using a similar
methodology: we apply another threshold 7° to decide which
of these two possibilities are chosen. We can summarize this
forecasting mechanism here as follows:

fail from solvency if pN¥ < «f and p? > 7°
X; =< fail from liquidity if pN¥ <7 and py <79 |
no fail if pNE > 7F
(@)
where pNF' and p; denote the predicted probabilities of not
failing and failing due to solvency problems, respectively.

Similarly as above we can now define type I and type II
errors. Only in this model we will have two different type 1
and type II errors, those for the prediction of failure and then
those for the prediction of the reason for failure. Let us firstly
focus our attention only on the prediction of failure, ignoring
the reason of failure, thus providing the same framework as the
logit regression analyzed before. We observe results consistent
with those for the logit regression. If we compare the type 1
and type II errors between the predictions of failure of the logit
model and the multinomial logit model in Figure 5, we clearly
see that the multinomial model outperforms the logit model
through showing lower type I and type II errors for the same
variables chosen in the regressions. Although at this stage we
have not made the distinction between the reasons of failure,
the multinomial logit model takes better into account that the
two mechanisms are working differently and thus allows for
a more tailored approach in predicting the failure of banks
by not averaging the determinants across failure mechanisms
as the logit regression necessarily does. This result provides
additional evidence to the regressions that failures by the two
mechanisms can be predicted using different variables and
different degrees of influences of the same risk drivers.

As a final analysis we also determined the type I and type II
errors of the prediction of the failure type, i. e. the mechanism
leading to a bank failing. Type I errors are defined as the
fraction of banks that are failing from the solvency mechanism
but are predicted to fail from the liquidity mechanism (false
liquidity) and type II errors are the fraction of banks that
are predicted to fail from the solvency mechanism but are

Type Il error
T

Fig. 5. Comparison of the Type I (false negative) and Type II (false positive)
errors of a prediction of failure using the logit and mulinomial logit models.
Model specifications (3) and (4) are characterised by different list of regressors
as described in Tables V and VI of the online appendix, respectively.

actually failing from the liquidity mechanism (false solvency).
As before in the case of errors arising from the prediction
of failure, a regulator would need to choose the threshold i
such that the costs arising from type I and type II errors are
optimally balanced. Obviously the size of these errors will
depend on the first step, i. e. the prediction of failure as this
determines the banks that are being analyzed in the second
step.

Figure 6 shows these two errors from the prediction of
the failure type, together with the type I error of the initial
prediction of failure (using type II errors would provide a
similar picture). We clearly see once again that including
network characteristics reduces both type I and type II errors as
the surface of the model using network characteristics in form
of the factors is entirely below the surface of the model using
only selected variables from the balance sheet. Using the other
models that included individual variables would give us results
consistent with those presented here. Hence including these
network characteristics as risk drivers improves the quality
of our forecasts. Therefore we can conclude that network
characteristics of the interbank loans are not only useful to
predict which banks are failing but also allows us to better
distinguish the mechanism they are more likely to succumb
to.

Summarizing the results of our out-of-sample predictions
we can confirm that including network characteristics into
our model significantly improves the quality of forecasting
bank failures as well as the type of mechanism that leads
to its failure, consistent with our analysis of the logit and
multinomial logit regressions above. Thus in the analysis of
bank failures arising from systemic risk it is important to
consider the characteristics of the interbank loan network
between banks, or other similar exposures between banks. The
next section briefly explores the implications of our findings
for policy makers.

VI. POLICY IMPLICATIONS

Current banking regulations, including Basel III and the
Dodd-Frank Act, attempt to limit bank failures by putting par-
ticular emphasis on the amount of equity and, more recently,
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Fig. 6. Type I (false liquidity) and Type II (false solvency) errors of a
prediction of failure types using the multinomial logit model, plotted against
Type I (false negative) error of prediction of failure. Model specifications (3)
and (4) are characterised by different list of regressors as described in Table
VI of the online appendix.

aspects of liquidity, i. e. balance sheet structures, seeing them
as the main risk drivers of bank failures. Our above analysis
suggests that the scope of regulation should be extended by
taking into account the structure and extent of interbank loans
and other financial relationships between banks to limit the
exposure to systemic risk. The Dodd-Frank Act in the U.S. also
establishes the need for the concentration of exposures limits,
including interbank lending, but falls short of addressing wider
aspects of the network structure of interbank loans and other
financial linkages between banks, which we have seen in our
model to be a very important risk driver of bank failures.

It has become clear in this study that the size of the bank
initially failing is the main determinant whether the failure
spreads (“too-big-too-fail”’), and hence any policy should pay
more attention to larger banks and potentially have tighter
regulations for those banks in order to prevent them failing
and cause their failure to spread. This result is very much in
line with the current thinking in banking regulation and is not
surprisingly shown in our model to be a valid concern. It has,
however, to be considered that our results also show that other
risk drivers, primarily associated with the network structure of
interbank loans, have a significant influence, too.

Interestingly, the balance sheet structure, the main focus
of current regulation with minimum capital requirements,
maximum leverage, and liquidity constraints, has only a limited
impact on the likelihood of a bank failing from contagion.
Thus, it might be a well placed approach to prevent the failure
of a bank in the first place (our initial trigger for the banking
crisis that we assumed to be exogenously given), but it has a
very limited impact on any further failures during a systemic
crisis itself. This aspect has been neglected in the literature on
the prediction of bank failures as discussed in section II-A and
our analysis has clearly shown its importance as a risk driver.

The implications of our findings are that regulators seeking
to address bank failures in a systemic crisis scenario should
pay particular attention to the network structure of financial
relationships between banks. It is beyond the scope of this
contribution to develop specific policy propositions that allow
regulators to affect banking failures in such a situation. Our

results nevertheless suggest that in order to reduce the extent of
any banking crisis and affect the likelihood of a bank failing,
regulators should seek measures that address the exposure of
banks in the interbank loan market. We found that the way a
bank is integrated into the network, e. g. through its position
in the network of interbank loans and whether it acts as a hub,
is an important determinant of its probability of failure, thus
not (only) the amount of interbank loans is of importance but
the whole network of interbank loans needs to be taken into
account.

Our results also suggest that the market concentration is
an important aspect to consider for the likelihood of a bank
failing. While reducing the market concentration through the
split-up of large banks will reduce the likelihood of banks
failing due to insolvency, it would on the other hand increase
the likelihood of a failure due to liquidity problems. Further-
more, those numerous small banks would themselves be more
vulnerable to failures due to their reduced size.

While direct interference in the interbank market might be
unfeasible, any regulator could provide incentives to banks
to take these aspects into consideration in their decision-
making on providing and seeking interbank loans. How these
incentives are best achieved, remains unanswered at this stage
and is left for future research. It would be worth investigating
how capital and cash reserves of individual banks might be
varied taking the results of this paper into account, e. g.
through increasing minimum requirements in line with the
network properties of the bank. Such a regulation with different
requirements for banks might then lead to reduced systemic
risk for the entire banking system. It is, however, beyond the
scope of this paper to evaluate this proposal and it is left for
future research.

VII. CONCLUSIONS

We investigated the main risk drivers of individual bank
failures in a computational model of systemic risk. A model
was employed that explicitly considers the financial connec-
tions between banks arising from interbank loans, derivatives
positions, and payments systems. The exogenous failure of a
single bank can spread through these financial connections by
solvency shocks and liquidity shortfalls. Rather than focusing
on the spread of such failures, the focus of this paper is on the
failure of individual banks and their characteristics as main risk
drivers. Traditionally, models of bank failure have seen banks
as isolated entities rather than integrated with other banks in a
complex network of financial connections. Our paper showed
the relevance of these financial connections for the prediction
of bank failures.

The findings shown here, in contrast to results in the
literature, support our claim that the main risk drivers of bank
failures during a systemic banking crisis are not balance sheet
relationships, but the position of a bank in the network of
financial connections with other banks. This result is robust
also when controlling for the reason a bank fails, either through
insolvency or illiquidity, showing that the inclusion of risk
drivers related to the network position of a bank reduces type
I and type II forecast errors. We also discuss some policy
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implications for the regulation of banks arising from the results
obtained here.

Future research emerging from this paper is manifold. While
an empirical investigation of our model using actual banking
systems would be desirable, the lack of publicly available
data on the financial connections between banks would limit
any such analysis to central banks or regulators. Given the
importance of network positions by banks to predict their
failure during a systemic banking crisis, it would be useful to
assess how regulatory measures, such a capital and liquidity
requirements, might be set such that they take into account
this risk driver to mitigate the likelihood of a bank failing
and extending a systemic crisis. Banks being subjected to a
common macroeconomic shock that induces significant losses
on banks and leads to weakened balance sheets of banks might
also be considered to assess how a banking system reacts to
any such triggers of a banking crisis. Finally it would be worth
considering how banks would grant, extend, and withdraw
interbank loans in response to an unfolding banking crises; this
would allow to investigate how the actual behavior of banks
contributes to or mitigates the onset of a banking crisis using
an adaptive complex systems approach.
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TRIGGER 1 2 3 4 5 6 7 8 9 10 11 12
Mean 0.0294  0.0119 0.0048 0.0033  0.0027 0.0020 0.0018 0.0017 0.0014 0.0012  0.0007  0.0004
Standard deviation | 0.0680  0.0256  0.0150 0.0118 0.0115 0.0091 0.0107 0.0090 0.0080 0.0066 0.0056  0.0067

TABLE IV. MEAN AND STANDARD DEVIATION OF THE FRACTION OF BANKS FAILING WHEN TRIGGERED BY BANKS OF DIFFERENT SIZES
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This table shows the estimates of a logit regression on the failure of the banks for a variety of model specifications. We show the estimates of these regressions
with numbers in parentheses denoting the t-values. The LR statistics for testing of the statistical significance of the model as a whole and the Pseudo R?
denotes McFadden’s R2. Estimations (1)-(3) use the variables RECOVERY and TRIGGER, while estimations (4)-(6) use the corresponding factors. Estimates
with *¥%#% * denote statistical significance of the estimate at the 1%, 5%, and 10% level, respectively.

We run all regressions using normalized variables in order to make the estimated coefficients comparable across variables and specifications.

(1) 2) 3) 4) (5) (6)
CONSTANT -7.0748 -6.7188%** -6.7455%%** -7.024 3% -7.0573%** -5.6796%**
-(202.97) -(209.30) -(209.01) -(204.60) -(203.97) -(308.12)
Individual Variables
log(SIZE) -0.067 1%+ 0.33] 2% 0.31193%:%* -0.2609%*
-(4.09) (35.42) (31.84) -(12.51)
CORRELATION -0.0295
-(1.05)
DISTRIBUTION 0.1108%#**
(2.91)
NUMBER BANKS -0.1402°%*:*
-(8.60)
log(HERF BANKS) 0.6833%#:%:*
(15.79)
EQUITY -0.0145 0.068 7% 0.0118 -0.0277%*
-(1.11) (5.37) (0.90) -(2.05)
RESERVES 0.0148 -0.157 1% -0.0393%** -0.0186
(0.82) -(9.28) -(2.17) -(1.02)
LOANS GIVEN 0.0767%#:%* 0.2134#:%* 0.0783%:#:*
(4.37) (12.99) (4.33)
LOANS TAKEN -0.0283* -0.07824 % -0.0100
-(1.65) -(4.68) -(0.58)
log(NUMBER TAKEN) 0.0437
(1.56)
log(NUMBER GIVEN) 0.0876%%**
(3.33)
CLUSTERING 0.0163*
(1.71)
HERF TAKEN 0.0443*
(1.69)
HERF GIVEN 0.1397#:%*
(5.44)
log(DEGREE NEIGHBOR) 0.0897#:**
(4.50)
log(BETWEENNESS) -0.0621%*
-(2.47)
log(EV CENTRALITY) 0.1750%%*
(8.07)
1log(SHORTEST PATH) 0.0201
(0.81)
RECOVERY -0.0170 -0.0017 -0.0014 0.0168 0.0057 0.0189
-1.1500 -(0.12) -(0.10) (1.14) (0.38) (1.31)
log(TRIGGER)/TRIGGER -1.4833%%:% -1.4624%%:* -1.4631%%:* -1.4838%%%* -1.4822%%
-(89.38) -(89.15) -(89.16) -(89.38) -(89.38)
Factors
MARKET STRUCTURE 0.3153%:#:* 0.457 7% 0.30073%:#:*
(33.86) (31.43) (33.36)
BORROWING 0.034 1 %3 0.0768%:#:* 0.0313%s#:*
(2.84) (5.85) (2.67)
BALANCE SHEET 0.0243 % 0.0208*
(2.28) (2.02)
POSITION -0.1377%** -0.1593%#* -0.1316%**
-(10.24) -(11.58) -(10.00)
LENDING 0.0962%:#* 0.0190 0.0947#3#*
(7.81) (1.37) (7.87)
HUB 0.1756%:#* 0.1388%:#:* 0.1634%3#:*
(21.76) (15.44) (21.18)
LR statistics 16383.77***%  12790.04***  13050.01***  16031.47***  16202.09***  4260.06%***
Pseudo R? 0.2678 0.2091 0.2133 0.2621 0.2649 0.0696

TABLE V. LOGIT REGRESSION FOR THE DETERMINANTS OF BANK FAILURES
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This table shows the x?2 test statistics for a test whether the coefficients for the regressors in different categories from the multinomial regression in table VI
are equal. Estimations (1)-(3) use the variables RECOVERY and TRIGGER, while estimations (4)-(6) use the corresponding factors. Statistics with *% %
denote statistical significance at the 1%, 5%, and 10% level, respectively.

1) 2 3) ) (5) (6)
Individual Variables
log(SIZE) 0.78 125.63%%*  113.89%** 0.05
CORRELATION 47,11 %%%
DISTRIBUTION 12.84%3%*
NUMBER BANKS 48.81%##*
log(HERF BANKS) 0.04
EQUITY 0.45 0.18 0.59 10.14%%*
RESERVES 2.57 37.75%%%* 9.45%#% 12.66%%*
LOANS GIVEN 221 10.42% 0.72
LOANS TAKEN 0.01 8.52%#* 0.11
log(NUMBER TAKEN) 2.20
log(NUMBER GIVEN) 1.49
CLUSTERING 0.00
HERF TAKEN 0.68
HERF GIVEN 2.05
log(DEGREE NEIGHBOR) 4.27%*
log(BETWEENNESS) 0.02
log(EV CENTRALITY) 0.43
1log(SHORTEST PATH) 3.84%*
RECOVERY 0.00 0.00 0.00 1.42 1.91 1.22
log(TRIGGER) 550.05%**  521.05%%*  522.00%%*  546.92%** 544 (05%**
Factors
MARKET STRUCTURE 317.57#%%  169.50%**  299.65%**
BORROWING 55.33 %% 44 20k 56.37%%:*
BALANCE SHEET 1.07 0.82
POSITION 50.37%#%:* 38.60%#* 52.67 %%
LENDING 6.14%* 0.45 5.93%*
HUB 5.60%* 0.85 4.30%*

TABLE VIIL. TEST STATISTICS FOR EQUALITY OF COEFFICIENTS ACROSS CATEGORIES IN THE MULTINOMIAL REGRESSION





