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ABSTRACT 

GC-favoring gene conversion enables fixation of  deleterious alleles, disturbs tests 

of  natural selection and potentially explains both the evolution of  recombination 

as well as the commonly reported intra-genomic correlation between G+C 

content and recombination rate. In addition, gene conversion disturbs linkage 

disequilibrium, potentially affecting the ability to detect causative variants. 

However, the importance and generality of  these effects is unresolved, not simply 

because direct analyses are technically challenging but also because prior within- 

and between-species discrepant results can be hard to appraise owing to 

methodological differences. Here we report results of  methodologically uniform 

whole-genome sequencing of  all tetrad products in Saccharomyces, Neurospora, 

Chlamydomonas and Arabidopsis. The proportion of  polymorphic markers 

converted varies over three orders of  magnitude between species (from 2% of  

markers converted in yeast to only ~0.005% in the two plants) with at least 87.5% 

of  the variance in per tetrad conversion rates being between-species. This is 

largely owing to differences in recombination rate and median tract length. 

Despite three of  the species showing a positive GC-recombination correlation, 

there is no significant net AT->GC conversion bias in any, despite relatively high 

resolution in the two taxa (Saccharomyces and Neurospora) with relatively 

common gene conversion. The absence of  a GC bias means: 1) that there should 

be no presumption that gene conversion is GC biased, nor 2) that a GC-

recombination correlation necessarily implies biased gene conversion, 3) that 

Ka/Ks tests should be unaffected in these species and 4) it is unlikely that gene 

conversion explains the evolution of  recombination.  

 

  



 3 

INTRODUCTION 

Meiotic double strand breaks (DSB) are resolved as crossover (CO) or non-crossover 

(NCO) events1. While the population genetical impact of  allelic re-assortment owing to 

crossing over is well studied2–4, both CO and NCO are associated with gene conversions, 

the non-reciprocal exchange of  alleles that typically lead to 3:1 segregation (when first 

identified in yeast5 and Neurospora6,7, gene conversion was considered ‘aberrant 

recombination’ ). With gene conversion rates relatively poorly resolved compared, for 

example, to crossing over rates, here we provide a methodologically uniform estimation 

of  gene conversion parameters for diverse species. We consider four species: a unicellular 

fungus Saccharomyces cerevisiae, a multicellular fungus Neurospora crassa, a unicellular plant 

Chlamydomonas reinhardtii, and a multicellular plant Arabidopsis thaliana. The choice of  these 

four species is in part motivated by the fact that they are amenable to tetrad analysis, a 

gold standard for gene conversion analysis. We provide parent-offspring whole genome 

resequencing to identify recombination events at high resolution and thus estimate rate 

and bias.  

 

Gene conversion can have significant impact on gene and genome evolution. It is, for 

example, partially responsible for the fast evolution of  major histocompatibility complex 

genes in animals8 and resistance genes in plants9. Additionally, it reshapes patterns of  

local linkage disequilibrium (LD). In humans, for example, loci separated by 124bp on 

average would be expected to be in complete LD10. However, many sites show only 

partial LD suggesting that gene conversion has increased the apparent rate of  

recombination10. In disturbing linkage disequilibrium11, gene conversion thus potentially 

affects the ability to detect causative variants11 and signatures of  selection.  

 

Possibly more importantly gene conversion may be biased in favor of  GC over AT 

alleles12–16, evidenced by a non 50:50 mean rate of  resolution of  AT:GC mismatches at 

meiotic heteroduplexes in favour of  the G/C allele.  A neglected hypothesis17 observes 

that GC-biased gene conversion (gBGC) may explain the evolution of  recombination for 

if, as Bengtsson17 noted, gene conversion is biased in the opposite direction to mutation 
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bias, it will, on the average, have the effect of  correcting mutations. One of  the few 

phylogenetic universals appears to be that mutation is more commonly GC->AT than 

AT->GC18,19. Is then gene conversion universally biased in the opposite direction as 

Bengtsson might predict? Such a bias is seen in yeast where whole genome data suggest a 

weak bias20 (50.63% AT->GC), while meta-analysis16 of  HIS4 hotspot data reports a 

stronger distortion (55.2%). In humans (68% AT->GC)15,21,22 and flycatchers (59% AT-

>GC)23 a strong bias is also seen. Population level analysis suggest that gBGC is present 

in honey bee24 but possibly absent in Drosophila25. Given that the underlying assumptions 

of  Bengtsson’s model seem to accord with the current consensus, both regarding 

direction of  mutation and the opposing direction of  conversion bias, this rather 

neglected theory deserves reappraisal. That results differ even in within-species analysis 

(e.g. HIS4 data16 compared with whole genome analysis in yeast20), underlines our 

motivation to perform methodologically uniform analysis across taxa. 

 

If  Bengtsson’s model is correct, it could in principle explain both crossover and non-

crossover events. Whether CO and NCO events are both associated with gBGC is poorly 

resolved. Direct evidence from yeast suggests that gBGC is specific to COs and not to 

NCOs15. Conversely, evidence from human pedigree analysis and sperm typing suggests 

significant levels of  GC-bias associated with NCO-GC21,26 and complex CO-associated 

gene conversions22, while others report no gBGC at human COs hotspots26.  

 

Not all mutations fixed by gBGC need be wild type alleles and indeed, as its population 

genetics resembles meiotic drive, it can power the fixation of  deleterious alleles13,27.  

Consequentially it can mislead tests of  natural selection13,27, such as the Ka/Ks  test, as it 

can increase the probability of  fixation rate of  (deleterious) non-synonymous mutations 

and decrease the probability for synonymous mutations.  This can occur if  the former 

are more commonly AT->GC mutations and the later more commonly GC->AT 

mutations.  

 

gBGC also potentially explains taxonomically widespread intragenomic correlations 
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between G+C content and recombination rate12,14,28. Indeed, at least in birds and 

mammals, gBGC is thought to explain the existence of  isochores (domains of  high and 

low GC content)12,28,29.  Despite that fact that a correlation between local GC content and 

the local recombination rate is taken by some as evidence for gBGC, it is also consistent 

with the causal arrow running in the opposite direction i.e. GC rich segments of  the 

genome being more prone to induction of  recombination events30.  One way to resolve 

cause and effect is to examine motifs that initiate recombination across multiple taxa to 

determine whether they are GC-rich and whether SNPs promoting or reducing 

recombination rates are GC increasing and decreasing respectively (see e.g. 26,31). An 

alternative is to ask whether species with a positive intragenomic GC-recombination 

correlation show evidence for gBGC while those without such a correlation show no 

gBGC. Such evidence would support the gBGC model suggesting that recombination 

causes the GC content. Three of  our species show a positive correlation and so are 

predicted to show gBGC. 

 

In addition to estimation of  bias, to understand the potential impact on tests of  selection 

and linkage disequilibium, we need also to understand absolute rates which might be 

highly heterogeneous. In yeast, for example, there are 46 NCO gene conversion events 

per meiosis20, while only 1~2 NCO gene conversions per meiosis were directly detected 

in Arabidopsis and human21,22,32. However, due to the low resolution and high stringency in 

these studies the actual number of  NCOs may be more like 50~200 per meiosis21,32. 

Indeed, high resolution evidence from several loci suggest that the number of  DSBs per 

meiosis is 150~400 events per meiosis in mammals33–37.  Intra-specific variation in rates 

needs to be addressed, not least because of  an order of  magnitude variation in 

recombination rates between oocytes from the same human female35,38–40.  Difference 

between taxa might be expected as there are differences in the recombination rate.  

However, a second big unknown is whether tract lengths differ. While the median tract 

length of  gene conversion is ~2 kb in yeast20, it could be 50~500 bp in mouse41 and 

human42 and as short as 20 bp in Arabidopsis32.  
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RESULTS 

1. Fine-scale mapping of  crossover and non-crossover events 

We made ten different crosses in four species, collected their meiotic products, and 

whole-genome sequenced 505 samples (17 parental strains, 452 haploid and 36 diploid 

members from 122 tetrads). Between 1 and 4 different crosses were made in each species 

(Table 1): two in yeast, S1 and S2; four in Neurospora, N1-4, three in Chlamydomonas, C1-3; 

one in Arabidopsis, cross A. In Arabidopsis, single meiotic tetrad pollen from F1 was 

picked and planted on the flower of  Columbia ecotype (Col) to make backcrosses. 

Siliques, which contain four seeds, are tetrads. Crosses S1 and A replicate prior efforts20,32. 

While it would be desirable to consider tetrad analysis in different strains in Arabidopsis, 

tetrads can only be separated in qrt1 mutants, which are only available in Ler and Col 

ecotypes. Of  the 122 tetrads, 29 are from yeast, 57 from Neurospora, 27 from 

Chlamydomonas and 9 from Arabidopsis. The parental strains in cross N4 are meiotic 

products from a single meiosis in cross N3. Whole genome re-sequencing was carried 

out on the Illumina HiSeq 4000 platform. Each sample was sequenced with an average 

depth of  40× and 96% coverage (Supplementary Table 1 and Fig. 1).  

 

While a heteroduplex may form in the absence of  marker polymorphism, for gene 

conversion to occur polymorphic markers are required. In our ten crosses marker density 

ranges from 0.04% to 1.53% (Table 1 and Supplementary Fig. 1).  

 

By comparing a tetrad’s genotype with the parental genotype, we can identify three types 

of  recombination events: crossovers (CO), crossover-associated gene conversions (CO-

GC) and non-crossover gene conversions (NCO-GC). In short, reciprocal changes of  

genotypes are COs while non-reciprocal changes are gene conversions (Methods, 

Supplementary Fig. 2). Recombination events are generated through two major pathways, 

Double Strand Break Repair (DSBR) and Synthesis Dependent Strand Annealing 

(SDSA)43 (Fig. 2). The former predominately leads to CO, while SDSA leads to NCO44. 

While the majority of  events we identified are classical COs or NCOs (Type I and type 

IV in Fig. 2), we also identified two types of  non-classical events. Non-classical events 
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comprise 0.5%-12.3% of  recombination events (Type II and type III in Fig. 2; 

Supplementary Discussion). Recombination events vary over two orders of  magnitude 

between our species but are largely consistent within species (Supplementary Discussion).  

 

2. Large between-species variation in rates of  gene conversion  

Compared with what was known about the rate of  CO, the rate of  gene conversion is 

poorly described but possibly heterogeneous21,22,32. We find evidence for three orders of  

magnitude variation between species. The pattern of  variation is very similar between 

CO-GC and NCO-GC (Supplementary Fig. 3 and Table 1). Yeast crosses exhibit the 

highest rate of  gene conversion, averaging 1.9%±0.47% (1.1%±0.30% for CO-GC and 

0.8%±0.25% for NCO-GC) of  all markers converted per tetrad per meiosis. No 

significant difference was identified among crosses S1, S2, and the previous yeast study20 

(ANOVA, p=0.18). While this rate is almost two orders of  magnitude lower in Neurospora 

(ANOVA, p<10-7), averaging 0.031%±0.018% (0.018%±0.015% for CO-GC and 

0.013%±0.011% for NCO-GC) per tetrad per meiosis, again, no significant differences 

were identified within the species among N2~N4 (ANOVA, p=0.41).  

 

The rate of  gene conversion is even lower in the two plant species, Chlamydomonas, and 

Arabidopsis, significantly so compared with Neurospora (ANOVA, p<10-3). This rate is 

0.0043%±0.0014% (0.0040%±0.0014% for CO-GC and 0.0003%±0.0002% for NCO-

GC) for Chlamydomonas and 0.0068%±0.0034% (0.0056%±0.0036% for CO-GC and 

0.0012%±0.0011% for NCO-GC) for Arabidopsis, in which no significant differences 

were identified between two Chlamydomonas crosses (C2 and C3, t-test, p=0.12). Between 

species, this rate is significantly lower in Chlamydomonas than in Arabidopsis (ANOVA, 

p=0.011, sensitive to multitest correction). These results suggest that disruption of  

linkage disequilibrium (LD) is less likely in the two plants.  

 

We estimate that at least 87.5% of  the variation is between-species variation, thus at most 

12.5% of  the overall variation is within-species. Analysis of  the Neurospora strains 

indicates that only 12.3% of  within-species variation is between-strain variation.  Overall, 
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a net 1.1-1.5% of  all tetrad variation is explained by within-species between-strain 

variation, 7.6-11% is explained by within-strain within-species variation and 87.5-91.3% 

is explained by between-species variation (Supplementary Discussion).  

 

It is worth noting that, in all these four species, the rate of  CO-GC is higher than NCO-

GC, and this difference is lesser in yeast and Neurospora, larger in Chlamydomonas and 

Arabidopsis. The rate of  CO-GC is almost 5 times that of  NCO-GC in Arabidopsis and as 

much as 13 times in Chlamydomonas. In other words, the total rate of  gene conversion is 

largely owing to CO-GC in Chlamydomonas and Arabidopsis. Although the rate of  CO and 

the rate of  NCO (percentage of  markers converted) vary a lot among these four species, 

even with only four data points we detect a tendency to positively correlate (Pearson’s r, 

Log(NCO markers converted) v Log(cM/Mb) =0.92; p=0.07). 

 

3. Between-species variation in conversion rates are explained by recombination 

rates and tract length 

The between-species differences in CO rates reflect in part the fact that each 

chromosome needs at least one chiasmata. Indeed, the CO rates are more uniform when 

expressed as CO events per chromosome with about an order of  magnitude difference in 

cM/Mb per chromosome: from ~5.3 COs/Chr in yeast (=22 cM/Mb per chromosome, 

N=16) to ~2.3 COs/Chr in Neurospora (=2.8 cM/Mb/Chr, N=7), to ~2.2 COs/Chr in 

Arabidopsis (=0.9 cM/Mb/Chr, N=5) to ~1.4 COs/Chr in Chlamydomonas (=0.7 

cM/Mb/Chr, N=17).  

 

Chromosome number and intra-chromosomal variation in the CO rate is, however, only 

part of  the explanation for the between-species differences in the percentage of  markers 

converted. Tract lengths also differ by orders of  magnitude. Employing the midpoint 

method20, we found that 63% of  both NCO-GCs and CO-GCs are < 2 kb, 92% are < 5 

kb, and 99% of  them < 10 kb. The longest gene conversion (in yeast) spanned ~18 kb 

and converted 74 markers. These data hide within and between genome differences (Fig. 

3a and 3b). In yeast, CO-GCs are significantly longer than NCO-GC events (Wilcoxon 
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test, p=0.016: median size for NCO-GC = 1681 bp, for CO-GC = 1841 bp). The tract 

length of  both NCO-GC and CO-GC in Neurospora are much shorter than that in yeast. 

Neurospora’s NCO-GC’s median size is 950 bp, while the CO-GC’s median size is only 

284 bp and, unlike what we observed in yeast, the tract length of  NCO-GCs is longer 

than CO-GCs (Wilcoxon test, p<2.2e-16). In Chlamydomonas, the tract length for NCO-

GCs is even shorter, with a median size of  only 73 bp, while the median tract length for 

CO-GC is significantly longer at 364 bp (Wilcoxon test, p=2.6e-12). The median sizes of  

NCO-GCs and CO-GCs in Arabidopsis are 627 bp and 1067 bp, respectively (Wilcoxon 

test, p=0.067).  

 

Above we have employed the midpoint method. This is, however, sensitive to marker 

density, being less accurate in low marker density crosses (such as cross A). To overcome 

this problem we also used simulations32 to estimate the average tract length. We randomly 

simulated 10,000 gene conversion events at various lengths in each cross, and calculated 

the average number of  markers converted at each length.  The closest value to the 

observed number of  markers converted is chosen as the average tract length (Fig. 3c). 

The estimation from simulation is close to the midpoint method estimate in higher 

marker density crosses (yeast, Neurospora, and Chlamydomonas), but much shorter in 

Arabidopsis.  Here the simulated tract length is 80 bp for NCO-GC and 700 bp for 

COGC (Fig. 3d), rather different from the 627bp and 1067bp derived from the midpoint 

method. 

 

Despite the discrepancy in low marker density crosses, a combination of  low 

recombination rate and small tract size is needed to explain why the percentage of  

markers converted in Chlamydomonas is an order of  magnitude lower than in Neurospora. 

Chlamydomonas and Arabidopsis have approximately the same net gene conversion rate but 

for different reasons: Chlamydomonas has double the recombination events per bp but 

much smaller tract sizes. Yeast has both a very high recombination rate and long tracts, 

explaining why it converts ~2% of  markers per meiosis. Marker density variation doesn’t 

explain between-taxa differences in these crosses (Supplementary Discussion).  
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4. No evidence for universal GC-biased gene conversion 

 

In gene conversion events, if  the donor converting allele and acceptor allele are randomly 

chosen, equal numbers of  AT -> GC and GC -> AT conversions are expected. Gene 

conversions can, however, favor AT -> GC conversions12,20,. Correlations between 

recombination and GC content are assumed to reflect this process14,26, although the 

causal arrow could run in the opposite direction30.  

 

In our study, no net conversion bias was identified in 7 of  8 crosses (Table 2, N.B. here 

we exclude N1 and C1 as events are too rare to be informative). The one exception is an 

AT-bias in S2 (50.97% GC -> AT, binomial test, p=0.024, Table 2), not significant after 

multitest correction. Combining S1 and S2 we recover a 50.7% bias in favor of  GC->AT 

(binomial test, p=0.013, not significant after multitest correction), i.e. in the same 

direction as mutation bias. This contrasts with the prior yeast analysis15,20 which identified 

an equal magnitude AT->GC bias (50.63%). If  we combine our and the prior data we see 

no significant overall bias (53262 AT->GC and 52691 GC->AT; binomial test, p=0.08). 

With a sample size of  this dimension we could have detected a bias of  the order of  

50.305% (without multitest correction). The overall bias in our study and the prior one 

are significantly different (chi squared test, df=1, p=0.005). 

 

The discrepancy between our data and prior data is magnified when we compare NCO-

GC and CO-GC events. When NCO-GC and CO-GC are treated separately, a weak and 

significant AT bias is identified in CO-GCs of  our cross S1 and in NCO-GCs of  cross 

S2 (none of  which survive multitest correction). This contrasts with the prior report of  a 

50.70% AT-> GC bias observed exclusively at CO-GC events in the prior S1 cross 

(numbers are different from ours: chi squared test, df=1, p=0.0002). We find no evidence 

that the discrepancy between our data and prior data is owing to technical artifacts in our 

data. Indeed, via Sanger resequencing of  a sample of  gene conversion events we verify 

100% (40/40) of  them and fail to detect any new events (Supplementary Information).  



 11 

 

In our other fungus, Neurospora, no bias was identified in any cross, nor when all events 

were considered en masse (AT->GC bias 50.49%; binomial test, p=0.49). With a net 

sample size of  5150 GC<->AT events we could have detected a bias greater than 51.37% 

(without multitest correction).  

 

While these results fail to support the claim15,20 of  an AT->GC conversion bias, a 

repeatable GC bias was identified in NCO-GCs in Chlamydomonas (64.91% AT -> GC in 

C2, 75.86% AT -> GC in C3, Table 2, net effect bias = 68.6%, p<0.01), this being of  a 

magnitude also inferred in humans21. However, in the algae the great majority of  gene 

conversion events are CO-GC events, which are apparently unbiased, and overall we see 

no significant net bias (AT->GC bias 52.5%; binomial test, p=0.10). With 1097 GC<-

>AT conversion events we could have resolved a 53.01% net bias (prior to multitest 

correction). Similarly, no significant bias was identified in Arabidopsis combining our and 

prior data (AT->GC bias 53.3%; binomial test, p=0.39), although by necessity, given the 

low rates, our resolution is limited (limit to detection with N=197, 57.11%).  

 

5. Three species show a positive GC-recombination rate intragenomic correlation 

 

A positive correlation between GC-content and recombination rate has been reported in 

many species45–49, and a prevailing explanation for this correlation is GC biased gene 

conversion12. Given this lack of  evidence for GC biased gene conversion do we then not 

see a strong positive correlation between local GC and recombination rate? At the 10kb 

window scale, we observe both CO and NCO (and CO+NCO) to be more common in 

GC rich domains in yeast, Neurospora, and Chlamydomonas, while a negative correlation32 is 

seen in Arabidopsis (not significant for NCO) (Table 3). These correlations are robust to 

larger window sizes (Table 3) and to control for covariates (CO/NCO rate, 

heterozygosity and gene density (Supplementary Tables 2 and 3).  

 

As a check that our CO measures have population genetical relevance, we also test the 
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hypothesis that the CO correlates with high diversity50 (owing to reduced selective non-

independence between loci). Heterozygosity is indeed positively correlated with CO 

(Supplementary Table 2) in all species and is robust to control for gene density and other 

covariates (Supplementary Table 3). Heterozygosity is sometimes predicted by the NCO 

rate before and after covariate control (Supplementary Tables 2 and 3). This may reflect 

an ascertainment bias as local heterozygosity is needed to detect NCO events.  

 

We conclude from the above that our direct measure of  local recombination rates has 

relevance to predicting longer-term evolutionary trends. Why then do the species appear 

to differ in the strength of  the GC – recombination correlation? Of  the three species 

with a positive correlation, the correlation is weakest in Chlamydomonas and strongest in 

yeast. This might reflect the possibility that gene conversion really is weakly GC biased 

and that a species with much recombination (i.e. yeast) thus has a stronger correlation. 

However, a high recombination rate also enables accuracy of  estimation. If  we randomly 

sample to reduce the number of  CO events in yeast to that seen in Chlamydomonas, with 

both species forced to have the same number of  10kb bins, in 69% of  randomizations 

the GC-CO correlation is stronger in Chlamydomonas. This suggests that the dominant 

cause of  differences in the strength of  the correlations is sampling noise.  

 

An assumption of  the above tests is that in each species there is some repeatability in 

where recombination events occur as such repeatability would reinforce troughs and 

peaks. We found evidence for such repeatability (Supplementary Discussion).  

 

DISCUSSION 

 

Lack of  gBGC renders Bengtsson’s theory implausible 

Given prior large-scale analyses in yeast20, and meta-analyses16 of  small-scale experiments, 

we are surprised that we couldn’t detect any significant net deviations (even in yeast with 

N> 100,000; Table 2). This suggests that Bengtsson’s theory17, that the main function of  

recombination is the purging of  deleterious new mutations via gene conversion, is 
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unlikely to hold, at least in the taxa that we have examined. Moreover, that in 

Chlamydomonas there appears to be a difference between unbiased CO-GC and biased 

NCO-GC events, argues strongly that the major utility of  crossover events is not to 

enable the direct removal of  GC->AT mutational events. Were this the case, then why is 

CO-GC not biased? However, at least in this species, one could argue that the function 

of  NCO-GC events is the purging of  GC->AT mutations. But if  so important, why then 

is the rate of  NCO events so very low? If  our observations in yeast are robust, the 

possibility of  gene conversion bias in the same direction as the mutation bias (GC->AT) 

would render Bengtsson’s model highly implausible. In this instance, gene conversion 

appears to be favoring new (deleterious) mutations over the wild type.  

 

No single model can explain the GC-recombination correlation 

Three models can in principle account for an intragenomic correlation between local GC 

content and the local recombination rate.  First, recombination associated with gBGC, 

causes a GC biased fixation bias in domains of  high recombination, while in low 

recombination domains the GC->AT mutation bias is the dominant force12,28,29.  Second, 

if  selection favors increased GC-content, more efficient selection in high recombination 

domains could lead to a GC-recombination correlation51.  Third, GC rich domains might 

enable initiation of  recombination events30. It has, for example, been proposed that GC-

rich regions may be more likely to be targeted by recombination machinery or both GC-

content and recombination covaries with a third factor46,52. We argue that, presently, while 

gBGC is a parsimonious explanation for isochores in mammals and birds, there is no 

single model that appears to be compatible with the accumulated data as an explanation 

for the GC-recombination correlation in our taxa (a correlation that is positive in all 

species other than Arabidopsis).  

 

While in mammals the gBGC model is parsimonious as an AT->GC fixation bias53 and 

gBGC21,22 are both witnessed, for the taxa we are examining the case is much less clear. 

Naturally, the low sample size in the two plant species doesn’t permit us to make a strong 

assertion of  a lack of  gBGC. However, this is owing to the very low rate of  gene 



 14 

conversion and hence one must also question the relevance of  any bias to their genome 

evolution in the face of  a consistent and opposing mutation bias. The lack of  both an 

obvious gBGC in yeast and the lack of  a GC fixation bias in domains of  high 

recombination30 both also argue against the gBGC model for this species.  

 

We cannot fully exclude the possibility that, if  extended over a long enough time period, 

even a tiny bias (<0.3%) could result in a GC-recombination correlation, especially in a 

species that is outbred and regularly sexual. Such a model could explain why a highly 

recombining species, such as yeast, might have the strongest correlation (although sexual 

reproduction and outcrossing might both be rare events54). However, this is not strong 

evidence, as the variation in GC-recombination strength between species appears in part 

to be owing to noise in estimation when the recombination rate is low. Our evidence 

accords with recent analysis in bacteria55 that concluded that between-species variation in 

GC content could not be attributed to gBGC, despite earlier claims56.  

 

Both the selection and gBGC models are potentially consistent  with a negative 

correlation in Arabidopsis as it is a near obligatory selfer, hence selection (or gene 

conversion) will be less efficient57. The model correctly predicts the correlation between 

local diversity and local recombination rate seen in all species.  However, this model 

would also predict an excess of  AT->GC fixation events associated with domains of  

high recombination, which, at least in yeast, isn’t observed30. The argument that GC 

causes high recombination fails to explain why Arabidopsis is the exception, as here we see 

a negative GC-recombination correlation. This model is, however, consistent with the 

lack of  an AT->GC fixation bias correlating with recombination in yeast30. Confirming 

fixation biases and their association (or lack thereof) with recombination will be an 

important next step to testing the three models.  

 

With no model appearing especially parsimonious at present for our taxa, we caution 

against assuming gene conversion is universally AT->GC biased and in the interpretation 

of  the commonly observed14 GC-recombination correlation as evidence for gBGC.  
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Why is our data different from prior genome scale data? 

Our estimates of  rates of  gene conversion accord well with prior genome-scale tetrad 

based estimates in yeast and Arabidopsis. However, our estimate of  the AT<->GC bias in 

yeast is different to that seen in the prior analysis15 (Table 2). In deriving a net lack of  

bias in yeast, we presumed that the prior estimates were correct, as were ours, despite the 

two having significantly different biases. If  we presume ours alone is accurate then the 

conclusion of  a lack of  GC bias is all the more robust as, if  anything, we see a GC->AT 

conversion bias.  

 

How then to explain such a discrepancy? Strain differences appear not to be the 

explanation. There may be subtle but important method differences between our and the 

prior approach. One possibility is that any bias is subtly dependent on growth conditions.  

It is known that aspects of  meiosis in yeast are susceptible to external environment58. A 

potentially important difference is that while we employ whole genome sequencing, the 

prior report employed arrays to detect conversion events. This use of  array technology is 

worth further scrutiny, as it is known to be associated with missing values (e.g. owing to 

dye bias). By contrast, from Sanger sequencing we have confirmed 100% of  a sample of  

our observations and additionally find no evidence for missing events. Moreover, when 

comparing our data with a further prior study, which also employed whole genome 

sequencing on the same hybrid strain59, we find very good reproducibility as regards 

markers identified and on the numbers of  events (Supplementary Discussion). Likewise, 

a GC bias as regards coverage of  NGS data appears not to be important (Supplementary 

Discussion). Resolving the causes of  such a subtle discrepancy will take a large body of  

further analysis, but is of  importance given the potentially far reaching implications of  

the reversal of  the direction of  bias.  

 

Methods   

The four species in this study are all easy to incubate and cross under laboratory 

conditions, and their meiotic products (tetrad or ascospore) can be dissected and 
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genotyped individually. Three of  them are haploid, which makes the genotyping more 

reliable. They also possess extensive nucleotide diversity among different strains, enabling 

detection of  gene conversions. Analysis of  yeast (cross S1) and Arabidopsis (Ler × Col) 

enables direct comparison with prior analysis. 

 

1. Source of  samples 

Yeast strains S96, YJM789, and diploid hybrid strain S96/YJM789 were provided by Lars 

Steinmetz from European Molecular Biology Laboratory, Heidelberg, Germany; strain 

YPS128 and diploid hybrid strain YPS128/YJM789 were provided by Gianni Liti from 

Institute for Research on Cancer and Aging, Nice, University of  Nice Sophia Antipolis, 

France. Neurospora strains FGSC2489 and FGSC4200 were provided by Chaoguang Tian 

from Tianjin Institute of  Industrial Biotechnology, Chinese Academy of  Sciences, China; 

strain FGSC2225 was provided by Shaojie Li from State Key Laboratory of  Mycology, 

Institute of  Microbiology, Chinese Academy of  Sciences, China; strains FGSC3246 and 

FGSC1363 were purchased from Fungal Genetics Stock Center (www.fgsc.net). 

Chlamydomonas strains CC124, CC1010, CC2935, CC2936, and CC408 were purchased 

from Chlamydomonas Resource Center, University of  Minnesota, U.S. 

(www.chlamycollection.org). Arabidopsis thaliana mutant strains Col (qrt1) and Ler (qrt1) 

were purchased from Arabidopsis Biological Resource Center (ABRC, abrc.osu.edu).  

 

2. Crossing and tetrad dissection  

Yeast hybrid strains S96/YJM789 and YSP128/YJM789 were induced by transferring 

overnight cultures from liquid YEPD to 2% potassium acetate to sporulation60. Then 

each tetrad was dissected under a dissection microscope. Crosses in Neurospora were 

made based on the protocol provided on Fungal Genetics Stock Center (www.fgsc.net). 

In short: i) the Neurospora strains with opposite mating types were planted on two ends 

of  a crossing plate, and kept at 25 degrees centigrade and in complete darkness for 3 

weeks for crossing and growing ascospores; ii) each ascospore was separated under a 

microscope and stored on a storage plate for at least a week; iii) the stored ascospores 

were heat shocked for 30 min at 65 degrees centigrade; iv) each ascospore was dissected 

http://www.fgsc.net/
http://www.chlamycollection.org/
http://www.fgsc.net/
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into 8 individual spores under a microscope. Mating and tetrad dissection in 

Chlamydomonas were carried out based on David Stern’s protocol61 (Fig. 1). The crossing 

and tetrad dissection in Arabidopsis is similar to a previous study32. First Col (qrt1) is 

crossed with Ler (qrt1), then a single meiotic tetrad pollen from F1 was picked and 

planted on the flower of  Col to make backcrosses. Siliques, which contain four seeds, 

were collected. Each seed was planted individually for the subsequent genotyping.   

 

3. DNA extraction and genome sequencing  

Each dissected spore (or seed) was cultivated individually until at least 3 micrograms of  

DNA could be harvested. The DNA of  each dissected spore (or seed) was extracted and 

sequenced individually. The DNA of  yeast, Chlamydomonas, and Arabidopsis, was extracted 

using phenol/chloroform method, while the DNA of  Neurospora was extracted using 

phenol/chloroform/isoamyl alcohol method.  

 

Whole genome re-sequencing was carried out at BGI-Shenzhen and Novogene 

(www.novogene.com) using the same procedure: Paired-end sequencing libraries with 

insert size of  350 bp were constructed for each sample, then 2 × 150 bp paired-end 

reads were generated on Illumina HiSeq 4000 platform. In total, 505 samples were 

sequenced, including 119 yeast samples (3 parental strains and 29 tetrads), 233 Neurospora 

samples (5 parental strains and 57 tetrads), 113 Chlamydomonas samples (5 parental strains 

and 27 tetrads), and 40 Arabidopsis samples (4 hybrid F1 plants and 9 tetrads). The 

average depth and genome coverage for yeast samples are 72× and 99.32%, for 

Neurospora samples are 35× and 95.95%, for Chlamydomonas samples are 27× and 94.33%, 

and for Arabidopsis samples are 22× and 95.87% (Supplementary Table 1).  

 

4. Genotyping and marker filtering  

Saccharomyces cerevisiae reference genome (version R64) and Neurospora crassa reference 

genome (version 12) were downloaded from Ensembl (www.ensembl.org), Chlamydomonas 

reinhardtii reference genome (version 5.5) was downloaded from Joint Genome Institute 

(jgi.doe.gov), Arabidopsis thaliana reference genome (TAIR10) was downloaded from The 
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Arabidopsis Information Resource (www.arabidopsis.org/). For each sample, the 

Illumina reads were mapped onto the reference genome by Burrows-Wheeler Aligner 

(BWA)62 then duplicates marking and realignment around indels were carried out by 

Genome Analysis Toolkit (GATK)63 with variants called by GATK HaplotypeCaller.  

 

The sequenced samples in yeast, Neurospora, and Chlamydomonas are all haploid. For each 

cross, the “homozygous” SNPs between parental strains with quality score ≥30 were first 

called as marker candidates, then for each tetrad were permitted if  this candidate site 

meets the following criteria: i) called as “homozygous” in all four spores; ii) genotyped 

with high quality (≥30) in all four spores; iii) the genotypes of  the four spores at the 

candidate site agree with their parental strains. This site is then used as a marker to 

identify recombination events.  

 

The sequenced samples in Arabidopsis are diploid. First we analyzed the deeply sequenced 

Col (qrt1) and Ler (qrt1) from a previous study32 and identified the SNPs that were 

homozygous within the parents but different between them, thus potential marker 

candidates. We then also deep sequenced four F1 plants in our study, and applied the 

following criteria in marker screening: i) each marker candidate must be heterozygous in 

these four F1 plants; ii) each marker should be covered with at least 10 reads in each 

sample and genotyped with high quality (≥30); iii) the genotypes of  the four seeds from a 

tetrad should be either homozygous Col genotype or heterozygous Col/Ler genotype; iv) 

for heterozygous SNPs called in each sample, each allele should be supported by at least 

three reads. Marker candidates in TE (transposon element) regions and CNV (copy 

number variation) regions were excluded. Marker candidates that fit the criteria above 

were used as markers.  

 

Any mitotic mutations arising in each sample would have a minimal effect in our analysis 

and should be filtered out. Mitotic mutations would be polymorphic within each sample 

of  cells grown from an individual spore. For haploid organisms mutations arising in the 

very first mitotic division would be seen in 50% of  reads (25% in diploid Arabidopsis), 
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mutations in the second division associated with 25% of  reads (12.5% in Arabidopsis), etc.. 

Three of  four organisms we sequenced are haploid, so technically all variants in these 

samples should not be polymorphic and should be “homozygous”. However, due to 

multi-copy regions or mapping errors or mitotic mutations, apparently “heterozygous” 

variants can be identified. In this study, all these “heterozygous” variants were removed. 

Whether these are mutations is hard to say, as it is not easy to discriminate true mitotic 

mutations from other types of  errors. Furthermore, in each cross, we sequenced two 

parental stains and multiple tetrads.  The genotypes of  both parents are compared with 

each other and with multiple offspring spores in the identification of  markers. We first 

identified the homozygous SNPs between two parental strains and only when the 

genotypes of  all four products from a tetrad agree with parental genotypes was this SNP 

used as a marker. In Arabidopsis, only if  a mutation takes place on the marker site, and 

changes the genotype from one parental allele to the other, would it emerge as a false 

gene conversion. Given a mutation rate of  7 × 10-9 per base per generation, a marker 

density of  0.26%, and a sample size of  36 (9 tetrads), the total number of  such events 

roughly equals 7 × 10-9 × 1.2× 108 × 0.0026 × 36 × 1/3= 0.0262. Compared with the 

170 SNPs being converted in Arabidopsis, the effect of  mitotic mutations is thus 

miniscule.  

 

5. Identification of  recombination events  

Three types of  recombination event can be identified in this study: COs, CO-GCs, and 

NCO-GCs. For each tetrad, the genotype information of  all four spores was used 

collectively to identify these events. Reciprocal changes of  genotype in 2 of  4 spores are 

identified as COs. If  the genotype switch point is the same in these 2 spores (as shown in 

Supplementary Fig. 2a), this is a simple CO event; if  the genotype switch point is not the 

same in these 2 spores, as shown in Supplementary Fig. 2b, this is a CO event associated 

with a continuous CO-GC event, and in this case, the CO-GC events simply extend the 

genotype switch point of  a CO event. Sometimes CO-GCs also emerge as a 

discontinuous conversion tract, as shown in Supplementary Fig. 2c, where a short non-

reciprocal genotype change appears near a CO event (distance <10 kb).  This is identified 
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as a CO event associated with a discontinuous CO-GC event.  

 

Non-reciprocal changes of  genotype that are not associated with CO events are 

identified as NCO-GCs. Most NCO-GC events are simple as shown in Supplementary 

Fig. 2d.  However, we also found 2 types of  non-classical recombination events. The first 

type is where a CO event and a NCO event occur on the same genomic position but in 

different spores (Supplementary Fig. 2e). The second type is where two short blocks with 

opposite genotype are identified at the same genomic position in 2 different spores 

(Supplementary Fig. 2f). Cases like this are identified as 2 NCO events. Compared with 

prior studies using the same material, but a different genotyping method20,32, highly 

similar results (rates of  CO and NCO in crosses S1 and A) were obtained.  

 

6. Estimation of  conversion tract length 

Two methods, midpoint and simulation, were used to estimate the tract length of  gene 

conversions. First we used the midpoint method from a previous yeast study20. On both 

ends of  a gene conversion event, the midpoints between the end marker and nearest 

flanking non-converted marker are determined as the edge of  the conversion tract and 

the distance between two edges is estimated as the length of  the tract. However, this 

method is sensitive to marker density, which makes it less accurate at low marker density. 

To circumvent this, another simulation based method is employed32. We randomly 

simulated 10,000 gene conversion events at various lengths in each cross, and calculated 

the average number of  markers converted at each length (Fig. 3c). Then the closest value 

in the simulation to the observed number of  markers converted is chosen as the average 

tract length. For example, CO-GC events convert 4 markers per tract in Arabidopsis, and 

4 markers per tract correspond to a tract length of  700 bp in the simulation (illustrated in 

Fig. 3c). In this way the average tract length for CO-GC is estimated to be 700 bp in 

Arabidopsis.  

 

7. Event verification by PCR and Sanger sequencing  

Some events in this study were also verified by PCR and Sanger sequencing. For CO 
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events, a single PCR must be designed to include markers on both ends of  the CO 

breakpoint. PCR and Sanger sequencing must be performed on both parental strains and 

all 4 spores. Only if  the PCR and Sanger sequencing is successful and agree with NGS 

results was an event deemed ‘verified by PCR and Sanger sequencing’. For NCO-GC 

events, 1 or 2 overlapping PCRs must be designed to include converted markers and 

flanking non-converted markers on both ends of  the conversion tract. PCR and Sanger 

sequencing must be performed on both parental strains and all 4 spores. Only if  the PCR 

and Sanger sequencing are successful and agree with NGS results was an event deemed 

‘verified by PCR and Sanger sequencing’.  

 

8. Data availability 

The sequencing reads have been submitted to NCBI under submission number 

PRJNA373800 and PRJNA374752. The genotypes of  each tetrad at all marker sites can 

be publicly accessed at http://gattaca.nju.edu.cn/pub_data.html.  
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Tables  

Table1. Rate of COs and NCOs in each cross. 

Organisms Parental strains 
Marker 
density 

Tetrads 
sequenced 

CO NCO-GC 

CO 
Events* 

cM/Mb 
CO-GC 

Events*$ 
Converted 
markers*& Events* Converted markers*& 

S. cerevisiae 

YJM789 × S96 (S1) 0.44% 14 94.4 391 67.5 1.3×10-2  47.8 (53.9) 9.0×10-3  

YJM789 × S9620 0.44% 46 90.5 375 62.7 1.1×10-2  46.2 8.4×10-3 

YJM789 × YPS128 (S2) 0.50% 15 76.5 317 63.2 9.8×10-3 46.4 (49.9) 7.4×10-3  

N. crassa 

FGSC2489 × FGSC3246 (N1) 0.04% 10 11.5 14 0.3 3.8×10-5  0.1 3.2×10-5 

FGSC4200 × FGSC1363 (N2) 0.66% 20 16.1 20 8.1 2.9×10-4  6.0 (11.1) 2.0×10-4 

FGSC2225 × FGSC3246 (N3) 1.06% 18 15.7 19 8.7 1.2×10-4  7.3 (10.0) 1.0×10-4 

N3-14-2 × N3-14-4 (N4)^ 0.61% 9 17.1 21 7.7 6.0×10-4 4.3 (8.8) 1.8×10-4  

C. reinhardtii 

CC124 × CC1010 (C1) 0.14% 6 16.5 8 0.2 1.0×10-5 0.2 1.3×10-6 

CC2935 × CC2936 (C2) 1.53% 12 25.3 12 12.3 4.6×10-5  3.1 (8.1) 3.7×10-6 

CC408 × CC2936 (C3) 1.17% 9 23.2 11 10.1 3.2×10-5  2.2 (7.3) 3.2×10-6 

A. thaliana 
Col × Ler (A) 0.26% 9 11.0 4.6 3.9 5.1×10-5  2.0 (16.7) 1.1×10-5  

Col × Ler32 0.12% 5 10.4 4.3 2.0 3.5×10-5  1.4 1.0×10-5  

H. sapiens21,64 - 0.001%~0.05% - 43/23# 1.5/0.8# - - - 6×10-6 

 

*These numbers are counted as per tetrad per meiosis. 

&These numbers are proportion of markers converted. 

$Numbers in the parenthesis are corrected number based on simulated tract length and probability of detection.  

^These two strains are products of a single meiosis in cross N3 (FGSC2225 × FGSC3246). 

#43 COs per cell and 1.5 cM/Mb for oocytes and 23 COs per cell and 0.8 cM/Mb for sperms. 
20, 21, 32, 64 The four numbers correspond to the reference numbers, the grey shaded data are from these references. 
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Table 2. Nucleotide direction of gene conversion events. The ratio (number) of AT->GC and GC->TA conversions were listed in each category, p-values are 

from binomial test. AT-biased trend is highlighted in green while GC-biased trend is highlighted in red.  

Organisms 
GC-content of 
whole genome 

Parental 
strains 

GC-content 
at SNP sites 

NCO-GC + CO-GC NCO-GC CO-GC 

AT->GC GC->AT p-value AT->GC GC->AT p-value AT->GC GC->AT p-value 

S. cerevisiae 38.30% 

YJM789 
S96 

48.79% 
48.82% 

49.47% 
(7153) 

50.53% 
(7307) 

0.2 
50.63% 
(2914) 

49.37% 
(2842) 

0.34 
48.70% 
(4239) 

51.30% 
(4465) 

0.016 

50.63%15,20   

(39445) 
49.37% 
(38456) 

0.0004 
50.52% 
(15238) 

49.48% 
(14922) 

0.07 
50.70% 
(24207) 

49.30% 
(23534) 

0.002 

YJM789 
YPS128 

47.85% 49.03% 
(6664) 

50.97% 
(6928) 

0.024 
48.52% 
(2816) 

51.48% 
(2988) 

0.025 
49.41% 
(3848) 

50.59% 
(3940) 

0.3 
49.66% 

N. crassa 48.50% 

FGSC4200 
FGSC1363 

49.59% 50.13% 
(1133) 

49.87% 
(1127) 

0.92 
49.46% 
(461) 

50.54% 
(471) 

0.77 
50.60% 
(672) 

49.40% 
(656) 

0.68 
50.90% 

FGSC2225 
FGSC3246 

50.43% 51.18% 
(735) 

48.82% 
(701) 

0.38 
52.32% 
(361) 

47.68% 
(329) 

0.24 
50.13% 
(374) 

49.87% 
(372) 

0.97 
50.19% 

C14-2 
C14-4 

50.32% 50.34% 
(732) 

49.66% 
(722) 

0.81 
50.75% 
(169) 

49.25% 
(164) 

0.83 
50.22% 
(563) 

49.78% 
(558) 

0.9 
50.01% 

C. reinhardtii 64.08% 

CC2935 
CC2936 

52.67% 52.95% 
(404) 

47.05% 
(359) 

0.11 
64.91% 

(37) 
35.09% 

(20) 
0.033 

51.98% 
(367) 

48.02% 
(339) 

0.31 
52.62% 

CC408 
CC2936 

52.47% 51.50% 
(172) 

48.50% 
(162) 

0.62 
75.86% 

(22) 
24.14% 

(7) 
0.008 

49.18% 
(150) 

50.82% 
(155) 

0.82 
52.63% 

A. thaliana 36.03% 

Col 46.14% 54.17% 
(65) 

45.83% 
(55) 

0.41 
50.00% 

(9) 
50.00% 

(9) 
1 

54.90% 
(56) 

45.10% 
(46) 

0.37 
Ler 45.79% 

Col32 45.98% 51.95% 
(40) 

48.05% 
(37) 

0.82 
33.33% 

(1) 
66.67% 

(2) 
1 

52.70% 
(39) 

47.30% 
(35) 

0.73 
Ler 44.89% 

15, 20, 32 The three numbers correspond to the reference numbers, the grey shaded data are from these references. 
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Table 3.  Correlations between COs, NCOs and GC-content at different scales. The genome is divided into 10 kb (20 kb, 100 kb, and 200 kb) non-overlapping 

windows. The number of COs, number of NCOs, and GC-content (percentage of identifiable bases that are G or C) are calculated for each window. The raw 

correlations between these variables at each window size are shown in table below. Significant correlations are highlighted in red. 

Variables 
Block 
size 

Yeast Neurospora Chlamydomonas Arabidopsis 

Spearman's 

 
p-value 

Spearman's 

 
p-value 

Spearman's 

 
p-value 

Spearman's 

 
p-value 

CO and 
GC-content 

10k 0.252 2.2E-16 0.077 8.4E-7 0.032 0.00077 -0.0387 2.5E-5 

20k 0.207 2.5E-7 0.129 5.5E-9 0.035 0.0102 -0.0458 0.0004 

50k 0.144 0.023 0.167 1.7E-6 0.048 0.026 -0.0621 0.0024 

100k 0.0588 0.51 0.154 0.0019 0.053 0.078 -0.117 5.1E-5 

200k -0.149 0.22 0.167 0.016 0.075 0.076 -0.162 6.6E-5 

NCO and 
GC-content 

10k 0.195 6.8E-12 0.049 0.0018 0.036 0.00019 -0.0129 0.16 
20k 0.167 3.4E-5 0.062 0.00499 0.044 0.0012 -0.0194 0.13 
50k 0.167 0.0084 0.089 0.011 0.054 0.0114 -0.0362 0.077 

100k 0.1 0.26 0.152 0.0021 0.087 0.0038 -0.0368 0.2 
200k -0.05 0.68 0.209 0.0025 0.175 3.5E-5 -0.0171 0.68 

(CO+NCO)  
and 

GC-content 

10k 0.270 <2.2E-16 0.0939 2.2E-9 0.0414 1.8E-5 -0.0407 8.9E-6 
20k 0.229 1.1E-8 0.145 5.0E-11 0.0455 0.0008 -0.0505 9.6E-5 
50k 0.201 0.0015 0.190 5.0E-8 0.0646 0.0025 -0.0709 0.0005 

100k 0.151 0.0898 0.192 9.5E-5 0.0783 0.009 -0.125 1.5E-5 
200k -0.100 0.42 0.206 0.0029 0.142 0.0008 -0.157 0.0001 
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Figures legends  

Figure 1. Schematic illustration of experiment design. After a cross is made between 

two strains, the meiotic products are dissected and whole-genome re-sequenced 

individually. The meiotic products in yeast, Chlamydomonas, and Arabidopsis are tetrads. 

Each tetrad can be dissected into four spores and each spore is sequenced after being 

grown into a clonal colony. The meiotic products in Neurospora are ascospores, which are 

products of  a meiosis followed by a mitosis and thus have eight spores, every two spores 

originate from a mitosis.  Four of  the eight spores in each ascospore are selected for 

sequencing.   

 

Figure 2. Outcomes of  DSBR and SDSA pathways in meiotic recombination. 

Four kinds of  outcomes of  recombination events are shown in this figure: Type I: A 

single crossover event; Type II: A crossover and a non-crossover event occur at the same 

locus indicating that the two crossing over chromatids invaded a third chromatid during a 

recombination event65,66; Type III: Two non-crossover events occur at the same locus. 

This can be explained by resolution of  a double Holiday junction in a NCO fashion65,66 

or two chromatids breaks at the same locus. Type IV: A single non-crossover event. The 

rates (count per tetrad per meiosis) of  each outcome in these four organisms are shown. 

As shown in black dotted frame, for type II events, the CO and the NCO event do not 

share the same genotype switching point, and for type III events, the two NCO events 

mostly do not share the same conversion tract, and they always lead to 2:2 or 4:0 

segregation. 

 

Figure 3. Estimation of  tract length for gene conversion events. Two methods were 

used for the estimation. a. and b. show the violin plot for estimated tract length for 

NCO-GCs (a) and CO-GCs (b) by the midpoint method. c. is the simulation of  average 

markers converted at different tract lengths in each cross. e.g. in cross A, the observed 

number of  markers converted by CO-GC is 4, and in this simulation this averages at 700 

bp tract length. d. Summary of  tract lengths estimated from the two methods.  

 


