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Abstract.

There are a number of powerful total variation (TV) regularization methods with

great promises in limited data cone-beam CT reconstruction with an enhancement

of image quality. These promising TV methods require careful selection of image

reconstruction parameters for which there is no well established criteria. This pa-

per presents a comprehensive valuation of parameter selection in a number of major

TV-based reconstruction algorithms. The appropriate way of selecting the values for

each individual parameter has been suggested. Finally, the new adaptive-weighted

projection-controlled steepest descent (AwPCSD) algorithm is presented which imple-

ments the edge-preserving function for CBCT reconstruction with limited data. The

proposed algorithm shows signi�cant robustness compared to other three existing al-

gorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm

is able to preserve the edges of the reconstructed images better with less sensitive pa-

rameters to tune.

Keywords: Total variation (TV), Edge-preserving function, Parameter tuning,

Computed tomography, Iterative reconstruction, Limited data reconstruction
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1. Introduction

X-ray radiation has long been discovered by Wilhelm C. Roentgen [1] and followed by

Houns�eld's invention of the x-ray tomographic scanner in 1972 [2]. Since then, the

X-ray CT has been extensively used especially for clinical diagnosis. More recent X-ray

CT is being adapted for treatment planning by image guided radiation therapy(IGRT)

as it can provide a many dimension view of the organ or region of interest [3].

One major concern of the x-ray CT in medical analysis is the high radiation dose

delivered to a patient during clinical exams. This is particularly true in the radiation

therapy sessions where an x-ray cone-beam CT (CBCT) scan is needed at the beginning

of each session to observe a patient's anatomical change in response to the treatments.

It has been reported that a high radiation dose can increase lifetime risk of cancer in

patients [3][4]. One method to reduce the radiation dose of x-ray CT imaging is to

lower mAs levels in CT data acquisition process [7]. By doing this, number of X-ray

photon impinging on detector bins will be insu�cient, which results in a high level of

quantum noise on the sinogram [10]. Another method is to reconstruct CT image from

sparse-view projection data [5][6]. However, when the number of projection views is

reduced, the reconstructed result obtained from a conventional �ltered back-projection

(FBP) su�ers some artifacts because the number of projection views does not satisfy

the Shannon sampling theorem [11].

Generally, there are two categories of methods for CBCT reconstruction: analytic

inversion algorithms and iterative methods. The well-known Feldkamp, Davis and Kress

(FDK) method [8] is commonly used in clinical CT scanners and advanced commercial

cone-beam scanners [9]. This method lies in the �rst category and works e�ciently and

accurately if projection data are well sampled.

A problem with the FDK reconstruction method happens when an amount

of projection data is insu�cient. This problem commonly occurs due to physical

constraints such as imaging hardware, scanning geometry and ionizing radiation

exposure. In such circumstances, the FDK method performs less e�ciently and su�ers

from artifacts [5] [12].

The iterative reconstruction methods produce good quality images when the

projection data are not theoretically su�cient for exact image reconstruction

[13],[14],[15]. A minimization problem of CT reconstruction can be performed using

iterative algorithms by formulating the data-consistency constraint with additional

regularization term. This term is used to select a unique solution out of the set of

feasible solutions that agree with the available projection data.

Minimizing total variation (TV) norm of the image is widely used as a common

approach for regularization. In [5], Sidky et al proposed TV minimization algorithm

with constraints enforced by projection onto convex sets (TV-POCS) and then the

adaptive-steepest-descent-POCS (ASD-POCS) in [12]. In their studies, a constrained

TV minimization algorithm for image reconstruction in circular cone-beam CT is

developed where image TV norm is the objective function to be minimized while data
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�delity is a constraint.

Despite the advantages of using image TV norm as a regularization term, over-

smoothing in the reconstructed image is a main concern [16]. The TV-based approaches

uniformly penalize the image gradient regardless of the image structures. As a result,

edges of the reconstructed image tend to be frequently oversmoothed, which leads to

the loss of low-contrast information [10].

Many existing research has tried to overcome the over-smoothing problem of TV

regularization algorithm. Tian et al [10] proposed a TV-based edge preserving (EPTV)

model to preserve more low-contrast structures and edges by introducing a penalty

weight to every TV term. This penalty weight is formulated as an exponential function

of the local image-intensity gradients and adaptively updated during the reconstruction

process. However, only isotropic edge property was considered in the EPTV model.

Later on, Liu et al [16] proposed an adaptive-weighted TV (AwTV-POCS) model in

which the associated weights were also expressed as an exponential but considered

the anisotropic edge property of an image. Better performance has been achieved in

preserving edge details with the AwTV-POCS model.

Another drawback of TV regularization algorithms is the presence of an initial set

of parameters in the minimization of the TV norm. The set of optimal parameters are

di�cult to select and can only be determined by considerable numbers of trials and

errors ,which is a time-consuming and tedious process [17]. A number of researches

have tried to overcome this drawback. Liu et al proposed a nonparametric method

to automatically update TV regularization step-size according to the di�erences from

POCS step in the projection domain (projection controlled steepest descent,PCSD) and

image domain (image controlled steepest descent,ICSD) [18] [19]. These 2 algorithms:

PCSD and ICSD require fewer parameters than ASD-POCS and achieve similar or better

reconstruction images.

This paper proposes a new algorithm called "adaptive-weighted PCSD (AwPCSD)"

algorithm, which is based on the PCSD algorithm proposed by Liu et al [19] with

additional edge-preserving function as proposed by Liu et al [16]. By doing so,

it is hopeful that this AwPCSD algorithm will be able to preserve the edges of

the reconstructed image better with less initial parameters to set than ASD-POCS

algorithm.

In addition, this work aims to analyse the sensitivity of initial parameters required

for the TV regularization algorithms. These parameters play an important role for the

reconstruction performance of the algorithms. It is useful to examine the sensitivity

that the reconstruction image has to value change on these parameters, in order to

know which ones to prioritize when tuning the algorithm. Ultimately, heuristics on how

to choose this parameters are desired, to minimize or completely avoid rerunning the

reconstruction with di�erent parameters.

The sensitivity of all the parameters is analysed using two image quality metrics:

Root mean squared error (RMSE) and Correlation coe�cient (CC) for the proposed

algorithm , AwPCSD, in comparison with other three existing algorithms: ASD-POCS,
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AwTV-POCS and PCSD to evaluate the performance of the proposed algorithm. The

data set used in this study is a digital XCAT phantom which contains thorax anatomy

structures [20]. The number of projection used to reconstruct an image is chosen to be

20 views to also compare the performance of these 4 algorithms in limited data scenario.

The edge preserving property of the TV-based reconstruction algorithms is

analysed by comparing the image pro�les along the horizontal and vertical lines of the

reconstructed images with the optimal set of parameters. In addition, the proposed

algorithm is evaluated further using the real microCT datasets, the SophiaBeads

Datasets [31].

The organization of the paper is as follows. In section 2, a CT image reconstruction

problem and a TV minimization approach as well as an edge-preserving function and

reconstruction algorithms are explained. The stopping criterion and parameters for

TV regularization algorithms are described in section 3. Section 4 contains the results

from the sensitivity analysis of each parameter and further analysis of edge-preserving

property using 1D pro�les plot. The experimental evaluation of the real microCT

datasets is explained in section 5. Section 6 discusses and concludes the paper.

2. Methods

2.1. CT image reconstruction problem and TV minimization approach

In circular CBCT, an attenuation of photons being absorbed by an object of interest,

f(x), is provided by a set of line integrals [17]. Given that a rotation angle of an x-ray

source is a, the cone-beam projection measured at a point (u, v) on a detector can be

expressed as

p(u, v, a) =

∫ ∞
0

f(s(a) + λθ(a, u, v))dλ (1)

where the source location s is de�ned as

s(a) = (Rcos a,Rsin a, 0) (2)

where R is the distance between the source location and the centre of rotation,

λ ∈ [0,
√
u2 + v2 +D2] , D is the distance between source to detector, θ(a, u, v) is the

ray direction vector indicating the direction of the ray from the source location s(a)

through the object to the point (u, v) on the detector.

The projection acquisition model in equation 1 can be approximated using a system

of linear equations as

Ax = b+ e (3)

where x is a vector containing the x-ray linear attenuation coe�cients of the image

in lexicographical order, e is the additive noise associated with the measurement, A is

a system matrix describing the intersections between each particular ray and the image



Parameter selection in limited data cone-beam CT reconstruction 5

voxels. The vector b represents projection data measured on image detectors at various

projection in lexicographical order.

In an ideal scenario, the image reconstruction problem is solved by �nding x given

a set of data b , in other words, inverting the system of linear equation 3. However, the

system matrix A is ill-conditioned due to two main reasons: insu�cient coverage in the

scanning con�guration or under-sampling set of projection data in the case of few-view

CT scanning.

From equation 3, a minimization problem can be proposed as

x∗ = argminx||Ax− b||2 +G(x) (4)

where G(x) is an optional term that describes a regularization function. This

minimization problem can be solved using a wide range of iterative algorithms. In this

study, we are interested in the minimization of image total variation (TV) norm, which

can help to di�erentiate in�nitely many solutions to equation 3 and obtain the solution

with the desired image properties as the �nal reconstructed image [10]. The TV norm

for three-dimensional cone beam CT projection is approximated using �nite di�erences

as following equation

G(x) = ||x||TV =
∑
ijk

√
(xijk − xij−1k)2 + (xijk − xi−1jk)2 + (xijk − xijk−1)2 (5)

where i, j, k are indices of image voxel in three dimensions.

2.2. Edge-preserving function

One disadvantage of implementing the TV regularization approach is the over-smoothing

of the reconstructed image especially at the edges due to the assumption of piecewise

constant distribution for the desired image [16]. The edges are signi�cant structural

information of the image. Hence, the edge preservation is a critical requirement in

many clinical analysis especially in IGRT.

One way to address this problem is to use priors other than conventional TV to

improve preservation of �ne details. The TV-based edge preserving (EPTV) model was

proposed by Tian et al [10] to bring in di�erent weights in the TV term from edges and

constant areas of the to-be-estimated image. However, only isotropic edge property was

considered in this model.

The anisotropic edge property of an image is considered in the adaptive-weighted

TV (AwTV) model proposed by Liu et al [16]. The adaptive-weighted TV norm of the

to-be-reconstructed image in 3D case is de�ned as

||x||AwTV =
∑
ijk

√
wi,i−1,j,j,k,k(xijk − xi−1jk)2 + wi,i,j,j,k,k−1(xijk − xijk−1)2√

+wi,i,j,j−1,k,k(xijk − xij−1k)2 (6)
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wi,i−1,j,j,k,k = exp

[
−
(xijk − xi−1jk

δ

)2]
(7)

wi,i,j,j,k,k−1 = exp

[
−
(xijk − xijk−1

δ

)2]
(8)

wi,i,j,j−1,k,k = exp

[
−
(xijk − xij−1k

δ

)2]
(9)

where δ is a scale factor controlling the amount of smoothing being applied to the

image voxel at edges relative to non-edge region during each iteration.

This pattern of weight choosing is based on the works proposed by Perona and

Malik [29] and Wang et al [30]. An anisotropic penalty term is de�ned using the intensity

di�erence between neighbouring pixels. By doing so, it is possible to take the change of

local voxel intensities into consideration.

For a smaller change of local voxel intensities, a stronger weight may be given. This

is to emphasise the TV minimization of non-edge region. In case of a larger di�erence

between the neighbour and the pixel, a weaker weight may be given to better preserve

the edge region of the to-be-reconstructed image. This di�usion type weighting process

controls the in�uence of di�erent neighbours according to the corresponding gradient.

The e�ectiveness of the algorithms which employed this weighting process for the edge

preservation is shown in a number of research studies [16] [29] [30].

However, the AwTV norm introduces another parameter ,δ, into consideration. This

is added to a long list of initial parameters required for TV regularization algorithms.

In the same way as other parameters, the sensitivity of this δ parameter will also be

analysed in this study.

2.3. Reconstruction algorithms

In this work, the proposed algorithm, AwPCSD, as well as other 3 existing algorithms are

implemented for the sensitivity analysis of parameters. The details of these algorithms

are explained as follows.

ASD-POCS : Adaptive-steepest-descent projection onto convex sets

The �rst algorithm is the TV regularization algorithm proposed by Sidky et al [12],

which minimizes TV norm of the image as expressed in equation 5:

x∗ = argmin||x||TV (10)

with subject to the following two constraints:

(A) data �delity constraint

|Ax− b| ≤ ε (11)

where ε is an error bound that de�nes the amount of acceptable error between

predicted and observed projection data. In real practice, it is impossible to always obtain
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the reconstructed image that is perfectly consistent with the data due to several factors

such as modelling errors, noise and x-ray scattering [12]. Therefore, this constraint only

require that the reconstructed image yields projection data that are within a given l2
distance ε of the actual projection data.

(B) non-negativity constraint

x ≥ 0 (12)

The second constraint requires that the voxel intensity is not less than zero.

The framework of ASD-POCS iterative algorithm has two phases for each iteration.

The �rst phase is the implementation of simultaneous algebraic reconstruction technique

(SART) [21] to enforce the data-consistency according to the two constraints in equations

11 & 12. The non-negative projection is also implemented in this stage.

The second phase is the TV optimization which is performed by adaptive steepest

descent method for the TV objective function in equation 10. This is to ensure that the

optimization problem have minimum TV solution. The step-size of TV minimization

step is adjusted to balance data consistency constraint and TV minimization by taking

into account the change from SART step and utilize that step-size in the subsequent

TV optimization process.

These two steps are implemented in alternation until the stopping criterion are

satis�ed. More detail on the stopping criterion is discussed in the next chapter. It is

crucial to �nd a set of parameters that balance these two steps to obtain an optimal

reconstructed image. The insight study of this challenging problem is conducted in this

work. In the next chapter, the role of each parameter in the reconstruction algorithms

are discussed in more detail.

AwASD-POCS : Adaptive-weighted ASD-POCS

The second algorithm is called AwASD-POCS which is based on the AwTV-POCS

algorithm proposed by Liu at al [16]. This algorithm is slightly modi�ed from ASD-

POCS algorithm by replacing the conventional TV norm in equation 5 by the adaptive-

weighted TV norm in equation 6 to preserve the edges of the reconstructed image.

PCSD: Projection-controlled steepest descent

The third algorithm is proposed by Liu et al [19]. This algorithm adapts the two-phase

strategy from ASD-POCS algorithm but the step-size of steepest descent process is

adaptively adjusted according to the di�erence in projection domain from SART step

in the current iteration. By doing so, the number of parameters to be de�ned for this

algorithm can be reduced. The steepest-descent stage of this algorithm minimizes the

conventional TV norm of the to-be-reconstructed image as expressed in equation 5.
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AwPCSD : Adaptive-weighted PCSD

This is the proposed algorithm in this work. It is modi�ed from PCSD algorithm by

replacing conventional TV norm in the steepest-descent step with the adaptive-weighted

TV norm in equation 6. In this way, the algorithm should preserve the edges of the to-

be-reconstructed images better with less number of parameters required to implement

than the ASD-POCS algorithm.

The following pseudo code summarizes the structure of four TV-based

regularization algorithms used for the sensitivity analysis in this work. The code presents

how all the parameters are used in which part of each algorithm. The di�erence between

each algorithm is shown with comments on the right with the hi-lights for the proposed

algorithm. Each parameter and stopping criterion are explained in more detail in the

next section.

Algorithm 1 Pseudo code for four TV-based regularization algorithms

while stopping criterion not met do

x = x+ β · SARTupdate
β = β · βred

Update α . PCSD , AwPCSD

for ng do

x = x+ α · TVupdate . ASD-POCS,PCSD

x = x+ α · AwTVupdate(δ) . AwASD-POCS, AwPCSD

end for

Update α w.r.t. rmax , αred , ε . ASD-POCS,AwASD-POCS

Check stopping criterion w.r.t. x, b, ε, β

end while

3. Stopping criterion and parameters for TV regularization algorithms

The most challenging problem in using TV-based algorithms is the tuning of all

parameters. All 4 reconstruction algorithms implemented in the sensitivity analysis

is based on two-phase strategy of ASD-POCS that alternates between data-consistency

and TV minimization steps. A set of parameters is needed to adjust the contributions

or balance these two operations. There is no straightforward way to determine the set of

parameters for the optimal reconstruction other than trial-and-error tests. Also, when

reconstructing di�erent types of images, di�erent parameters need to be empirically

chosen [18]. This process is very time-consuming. Therefore, it is useful to examine the

sensitivity that the reconstruction image has to value change on these parameters, in

order to know which ones to prioritize when tuning the algorithm. Ultimately, heuristics
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on how to choose this parameters are desired, to minimize or completely avoid rerunning

the reconstruction with di�erent parameters.

In this work, the sensitivity analysis of parameters is implemented by observing

the impact on the reconstruction performance using simulation experiments on thorax

medical phantom [20]. The values of each parameter are varied in a speci�ed range. The

results are demonstrated visually and quantitatively using two image quality metrics

which will be explained in more detail in the next section.

3.1. Initial parameters for TV-based reconstruction algorithms

This section compiles explanation of parameters required to implement TV regulariza-

tion algorithms. The list of parameters is based on the four algorithms implemented in

this study.

• Data-inconsistency-tolerance parameter (ε)

The �rst one is a parameter that speci�es tolerance of the to-be-reconstructed im-

age. The value of this parameter controls an impact level of potential data inconsistency

on image reconstruction. It is de�ned as the maximum L2 error to accept image as valid.

This parameter is used as one of the checks for the stopping criterion which are discussed

in detail later on in this section.

• TV sub-iteration number (ng)

Next parameter is TV sub-iteration number (ng). This parameter speci�es how

many times the TV minimization process performs in each iteration of the algorithm.

• TV hyperparameter (α)

This parameter is used to convert the steepest-descent step size from a fraction of a

step size to an absolute image distance on the �rst iteration in ASD-POCS and AwASD-

POCS algorithms. This parameter is not required in PCSD and AwPCSD algorithms

as these two algorithms adaptively adjust the step sizes of steepest-descent according

to the di�erence from POCS update in the projection domain.

• Reduction factor of TV hyperparameter (αred)

Also, this parameter αred is only required by ASD-POCS and AwASD-POCS algo-

rithms. If the ratio of change in the image due to TV minimization to change in the

image due to SART is greater than maximum ratio of change by TV minimization to

change by SART (rmax) and the L2 error of image in the current iteration is greater

than ε,simultaneously, the gradient-descent step-size is reduced by αred.

• Relaxation parameter (β)

This is a relaxation parameter at which the SART operator depends on. The pa-

rameter starts at 1.0 and slowly decreases to 0.0 depending on the parameter βred.
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• Reduction factor of relaxation parameter (βred)

This parameter is used to reduce relaxation parameter (β) in the SART step as

the iteration progresses. When relaxation parameter (β) reduces to less than 0.005, the

algorithm stops as it meets the stopping criterion in equation 14.

• Maximum ratio of change by TV minimization to change by SART (rmax)

As mentioned in the part of parameter αred, if the ratio of the change in the image

due to steepest descent to the change in the image due to POCS is greater than rmax ,

the gradient-descent step-size is reduced by αred.

• Scale factor for adaptive-weighted TV norm (δ)

This parameter is only required in adaptive-weighted algorithms i.e. AwASD-POCS

and AwPCSD. It controls the strength of the di�usion in the adaptive-weighted TV norm

in equation 6 during each iteration [22]. The weights in equation 6 make it possible to

consider the gradient of the desired image and to take into account the changes of local

voxel intensities. The adaptive-weight TV norm in equation 6 can be seen as a special

case of the conventional TV norm in equation 5. When the weight is set to 1 i.e. δ →∞
, the AwTV norm is similar to the conventional TV norm.

3.2. Stopping criterion

The stopping criterion play an important role in the reconstruction algorithms as they

specify at which point the algorithms should be stopped. Generally speaking, the

algorithms are stopped either when the di�erence of image between current and previous

iterations is not noticeable or the image is accepted to be an optimal one. The stopping

criterion utilized in the reconstruction algorithms in this paper comprise of 3 checks.

Firstly, we consider the case where reconstructed image is accepted to be an optimal

solution. When implementing the algorithm, the currently estimated image is checked

to see if it obeys the constraints of equations 11 and 12. Also, the TV and data-

constraints gradients vectors are checked if they are back-to-back by observing the cosine

of angle between them. Theoretically, the estimated image is optimal when these two

vectors point exactly in opposite directions. The reader is referred to read more detailed

explanation of the neccessary conditions for a given image to be the optimal one in [12].

Therefore, the �rst check of the stopping criterion for all four reconstruction

algorithms in this work is when the currently estimated image satis�es the following

conditions:

c < −0.99 & dd ≤ ε (13)

where c is the cosine of the angle between the TV and data-constraint gradients,

dd is the L2 error between the measured projections and the projections computed

from the estimated image in the current iteration , ε is the data-inconsistency-tolerance

parameter.
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In an ideal scenario, the value of c should be -1 as the vectors of TV and data-

constraint gradients must be completely opposite to each other. Practically, this value

is di�cult to reach as it requires a large number of iterations [12]. Thus, this value is set

to -0.99. The algorithm is stopped when the currently estimated image satis�es these

two conditions in equation 13 simultaneously.

Secondly, the iteration is ceased when the relaxation parameter (β) of the current

iteration meets the following condition

β < 0.005 (14)

The relaxation parameter reduces every iteration by a factor of speci�ed βred. When

value of β falls below 0.005, no further di�erence is noticeable between the reconstructed

images of the current and next iterations. Hence, the algorithm is forced to stop.

Last check of the stopping criterion is when the maximum number of iteration

speci�ed by user is reached. As the number of iterations is a constant and cannot be

updated adaptively, the algorithm may be stopped either before or after the optimal

solution is obtained.

When the algorithm meets any of these three stopping criterion checks, the

current iteration is ceased and the currently estimated image is accepted to be a �nal

reconstructed image.

4. Results

In this section, two objectives of the proposed work are analysed. Firstly, the sensitivity

analysis is conducted for a set of parameters required for TV minimization-based

reconstruction algorithms. The aim is to examine the sensitivity that the reconstructed

image has to value change on the parameters, in order to know which ones to prioritize

when tuning the algorithm. Ultimately, heuristics on how to choose the parameters

are desired, to minimize or completely avoid rerunning the reconstruction with di�erent

parameters.

Secondly, the proposed algorithm , AwPCSD, is evaluated in comparison to

3 existing algorithms : ASD-POCS, AwASD-POCS and PCSD on X-ray CT

reconstruction. All the algorithms are implemented based on the algorithms available

in Tomographic Iterative GPU-based Reconstruction (TIGRE) toolbox [23] proposed

by Biguri et al. The ASD-POCS algorithm used in this study is utilized from the

TIGRE toolbox while the other three algorithms are modi�ed and implemented based

on the algorithms available in this toolbox. Also, we are looking to investigate how the

adaptive-weighted function help to improve the result by comparing between two pairs

of adaptive-weighted and non-adaptive-weighted algorithms.

The data set used to evaluate the performance of reconstruction algorithms

and parameters analysis is a digital XCAT phantom which contains thorax anatomy

structures [20]. The Poisson and Gaussian noise [24], [25] has been added to the input
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projection data for a simulation of realistic noise. Figures [1a] and [1b] show one cross-

sectional slice of exact thorax phantom and the region of interest used to compute the

evaluation metrics, respectively.

(a) Exact phantom (b) Region of interest

Figure 1: One cross-sectional slice of thorax phantom data set

Number of projection views used to reconstruct an image in this study is 20

views which are equally sampled from 360 degrees angle. For these few numbers of

projections, reconstruction using standard FDK algorithm can give an extremely poor

quality reconstructed image with streak artifacts as shown in the �gure 2.

Figure 2: Reconstructed images from 20 projection views using FDK method

With this limited data scenario, the performance of the purposed AwPCSD algo-

rithm as well as other three existing TV-based reconstruction algorithms can be inten-

sively evaluated and compared. The following two metrics were used as a quantitative

measure of reconstruction quality in this study.
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4.1. Image Quality Metrics

• Root mean squared error (RMSE)

The �rst metric is root mean squared error (RMSE) which calculates the similarity

between the resulting image and the reference image. The RMSE is de�ned as follows

[26]:

RMSE =

√√√√ 1

N

N∑
i=1

(f̂(xi)− f(xi))2 (15)

where f̂(xi) represents the reference attenuation coe�cient at voxel i , f(xi) repre-

sents the reconstructed attenuation coe�cients at voxel i, N is total number of voxels

of the image. A small value of RMSE indicates small di�erence between the two images

and vice versa.

• Correlation coe�cient (CC)

The second metric is correlation coe�cient (CC) which measures the degree to

which the two images are associated. The CC metric is de�ned as follows

CC =
Cov(f̂(x), f(x))

σf̂(x)σf(x)
(16)

where Cov(f̂(x), f(x)) is the covariance of the reference and reconstructed images,

σf̂(x) is the standard deviation of the reference image, σf(x) is the standard deviation of

the reconstructed image. The value of CC is between -1 and 1 where 1 is the total

positive linear correlation, 0 is no linear correlation and -1 is total negative linear

correlation.

4.2. Sensitivity analysis of parameters

This section analyses a sensitivity of all the parameters required for 4 reconstruction

algorithms: ASD-POCS, AwASD-POCS, PCSD and AwPCSD. Each parameter is

analysed separately across all the algorithms. The RMSE and CC values calculated from

�nal estimated images from each value of parameter are plotted to see the performance

of 4 algorithms in respond to changing of parameters' values.

The total number of parameters is di�erent among the 4 algorithms in this study.

The table 1 shows the set of initial parameters for each algorithm that is used as a

starting point to analyse the sensitivity of the �rst parameter, ε.
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Table 1: A set of initial parameters for the sensitivity analysis

Algorithms ng α αred β βred rmax δ

ASD-POCS 25 0.002 0.95 1 0.98 0.94 N/A

AwASD-POCS 25 0.002 0.95 1 0.98 0.94 0.001

PCSD 10 N/A N/A 1 0.98 N/A N/A

AwPCSD 10 N/A N/A 1 0.98 N/A 0.001

According to the above table, the ASD-POCS algorithm which is used as a reference

algorithm requires 7 parameters including ε. The AwASD-POCS requires one more pa-

rameter from ASD-POCS which is δ as it implements the adaptive-weighted TV norm,

making AwASD-POCS the algorithm that requires highest number of parameter among

the 4 algorithms. The PCSD and AwPCSD algorithms require three less parameters

than ASD-POCS and AwASD-POCS algorithms including α, αred and rmax, making

PCSD the algorithm that requires the least number of parameters among all 4 algo-

rithms.

Data-inconsistency-tolerance parameter (ε) The �rst parameter to be analysed is

ε. This parameter is required by all 4 algorithms and signi�cant to the �nal reconstructed

image as it involves in stopping criterion of equation 13.

To begin the sensitivity analysis, the other parameters are set to their initial settings

while ε values are varied from 0 to 105. The RMSE and CC values are calculated using

the reconstructed image obtained from each ε value and plotted as shown in �gure 3.

(a) RMSE plots from varying ε (b) CC plots from varying ε

Figure 3: RMSE and CC plots across di�erent ε values

Considering the pair of PCSD and AwPCSD algorithms in �gure 3a, the RMSE

values of reconstructed images from PCSD are very high when ε are in the low values
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range below 40 which result in a poor quality image as shown in the second row of �gure

4 when ε = 0. This is because the auto-selecting of steepest-descent step-size of PCSD

leads to sometimes wrong values and unpredictable stopping. However, when looking

at the same range of ε for AwPCSD, it performs signi�cantly better than PCSD with

only the adaptive-weighted function added on to PCSD algorithm.

Now turning to the pair of ASD-POCS and AwASD-POCS algorithms. At the low

range of ε values, both algorithms perform relatively well with slightly lower RMSE

values for AwASD-POCS. This can be seen in the �gure 4 for ε = 0 and 40 that the

adaptive-weighted function of AwASD-POCS can recover small details of the object

better than ASD-POCS algorithm. When the ε is larger, the RMSE of ASD-POCS

become larger and the quality of image deteriorates. In case of AwASD-POCS, the

algorithm behaves di�erently. The RMSEs of reconstructed images from large ε are

lower than those of the small ε. This is analysed further and found that all the iterations

from AwASD-POCS in this particular study are ceased solely because the β stopping

criteria is met, following equation 14. It means that the behaviour being observed here

for AwASD-POCS is not thoroughly the e�ect of varying just the values of ε, as the

stopping criteria for the L2 norm error in equation 13 is not met. However, the study

of correlation between a group of parameters would be complicated and is beyond the

scope of this work.

Comparing between the two pairs of adaptive-weighted and non-adaptive-weighted

algorithms, we can see that the adaptive-weighted function makes the algorithms more

robust and more stable to the parameter changes. This can be seen from the RMSE

values of the AwASD-POCS and AwPCSD algorithms which are lower than those of

ASD-POCS and PCSD algorithms over the same range of ε.

The visual inspection also follows this conclusion as can be seen from �gure 4.

The AwPCSD and AwASD-POCS outperformed the other 2 algorithms in all cases

especially when the ε is in the low range i.e. when ε = 0 and 40. As the ε increases, the

performance of AwASD-POCS becomes more stable than AwPCSD and remains robust

over the entire range of ε values under study.

It is very di�cult to identify any speci�c value as the most appropriate ε for one

particular data set as the ε is data-speci�c. However, from the trials and errors, we

can suggest that using the L2 norm of the reconstructed image obtained from Ordered-

subset simultaneous algebraic reconstruction techniques (OS-SART) algorithm [27] as

ε gives an acceptable result. However, one has to bear in mind that specifying the ε is

a matter of image quality versus computational time. Choosing too small ε might take

longer computational time to achieve the desired value and also does not guarantee the

best image for some of the algorithms. This can be seen from �gure 3a that stopping

criterion of reconstructed images with ε lower than 20 is from reaching the maximum

number of iterations which takes long computational time. Moreover, in case of PCSD

and AwASD-POCS algorithms, the reconstructed images from larger ε even have better

quality with smaller RMSE values.
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Figure 4: Reconstructed images from 4 algorithms using di�erent ε values

TV sub-iteration number (ng) The second parameter is TV sub-iteration number.

This parameter is varied from 1 to 200. Other parameters are still the same as initial

settings apart from ε which are chosen to be the optimal values for each algorithm

obtained from the previous section.

According to the RMSE plot in �gure 5a, two algorithms which achieve the lowest

RMSE values are AwASD-POCS and AwPCSD.

Firstly, we consider the pair of PCSD and AwPCSD algorithms. For PCSD

algorithm , the reconstructed images from low number of TV sub-iteration are still

acceptable even though the images are not very clear as seen from the second row of

�gure 6. When the TV sub-iteration number increases, the RMSE values suddenly go up

with relatively bad reconstructed images when ng > 10. This is to show that the strange

performance of PCSD algorithm arises very easily, following on from sensitivity of ε to

TV sub-iteration number in this case. However, with the adaptive-weighted function
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added on to PCSD algorithm, the AwPCSD algorithm can signi�cantly improve the

quality of reconstructed images as the TV sub-iteration number increases. The lowest

RMSE value of the reconstructed images from AwPCSD is when ng = 6. After that,

the reconstructed images get more blurred with the increasing TV sub-iteration number

as seen in the �rst row of �gure 6.

(a) RMSE plots from varying ng (b) CC plots from varying ng

Figure 5: RMSE and CC plots across di�erent ng values

Analysing the pair of ASD-POCS and AwASD-POCS algorithms, both algorithms

improve the quality of reconstructed images as the TV sub-iteration number increases

until they reach their lowest RMSE points which di�er in both algorithms. For the ASD-

POCS, the algorithm hits the lowest RMSE point when ng is approximately between

20 to 50. The AwASD-POCS algorithm is still able to bring down the RMSE further

from the point of ng approximately equals to 6 until it reaches the lowest point when

ng is between 30 to 100.

The two adaptive-weighted algorithms, AwASD-POCS and AwPCSD, can bring

down the RMSE of the �nal reconstructed images to approximately the same level.

According to �gure 5a, the AwPCSD requires less TV sub-iteration number than

AwASD-POCS to reach the optimal reconstructed image which can save signi�cant

amount of computational time. This is because the AwPCSD algorithm takes into

account the current image error when choosing the TV steepest descent step-size for

the next iteration. However, the AwPCSD is more sensitive to the changing values TV

sub-iteration number as the quality of �nal reconstructed images deteriorate quickly

with the increasing ng as shown in the �gure 6.

To sum up, the adaptive-weighted algorithms outperformed the non-adaptive-

weighted algorithms over the range of TV sub-iteration numbers under study.

Comparing between AwPCSD and AwASD-POCS, although the best reconstructed

images from these 2 algorithms achieve the same level of RMSE, AwPCSD algorithm

requires less number of ng which save computational time. However, it is important to
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specify a proper TV sub-iteration number when implementing AwPCSD algorithm as

this algorithm is very sensitive to values change.
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Figure 6: Reconstructed images from 4 algorithms with di�erent ng values

TV hyperparameter (α) The next parameter to be studied is α. This parameter is

only required by ASD-POCS and AwASD-POCS algorithms. In these 2 algorithms, the

α is used to specify the steepest-descent step-size in the �rst iteration. As the iteration

goes on, the TV step-size will be reduced by the amount of αred if the condition which

we brie�y discussed in the part of data-inconsistency-tolerance ε parameter section is

met.

The α parameter is varied from 0, 2× 10−8, 2× 10−5, 2× 10−4, 2× 10−3, 0.1, 1, 5, 10

to 20. Other parameters are still the same as initial settings apart from ε and ng which

are set as found in the previous sections. The RMSE and CC plots of �nal reconstructed

images using di�erent α values over the range of study are shown in �gure 7.
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(a) RMSE plots from varying α (b) CC plots from varying α

Figure 7: RMSE and CC plots across di�erent α values

From the RMSE plots, both algorithms have a minima in a very speci�c value of α

i.e. when α = 0.002. The reconstructed images get increasingly deteriorated the further

away the α is from that value. This can be seen from the reconstructed images in

�gure 8. Again, the AwASD-POCS algorithm has better performance than ASD-POCS

algorithm with the clearer reconstructed image in the same value of α.
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Figure 8: Reconstructed images from ASD-POCS and AwASD-POCS with di�erent α

values

Therefore, it is of the utmost importance to specify a proper value of α for the
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ASD-POCS and AwASD-POCS algorithms to work properly. With this knowledge, we

can say that this is a great advantage of PCSD and AwPCSD algorithms that do not

require this α parameter

Reduction factor of TV hyperparameter (αred) In the same way as α, the αred

parameter is only required by two algorithms, ASD-POCS and AwASD-POCS. This

parameter is involved in the condition which has been discussed brie�y earlier. For the

next iteration, the gradient-descent step-size is reduced by αred only when the ratio of

change due to TV minimization to change due to SART is greater than rmax and the

L2 error of image in the current iteration is greater than ε simultaneously.

The range of αred being studied here is varied from 0.1 to 1. The RMSE and CC

plots of �nal reconstructed images using di�erent αred values over this range are shown

in �gure 9.

(a) RMSE plots from varying αred (b) CC plots from varying αred

Figure 9: RMSE and CC plots across di�erent αred values

Considering RMSE and CC plots, the reconstructed images obtained from AwASD-

POCS with di�erent αred achieve lower RMSE values and higher CC values than that

of the ASD-POCS in almost all cases. Again, this is also showing that the adaptive-

weighted function can signi�cantly improve the quality of the reconstructed images.
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Figure 10: Reconstructed images from ASD-POCS and AwASD-POCS with di�erent

αred values

From this study, we can see that the αred parameter is a sensitive parameter

especially when increasing from 0.9 to 1. It is a crucial parameter to set to a proper

value. For both algorithms, reduction of α is crucial. Therefore, the αred should not be

set to 1 as the quality of image is deteriorated hugely. The suggested value of αred for

the implementation of ASD-POCS and AwASD-POCS is any value close to 1 for the

best results.

As this αred parameter is sensitive to value change and requires a proper setting, it

is another advantage of PCSD and AwPCSD algorithms that these 2 algorithms do not

require this parameter for their implementations.

Relaxation parameter (β) This is the parameter that de�nes how strong the e�ect

of SART function have to the current iteration of the reconstruction. Many existing

works have studied and suggested several ways to choose the optimal value for relaxation

parameter [28].

In this study, the relaxation parameter is varied from 0 to 1. According to the

RMSE plot in �gure 11a, when β = 0 , all 4 algorithms have high level of RMSE

which is expected as SART operation is suppressed. As β increases to 1, the quality of

reconstructed images is gradually improved with lower RMSE for all algorithms apart

from PCSD where the RMSE values increase in the middle part of the range. Although

the RMSE of reconstructed images with β closer to 1 are slightly di�erent, the quality

of images is not that signi�cantly improved. Thus, the recommended setting for β
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parameter is 1.

(a) RMSE plots from di�erent β (b) CC plots from di�erent β

Figure 11: RMSE and CC plots across di�erent β values

Reduction factor of relaxation parameter (βred) This parameter is varied from

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98, 0.99 to 1. The value of βred = 1 means

that the same amount of e�ect from SART operation is kept constant as the iteration

goes on. Decreasing βred from 1 to 0.1 re�ects in less and less amount of relaxation

parameter β for the next iteration.

(a) RMSE plots from di�erent βred (b) CC plots from di�erent βred

Figure 12: RMSE and CC plots across di�erent βred values
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Figure 13: Reconstructed images with di�erent βred values

From the RMSE and CC plots in �gure 12, we can see that values of RMSE are the

lowest when βred are close to 1. The quality of reconstructed images quickly deteriorate

as the βred get smaller upto 0.1 as can be seen from the cross-sectional slices of the

reconstructed images in �gure 13.

From this study, the suggested range of βred is value larger than 0.98 but smaller

than 1 to ensure the e�ect of SART operation is reduced for the next iteration but not

excessive.

Maximum ratio of change by TV minimization to change by SART (rmax)

The rmax parameter is required by two algorithms: ASD-POCS and AwASD-POCS. This

parameter is also involved in the condition for TV steepest-descent step-size adaptation

for next iteration. If the ratio of the change in the image due to steepest descent to the

change in the image due to POCS is greater than rmax , the gradient-descent step-size is

reduced by αred. In case that the current image satis�es the data-inconsistency-tolerance

condition, the gradient-descent step-size is then no longer reduced.

From this condition, we can see that the reconstructed images obtained from varying
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rmax also depends on the values of ε and αred. However, the study of combination of

parameter would be too complex to evaluate.

The rmax in this study is varied from 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.94,

1, 2, 3, 4 to 5. The RMSE and CC plots of the reconstructed images obtained from

varying rmax in this range is shown in �gure 14.

(a) RMSE plots from di�erent rmax
(b) CC plots from di�erent rmax

Figure 14: RMSE and CC plots across di�erent rmax values

According to �gure 14, the best results for both algorithms are from rmax = 1

which means that the algorithms best perform when the change in the image is balanced

between the two operations. In other words, the ratio of the change in the image due

to steepest descent should be equal to the change in the image due to SART

As in the previous sections, the introduction of the adaptive-weighted TV norm

results in overall a better image.

Scale factor for adaptive-weight TV norm (δ) This parameter is only required by

AwASD-POCS and AwPCSD algorithms that implement adaptive-weighted TV norm

as expressed in equation 6. The δ parameter is a scale factor controlling the amount of

smoothing being applied to the image voxel at edges relative to non-edge region during

each iteration.

Figure 15 shows the weight function plot from the weight equations 7-9. The

range of image gradient in X axis is speci�ed from 0 to 0.01 with six values of δ

: 0.0005, 0.001, 0.003, 0.005, 0.01, 0.1. The RMSE and CC values obtained from the

reconstructed images of di�erent values of δ are plotted in �gure 16.
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Figure 15: Weight equation function

(a) RMSE plots from di�erent δ (b) CC plots from di�erent δ

Figure 16: RMSE and CC plots across di�erent δ values

According to �gure 15, the weight equation with a small value of δ speci�es low

weights to almost every pixels. This means that the algorithm preserves most of the

gradient by letting TV minimization have less in�uence to its implementation . Hence,

the reconstructed images will be on the noisy side as can be seen from the �gure 17

especially the case of AwPCSD with δ = 0.0005.

On the other hand, when δ is large, the function speci�es high weights to almost

every gradient size of image. This allows TV minimization to have more in�uence during

the implementation of the algorithm results in the blurred side of the image.

Setting values of δ to these 2 extreme cases makes the algorithm unable to

di�erentiate between the noise which normally have small gradient and the edges which

have larger gradient. The appropriate setting of δ is signi�cant to the adaptive-weighted

algorithms as it will allow TV minimization to have more in�uence to remove noise and

less in�uence to preserve edges.

A proper choice of δ is speci�c to each data set. The suggested way to choose δ is by

setting it to approximately 90th percentile of histogram of the reconstructed image from
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OS-SART algorithm. The weight equation function can be plotted using this value of

δ to see how much in�uence of TV minimization is preferred for di�erent level of image

gradient.Minor alternation might be needed around this value to ensure that the weight

equation can preserve the gradient of the edges while removing the potential noise of

the image.
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Figure 17: Reconstructed images from di�erent δ values

After the sensitivity analysis of all the parameters has been implemented, �gure 18

shows the cross-sectional slices of reconstructed images from the best possible setting of

parameters obtained from the analysis. It is clearly seen that the AwPCSD algorithm

can preserve the edges of reconstructed image better than other 3 algorithms.

ASD-POCS AwASD-POCS PCSD AwPCSD

Figure 18: The cross-sectional slices of reconstructed images of 4 algorithms from the

best set of parameters.
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4.3. Further analysis of the reconstructed images

In order to analyse the edge preserving property of the experimental results, the image

pro�les along the horizontal and vertical lines as shown in the �gure 19 are plotted.

Figure 19: The image pro�les are plotted along the horizontal and vertical lines.

The pro�les of reconstructed images from the 4 algorithms are plotted in �gure

20 with reference to the Thorax phantom. This is to compare the ability of the

reconstruction algorithms to reconstruct the small features as well as preserving the

edges of the phantom.

(a) The image pro�les along the horizontal line. (b) Partial pro�les of the selected ROI.

(c) The image pro�les along the vertical line. (d) Partial pro�les of the selected ROI.

Figure 20: 1D pro�les along the horizontal line (81st row of the reconstructed images)

and the vertical line (71st column of the reconstructed images.)

The 1D pro�les of the true phantom are plotted in solid black line for reference.
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Region of interest (ROI) is selected from 1D pro�les and marked by the red rectangles

in the left column of the �gure 20. The pro�les of these selected pixels are plotted in

the right column to observe the di�erences clearer. It can be obviously seen that the

pro�les of the adaptive-weighted algorithms i.e. AwASD-POCS and AwPCSD show

better alignment with the true phantom than those of the ASD-POCS and PCSD

algorithms.

Comparing between the two adaptive-weighted algorithms: AwASD-POCS and

AwPCSD, although the di�erences between these two methods are not clearly visible,the

reconstructed image from AwPCSD shows a slightly better alignment with the true

phantom than that of the AwASD-POCS algorithm.

5. Experimental evaluation

SophiaBeads dataset

Apart from the simulated data set, the proposed algorithm is also tested with the

real microCT datasets, The SophiaBeads Datasets [31]. The sample is a plastic tube

with a diameter of 25 mm, �lled with uniform Soda-Lime Glass (SiO2-Na2O) beads of

diameters 2.5 mm (with standard deviation 0.1 mm). The dataset is loaded using the

scripts in the project [32]. The source-to-detector distance is 1.007 × 103 mm and the

source-to-object distance is 80.6392 mm. The detector size is 1564 x 1564 pixels and the

image size is 1564 x 1564 x 200 voxels. The number of projections used to reconstruct

the image in this experiment is 64 projections.

The gold standard image used as a reference in this study is reconstructed by FDK

algorithm with 2048 projections. The proposed algorithm, AwPCSD, is tested with this

dataset as well as other 3 TV-based regularization algorithms and FDK for a comparison.

The set of parameters used for each TV-based algorithm is derived as suggested in the

results section. The detail of each parameter is explained in table 2

Table 2: The optimum set of parameters used for SophiaBeads dataset

Algorithms ε ng α αred β βred rmax δ

ASD-POCS 1.5e+04 25 0.002 0.9 1 0.99 1 N/A

AwASD-

POCS
1.5e+04 45 0.002 0.9 1 0.99 1 0.1129

PCSD 1.5e+04 6 N/A N/A 1 0.99 N/A N/A

AwPCSD 1.5e+04 6 N/A N/A 1 0.99 N/A 0.0922

The optimum set of parameters used in this SophiaBeads dataset have some

similarities and di�erences compared to the one used for Thorax phantom dataset.
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The parameters such as TV sub-iteration (ng), TV hyperparameter (α), Reduction

factor of TV hyperparameter (αred) , Relaxation parameter (β), Reduction factor of

relaxation parameter (βred) and Maximum ratio of change by TV minimization to change

by SART (rmax) are similar, whereas data-inconsistency-tolerance (ε) and Scale factor

for adaptive-weight TV norm (δ) are di�erent. The latter two parameters are de�ned

speci�cally for each dataset based on the method suggested in the paper with some small

modi�cation.A cross-sectional slice of the reconstructed images from each algorithm is

shown in �gure 21.

Reference image ASD-POCS AwASD-POCS

FDK PCSD AwPCSD

Figure 21: The cross-sectional slices of reconstructed images from SophiaBeads datasets.

The FDK algorithm performs rather badly in this limited data scenario. The

reconstructed images from TV-based reconstruction algorithms have less artefacts, but

look very similar from one algorithm to another. To observe the di�erence of each

algorithm better, the image pro�les along the horizontal line as shown in �gure 22a are

plotted to compare the edge preserving property. The horizontal image pro�le along

the 146th row is plotted in �gure 22b with the ROI between 305th to 325th column as

shown in �gure 22c.
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(a) Horizontal line through the 146th row of the image

(b) The image pro�les along the horizontal line (c) Partial pro�les of the selected ROI

Figure 22: The reconstructed images pro�les

Considering the 1D pro�le plot of the ROI in �gure 22c, the reconstructed images

from 4 algorithms have very similar image pro�les. However, the result from the

proposed AwPCSD algorithm is closer to the reference image in some parts, especially

when the pixel intensity is lowering down approximately near the pixel number 308-309.

This shows that the proposed AwPCSD algorithm performs relatively similar, if not

better than the other 3 existing algorithms with less critical parameter to tune.

6. Discussion and conclusion

In this study, the parameter selection of TV-based regularization algorithms is

investigated. The sensitivity that the reconstruction image has to value change on

each parameter is analysed, in order to know which ones to prioritize when tuning the

algorithms to minimize or completely avoid rerunning the reconstruction with di�erent

parameters.

In addition, the new adaptive-weighted projection-controlled steepest descent

(AwPCSD) algorithm which implements the edge-preserving function for CBCT

reconstruction with limited data is proposed. The robustness of new algorithm is tested

in comparison with other 3 existing algorithms: ASD-POCS, AwASD-POCS and PCSD.

The sensitivity analysis is evaluated experimentally by two image quality metrics: Root

mean squared error (RMSE) and Correlation coe�cient (CC). The edge preserving

property of the adaptive-weighted function is also analysed using the one-dimensional

pro�les plot along the horizontal and vertical lines of the reconstructed images from the
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TV-based algorithms in comparison to the reference image.

The suggested ways of selecting the values for each parameter are presented in detail

in the results section. It is clearly seen from the results that parameter choice is crucial

for the implementation of TV-based regularization algorithms,especially for the following

three parameters: TV hyperparameter (α), Reduction factor of TV hyperparameter

(αred) and Maximum ratio of change by TV minimization to change by SART (rmax).

These parameters are the most sensitive ones and require careful selection of values.

Setting these parameters to certain values can signi�cantly deteriorate the quality of

�nal reconstructed image.

With this knowledge, it is a great advantage of PCSD algorithm as well as the

proposed AwPCSD algorithm because they do not require the mentioned parameters,

making them a lot easier to implement and less prone to errors compared to the ASD-

POCS algorithm.

However, the performance of PCSD algorithm is unreliable at times as it performs

strangely in response to changes of some parameters such as data-inconsistency-tolerance

(ε), TV sub-iteration number (ng) and Relaxation parameter (β). In these scenarios,

the proposed AwPCSD algorithm shows signi�cant robustness over PCSD algorithm by

preserving edges of the reconstructed image better.

The minimization of adaptive-weighted TV norm shows great performance in

preserving the edges of the reconstructed algorithms for both two adaptive-weighted

algorithms: AwASD-POCS and AwPCSD. This edge-preserving function make the

adaptive-weighted algorithms a lot more robust when compared to other two non-

adaptive-weighted algorithms, especially for the pair of PCSD and AwPCSD algorithms.

There are limitations of this work regarding the sensitivity analysis of combination

of parameters. For some parameters such as the reduction factor of TV hyperparameter

(αred), the gradient-descent step-size for the next iteration will only be reduced by αred

when the ratio of change due to TV minimization to change due to SART is greater than

rmax and the L2 error of image in the current iteration is greater than ε simultaneously.

This means that all three parameters can a�ect the results of sensitivity analysis of αred

However, the sensitivity analysis is done by varying values of one parameter at a time as

the study of combination of parameters would be complicated to evaluate and is beyond

the scope of this work.

The proposed AwPCSD algorithm has shown signi�cant robustness compared to

other three existing algorithms: ASD-POCS, AwASD-POCS and PCSD. This AwPCSD

algorithm is able to preserve the edges of the reconstructed images better with less

sensitive parameters to tune. This algorithm will be made available as part of the

existing algorithms in TIGRE toolbox.
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