

Citation for published version: Field, DJ 2017, 'Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis', Journal of Human Evolution. https://doi.org/10.1016/j.jhevol.2017.08.007

DOI: 10.1016/j.jhevol.2017.08.007

Publication date: 2017

Document Version Peer reviewed version

Link to publication

Publisher Rights CC BY-NC-ND

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya:
2	implications for the ecology of Australopithecus anamensis
3	
4	Daniel J. Field ^{1,2}
5	
6	¹ Milner Centre for Evolution, Department of Biology and Biochemistry, University of
7	Bath, Claverton Down, Bath, BA2 7AY, UK
8	² Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New
9	Haven, CT 06511, USA
10	email: d.j.field@bath.ac.uk
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24 ABSTRACT

25 Fossil bird remains from the Pliocene hominin-bearing locality of Kanapoi comprise 26 >100 elements representing at least 10 avian families, including previously undescribed 27 elements referred to the 'giant' Pliocene marabou stork *Leptoptilos* cf. *falconeri*. The 28 taxonomic composition of the Kanapoi fossil avifauna reveals an assemblage with a 29 substantial aquatic component, corroborating geological evidence of this locality's close 30 proximity to a large, slow-moving body of water. Both the taxonomic composition and 31 relative abundance of avian higher-level clades at Kanapoi stand in stark contrast to the 32 avifauna from the slightly older (~4.4 Ma vs. 4.2 Ma) hominin-bearing Lower Aramis 33 Member of Ethiopia, which has been interpreted as representing a mesic woodland 34 paleoenvironment far from water. In general, the taxonomic composition of the Kanapoi 35 avifauna resembles that from the Miocene hominoid-bearing locality of Lothagam 36 (though Kanapoi is more diverse), and the aquatic character of the Kanapoi avifauna 37 supports the idea that the environmental conditions experienced by *Australopithecus* 38 anamensis at Kanapoi were markedly different from those experienced by Ardipithecus 39 *ramidus* at Aramis. Additionally, the relative abundance of marabou stork (*Leptoptilos*) 40 remains at Kanapoi may suggest a longstanding commensal relationship between total-41 clade humans and facultatively scavenging marabous. Additional avian remains from 42 nearby fossil localities (e.g., the Nachukui Formation), ranging in age from 3.26-0.8 Ma, 43 reveal the long-term persistence of an aquatic avifauna in the region.

44

45 Keywords: Paleornithology, Paleoecology, Australopithecus anamensis, Marabou,

46 Pliocene, Fossil birds

47 1. Introduction

48 Deciphering the environmental conditions experienced by Pliocene hominins in 49 East Africa holds important implications for interpreting the lifestyle and selection 50 pressures influencing early human evolution (Olson and Rasmussen, 1986). Collecting 51 efforts over the last ~25 years in the Kenyan Pliocene locality of Kanapoi (4.2 Ma) have 52 revealed a diverse vertebrate fauna comprising fishes, mammals, amphibians, 53 lepidosaurs, turtles, crocodilians, and birds (Harris et al., 2003). However, despite the 54 promising potential of fossil birds as paleoenvironmental indicators (Olson and 55 Rasmussen, 1986; Serjeantson, 2009; Finlayson et al., 2011), to date only 10 total avian 56 specimens have been noted from this important locality, and neither these remains nor 57 their value as environmental proxies have been treated in detail (Harris et al., 2003). Of 58 these previously reported specimens, seven comprise collections of ostrich eggshell 59 fragments (Struthionidae), along with isolated bones from one darter (Anhingidae), one 60 stork (Ciconiidae: *Mycteria*), and a putative duck (Anatidae). 61 Here, 100 avian specimens from Kanapoi were evaluated, along with 23 62 additional specimens from more recent deposits located nearby, ranging in age from 63 ~3.26-0.8 Ma. These include specimens collected during the 1990s via surface collection 64 and screen washing, and material collected during the 2000s via surface collection. The 65 entire collection comprises skeletal remains from a minimum of 12 extant avian families 66 (with at least 9 represented from Kanapoi alone), in addition to numerous records of 67 ostrich eggshell. The relatively abundant avian remains from Kanapoi are notable, as the 68 intrinsic fragility and small size of bird bones renders them absent or rare at most East 69 African hominin-bearing assemblages (Louchart et al., 2009). This material enables

70 comparison of the avifaunal composition of Kanapoi with that of the slightly older 71 hominin-bearing locality at Aramis, Ethiopia (Louchart et al., 2009). Although the 72 tetrapod assemblage from Kanapoi was initially interpreted as broadly similar to that 73 from Aramis (Harris et al., 2003), more recent work has indicated divergent ecological 74 settings (Louchart et al., 2009). However, no comparisons between the Aramis and 75 Kanapoi avifaunas have yet been conducted, given the scarce attention avian remains 76 from Kanapoi have thus far received. The present study reveals that both the taxonomic 77 composition and ecological affinities of the Kanapoi avifauna differ markedly from those 78 of Aramis, corroborating other ecological proxies suggesting divergent ecological 79 settings for Australopithecus anamensis and Ardipithecus ramidus (see other 80 contributions in this special issue). 81 The vertebrate fossils from Kanapoi predominantly derive from vertic flood-plain 82 paleosols of the Kerio River, overlain by claystones deposited within the early Pliocene 83 Lonyumun Lake (Harris et al., 2003). The avian fossils collected from this locality reflect 84 this general ecological setting, and represent a considerably more aquatic avifauna than 85 that reported for Aramis (Louchart et al., 2009). These differences underscore the utility 86 of fossil birds as sensitive environmental indicators that may help shed light on the 87 environmental conditions experienced by early hominins in East Africa (Olson and 88 Rasmussen, 1986).

- 89
- 90 2. Materials and methods

91 2.1 Institutional Abbreviations

92 Institutional abbreviations used here are: KNM-KP: Kenya National Museum, Kanapoi

93	Formation; KNM-WT: Kenya National Museum, Nachukui Formation; OB: Kenya
94	National Museum, osteology collection
95	
96	A complete list of the fossil material examined is provided in the Supplementary Online
97	Material (SOM) Tables S1 and S2.
98	
99	2.2. Fossil eggshell
100	
101	Nine specimens comprising multiple eggshell fragments from Kanapoi, discussed by
102	Harris et al. (2003); nine from more recent localities (SOM Table S1 and S2). All exhibit
103	the characteristic 'struthious' pore structure of modern Struthio (Sauer, 1972; Harris et
104	al., 2003), and are similar to Struthio eggshell reported from Lothagam (Harris and
105	Leakey, 2003; Harris et al., 2003).
106	
107	2.3. Fossil skeletal remains
108	
109	One hundred avian specimens from Kanapoi and 23 from more recent nearby localities
110	(principally the Nachukui Formation; see SOM Table S2) were evaluated. These
111	specimens were acquired both by surface collection and by screen washing. All material
112	examined that was collected throughout the 2000s was surface-collected.
113	
114	2.4. Selected extant comparative material:
115	

116 Poicephalus meyeri OB 274; Leptoptilos cruminiferus OB 35; Mycteria ibis OB 49, 117 Pelecanus onocrotalus OB 2334; Alopochen aegyptiacus OB 1637; Pterocles exustus OB 118 797; Recurvirostra avosetta OB 1517; Alcedo cristata OB 1117; Turdus abyssinicus OB 119 1693; Trigonoceps occipitalis OB 957; Anhinga rufa OB 1411; Apus horus OB 333 120 121 2.5. Ecological analysis 122 123 Pliocene avian skeletal remains from Kanapoi (n=54) and the more recent localities (n=7) 124 were diagnosed to the Family level (Passeriformes were diagnosed to Order), and 125 combined with published data from Aramis (n=263) (Louchart et al., 2009). Taxa were

126 divided among three ecological categories according to their general lifestyle habits (Del

127 Hoyo et al., 1992): "aquatic" (i.e., Anatidae, Alcedinidae, Anhingidae, Ciconiidae,

128 Charadriiformes, Pelecanidae), "terrestrial" (i.e., Accipitridae, Columbidae/Pteroclididae,

129 Passeriformes, Psittacidae, Strigidae), and "aerial insectivore" (Apodidae). Results are

130 depicted as pie charts in Fig. 1. Ecological data from Aramis were extracted from

131 Louchart et al. (2009). Data from the more recent localities in the West Turkana region

- 132 were combined, although these data should be treated with caution as they represent a
- 133 wide temporal range, from 3.26 Ma in the case of Lomekwi to 0.8 Ma in the case of
- 134 Todenyang (Brown et al., 2001; McDougall and Brown, 2008). Age estimates for these
- additional localities are provided in the SOM Table S2.

136

137 **3. Results**

138 *3.1. Ecological analysis*

140	The most frequently represented avian ecologies differ markedly between the skeletal
141	remains from Aramis and the Kenyan localities (Fig. 3). Aramis is dominated by species
142	exhibiting terrestrial/arboreal ecologies (95%; largely parrots, game birds, owls,
143	songbirds, pigeons, and diurnal raptors; Louchart et al., 2009). By contrast, terrestrial
144	birds comprise a much smaller percentage of the avifaunas of both Kanapoi (46%), and
145	the more recent localities (29%). Whereas aquatic taxa and aerial insectivores comprise
146	only a minor component of the Aramis avifauna (4% and <1%, respectively), these
147	groups are comparatively dominant in the localities from the Turkana region, where they
148	combine to represent 54% of the specimens from Kanapoi (30% aquatic and 24% aerial
149	insectivore), and 71% from the more recent localities (all aquatic).
150	
151	3.2. Taxonomic comparisons
152	Much like the results of the ecological comparisons (Fig. 4), the taxonomic composition
153	of the Aramis avifauna differs substantially from that of Kanapoi and the more recent
154	localities (Fig. 2). The most abundantly represented groups at Aramis, such as parrots
155	(Psittacidae; 36% of the Aramis skeletal remains), land fowl (Galliformes; 29%), and

156 barn owls (Tytonidae; 8%), are virtually absent from the remains from Kanapoi and the

157 more recent localities, which together yield only a single parrot bone (KNM-KP 58729,

158 likely referable to Poicephalus, not Agapornis, which is present at Aramis), and no

159 galliforms or tytonids. The most abundantly represented non-passeriform groups at

160 Kanapoi and the more recent localities are swifts (Apodidae; 24% of the Kanapoi

161 avifauna), storks (Ciconiidae; 17% of the Kanapoi avifauna and 29% of the more recent

162	localities), darters (Anhingidae; 6% of the Kanapoi avifauna), and vultures (Accipitridae;
163	29% of the more recent localities).
164	
165	3.3. Fossil material examined
166	Order Struthioniformes
167	Family Struthionidae
168	Genus Struthio
169	
170	Material Examined: KNM-KP 36599, KNM-KP 30262, KNM-KP 30490, KNM-KP
171	32522, KNM-KP 30154, KNM-KP 29300, KNM-KP 30223, KNM-KP 30221, KNM-KP
172	30154, KNM-WT 14283B, KNM-WT 14278, KNM-WT 14292, KNM-WT 14279,
173	KNM-WT 464, KNM-WT 14235, KNM-WT 479, KNM-WT 424, KNM-WT 3499
174	
175	Locality and Horizon:
176	KNM-KP 30490: Kanapoi (close to Wambua's hom, below sand in silt/clay)
177	KNM-KP 32522: Kanapoi (lower delta sands, below lake beds)
178	KNM-KP 36599, KNM-KP 30262, KNM-KP 29300, KNM-KP 30223, KNM-KP 30221,
179	KNM-KP 30154: Kanapoi
180	KNM-KP 29300: Kanapoi (below tuff)
181	KNM-KP 30154: Kanapoi (below tuff)
182	KNM-WT 14283B: West Turkana (Kaitio, Detaic)
183	KNM-WT 14278: West Turkana (Kaitio, in gravels)
184	KNM-WT 14292: West Turkana (Kaitio, marginal lacustrine/deltaic)

- 185 KNM-WT 14279: West Turkana (Kaitio, North, in channel)
- 186 KNM-WT 464: West Turkana (Kalochoro, fluvial)
- 187 KNM-WT 14235: West Turkana (Lokapetemoe, Below the ?Nariokotome Tuff)
- 188 KNM-WT 479: West Turkana (Nachukui; fluvial)
- 189 KNM-WT 424: West Turkana (Nachukui; Nariokotome Member, deltaic, in gravels)
- 190 KNM-WT 3499: West Turkana (Nachukui, Nariokotome Member, lake margins)

192 Comparisons:

193 The following specimens were reported by Harris et al. (2003): KNM-KP 36599, KNM-

194 KP 30262, KNM-KP 30490, KNM-KP 32522, KNM-KP 29300, KNM-KP 30223, KNM-

195 KP 30221, while the following specimens, all consisting of broken *Struthio* eggshell, are

reported here for the first time: KNM-KP 30154, KNM-WT 14283B, KNM-WT 14278,

197 KNM-WT 14292, KNM-WT 14279, WT 464, KNM-WT 14235, KNM-WT 479, KNM-

198 WT 424, KNM-WT 3499. As discussed by Harris et al. (2003) and noted above, the

199 ostrich eggshell fragments exhibit the 'struthious' pore pattern diagnostic of extant

200 ostriches (Sauer, 1972). Additional, more detailed comparisons between these specimens

- and other *Struthio* eggshell described from the Neogene of Africa (e.g., Harrison and
- 202 Msuya, 2005) would be worthwhile, although such comparisons were not undertaken

203 here. Although *Struthio* eggshell is among the most commonly recovered avian fossils

from Kanapoi and the more recent Turkana localities, no skeletal material referable to

205 Struthio has yet been recovered. Numerous fossils recovered from these localities that

206 had been provisionally referred to *Struthio* are here recognized instead as belonging to

207 marabou storks (*Leptoptilos*).

208	
209	Order Suliformes
210	Family Anhingidae
211	Genus Anhinga
212	Figures: 1D, 1I
213	
214	Material examined: KNM-KP 53159, KNM-KP 39325, KNM-KP 31743, KNM-WT
215	14570
216	
217	Locality and horizon: KNM-KP 53159, KNM-KP 39325, KNM-KP 31743 are from
218	Kanapoi; KNM-WT 14570 is from West Turkana (NC II Photo R16/6)
219	
220	Comparisons: KNM-KP 53159: Well-preserved distal extremity of right tibiotarsus
221	(lacking spina fibulae and tuberculum retinacula m. fibularis), very fragmentary distal
222	right femur lacking the condylus lateralis, very fragmentary distal extremity of left ulna,
223	exhibiting many broken surfaces, and two other unidentified fragments. Distal extremity
224	of the tibiotarsus agrees in all respects with that of the extant African darter, Anhinga rufa
225	OB 1411, but the spina fibulae is not attached along the lateral side of the bone, giving
226	the fossil a superficially narrower appearance. The tibiotarsus is very slightly smaller
227	than extant A. rufa OB 1411; the morphology of these elements is otherwise
228	indistinguishable (Fig. 1I). The depressio epicondylaris lateralis and medialis are of
229	comparable depth, with depressio epicondylaris lateralis exhibiting a sharp ridge along its
230	external surface. The pons supratendinius is of the same relative width in both the fossil

231 and OB 1411, and is deflected slightly proximomedially. The shape of the sulcus 232 extensorius is similar in both the fossil and OB 1411; a fairly shallow depression extends 233 from the canalis extensorius towards the proximal end of the bone. In both the fossil and 234 OB 1411, a marked fossa exists on the lateral surface of the epicondylus medialis, and a 235 small pit on the cranial surface of the epicondylus lateralis is positioned in the same place 236 in both. The sulcus m. fibularis is positioned in the same area in both the fossil and OB 237 1411, and tuberculum retinaculi m. fibularis extends laterally to the same extent in both 238 (although this is somewhat obscured in OB 1411 as the spina fibulae is still attached). 239 Although very little of the femur is preserved, what is there compares closely with A. rufa 240 OB 1411. Only the condylus medialis is preserved, but the preserved surface is similar in 241 both the fossil and OB 1411, with a lateral deflection at its cranial terminus. A small 242 nerve foramen enters the caudal surface of the intercondylar space, just above the cranial 243 extent of the articular condyles. The femora exhibit a very shallow fossa poplitea. The 244 tuberculum m. gastroc. lateralis is short, and positioned in the same area of both. On the 245 cranial side, although the sulcus intercondylaris of the fossil is not preserved, the sulcus 246 patellaris of both is extremely shallow. A crest leading from the cranial surface of the 247 medial condyle is a marked ridge in both the fossil and OB 1411. The fossil ulna is very 248 poorly preserved with numerous broken surfaces, but its general size compares well with 249 extant A. rufa OB 1411.

250

251 KNM-KP 39325: Left humerus. Nearly complete and three dimensionally preserved,

252 missing only the distalmost extremity of the bone. The fossil is indistinguishable from

253 extant A. rufa OB 1411 (Fig. 1D).

255	KNM-KP 31743: Right distal humerus. The fossil compares favorably with the nearly
256	complete fossil humerus KNM-KP 39325; however, the latter specimen is missing the
257	distal-most portion of the bone. Where they can be compared, the tuberculum
258	supracondylare ventrale of KNM-KP 31743 is slightly less pronounced, but this may be
259	the product of weathering of the bone surface. The elements are practically identical in
260	size.
261	
262	KNM-WT 14570: Omal extremity of right coracoid, virtually indistinguishable from that
263	of A. rufa OB 1411 in all respects. The bone surface is slightly weathered, making the
264	articular surfaces more difficult to discern. The facies articularis humeralis, cotyla
265	scapularis, and processus procoracoideus are preserved in their entirety. The cranial-most
266	extent of the processus acrocoracoideus is missing; however, a long articular surface is
267	preserved along the ridge of the processus acrocoracoideus from the facies articularis
268	humeralis to the broken area, as in A. rufa OB 1411. The cotyla scapularis is very
269	shallow, and slightly mediolaterally ovoid, as in A. rufa. The fossil is very slightly
270	smaller than the corresponding region of the right coracoid of A. rufa OB 22. The
271	processus acrocoracoideus appears to be slightly less deflected medially as in A. rufa OB
272	22.
273	
274	Order Ciconiiformes
275	Family Ciconiidae
276	Genus <i>Leptoptilos cf. falconeri</i>

- 277 Figures: 2 A-J
- 278
- 279 Material examined: KNM-KP 50804, KNM-KP 50764, KNM-KP 50761, KNM-KP
- 280 50760, KNM-KP 50800, KNM-KP 53164, KNM-KP 51011, KNM-KP 56949, KNM-
- 281 WT 56350, KNM-WT 16081
- 282
- 283 Locality and horizon: KNM-KP 50804: Kanapoi (lacustrine sequence, delta sands)
- 284 KNM-KP 50764: Kanapoi (lacustrine sequence)
- 285 KNM-KP 50761: Kanapoi (lacustrine sequence)
- 286 KNM-KP 50760: Kanapoi (lacustrine sequence)
- 287 KNM-KP 50800: Kanapoi (lacustrine sequence)
- 288 KNM-KP 53164: Kanapoi (upper fluvial sequence)
- 289 KNM-KP 51011: Kanapoi (lacustrine sequence, delta sands)
- 290 KNM-KP 56949: Kanapoi (deltaic)
- 291 KNM-WT 56350: West Turkana, Tondenyang (Nariokotome Member, lake margins)
- 292 KNM-WT 16081: West Turkana, KLI (Photo R14/3)
- 293

- 295 preserved, and some surfaces are covered in sediment. Although the specimen is slightly
- 296 larger than extant L. crumeniferus OB 35, it is otherwise indistinguishable-all visible
- 297 morphology of the fossil humerus and that of OB 35 agrees. KNM-KP 50804 is better
- 298 preserved than KNM-KP 51011 as the surface is not flattened, and the dorsal edge of the
- bone is preserved. The specimen compares closely with the the humerus of the Pliocene

^{294 &}lt;u>Comparisons</u>: KNM-KP 50804: Distal right humerus. The specimen is not especially well

300 marabou Leptoptilos lüi (Zhang et al., 2012).

301

302 KNM-KP 50764: Right wrist region of a large bird. Preserved elements are distal-most 303 right ulna, radiale, ulnare, and proximal-most carpometacarpus in several pieces. The 304 proximal extremity of the carpometacarpus is preserved; it compares with *Leptoptilos* 305 crumeniferus OB 35 in all respects (Fig. 2H). Notably, major pneumatic foramina 306 perforate the proximal carpometacarpus—a diagnostic feature for Leptoptilos (Louchart 307 et al., 2005), and are present in the same positions as in extant L. crumeniferus. These are 308 on the proximal articular surface, within the fossa infratrochlearis. On the ulna, the 309 position and shape of the shallow depressio radialis is similar in the fossil and OB 35. 310 The angle and position of the condylus dorsalis ulnae is comparable with that of OB 35. 311 A small tubercle projects just medially with respect to the sulcus intercondylaris, and 312 projects to a comparable degree as OB 35. In proximal view, all aspects of the ulnar 313 morphology compares with extant L. crumeniferus, including the position and relative 314 size of the substantial pneumatic foramen between the condylus ventralis ulnae and 315 tuberculum carpale. Ulnare: Opposite to the incisura metacarpalis, along the crus breve, a 316 marked depression runs along the length of the bone in both the fossil and extant L. 317 crumeniferus. Most of the crus breve is broken off (Fig. 2I). A large pneumatic foramen 318 is present in the middle of the dorsal surface of the modern specimen, with a comparable 319 foramen in that position on the fossil. All visible aspects of the radiale compare well with 320 OB 35. One end of the fossil is broken off (this end exhibits a small pneumatic foramen 321 in OB 35). Several other small fossil bone fragments from this specimen are not 322 definitively attributable to particular elements.

324	KNM-KP 50761: Phalanx distalis digiti majori of a massive bird. Morphology compares
325	very closely with L. crumeniferus OB 35, but the fossil is larger. On its plantar surface,
326	the fossil shows less pronounced excavation and no pneumatization towards the distal
327	end with respect to OB 35. The distalmost extremity of the element is broken.
328	
329	KNM-KP 50760: Pedal phalanx and radiale of a very large bird. Both are considerably
330	larger than L. crumeniferus OB 35, but the morphology is otherwise generally
331	indistinguishable (Fig. 2J).
332	
333	KNM-KP 50800: Proximal tarsometatarsus including articular surfaces. The plantar
334	surface of the hypotarsus is broken. Compares closely in every way (including size) with
335	extant L. crumeniferus OB 35.
336	
337	KNM-KP 53164: Leptoptilos skull. A fragmentary right quadrate is preserved, but
338	extremely poorly. Much of the surface morphology is obscured either by breaks or by
339	surrounding skull/jaw elements being fused to the surface. Very little can be said by way
340	of comparison with extant L. crumeniferus at present on the basis of the quadrate due to
341	its poor state of preservation. The neurocranium is crushed fairly flat dorsally. As a
342	result, the caudal surface of the skull (which forms a vertical plane in Leptoptilos; Zhang
343	et al., 2012) is greatly compressed. The caudal margin of the skull is sheared rostrally
344	such that much of it lies roughly in the same plane as the dorsal surface of the skull. A
345	prominent crista nuchalis transversa is observed on the left side of the skull that originally

346	would have separated the skull's dorsal surface from its roughly perpendicular caudal
347	surface. As in L. lüi, but not extant L. crumeniferus (Zhang et al., 2012), the lamina
348	parasphenoidalis is apparently situated lower than the condylus occipitalis, resulting in a
349	marked fossa subcondylaris.
350	
351	KNM-KP 51011: Distal humerus and some associated shaft fragments. The specimen
352	agrees well in both size and morphology with the distal humerus of L. lüi (Zhang et al.,
353	2012).
354	
355	KNM-KP 56949: Left tibiotarsus shaft and pedal phalanx. The midshaft morphology
356	compares well overall with extant L. crumeniferus OB 35, but the diameter is larger in
357	the fossil. The fossil also exhibits a more gradual taper, indicating a wider and longer
358	tibiotarsus than that of OB 35. The bone exhibits one flat surface, and would have been
359	semicircular in cross section. The lateral aspect of the bone is broken and missing, thus
360	the area of attachment of the fibula cannot be assessed. In L. crumeniferus OB 35, the
361	distalmost portion of the fibula joins the tibiotarsus, and fuses completely with it. A distal
362	pedal phalanx is also associated with this specimen; other than its very large size, it
363	compares closely with OB 35.
364	
365	KNM-WT 56350: Distal right humerus of a marabou stork; slightly smaller than the other

two distal stork humeri from Kanapoi, meaning it is essentially indistinguishable in size

367 from extant *L. crumeniferus* OB 35. The proximal extension of the dorsal condyle is

368 weathered away, and the dorsal surface of the bone is missing.

369	
370	KNM-WT 16081: Most of a synsacrum, lacking pelvic elements. Comparable in size and
371	visible morphology to extant L. crumeniferus OB 35.
372	
373	Genus Mycteria
374	
375	Figures: 1B, 1C, IJ
376	
377	Material examined: KNM-KP 50759, KNM-KP 30231
378	
379	Locality and horizon: KNM-KP 50759: Kanapoi, lacustrine sequence
380	KNM-KP 30231: Kanapoi (below tuff)
381	
382	Comparisons: KNM-KP 50759: Well-preserved proximal right femur. Compares very
383	closely in all respects with same element of Mycteria ibis OB 49, although the fossil is
384	slightly larger (Fig. 1J).
385	
386	KNM-KP 30231: Distal pedal phalanx, fragment of distal left tarsometatarsus, left
387	radiale, near-complete right tibiotarsus (proximal end, distal end, and shaft fragments),
388	unidentified shaft fragments from a long bone, partial fibula. The radiale and distal end of
389	tibiotarsus are well preserved, and are referable to Mycteria (Fig. 1B, 1C). This specimen
390	was first noted and diagnosed by Harris et al. (2003).
391	

392	Order Pelecaniformes
393	Family Pelecanidae
394	Genus Pelecanus
395	
396	Figures: 1H
397	
398	Material examined: KNM-WT 19627
399	
400	Locality and horizon: West Turkana (NAI Photo R 22/2)
401	
402	Comparisons: Specimen comprises the distal end of a right humerus, and the distal and
403	proximal ends of a left humerus. The bones are massive and reasonably well preserved,
404	although much of the bicipital and deltopectoral crests are eroded away on the proximal
405	humerus. Apart from these preservational artifacts, the visible morphology of the
406	specimen is virtually indistinguishable from extant Pelecanus onocrotalus OB 2334 (Fig.
407	1H).
408	
409	Order Psittaciformes
410	Family Psittacidae
411	
412	Figures: 1A
413	
414	Material examined: KNM-KP 50759

416	Locality and horizon: KNM-KP 50759: Kanapoi, lower fluvial sequence

418	Comparisons: KNM-KP 58729: Complete left tarsometatarsus. The bone is stout overall,
419	with its proximal articular shelf offset laterally from the main axis of the bone. The squat
420	shape of the bone and its zygodactyl configuration are psittaciform synapomorphies
421	(Ksepka and Clarke, 2012). Although some of the bone surface remains obscured by
422	matrix, including much of the proximal articular surface, all visible morphology agrees
423	with a referral to Psittacidae. The hypotarsus bears a closed bony canal for the tendon of
424	the musculus flexor digitorum longus (furrow/canal no. 1 of Strauch, 1978). The fossil is
425	figured next to Poicephalus meyeri OB 274, with which it agrees well despite being
426	slightly larger (Fig. 1A). Matrix obscures part of the plantar region, precluding
427	assessment of whether the lateral foramen vasculare is displaced well proximal of its
428	medial counterpart as in extant parrots (Ksepka and Clarke, 2012).
429	
430	Order Apodiformes
431	Family Apodidae
432	
433	Figures: 1F
434	
435	Material examined: KNM-KP 53036, KNM-KP 53040, KNM-KP 53041, KNM-KP
436	53045, KNM-KP 53007, KNM-KP 53008, KNM-KP 53009, KNP-KP 53014, KNM-KP
437	32825, KNM-KP 30640, KNM-KP 53037, KNM-KP 53034

439	Locality and horizon: KNM-KP 32825: Kanapoi (microfauna level).
440	
441	Comparisons: KNM-KP 53036: Left phalanx proximalis digiti majoris; element is robust,
442	and exhibits broken articular surfaces.
443	
444	KNM-KP 53040. Left proximal half of carpometacarpus exhibiting well-preserved
445	articular surfaces.
446	
447	KNM-KP 53041: Small left ulna, three-dimensionally preserved, complete and
448	undamaged. Articular surfaces very well preserved. Radial and humeral fossae are both
449	deep. The crests on the distal surface are very deep and well developed.
450	
451	KNM-KP 53045: Corpus major of right carpometacarpus.
452	
453	KNM-KP 53007: Omal end of right coracoid; broken along the midshaft just sternal to
454	the procoracoid process. Massive acrocoracoid process completely preserved, with short
455	procoracoid process. Humeral articulation facet is complete and well preserved.
456	Procoracoid nerve foramen present. Cotyla scapularis shallow, directly adjacent to the
457	sternal extremity of the humeral articulation facet (Fig. 1F).
458	
459	KNM-KP 53008: Distal ends of two left ulnae (practically identical). Very well
460	preserved. From a large swift; articular surfaces clearly demarcated.

4	6	1
_	~	_

483	Family Anatidae
482	Order Anseriformes
481	
480	nearly half its length. The rest of the bone is well preserved and complete.
479	(~the size of A. horus OB 333). The corpus minor is broken on its distal end, preserving
478	KNM-KP 53034: Very well preserved, near-complete right carpometacarpus of a swift
477	
476	associated crests are obvious, and distal articular surface is well preserved.
475	KNM-KP 53037: Largely complete phalanx proximalis digiti majori; muscle scars and
474	
473	preserved.
472	KP 30640: Complete, very well preserved right ulna of a swift. Articular surfaces well
471	
470	poorly preserved but articular surfaces generally clear.
469	KNM-KP 32825: Right distal ulna of a large swift including part of the shaft; generally
468	
467	333.
466	surfaces on distal end are well preserved and prominent. Agrees well with A. horus OB
465	KNP-KP 53014: Distal end of right ulna. Relatively poorly preserved, but articular
464	
463	of size and general morphology with Apus horus OB 333.
462	KNM-KP 53009: Well-preserved proximal end of left radius; quite slight; agrees in terms

484	
485	Figures: 1G
486	
487	Material examined: KNM-WT 52128:
488	
489	Locality and horizon: West Turkana; Nachukui. Deltaic setting within Nariokotome
490	Member
491	
492	Comparisons: KNM-KP 39326: This proximal left humerus fragment was previously
493	referred to Anatidae, although confusingly also to Charadriiformes (Harris et al., 2003).
494	The specimen is very poorly preserved, and is probably best referred to Aves indet.
495	
496	KNM-WT 52128: Proximal left femur of a fairly large anatid, slightly smaller than
497	Egyptian goose (Alopochen aegyptiaca OB 1637), with which it is compared in Fig. 1G.
498	All aspects of morphology compare well with A. aegyptiaca, although much of the
499	proximal surface is eroded away. The dorsal surface of the femoral head is flattened in
500	both the fossil and OB 1637. A low crista trochanteris barely extends above the level of
501	the femoral head.
502	
503	Families: Columbidae/Pteroclididae?
504	
505	Material examined: KNM-KP 53043, KNM-KP 53019
506	

507	Locality and horizon: KNM-KP 53043: Kanapoi
508	KNM-KP 53019: Kanapoi
509	
510	Comparisons: KNM-KP 53043: Moderately well preserved right distal humerus; some
511	damage to the surface. The articular surfaces are fairly distinct. The specimen generally
512	compares favorably with Columbidae and Pteroclididae, including Pterocles exustus OB
513	797.
514	
515	KNM-KP 53019: Very poorly preserved distal end of left humerus; articular surfaces
516	largely absent. Visible morphology agrees with Columbidae and Pteroclididae.
517	
518	Order Strigiformes
519	Family Strigidae
520	
521	Material examined: KNM-KP 30642
522	
523	Locality and horizon: Kanapoi
524	
525	Comparisons: Specimen is poorly preserved, and comprises the omal extremity of a right
526	scapula, an ungual phalanx, and three unidentifiable bone fragments from a very small
527	owl; comparable in size to Glaucidium capense.
528	
529	Aves Indet.

530	
531	Material examined: KNM-KP 53026
532	
533	Locality and horizon: Kanapoi; "Joseph's Trench", Step 4
534	
535	Comparisons: Distal end of a fairly large avian pedal phalanx. Agrees in general
536	morphology and size with a mid- to small-sized bustard, although a firm diagnosis is not
537	possible based on the limited material.
538	
539	Order Charadriiformes
540	Family Recurvirostridae?
541	
542	Material examined: KNM-KP 53046
543	
544	Locality and horizon: Kanapoi
545	
546	Comparisons: Partial proximal left humerus of a charadriiform bird; most of the caput
547	humeri is present. The specimen exhibits a prominent tuberculum ventrale, connected to
548	the humeral shaft via a sharp ridge. The specimen shows a deep and elongate fossa
549	pneumotricipitalis, which, although in-filled with sediment, is clearly of the 'dual type,
550	non-pneumatic' (Baumel and Witmer, 1993). Both the crista deltopectoralis and crista
551	bicipitalis are broken close to the main shaft of the humerus. Caput humeri are separated
552	from the tuberculum ventrale by a deep incisura capitis. In cranial view, a deep, laterally

553	extensive sulcus ligamentum transverus is visible. Although the crista bicipitalis is
554	largely broken, what remains of the intumescentium humeri is broad. There is a deep
555	impressio coracobrachialis, which terminates proximally in a broken edge; thus, the
556	tuberculum dorsale is not preserved. The preserved edge of the crista deltopectoralis
557	suggests that it was considerably longer than the crista bicipitalis (~30%). The sulcus n.
558	coracobrachialis is shallow. Every aspect of the preserved and visible morphology
559	compares with the humerus of Recurvirostra avosetta OB 1517.
560	
561	Order Coraciiformes
562	Family Alcedinidae?
563	
564	Material examined: KNM-KP 53061
565	KNM-KP 53018
566	
567	Locality and horizon: Kanapoi
568	
569	Comparisons:
570	KNM-KP 53061: Left ulna, proximal end. Both radial and humeral articulations are fairly
571	shallow; radial articulation sub-rectangular in shape. Compares in all visible respects,
572	including identical size, with Alcedo cristata OB 1117.
573	

574	KNM-KP 53018: Shaft of a small right tarsometatarsus. Element is relatively stout; the
575	distal trochleae are broken, as is most of the proximal surface of the element. The
576	element is of comparable size to Alcedo cristata OB 1117.
577	
578	Order Passeriformes
579	
580	Material examined: KNM-KP 53044, KNM-KP 53003, KNM-KP 53005, KNM-KP
581	53006, KNM-KP 53016, KNP-KP 53021, KNM-KP 53029, KNM-KP 53004, KNM-KP
582	53017, KNM-KP 53042, KNM-KP 53035, KNM-KP 53033, KNM-KP 53032, KNM-KP
583	53027, KNM-KP 53023, KNM-KP 53015
584	
585	Locality and horizon:
586	KNM-KP 53044: Kanapoi
587	KNM-KP 53003: Kanapoi
588	KNM-KP 53005: Kanapoi
589	KNM-KP 53006: Kanapoi
590	KNM-KP 53016: Kanapoi "bat site"
591	KNP-KP 53021: Kanapoi
592	KNM-KP 53029: Kanapoi
593	KNM-KP 53004: Kanapoi "Wambua's hominid, Step 3"
594	KNM-KP 53017: Kanapoi "bat site"
595	KNM-KP 53042: Kanapoi
596	KNM-KP 53035: Kanapoi

597	KNM-KP	53033:	Kanapoi	
			1	

- 598 KNM-KP 53032: Kanapoi
- 599 KNM-KP 53027: Kanapoi
- 600 KNM-KP 53023: Kanapoi "microfauna Nichola dP4-sieve WT 3425"
- 601 KNM-KP 53015: Kanapoi
- 602
- 603 <u>General notes:</u>
- 604 KNM-KP 53044: Left distal humerus of a small passeriform; very friable and poorly
- 605 preserved.
- 606
- 607 KNM-KP 53003: Complete, three-dimensionally preserved right carpometacarpus;
- 608 Articular surfaces well preserved.
- 609
- 610 KNM-KP 53005: Small, very well preserved distal extremity of left humerus; articular
- 611 surfaces well preserved.
- 612
- 613 KNM-KP 53006: Small, moderately well preserved distal end of right ulna.
- 614
- 615 KNM-KP 53016: Tiny, broken proximal end of carpometacarpus.
- 616
- 617 KNP-KP 53021: Small, very well preserved proximal end of right carpometacarpus.
- 618

619	KNM-KP 53029: Distal end of left tarsometatarsus; tiny and very slender. No phalangeal
620	trochleae are preserved and the element seems unlikely to be further diagnosable.
621	
622	KNM-KP 53004: Left carpometacarpus from a small passerine, well preserved and nearly
623	complete, corpus minor not preserved.
624	
625	KNM-KP 53017: Left distal ulna. Small element, generally poorly preserved.
626	
627	KNM-KP 53042: Tiny, very well preserved omal extremity of a coracoid and much of
628	the shaft. The humeral articulation facet, acrocoracoid process, and procoracoid process
629	all well preserved. The procoracoid process is very short; cotyla scapularis not notably
630	concave; humeral articulation facet elongate and narrow, acrocoracoid process very
631	pronounced and broad.
632	
633	KNM-KP 53035: Tiny, left distal ulna with much of the shaft preserved.
634	
635	KNM-KP 53033: Tiny, right distal ulna, with articular surfaces at the wrist well
636	preserved.
637	
638	KNM-KP 53032: Omal extremity of a very small right coracoid. Agrees well with KNM-
639	KP 53042. The specimen exhibits a negligible procoracoid process, a poorly defined,
640	non-concave cotyla scapularis, and a broad, well-developed acrocoracoid process. The

641	shaft is broken just below the procoracoid process. The humeral articulation facet is
642	preserved in its entirety.
643	
644	KNM-KP 53027: Generally poorly preserved and very small right distal ulna including
645	some of the shaft.
646	
647	KNM-KP 53023: Fairly well preserved right distal ulna of a mid-sized passerine.
648	
649	KNM-KP 53015: Tiny, right distal ulna of a passerine bird. Not well preserved.
650	
651	Order Accipitriformes
652	Family Accipitridae
653	Subfamily cf. Aegypiinae
654	
655	Figures: 1E
656	
657	Material examined: KNM-WT 16156, KNM-WT 19983
658	
659	Locality and horizon: Kanapoi
660	KNM-WT 16156: West Turkana (Lo. 9).
661	KNM-WT 19983: West Turkana (Hippo Site)
662	
663	Comparisons:

- KNM-WT 16156: Right distal ulna and some of the shaft from a large raptor; some of thearticular surface is preserved. Compares closely with Aegypiinae.
- 666

667	KNM-WT 19983: Complete, three-dimensionally preserved right ulna from a large
668	raptor. The fossil preserves short, poorly defined quill knobs, comparable to those on the
669	ulna of <i>Trigonoceps occipitalis</i> OB 957. Although generally similar to the ulna of <i>L</i> .
670	<i>crumeniferus</i> , the humerus of <i>L. crumeniferus</i> is $\sim 8\%$ longer, has quill knobs that are
671	much more clearly defined, extensive pneumatization at the proximal and distal ends of
672	the bone, a more laterally elongated humeral articulation, a less deeply excavated
673	impressio brachialis, a more sharply pointed tuberculum carpale, and a pronounced and
674	acute tubercle on the distal extremity of the condylus ventralis ulnae.
675	
676	4. Discussion
677	
077	While the present study represents a preliminary investigation, the early Pliocene
678	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It
678 679	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam
678 679 680	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam (Harris and Leakey, 2003), although the mammalian faunas from these localities differ
678 679 680 681	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam (Harris and Leakey, 2003), although the mammalian faunas from these localities differ considerably (Bobe, 2011). Despite the fact that only a comparatively small sample of
678 679 680 681 682	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam (Harris and Leakey, 2003), although the mammalian faunas from these localities differ considerably (Bobe, 2011). Despite the fact that only a comparatively small sample of avian fossils has been examined to date, no fewer than 12 family-level clades are
 678 679 680 681 682 683 	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam (Harris and Leakey, 2003), although the mammalian faunas from these localities differ considerably (Bobe, 2011). Despite the fact that only a comparatively small sample of avian fossils has been examined to date, no fewer than 12 family-level clades are represented between Kanapoi and the more recent Turkana localities. Additionally, at
 678 679 680 681 682 683 684 	While the present study represents a preliminary investigation, the early Pliocene fossil avifauna from Kanapoi clearly represents a diverse taxonomic assemblage. It appears broadly comparable to that described from the Miocene locality of Lothagam (Harris and Leakey, 2003), although the mammalian faunas from these localities differ considerably (Bobe, 2011). Despite the fact that only a comparatively small sample of avian fossils has been examined to date, no fewer than 12 family-level clades are represented between Kanapoi and the more recent Turkana localities. Additionally, at least some of these clades are represented by multiple taxa, including storks (Ciconiidae),

686 material has been surface collected from Kanapoi and the more recent localities (and thus

687 far been unavailable for examination), it is almost certain that the diversity of this avian 688 assemblage is strongly undersampled. This is underscored by the fact that only a minority 689 of the Kanapoi avian material has thus far proven diagnosable to family, and it is likely 690 that future attention and sampling via surface collection and sieving will shed additional 691 light on the affinities of these remains. A prior survey of the Kanapoi fossil avifauna 692 (Harris et al., 2003) revealed the remains of only four avian taxa in the form of numerous 693 ostrich eggshell specimens, several fragmentary long bones from Mycteria, a tentatively-694 referred fragmentary duck humerus, and a complete Anhinga humerus. It seems certain 695 that additional sampling from Kanapoi and the younger West Turkana localities will 696 continue to reveal an interesting diversity of fossil birds with potential to shed light on 697 the paleoenvironment of A. anamensis, and the composition of East African Pliocene 698 avifaunas.

699

700 4.1. Kanapoi paleonenvironment, and early Pliocene hominin niche partitioning

701

702 The avian fossils from Kanapoi and the more recent West Turkana localities 703 reveal an obvious ecological signal. Although the general tetrapod assemblage at Kanapoi 704 was initially described as broadly similar to the comparably aged (though slightly older) 705 assemblage from Aramis, Ethiopia (Harris et al., 2003), more recent work (e.g., Louchart 706 et al., 2009) as well as the present avian dataset stands in stark contrast to this 707 assessment. In addition to producing fossil hominin remains, Aramis represents the most 708 extensively evaluated early Pliocene avifauna from East Africa. A survey of that avifauna 709 (Louchart et al., 2009) yielded at least 370 catalogued avian specimens, representing 29

species and 16 families. Among the 296 diagnosable elements from this avifauna, only
3.8% represented aquatic taxa (Louchart et al., 2009). Most small elements were
interpreted to have derived from owl pellets, and collectively, the paleoenvironment at
Aramis was determined to represent one dominated by mesic woodlands (Louchart et al.,
2009).

715 By contrast, the broader West Turkana avifauna is comparatively dominated by 716 aquatic taxa, which comprise 27% (Kanapoi) and 71% (more recent localities) of the 717 avian fossils diagnosed to date. The majority of extant waterbird diversity (Aves: 718 Aequorlitornithes) is the product of a large monophyletic radiation uniting, among many 719 other groups, shorebirds (Charadriiformes), storks (Ciconiiformes), darters (Suliformes: 720 Anhingidae), and pelicans (Pelecaniformes: Pelecanidae) (Prum et al., 2015). In addition 721 to these aequorlitornithid representatives, the broader West Turkana avifauna comprises 722 representatives of at least two additional aquatic lineages: waterfowl (Anseriformes: 723 Anatidae), and a probable kingfisher (Coraciimorphae: Alcedinidae). The Kanapoi 724 avifauna is entirely consistent with the idea that A. anamensis from this locality lived 725 alongside a large, slow-moving body of water. The stark difference in both the taxonomic 726 composition and comparative abundance of taxa from the Kanapoi and Aramis avifaunas 727 may be suggestive of divergent habitat preferences (if not ecological niche partitioning) 728 among early Pliocene hominins in East Africa.

729

730 *4.2. Implications for the origins of Africa's extant avifauna*

731

Today, Africa's avifauna is extraordinarily diverse—represented by over 2,500

733 living species (Brown et al., 1982). However, a relatively sparse avian fossil record has 734 hindered our understanding of the pattern and timing of Africa's avifaunal assembly 735 (Louchart et al., 2005, 2009; Mayr, 2009). As such, the fossil assemblage at Kanapoi may 736 have much to contribute to our understanding of avian evolution in the Pliocene of East 737 Africa. Although the present contribution represents a preliminary assessment, the future 738 incorporation of avian fossils from Kanapoi into detailed character-taxon datasets may 739 yield insights into the precise phylogenetic placement of these specimens. Indeed, these 740 fossils may variously provide useful apical minimum constraints in node-dating 741 divergence time analyses, help illuminate the evolution of African avian biogeography, 742 and shed light on the broader evolutionary history of East African birds. The evolutionary 743 relationships and biogeographic origins of several major clades of African endemic birds 744 have long remained obscure (e.g., turacos; Musophagidae, secretarybirds; Sagittariidae, 745 shoebills; Balaenicipitidae), a product, in large part, of their extremely scarce fossil 746 records. The detailed examination of avian remains from localities like Kanapoi may 747 ultimately help clarify how, when, and where the modern constituents of the East African 748 avifauna came to be.

749

750 4.3. Giant extinct marabou storks, and the antiquity of marabou-hominin interactions

751

One of the most striking aspects of the Kanapoi avifauna is the relative abundance of a giant marabou stork, larger than the extant marabou *L. crumeniferus* (represented by eight specimens from Kanapoi). Although a giant extinct marabou, *L. falconeri*, has been reported from the Pliocene of Chad and Ethiopia (after initially being described from the

Siwalik Hills of Pakistan; Louchart et al.,2005), the occurrence of this taxon in the early
Pliocene of Kenya represents an extension of its known geographic range in East Africa.
Previously, remains of fossil marabous from Kenya had been reported from only the late
Miocene locality of Lothagam, northern Kenya (Upper Nawata Member, between 5.3 and
6.5 Ma (McDougall and Feibel, 1999; Harris and Leakey, 2003; Louchart et al., 2005)
and the Miocene locality of Ngorora (Baringo, ca. 11.5Ma; Hill and Walker, 1978;

762 Louchart et al., 2005).

763 Previous descriptions of L. falconeri material comprise only distal tibiotarsi, distal 764 tarsometatarsi, pedal phalanges, a fragmentary carpometacarpus, and a vertebra. The 765 material herein referred to L. cf. falconeri represents a neurocranium and quadrate, much 766 of the forelimb (portions of the humerus, ulna, os carpi ulnare, os carpi radiale, proximal 767 carpometacarpus and manual phalanx), hindlimb (pedal phalanges, proximal 768 tarsometatarsus, tibiotarsus) and synsacrum. While these remains are fragmentary, 769 scaling equations (e.g., Field et al., 2013) should allow for the future study of body size 770 evolution in Leptoptilini, a subject of current research interest (Louchart et al., 2005; 771 Meijer and Due, 2010; Zhang et al., 2012). Future detailed study of the *Leptoptilos* 772 material recovered from Kanapoi will doubtless shed considerable additional light on the 773 morphology of giant Neogene marabous, despite the fact that the cranial remains are 774 presently in need of additional mechanical preparation. The rarity of fossil *Leptoptilos* 775 crania (Zhang et al., 2012) renders the Kanapoi remains of particular interest, and may 776 enable the future investigation of endocranial morphology and detailed anatomical 777 comparisons with extant marabous using computed tomographic reconstructions 778 (Balanoff et al., 2016). Full descriptions and analysis of the Kanapoi *Leptoptilos* material,

which is beyond the scope of the present contribution, promises to reveal many newdetails about the morphology of this gigantic Pliocene stork.

781 The scavenging ecology of extant marabous (i.e., their propensity to feed on 782 human refuse), and the relatively frequent co-occurrence of fossil marabous and early 783 human relatives from the Miocene through the Pleistocene (Harris and Leakey, 2003; 784 Louchart et al., 2005, 2008; Zhang et al., 2012) raises the interesting (though presently 785 speculative) possibility of multi-million-year commensalism between marabous and early 786 humans (H. James, personal communication). The occurrence of both L. cf. falconeri and 787 the earliest-known australopithecines at Kanapoi may lend some support to this idea. 788 Perhaps the association between humans and marabous, which today are abundant around 789 urban areas throughout East Africa, reflects the result of over five million years of 790 acclimation to mutual coexistence.

791

792 4.4. Taphonomy of Kanapoi avian remains

793

794 The vast majority of the avian remains from Kanapoi and the more recent West 795 Turkana localities are broken and isolated, an observation consistent with sorting by 796 moving water (Louchart et al., 2009; Longrich et al., 2011). In contrast to the small 797 vertebrate remains recovered from Aramis, few or none of the avian remains examined 798 here exhibit obvious signs of feeding by rodents or chewing by mammalian carnivores, 799 underscoring the taphonomic distinctness of these two localities. The relative abundance 800 and damage of many of the small vertebrate remains from Aramis were interpreted to be 801 consistent with their derivation from owl pellets; however, the Kanapoi fossils exhibit

802 little evidence in support of a similar taphonomic history. Sorting due to water transport
803 may in part contribute to the considerable diversity of the Kanapoi avifauna despite the
804 modest number of elements collected and examined to date: in addition to autochthonous
805 bird carcasses that may have been deposited nearby, the assemblage may also reflect
806 allochthonous avian remains transported by water from more distal settings.

807

808 5. Conclusion

809 Louchart et al. (2009) suggest that the fossil avifauna from the Ardipithecus-bearing

810 Aramis locality reflected a taphonomic setting where most carcasses were buried, without

811 transport, in a mesic woodland environment far from water. By contrast, the bird fossils

812 from the roughly contemporaneous A. anamensis-bearing sites of Kanapoi lack any

813 notable woodland signal, and the presence of a variety of aquatic taxa is instead

814 suggestive of a setting close to water. The paleoecological differences between these sites

815 suggest possible differentiation in environmental preferences between contemporaneous

816 hominin taxa in East Africa, and the presence of the large Pliocene marabou stork L. cf.

817 *falconeri* may reflect a long-term commensal relationship between marabous and

818 hominins. In sum, geological, taphonomic, and taxonomic evidence are indicative of an

819 ecological setting in close proximity to a large, slow-moving water body for A.

820 anamensis at Kanapoi. This work emphasizes the utility of fossil birds as sensitive

821 environmental indicators (Olson and Rasmussen, 1986), and their potential contribution

822 to paleoecological reconstructions of early hominin paleoenvironments.

823

824 Acknowledgements

B25 I am grateful to C. Ward, M. Plavcan, and F. Manthi for the invitation to take p	oart in this
--	--------------

826 research, D. Matthieson for her initial work on the fossil birds from Kanapoi, A.

827 Louchart, M. Plavcan, and C. Ward for helpful and constructive reviews of this

828 manuscript, and C. Brochu (East African birds), H. James (human-marabou

- 829 commensalism), and S. Frost (small vertebrate taphonomy) for helpful discussions during
- the course of this study. Funding for this project was provided by NSF BCS-1231749,

831 NSF BCS-1231675, the Wenner Gren Foundation, and the University of Missouri

832 Research Board. DJF is supported by a 50th Anniversary Prize Fellowship at the

833 University of Bath.

834

835 Figure Captions

Fig. 1: Selected non-Leptoptilos avian fossil material from Kanapoi and West Turkana.

837 Scale bar equals 1cm. 2A: tarsometatarsus of Psittacidae KNM-KP 58729 (left), and

838 extant Poicephalus meyeri OB 274 (right), in cranial view; 2B-C: distal right tibiotarsus

839 of stork (Ciconiidae: Mycteria) KNM-KP 30231 (right) and extant Mycteria ibis OB 49

840 (left) in cranial (2B) and lateral (2C) view; 2D: left humerus of Anhinga KNM-KP 39325

841 (right) and extant Anhinga rufa OB 1411, in dorsal view; 2E: right ulna of vulture

842 (Accipitridae: Aegypiinae) KNM-WT 19983 (right) and extant Trigonoceps occipitalis

843 OB 957 (left), in ventral view; 2F: Omal extremity of right coracoid of swift (Apodidae)

844 KNM-KP 53007 (left), and extant Apus horus OB 333 (right); 2G: proximal left femur of

845 Anatidae KNM-WT 52128 (right), and extant Alopochen aegyptiaca OB 1637 (left), in

846 cranial view; 2H: proximal left humerus of Pelecanus KNM-WT 19627 (left) and extant

847 Pelecanus onocrotalus OB 2334 (right), in cranial view; 2I: distal right tibiotarsus of

- 848 Anhinga KNM-KP 53159 (left) and extant Anhinga rufa OB 1411 (right), in cranial view;
- 849 2J: proximal right femur of stork (Ciconiidae: Mycteria) KNM-KP 50759 (left), and

extant Mycteria ibis OB 49 (right), in cranial view.

- 851
- 852 Fig. 2: Selected fossil marabou stork (Ciconiidae: Leptoptilos) material from Kanapoi and
- 853 West Turkana. Scale bar equals 1cm. 1A-C: neurocranium KNM-KP 53164 in dorsal
- 854 (1A), posterior (1B), and right lateral (1C) view; 1D: synsacrum KNM-WT 16081 in
- dorsal view (left), modern L. crumeniferus OB 35 (right); 1E: proximal tarsometatarsus
- 856 KNM-KP 50800 in cranial view; 1F: distal right humerus KNM-KP 50804 in cranial
- 857 view; 1G: distal right ulna KNM-KP 50764 (left), extant L. crumeniferus OB 35 (right) in
- 858 ventral view; 1H: proximal right carpometacarpus KNM-KP 50764 (left), extant L.
- 859 crumeniferus OB 35 (right); 1I: ulnare KNM-KP 50764 (left), extant L. crumeniferus OB
- 860 35 (right); 1J: radiale KNM-KP 50760 (left), extant L. crumeniferus OB 35 (right).
- 861
- 862 Fig. 3: Dominant avian ecologies represented at Kanapoi and the more recent Turkana
- 863 localities, compared to the slightly older fossil avifauna from Aramis, Ethiopia (based on
- skeletal data; Aramis data from Louchart et al., 2009). Aquatic birds and aerial
- 865 insectivores (swifts) together comprise the dominant avian lifestyles represented at
- 866 Kanapoi, with aquatic birds dominating at the more recent localities. By contrast, aquatic
- birds and swifts are extremely rare at Aramis.
- 868

Fig. 4: Comparison of the dominant avian taxa represented at Kanapoi, the more recent

870 Turkana localities, and Aramis (Aramis data from Louchart et al., (2009)). The dominant

871	clades at Kanapoi and the more recent localities, including storks (Ciconiidae), swifts
872	(Apodidae), and songbirds (Passeriformes) are poorly represented at Aramis, where small
873	parrots (Psittacidae), barn owls (Tytonidae), and landfowl (Galliformes; comprising
874	Francolinus, Pavo, and Numididae) are dominant. Predominantly aquatic taxa (in blue)
875	are extremely scarce at Aramis, but comparatively abundant at Kanapoi and the more
876	recent Turkana localities.
877	
878	References
879	Balanoff, A.M., Bever, G.S., Colbert, M.W., Clarke, J.A., Field, D.J., Gignac, P.M., Ksepka,
880	D.T., Ridgely, R.C., Smith, N.A., Torres, C.R., Walsh, S., Witmer, L.M., 2016. Best
881	practices for digitally constructing endocranial casts: examples from birds and their
882	dinosaurian relatives. J. Anat. 229, 173-190.
883	
884	Baumel, J.J., Witmer, L.M., 1993. Osteologia. In: Baumel, J.J., King, A.S., Breazile, J.E.,
885	Evans, H.E., Vanden Berge, J.C. (Eds.), Handbook of Avian Anatomy: Nomina
886	Anatomica Avium. Publications of the Nuttall Ornithological Club, Cambridge,
887	Massachusetts, pp. 45-132.
888	
889	Bobe, R., 2011. Fossil mammals and paleoenvironments in the Omo-Turkana Basin.
890	Evol. Anthropol.20, 254-263.
891	
892	Brown, B., Brown, F.H., Walker, A., 2001. New hominids from the Lake Turkana
893	basin, Kenya. J. Hum. Evol. 41, 29-44.

895	Brown, L.H., Urban, E.K., Newman, K., Woodcock, M., Hayman, P., 1982. The Birds of
896	Africa. Academic Press, London.
897	

898Del Hoyo, J., Elliot, A., Sargatal, J., 1992. Handbook of the Birds of the World. Lynx

899 Editions, Barcelona.

900

- 901 Field, D.J., Lynner, C., Brown, C., Darroch, S.A.F., 2013. Skeletal correlates for body
- 902 mass estimation in modern and fossil flying birds. PLOS ONE 8, e82000.

903

- 904 Finlayson, C., Carrión, J., Brown, K., Finlayson, G., Sánchez-Marco, A., Fa, D.,
- 905 Rodríguez-Vidal, J., Fernández, S., Fierro, E., Bernal-Gómez, M., 2011. The Homo
- 906 habitat niche: using the avian fossil record to depict ecological characteristics of
- 907 Palaeolithic Eurasian hominins. Quaternary Sci. Rev. 30, 1525-1532.

908

909 Harris, J., Leakey, M., 2003. Lothagam birds. In: Leakey, M.G.; Harris, J.M. (Eds.),

910 Lothagam: the Dawn of Humanity in Eastern Africa. Columbia University Press, New

911 York, pp.161-166.

912

913 Harris, J.M., Leakey, M.G., Cerling, T.E., Winkler, A.J., 2003. Early Pliocene tetrapod

remains from Kanapoi, Lake Turkana Basin, Kenya. Contrib. Sci. 498, 39-114.

916	Harrison, T., Msuya, C.P., 2005. Fossil struthionid eggshells from Laetoli, Tanzania:
917	Taxonomic and biostratigraphic significance. Journal of African Earth Sciences 41,
918	303-315.
919	
920	Hill, A., Walker, A., 1978. A fossil marabou (Aves: Ciconiidae) from the Miocene
921	Ngorora formation, Baringo district, Kenya. Neth. J. Zool. 29, 215-221.

923 Ksepka, D.T., Clarke, J.A., 2012. A new stem parrot from the Green River Formation

and the complex evolution of the grasping foot in Pan-Psittaciformes. J. Vert.

925 Paleontol. 32, 396-406.

926

927 Longrich, N.R., Tokaryk, T., Field, D.J., 2011. Mass extinction of birds at the

928 Cretaceous-Paleogene (K-Pg) boundary. Proc. Natl. Acad. Sci. 108, 15253-15257.

929

930 Louchart, A., Vignaud, P., Likius, A., Brunet, M., White, T.D., 2005. A large extinct

931 marabou stork in African Pliocene hominid sites, and a review of the fossil species of

932 *Leptoptilos*. Acta Palaeontol. Pol. 50, 549-563.

933

934 Louchart, A., Haile-Selassie, Y., Vignaud, P., Likius, A., Brunet, M., 2008. Fossil birds

935 from the Late Miocene of Chad and Ethiopia and zoogeographical implications.

936 Oryctos 7, e167.

- 938 Louchart, A., Wesselman, H., Blumenschine, R.J., Hlusko, L.J., Njau, J.K., Black, M.T.,
- Asnake, M., White, T.D., 2009. Taphonomic, avian, and small-vertebrate indicators of
- 940 *Ardipithecus ramidus* habitat. Science 326, 66e1-66e4.
- 941
- 942 Mayr, G., 2009. Paleogene Fossil Birds. Springer, Berlin.
- 943
- 944 McDougall, I., Brown, F.H., 2008. Geochronology of the pre-KBS Tuff sequence, Omo
- 945 Group, Turkana Basin. J. Geol. Soc. London 165, 549-562.
- 946
- 947 McDougall, I., Feibel, C.S., 1999. Numerical age control for the Miocene-Pliocene
- 948 succession at Lothagam, a hominoid-bearing sequence in the northern Kenya Rift. J.
- 949 Geol. Soc. London 156, 731-745.
- 950
- 951 Meijer, H.J., Due, R.A., 2010. A new species of giant marabou stork (Aves:
- 952 Ciconiiformes) from the Pleistocene of Liang Bua, Flores (Indonesia). Zool. J. Linn.
- 953 Soc.-London 160, 707-724.
- 954
- 955 Olson, S.L., Rasmussen, D.T., 1986. Paleoenvironment of the earliest hominoids: new
- evidence from the Oligocene avifauna of Egypt. Science 233, 1202-1204.
- 957
- 958 Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M.,
- Lemmon, A.R., 2015. A comprehensive phylogeny of birds (Aves) using targeted
- 960 next-generation DNA sequencing. Nature 526, 569-573.

Sauer, E., 1972. Ratite eggshells and phylogenetic questions. Bonn Zool. Beitr 23, 3-48.

964

965 Serjeantson, D., 2009. Birds. Cambridge Manuals in Archaeology. Cambridge

966 University Press, Cambridge.

967

- 968 Zhang, Z., Huang, Y., James, H.F., Hou, L., 2012. A marabou (Ciconiidae: *Leptoptilos*)
- from the Middle Pleistocene of northeastern China. The Auk 129, 699-706.

970

971