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1 General Purpose Technologies and Long-Term
Growth

A small number of ground-breaking inventions arriving in ever decreasing time
intervals can be identified as important drivers of long-term economic growth:
In early human history millennia lay between transforming innovations such as
the domestication of plants and animals or the Bronze Age and the Iron Age.
Later, the era of the industrial revolution witnessed the rise of the steam engine
and production in large-scale factories, followed by the birth of railways and the
steam ship in the course of only one century. Finally, current levels of welfare
would hardly be possible without the introduction of personal computers and
the rapid spread of the Internet usage within a few decades.

The view that such breakthrough technologies or “General Purpose Technolo-
gies”, or GPTs, can be seen as true “engines of growth” has been shaped by
Bresnahan and Trajtenberg (1995): They characterize GPTs as being radical
innovations in the sense that they are “ . . . characterized by the potential for
pervasive use in a wide range of sectors and by their technological dynamism.
As a GPT evolves and advances it spreads throughout the economy, bringing
about and fostering generalized productivity gains.” Furthermore they empha-
size that GPTs are “enabling technologies”, which give rise to new opportunities
instead of offering complete, final solutions. As a matter of illustration, they
present a static model where a monopolistic owner of the GPT interacts with
corresponding application sectors.1

In the course of this paper we present a model where long-run growth is driven
by a sequence of GPTs. Our model captures two stylized facts, which looking at
the evolution of GPTs in history, immediately spring to mind: First, the time
interval between the arrival of new GPTs has become ever shorter. This point
can of course, at least partly, be seen as a result of the ever increasing pool of
accumulated knowledge. Second, new GPTs are usually based on previously
invented technologies and existing knowledge. Taking the Internet as an exam-
ple, its invention would not have been possible without a multitude of previous
inventions ranging from the computer to electricity. We achieve in modelling
these stylized facts by extending our own model of Schumpeterian growth and
GPTs, as presented in Schiess and Wehrli (2008). While in our previous model
long term growth is driven by exogenously arriving new GPTs, we now endo-
genize the arrival of new GPTs. Specifically, the probability that a new GPT
arrives depends on the amount of previously accumulated applied knowledge.
This allows us to model long-term growth as driven by a sequence of GPTs
which, due to the rising stock of applied knowledge, arrive at ever shorter time
intervals. Furthermore, we model economic cycles within the lifetime of a single
GPT, assuming that the economic impact of such a new technology decreases

1In this model the assumption that the GPT is provided by a monopolist can, not surpris-
ingly, result in too little research being performed in the sectors applying this technology.
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over time.

Before we elaborate on the empirical regularities in the arrival of new GPTs
which we address in our model, we turn to a brief survey of the previous liter-
ature on GPTs.

1.1 Previous Literature: Short-Term Cycles Caused by GPTs

While GPTs are widely seen as a main driving force of long-term economic
growth, a majority of the literature on GPTs is concerned only with the lifetime
of a single GPT, with a strong focus on the first phase after its introduction.This
tendency is without doubt motivated by the goal of finding an explanation for
the Solow paradox, according to which initially the already ubiquitous comput-
ers did not have any impact on productivity statistics. The phenomenon of a
new GPT taking decades before having a major impact on economic aggregates
is stated for example by David (1990), taking the example of electricity and the
computer. Basu, Fernald and Kimball (2006) show in an empirical study, that
while technological improvements are beneficial in the long run, they can have
contractionary effects in the short run. Similarly, Jacobs and Nahuis (2002)
present a model whereby the introduction of a new GPT leads to a decrease in
output in the short run. This is caused by high-skill workers being drawn away
from output production due to the sudden increase in research productivity in-
duced by the new GPT. According to Helpman and Trajtenberg (1998a) a new,
exogenously arriving GPT cannot be put to a productive use in the final goods
sector until a sufficient number of complementary components needs to be in-
vented first (for example software in the case of computers). As this process
requires resources to be moved from the final goods sector to the R&D sector,
this results in a temporary decline in measured output. As soon as a sufficient
number of components has been developed, the new GPT can be used in the
production of the final good, leading to output growth picking up speed again.2

At this point it is also important to note that the hypothises of producitivity
slow-downs after the arrival of new GPTs is not that strong. Carlaw and Lipsey
(2011), p. 566 state: ”The introduction of a new GPT is sometimes, but not
always, associated with a slowdown in the rates of growth of productivity and
national income”

2In Helpman and Trajtenberg (1998b) they additionally model how the diffusion of a new
GPT to the various sectors of the economy can prevent it from having an immediate impact
on output growth. Eriksson and Lindh (2000), argue that based on Helpman and Trajtenberg
(1998a), the initial adverse impact of a new GPT can be mitigated, if components that were
built for the old GPT can partially be used even after the arrival of a new GPT. Aghion and
Howitt (1998a) retain a component building phase, but add a template-building phase coming
into effect immediately after the arrival of a new GPT: As these templates are designed by
specialized labor without any other uses, there is no measured impact on output during this
initial phase. See Wehrli and Saxby (2008) for a more in-depth literature review.
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1.2 Previous Literature: GPT Models of Long-Term growth

Despite the fact that GPTs are widely seen as a main driving force of economic
growth, models on GPT-driven long-term growth are relatively scarce: Aghion
and Howitt (1998b) present a Schumpeterian model where long-term growth is
driven by a sequence of innovations with an arrival rate which is proportional
to the amount of labor devoted to research. While this model does not directly
apply the concept of GPTs it is nevertheless a starting point when trying to
explain growth driven by an endogenously created series of innovations.

Explicitly modeling GPTs, Carlaw and Lipsey (2006) developed a model with a
sequence of GPTs arriving one after the other, with only one being active in any
given period. In their model the arrival of a new GPT is governed by a constant
random variable, hence the expected time interval between two GPTs remains
always the same. Meanwhile, there is a variation in the size of the impact of a
new GPT rising from the endogenously created pool of basic knowledge.

Van Zon and Kronenberg (2003) present a model where again long-term growth
is driven by the arrival of new GPTs. While the expected time interval between
the arrivals of new GPTs is again fixed, their model allows for different GPTs
being active simultaneously. In a further refinement of their baseline model, van
Zon and Kronenberg (2006) evaluate different tax policy measures in a scenario
where long-run growth is driven by GPTs which are based either on carbon fuels
or on non-carbon fuels. The probability of arrival of these GPTs is governed
by the amount of currently performed basic R&D and they furthermore allow
for various GPTs existing simultaneously.

1.3 Stylized Fact 1: Decreasing Time Intervals between GPTs

While the question which technologies qualify as a GPT cannot be answered in
a conclusive way,3 the fact that such transforming technologies arrive at an ever
faster pace seems to be undeniable. Taking the list of historical GPTs compiled
by Carlaw and Lipsey (2006) as shown in Table 1 as a point of reference, it
becomes clear that the interval between the arrival of individual GPTs has
steadily decreased in the course of history. This general trend is described
by Carlaw and Lipsey (2008, p. 131-133) as follows: human existence has been
accompanied by the introduction of new GPTs but the rate of innovation of new
GPTs has been accelerating drastically in the 20th century. In the eighteenth
century there are two important GPTs, four in the nineteenth century, and
seven in the twentieth.

Despite this strong empirical pattern of an acceleration in the arrival rate of
new GPTs in the course of history, none of the previously mentioned models

3see Lipsey, Carlaw and Bekar (1998) for further elaborations.
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No. GPT Date

1 Domestication of plants 9000 - 8000 BC
2 Domestication of animals 8500 - 7500 BC
3 Smelting of ore 8000 - 7000 BC
4 Wheel 4000 - 3000 BC
5 Writing 3400 - 3200 BC
6 Bronze 2800 BC
7 Iron 1200 BC
8 Waterwheel Early medieval period
9 Three-masted sailing ship 15th century
10 Printing 16th century
11 Steam engine Late 18th to early 19th century
12 Factory system Late 18th to early 19th century
13 Railway Mid 19th century
14 Iron steamship Mid 19th century
15 Internal combustion engine Late 19th century
16 Electricity Late 19th century
17 Motor vehicle 20th century
18 Airplane 20th century
19 Mass production, continuous process, factory 20th century
20 Computer 20th century
21 Lean production 20th century
22 Internet 20th century
23 Biotechnology 20th century
24 Nanotechnology Sometime in the 21st century

Table 1: Historical GPTs as listed in Lipsey et al. (2006, p. 132)

considers this fact: On one hand, the models on the impact of new GPTs on the
course of a single economic cycle are by definition not concerned with a sequence
of GPTs. On the other hand, the presented models on long-term growth driven
by a sequence of GPTs either assume either fixed time intervals between the
arrival of new GPTs or a stochastic pattern with no long-term trend in either
direction.

1.4 Stylized Fact 2: GPTs Based on Current Stock of Applied
Knowledge

Sir Isaac Newton is frequently quoted, for example by Scotchmer (1991), to
illustrate that even the greatest minds in history depend on already existent
knowledge: “If I have seen far, it is by standing on the shoulders of giants.”
Just as non-radical inventions more often than not build on previously existing
knowledge, all GPTs had its origins to a certain extent in already present
technologies.

Even a cursory glance at some of the GPTs in the past shows this very clearly:
The invention of moveable type printing by Johannes Gutenberg in the second
half of the 15th century dramatically changed the way how both secular and re-
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ligious knowledge was disseminated. Gutenberg made the huge step away from
previous methods of reproduction of written information (such as woodblock
printing and the production of manuscripts on parchment) by combining a mul-
titude of existing technologies, instead of starting from scratch: The moveable
types were derived from stamps used by jewelers to mark their products, while
the printing press itself was modeled on the wine press. Paper already existed
in his time and while not suited very well for handwritten volumes, turned out
to be ideal for this new application.

The same reasoning holds true for the steam engine, which was invented by
James Watt towards the end of the 18th century. Previously steam has already
been used to drive atmospheric engines, such as the Newcomen engine. Again
a large part of James Watt’s genius laid in combining a number of already
existent technologies: His steam engine still maintained the basic principle of
using steam to move a piston within a cylinder, but while previous engines used
atmospheric pressure to drive the power stroke, his engine used steam for this
vital step.4 Not only did this invention heavily build on previously existing
technologies, it also facilitated the birth of subsequent GPTs such as the iron
steam ship, railways and ultimately the internal combustion engine and the
automobile.

As a final example, the invention of the computer would have been impossible
without another GPT, electricity, being already in existence. It also relied on
previous practical inventions: These date back as far as the idea of storing infor-
mation on punched cards, as pioneered in the form of the Jacquard loom, and
ideas from the theoretical foundations on computing laid out by Alan Turing
in the 1930s. Similar musings could, to various degrees, be done for all GPTs
in history.5

The remainder of this paper is structured as follows: In Section 2 we will
present our theoretical model of GPT-driven endogenous growth. The main
implications of our model and the results of our simulations will be shown in
Section 3, while we conclude and offer some outlook in Section 4.

4Another major improvement was that, while in earlier machines steam was condensed
inside the cylinder, he added a separate condenser to cool down the steam exhausted from
the piston. These two modifications to previous steam engines allowed the Watt engine to
extract much larger horsepower from a machine of a given size with a significantly larger fuel
efficiency.

5The notion that a higher amount of available knowledge leads to a higher productivity
of research has also been contemplated by Romer (1990), p.S83f. ”‘The engineer working
today is more productive because he or she can take advantage of all the additional knowledge
accumulated as design problems were solved during the last 100 years.”
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2 Long-Term Growth Driven by a Sequence of GPTs

We present a Schumpeterian model of long-term growth in a quality-ladder
framework which is a discrete-time version of the model presented in Schiess
and Wehrli (2008):6 Our model has a unique combination of features: On one
hand, it focuses on the long-term evolution of the economy. On the other hand,
we endogenize the arrival of new GPTs, whereby the probability of discover-
ing a new GPT positively depends on the currently available stock of applied
knowledge. Together, these characteristics of our model allow for a more realis-
tic representation of some aspects of the historical development of GPTs: Our
model describes long-term sustained growth through the arrival of successive
GPTs which arrive endogenously, due to the present stock of applied knowl-
edge. Partly as a result of this, we can account for the fact that the time interval
between the arrival of new GPTs has constantly decreased over the course of
history.

2.1 Model Overview

There are three sectors present in our model: The final goods sector, the in-
termediate goods sector and consumption. Final good producers demand in-
termediates. In each period t, there exists a fixed number, N , of varieties of
intermediates indexed by j, where j ∈ {1, 2, 3, .., N − 1, N}. Each type of inter-
mediate good, j, has a quality ladder along which quality improvements occur.
The distinguishing feature of Schumpeterian growth models is that, when an in-
termediate of type j is improved, the new intermediate will displace the old one
and eliminate monopoly profits of incumbents (process of creative destruction).
Essentially, the turn-over of monopoly profits from incumbents to new innova-
tors, i.e. the duration time of a monopoly position, depends on the probability
of research success. The probability of research success in turn is positively
influenced by the amount of resources allocated to R&D, and the level of the
GPT, but negatively affected by the achieved level of quality improvements, i.e.
it becomes increasingly difficult to innovate. The arrival of a new GPT depends
on the amount of cumulated knowledge reflected by the aggregate amount of
quality improvements in the economy. The efficiency of a new GPT increases
slowly after its arrival while the speed of this increase depends on applied knowl-
edge about this GPT in R&D, that is the number of quality improvements that
have been achieved under this new GPT. Since this experience is zero after the
arrival of a new GPT, the evolution of the efficiency of this GPT depends on the
complementarity between past knowledge and the new GPT. As the efficiency
of an existing GPT increases the probability of research success, while output
growth depends positively on the number of quality improvements, the latter

6The original model, contrary to the present model, focuses on the time frame immediately
before the arrival of a new GPT, whereby the economy before and after this transition phase
is characterized by steady-state behavior.
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is positively associated to the level of the GPT.

The aggregate amount of final goods can be used for either consumption C, as
an input Z needed to perform R&D, or for intermediate goods X. An amount
of Yi of final good i is produced using a constant technology A and labor Li

according to the following production function.

Yi = AL1−α
i

N∑
j=1

(X̃ij)
α (1)

where 0 < α < 1.

The number of varieties of intermediate goods is given by the fixed number
N . The fact that each of these varieties of intermediate goods have a specific
quality level is reflected in the following equation.

X̃ij = qκjXij (2)

Xij is the physical amount of an intermediate good, while qκj > 1 is the highest
quality in which this intermediate good is currently available. The current level
of this intermediate good is given by κj .

The final goods firms, operating under perfect competition, only demand the
highest quality available in each sector according to the following aggregate
demand equation:7

Xj = L(Aαqακj/Pj)
1/(1−α) (3)

Intermediate goods firms hold a monopoly on their goods, selling them to the
final goods sector with a monopoly markup, whereby they set the price as
Pj = 1

α . Faced with the aggregate demand function (3), intermediate goods
firms provide the following amount of an intermediate good Xj :

Xj = LA
1

1−αα
2

1−α qκj
α

1−α (4)

Aggregating across all final goods firms and assuming a fixed aggregate amount
of labor L we get the following amount of aggregate amount of intermediate
goods X and of final goods Y :

X = A
1

1−αα
2

1−αLQ (5)

7See Schiess and Wehrli (2008) for a more detailed description on the derivation of the
equations in this subsection.
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Y = A
1

1−αα
2α
1−αLQ (6)

The aggregate quality index Q is given by the following equation:

Q ≡
N∑
j=1

qκjα/(1−α) (7)

By adding up the highest available quality in each intermediate goods sector
Q gives an accurate representation of the current technological level of the
economy. For this reason Q will later be used as an indicator of the currently
available applied knowledge stock.

Intermediate goods firms can engage in in-house R&D in order to invent a
type of intermediate good of an even higher quality. If such a firm succeeds
in inventing a new quality in a certain sector, it will hold the monopoly on
this good, displacing the previous monopolist. In a Schumpeterian fashion,
it will hold this monopoly (therefore reaping monopoly profits by selling the
intermediate good to the final good sector according to the demand function in
each period) until it is displaced by yet another successful intermediate goods
firm. This process of continuous inventions leads to an increase in the quality
of available goods, thereby driving economic growth.

We consider a small open economy which faces a constant interest rate r ≥ 0
and keep the individual household’s problem deliberately simple, in the sense
that individuals are risk-neutral and indifferent between future and present
consumption, such that households maximize

U(t = 0) =

∞∑
t=0

βtc(t), (8)

where 0 < β < 1 is the discount factor and 1−β
β is the rate of time preference

which, in equilibrium, must be equal to the interest rate, such that β = 1
1+r for

all t.

Ultimately the consumption sector is used to close the model, once equilibrium
production and R&D expenditures are determined.

2.2 Determinants of R&D Expenditures

Denote by p(κj , t) the probability of a successful innovation in sector j, in pe-
riod t, where κj denotes the highest available quality in sector j. In period t,
potential innovators expend a flow of resources, Z(κj , t), in order to attempt to
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invent an intermediate good with an even higher quality κj + 1. Plausibly, we
assume that the probability of success, p(κj , t), depends positively on Z(κj, t)
such that more research expenditures will shorten the duration time of current
monopolists. To find the optimal amount of Z(κj, t) two main aspects are cru-
cial: First we need to consider the probability of having a research success in
relation to the R&D expenditures. Second, we need to build expectations on
the payoff in case of having a research success.

2.2.1 Probability of a Research Success

The probability of a research success is given by the following equation:

p(κj , t) = Z(κj , t)φ(κj)B(n, t) (9)

This expression captures a multitude of effects: Of course a higher amount
of R&D expenditures Z(κj , t) directly increases the probability of having a
research success. Furthermore, the currently active GPT positively influences
the probability of having a research success through its level of productivity
in R&D, B(n, t), where n represents the vintage of the GTP. This is modeled
according to the notion that GPTs do not directly influence the efficiency of
final goods production, but rather allow for an increase in R&D efficiency (see
for example Jacobs and Nahuis, 2002). The evolution of B(n, t) over the course
of a single GPT, n, and over a succession of GPTs will be presented at a later
stage. Finally φ(κj) is a function, which captures the difficulty of doing R&D
especially in relation of the quality the R&D firm wants to improve upon. The
functional form of φ(κj) is specified as follows:

φ(κj) =
1

ζ
q−(κj+1)α/(1−α) (10)

The difficulty of performing R&D in a sector with the current quality level κj ,
is therefore determined by two factors: First, there is a constant cost parameter
ζ. Second, there is an increase of difficulty of R&D, which rises with the quality
of the variety of the intermediate good it wants to improve upon, given by the
expression q−(κj+1)α/(1−α).

2.2.2 Endogenous Arrival of new GPTs

Apart from the difficulty to achieve further quality improvements as captured
by φ(κj), and the amount of R&D performed in a sector Z(κj, t), the behavior
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of the GPT level as given by B(n, t) needs to be determined in order to have
a full description of the factors influencing the probability of having a research
success. The evolution and the arrival of GPTs drive the probability of research
success and therefore the duration of monopoly power of incumbents. With
our approach we seek to capture the following stylized facts on the course of
an individual GPT and the arrival of new GPTs in history: (see Carlaw and
Lipsey, 2011):

(i) The efficiency of a new GPT evolves slowly

(ii) The number of GPTs increases

In order to capture these facts, we model the evolution and the arrival of a new
GPT, n+ 1, as follows: At the moment, when a new GPT arrives, B(n + 1, t)
starts off with a level of

B(n+ 1, t) = B̄q̃(t)/Z(t− 1), 8 (11)

where B̄ > 0 represents a positive scale parameter and q̃ denotes an index of
applied knowledge that is available for the application of the GPT, with

q̃(t) = (Q̃(n+ 1, t)/Z(t − 1))δ(Q̃(n, t)/Z(t− 1))1−δ (12)

and Q̃(n+ 1, t) + Q̃(n, t) = Q(t).
The aggregate quality index Q at date t consists out of all quality improvements
achieved under all previous GPTs in history, Q̃(n, t), and the experience subject
to the new arrived GPT, reflected by the overall number of quality improve-
ments subject to the new GPT, Q̃(n + 1, t). The level of applied knowledge
available for the new GPT, q̃, depends on the degree of complementarity be-
tween previous knowledge and knowledge accumulated under the new GPT as
captured by δ. If δ = 1, past experience is entirely useless. If δ = 0, the experi-
ence with the new technology would be useless such that δ = 0 is meaningless.
Therefore, economically meaningful degrees of complementarity between past
and present acquired knowledge are defined by 0 < δ ≤ 1. Since after the
introduction of a new GPT the experience with this GPT in R&D is zero, i.e.
Q̃(n+ 1, t) = 0, the initial level of a new GPT reads

B(n+ 1, t) = B̄(Q̃(n, t)/Z(t− 1))1−δ , (13)

and depends obviously on the amount of acquired knowledge until the date of
its arrival and how useful this knowledge for the implementation of the new

8The division by aggregate research expenditures measures economically its efficiency as
compared to the achieved quality improvements. Technically this scale adjustment prevents,
moreover, the initial value of a new GPT to grow to infinity.
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GPT is, as reflected by δ, i.e. for δ = 1, there is a structural break after the
arrival of n + 1 in the sense that previous acquired knowledge is not helpful
for the application of the new GPT, such that this GPT starts at its minimum
possible level B(n+ 1, t) = B̄.
The next feature is the evolution of B(n+ 1, t) over time. Since the efficiency
of the new GPT evolves slowly over time, we suggest a logistic function of the
following form (see also Carlaw and Lipsey, 2011 for similar assumptions in a
different frame)

B(n+ 1, t) = B(n+ 1, t− 1) +
Bmax

1 + exp[−k̃Bmax(q̃(t)− k)][B
max

B̄
− 1]

,(14)

with B̄, Bmax, k, k̃ being positive constants.
The second term in the above equation is a logistic function in the level of
applied knowledge available for the new GPT, q̃(t). This function shifts upwards
according to level of the GPT in the previous period, B(n + 1, t − 1). The
parameter Bmax determines the upper limit of the GPT while B̄ determines
the lower limit. The parameter k triggers the necessary amount of applied
knowledge available for the new GPT, q̃, in order to achieve an increase in
B.9 The slope of Eq. (14) in between the lower and the upper bound is
determined by k̃ and triggers therefore the effect of knowledge on the increasing
part of this s-curve. More quality improvements under the new GPT means
that this technology diffuses into the economy and the research sectors start
to accumulate experiences with this technology. This will increase the level of
the GPT and generate even more quality improvements since the probability
of research success is increasing in the level of the GPT.
Accordingly, the most recent GPT evolves according to the following set of
equations:

B(n+ 1, t) = (15)

=

{
B(n+ 1, t− 1) + Bmax

1+exp[−k̃Bmax[q̃(t)−k]][B
max

B̄
−1]

if a(t− 1) = 0

B̄(Q̃(n, t)/Z(t− 1))1−δ if a(t− 1) ≥ 1

a(t− 1) is drawn by an endogenous Poisson process with the mean λ(t) of the
Poisson distribution given by:

λ(t) = ϕB(n, t− 1) (16)

where 0 < ϕ < 1.
This specification of the Poisson distribution captures the following stylized
facts on the long-term evolution of GPTs: The fact that the arrival of new
GPTs is commonly facilitated by the amount of currently available applied

9Since (14) corresponds graphically to a s-curve, the length of the lower bound depends on
the size of k, i.e. the larger k the larger the amount of q̃ in order to achieve increases in B.
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knowledge which triggers the maturity of the current GPT is is accounted for
by the inclusion of level of the GPT B(n, t−1) in this equation which remember
is a function of q̃. Therefore a larger amount of applied knowledge increases the
probability of a new GPT arriving. Contrarily, the fact that the productivity of
a GPT is low after its arrival, leads to an initial drop in λ upon the arrival of a
new GPT. Afterwards, as B(n, t−1) is rising in the level of acquired knowledge,
λ rises again. This behavior is consistent with features of other GPT models,
where the arrival of a new GPT initially binds significant R&D resources for
exploring the possibilities offered by the new GPT. In the example in Carlaw
and Lipsey (2006), the arrival of a new GPT leads to a drop in basic research
(which in their model is aimed at inventing new GPTs) which picks up speed
again over the lifetime of the GPT.
The behavior of λ over time can be nicely illustrated by deriving the expected
time until the arrival of a new GPT. This is approximately given by the waiting
time distribution of the above defined Poisson process with rate λ. The time T
one must wait until the next GPT arrives is given by the following cumulative
distribution:10

F (t) = P (T ≤ t) = 1− e−λ(t) (17)

By differentiating equation (17) we get a density function with mean:

E(T ) =
1

λ
(18)

And finally together with equation (16):

E(T ) =
1

ϕB(n, t− 1)
(19)

As can be easily seen the higher the level of B, the shorter is the expected wait-
ing time for a new GPT. On the other hand there is also a cyclical component
during the lifetime of an individual GPT: While initially, there is an increase
in the expected waiting time, it gets gradually lower in the course of a GPT, as
the current B(t) increases to its maximum value.

2.2.3 Expected Profits

Another main determinant of the amount of R&D performed is the expected
profit in case of a research success. We will first present how R&D firms
build their expectations on the expected profit in case of a research success
E[V (κj + 1)]. In determining the amount of information the R&D firms have,
we basically follow the line of reasoning of Carlaw and Lipsey (2006): They ar-
gue that it is impossible for agents to predict either the development of a single
GPT or the exact time of arrival of a new GPT. Due to this uncertainty, the

10This equation can be derived by using the fact that P (T > t) = e−λt following from the
Poisson distribution and the use of the complement rule.
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assumption of perfect foresight taken in the majority of growth models cannot
be sustained. They therefore propose two possible ways how agents maximize
their utility in each period recursively: One approach would be that agents
are not forward looking at all, therefore only considering the marginal prod-
ucts of the current period and maximizing only their current profit. Another
possibility is that, while agents are forward looking, they simply assume that
marginal products across all sectors remain constant at the level currently ob-
served and maximize accordingly over an infinite time horizon. While Carlaw
and Lipsey (2006) choose the first approach for their own model, we use the
second approach: Individuals maximize in every period their outcome based on
the values of this specific period since we are assuming that they are forward
looking but cannot foresee future changes, i.e. they believe that the current
marginal productivity of research does not change over time. In the following
period the individuals realize that the productivity has changed and readjust
their decision. Concretely applied to the R&D sector in our model this basically
means that R&D firms assume that current equilibrium levels of the interest
rate r and of the probability of having a research success p apply for the whole
future.11 The profit flow per period an innovator possessing the leading-edge
technology is given by:

π(κj) = πq
κjα

1−α (20)

where π is the basic profit flow, which is constant over time due to the fact that
A and L in final goods production are constant:

π =

(
1− α

α

)
A

1
1−αα

2
1−αL (21)

Due to the higher demand for goods of a higher quality level, as can be seen in
the demand function (3), the profits of inventors π(κj) increase with the quality
level κj of the variety of an intermediate good.

The incumbent monopolist can reap the monopoly profit π(κj) in every period
until it is displaced by an intermediate goods firm inventing an even higher
quality. The current probability, that the monopolist with a good of quality
κj remains in the market, is therefore given by 1− p(κj). Additionally, future
profits are discounted by the current interest rate r. As intermediate goods
firms assume that both the interest rate and the probability of a research success
remain constant over time, the expected profit of a monopolist is given by:(

1− p(κj)

1 + r

)
πq

κjα

1−α +

(
1− p(κj)

1 + r

)2

πq
κjα

1−α + ...+

(
1− p(κj)

1 + r

)n

πq
κjα

1−α (22)

Since this is a geometric series, by taking the limit n →∞ this simplifies to:

E[V (κj)] =
(1− p(κj))

r + p(κj)
πq

κjα

1−α (23)

11Therefore they implicitly assume that no new GPT arrives over the whole lifetime of their
products, i.e. that a(t) is always 0.
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In light of the above expression, the present value of profits of incumbents is
decreasing in the probability of research success, p(κj), for innovators who seek
to improve the level of quality to κj + 1. As due to the Arrow replacement
effect, incumbents do not engage in R&D since this would undermine their
own monopoly duration time, a larger p(κj) increases the likelihood that an
innovator succeeds and replaces the monopolist, i.e. monopoly duration time
is declining in p(κj) which reduces the present value of profits. Moreover, the
expected profit from a successful innovation rises with its quality level, due to
the higher demand for higher quality intermediate goods. Contrarily, both a
higher discount rate and a higher probability of being displaced by a future
competitor lower the expected profit.

2.3 Model Equilibrium

Assuming free entry in the intermediate goods sector we can now find the
optimal amount of R&D expenditures Z(κj), by equalizing expected payoff of
such an investment with the according probability of having a research success
p(κj) multiplied by the expected monopoly profit associated with inventing an
intermediate good of higher quality, E[V (κj+1)]∗p(κj). Therefore the free entry
condition is given by:

Z(κj)(φ(κj)B(t)E[V (κj+1)]− 1) = 0 (24)

In order to find the equilibrium aggregate research expenditures we can now
insert the expected profit from having a research success given by equation
(23) together with the difficulty of performing R&D (10) into this free entry
condition. This allows us to easily solve for the probability of having a research
success, which is given by:

p =
πBm − rζ

ζ + πBm
(25)

As this equation is independent of the quality level in a single sector, research
expenditures are uniformly distributed among all intermediate goods sectors.
By inserting this equation into the probability of having a research success as
given by equation (9) we can derive the R&D expenditures in a single sector
j and then aggregate across all intermediate goods sectors. This results in the
following amount of aggregate R&D expenditures:
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Z(t) =
N∑
j=1

Z(κj , t) =
π − rζ/Bm

1 +Bmπ/ζ
q

α
1−αQ (26)

Since Y (t) is a linear function in the aggregate quality index Q, output growth
is determined by the growth rate of Q. Given the leading edge quality κj , the
probability of research success p(κj , t) deterimines the level Q in the next period

Q(t+ 1) = p(κj , t)
N∑
j=1

q
(κj+1)α

1−α + (1− p(κj , t))
N∑
j=1

q
κjα

1−α (27)

= p(κj , t)q
α

1−αQ(t) + (1− p(κj , t))Q(t), (28)

such that the growth rate of GDP reads

γ =
Q(t+ 1)

Q(t)
− 1 = (q

α
1−α − 1)p(κj , t) = (q

α
1−α − 1)

πBm − rζ

ζ + πBm
(29)

The growth rate of output, γ, depends linearly on the probability of research
success, p(κj). On one hand a higher p(κj) reduces the present value of incum-
bents but increases the speed of quality improvements since the probability of
success per unit of resources allocated to R&D has increased. The probabil-
ity of research success depends, in turn, positively on the level of the GPT12

Thus, the growth rate of output is positively associated to the level of the GPT.
This means that the drop in the level of a new arriving GPT reduces output
growth through the induced reduction in the probability of research success.
The economy moves along a balanced growth path, if the the level of the GPT
is constant. Then Y,X and Z are linear functions in Q. As moreover the house-
holds’ problem is solved for by the optimal allocation of income to R&D, i.e.
Z(t), we know that Y,X,Z and C grow at the same and constant growth rate
as specified by (29). Long-term economic dynamics are driven by a sequence of
GPTs, sucht that the economy moves along the BGP only as long as the level
of the current GPT has reached its upper bound and the probability of research
success is constant. Long-run growth is however driven by a sequence of GPTs
while the arrival of which is stochastic, despite the fact that the probability
of such an event is endogenous to the model. These long-term dynamics are
described in the next section

12Note that ∂p
∂Bm

= π̄ζ(1+r)

(ζ+Bmπ̄)2
> 0.
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3 Model Behavior and Numerical Simulations

In order to illustrate the dynamics of the economy we calibrate our model. We
define one period as being equivalent to one year.13 Moreover, we calibrate
our model to cover the historical arrival of new GPTs over the past two cen-
turies, i.e. the years from 1809 until 2008 AD. We thereby again refer to the
list of GPTs by Lipsey at all shown in Table 1. According to their list in the
19th century four GPTs appeared (in the order of their appearance: railway;
iron steamship; internal combustion engine; electricity) while in the 20th cen-
tury seven GPTs did arise (in the order of their appearance: motor vehicle;
airplane; mass production, continuous process, factory; computer, lean produc-
tion, internet, biotechnology). Therefore the targeted number of GPTs arriving
during the 200 years covered by our simulation is taken as approximately 11,
while the aimed growth rate in the final period of our simulation corresponds
to the average growth rate of the OECD economy in 2008, which is at 2.9%
(OECD, 2008). In addition, for OECD countries R&D expenditures as a share
of GDP amounted to 2.3% in 2008 (OECD, 2011). In calibrating the model
we proceed now in two steps. We first fix those parameters which are directly
known. In a second step, we fix the remaining parameters in an iterative way
in order to match the numerical results to the above described observations.
To begin with, we normalize population size, the aggregate quality index, Q,
and the lower bound of a GPT, B̄, to 1, i.e. L = 1 ,Q = 1, and B̄ = 1. The
capital income share, α, is fixed as usual to 0.3.14 The world market interest
rate, r, is set to 0.03 per year. A is a scale parameter which fixes π̄, given α and
L. Therefore A steers the level of the probability of research success, p, and
the growth rate of output together with q and ζ and the level of the GPT. In
order to match the afore mentioned values of output growth and the research
expenditure share, we set A = 2, ζ = 2.4, Bmax = 6 and q = 1.08. This implies
an initial growth rate of output in the vicinity of 0.05% (see Galor and Weil,
2000) and a long-run growth rate between 2 and 3%. The implied probability
of research success is then initially blow 10%. The remaining parameters trig-
ger the dynamic behavior in terms of the increase in the growth rate of output
and the number of GPTs developed over the past 200 years. We set δ = 0.05,
k̃ = 0.1, k = 4, and ϕ = 0.0045. This generates a development pattern which is
consistent to the observations over the last 200 years. In the 19th century the
growth rate increased to about 1% per year and increased towards its current
interval after World War II (see Galor and Weil 2011). In addition there arrived
only 4 GPTs in the 19th century but 7 in the 20th century. To do so we have
chosen the values so that in the average of one thousand simulation runs, the

13Simulations are also used by van Zon et al. (2003 and 2006) and Carlaw and Lipsey
(2006) to show the long-term economic development driven by a sequence of GPTs. Unlike
these models, our framework can account for the observed increase in the frequency at which
new GPTs arrive.Carlaw and Lipsey (2006) calibrated their model to an constant expected
time interval of 30 years between GPTs, while Van Zon et al. (2003 and 2006) make simulations
taking arbitrary parameter values.

14The labor income share is 1− α and amounts to 2/3, see Acemoglu (2009).
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desired growth rate and arrival rate of GPTs is achieved.15

α 0.3

A 2

L 1

r 0.03

ζ 2.4

δ 0.05

B̄ 1

Bmax 6

k̃ 0.1

k 4

Q(1) 1

q 1.08

ϕ 0.0045

Table 2: Parameters used for numerical solution

The number of GPT generations arriving over the 200 years resulting from a
total of 1000 simulation runs, are shown in Figure 1. The thin lines show the
results of individual simulation runs, while the bold line represents the average
vintage of GPTs present taken over all simulations. It becomes obvious that our
model can be calibrated in a way that can realistically depict both the absolute
number of GPTs invented in the past 200 years and their approximate arrival
rate. The acceleration of the arrival of new GPTs is also mirrored by our model.
Interestingly, while we can chose the parameters so that in terms of expected
values, the historical development of the various GPTs can be approximated,
there is a wide spread of other scenarios arising using the very same values.
The number of GPTs invented during the time frame of our simulation ranges
from 4 to 24. This clearly shows that, given that long-term growth is driven by
the arrival of subsequent GPTs, the outcome is still highly stochastic.

The dynamics of our economy triggered by the repeated arrival of new GPTs
is shown in Figures 2 and 3 for a typical simulation run.
As statet at the beginning of this section, our framework is able to capture im-
portant empirical regularities of economic development. Figure 2 is consistent
with the arrival pattern of GPTs over the last 200 years and clearly consistent
with the observed acceleration in the arrival of new GPTs. In addition the
model is consistent with a slow take-off, that is the growth rate of aggregate
output is increasing in accordance to the observed empirical pattern while the
level of output follows an exponential trend. In line with our theoretical con-
siderations, the growth rate of aggregate output follows the evolution of the
probability of research success. The latter is triggered by the level of the GPT
which in turn depends on the amount of acquired technological knowledge as

15This approach is also widely used in the simulation of business cycle models, as for example
in Jaimovich and Rebelo (2006).
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Figure 1: GPT vintage in the 1000 simulation runs

reflected by the number of quality improvements. Initially this experience is
nearly inexistent and therefore the level of the GPT is also low which induces
low probabilities of research success and low rates of growth.16 It takes more
than 40 years until the next GPT arrives. Since there is more applied knowl-
edge available than 40 years ago, the initial level of this GPT is higher than the
old one, such that p(κj) and the growth rate increase. Therefore the level of
GDP and research expenditures speed up. Nevertheless, the growth rate is still
quite low which means that the number of quality improvements (acquisition of
applied knowledge) is also quite low. Therefore, the level of the GPTs evolves
with a very low growth rate. There will be a point in time where the level of
applied knowledge is sufficiently high, such that the level of the current GPT
evolves at a higher pace. This speeds up growth and the number of quality
improvements which makes the arrival of the next GPT more likely. Given that
the economy reaches a stage of development with faster quality improvements,
the introduction of a new GPT induces a structural break in the sense that the
initial level of the new GPT drops compared to the previous level. This induces
slow downs in economic growth. But given a high amount of applied knowledge
with previous technologies, the diffusion of the new technology reflected by the
number of quality improvements subject to this vintage speeds up such that
the level of the new GPT increases again. Thus the last part of the develop-
ment process is characterized by growth cycles, but increasing growth rates and
increasing probabilities of research success.17 The development of R&D expen-

16Technically this feature is owed to the logistic functional form of B.
17Note that growth slow downs in earlier stages may also occur. That this does not occur
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Figure 2: Typical simulation run: evolution of the growth rate of aggregat
output, γ, the probability of research success, p(κj , t), the level of a GPT,
B(n, t), and the sequence of the arrival of GPTs

ditures is equally interesting: Just as economic growth, R&D is subject to a
cyclical behavior which is subject to the arrival of new GPTs. Furthermore an
increase of R&D expenditures can be observed over time.

4 Concluding Remarks

We have presented a quality ladder model of endogenous Schumpeterian growth
where new GPTs arrive endogenously with a probability governed by the amount
of applied knowledge available. This model allows for a more realistic descrip-
tion of the historical facts surrounding the emergence of new GPTs and the
frequency of their arrival which state that new GPTs arise in an ever higher
frequency. Furthermore, not only the arrival of new GPTs is stochastic but
also the development of new qualities of intermediate goods in single sectors
is subject to uncertainty. This combination of features is both unique from a
modelling perspective and fits stylized facts drawn from economic history, i.e.
increasing growth rates. Thus, so far we presented a highly stylized framework
which is able to replicate several features of economic development over the

in this simulation run is a result of the stochastic process. In any case, whether or not this
occurs depends for a given shock on the level of δ in relation to existing and new arriving
technologies. More realistically it should be assumed that δ varies with arriving technologies.
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Figure 3: Typical simulation run: evoultion of aggregate output, Y , and R&D
expenditures as a share of GDP

past 200 years, i.e. decreasing time intervals between GPTs, the efficiency of
a new GPT increases over time and GPTs are based on the existing stock of
applied knowledge.
Nevertheless it is worth to notice, that in reality there exist more than one GPT
at the same time. For example, Lipsey et. al (2005) distinguish five classes for
GPTs: materials, information and communication technologies, power sources,
transportation and equipment, and organizational forms. In this context, Car-
law and Lipsey (2011) observe that over time, many different GPTs within each
class are invented and were in simultaneous use, for example electricity, water
wheels and steam engines as power sources. Moreover, different GPTs may
complement each other, like electricity enabled computers. Thus the adoption
of a new GPT does not only depend on applied knowledge but also on applied
GPTs. Other GPTs in turn have displaced some GPTs (for example the three
masted sailing ship). Thus the life cycle of GPTs and their interaction with
existing technologies is very uncertain in reality. We were already commenting
on the assumption of a constant degree of complementarity between existing
applied knowledge and a new GPT as captured by δ in our framework. It seems
plausible that the degree of complementarity interacts with the newly arriving
GPT. Moreover, a GPT may be more productive in some sectors but not in
others which again raises the question of heterogeneous GPTs. Thus a future
model could consider that an ever increasing number of GPTs arriving could
compete for scarce R&D resources, thereby partially obliterating the beneficial
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effects of these “engines of growth”.
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