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ABSTRACT:  12 

The performance of coastal vertical seawalls in extreme weather events is studied numerically, aiming 13 

to provide guidance in designing and reassessing coastal structures with vertical wall. The extreme wave 14 

run-up and the pressure on the vertical seawall are investigated extensively. A time-domain higher-order 15 

boundary element method (HOBEM) is coupled with a mixed Eulerian-Lagrangian technique as a time 16 

marching technique. Focused wave groups are generated by a piston wave-maker in the numerical wave 17 

tank using a wave focusing technique for accurately reproducing extreme sea states. An acceleration-18 

potential scheme is used to calculate the transient wave loads. Comparisons with experimental data show 19 

that the extended numerical model is able to accurately predict extreme wave run-ups and pressures on 20 

a vertical seawall. The effects of the wave spectrum bandwidth, the wall position and the wave 21 

nonlinearity on the wave run-up and the maximum wave load on the vertical seawall are investigated by 22 

doing parametric studies. 23 

Keywords: Extreme sea states; Wave pressure; Wave run-up; Fully nonlinear potential flow theory; 24 

Coastal vertical seawall.  25 

 26 

1. INTRODUCTION 27 

Extreme waves, which are also known as freak waves, rogue waves or killer waves, are relatively large 28 

and rare local water surface elevations that pose potential threats even to navigation vessels and offshore 29 

structures. The occurrence of extreme waves has been well documented and is believed to be responsible 30 

for many reported accidents. A list of eleven documented catastrophic ship collisions off the Indian Coast 31 

of South Africa was reported as a result of freak waves [1]. Lavrenov [2] found that the mechanism of 32 
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wave concentration due to Agulhas counter-current may explain the formation of these freak waves. Sand 33 

et al. [3] identified several freak waves on the Danish Continental Shelf, which were found to be 34 

responsible for the platform damage at the Ekofish field in the Norwegian Sector of the North Sea. 35 

Observations of freak waves in many areas of the World Ocean suggest that freak waves not only exist 36 

in offshore deep water but also occur in coastal zones. Freak wave phenomena on-shore, which result in 37 

sudden unexpected flooding of coastal areas and strong impacts on coastal structures, were described in 38 

[4, 5]. There were 140 freak wave events being observed in the coastal zone of Taiwan from 1949 to 39 

1999 [6]. It was found that six out of nine freak wave events in 2005 occurred nearshore [7]. 40 

Extreme conditions must be considered in the design of coastal structures to ensure safety and stability 41 

of these structures, given that over 80% of reported past freak wave events occurred in shallow waters 42 

or coastal areas [3, 8, 9]. Vertical wall-type structures have been widely adopted as the coastal protection 43 

structures, with the advantages that they are able to reflect incidental wave energy almost completely and 44 

provide a calm zone for safe berthing of vessels. Additionally, it is found that the sloping walls lead to 45 

an increase in the run-up by up to 55% [10] and experience larger wave loading and pressures [11] when 46 

compared to those for the vertical seawalls. Thus, accurate prediction of the extreme wave loading on 47 

vertical seawalls is important and forms a focus of this study. 48 

In the existing design methods, extreme waves are usually simulated by periodic waves with the wave 49 

height and the wave period corresponding to identified extreme conditions. Extensive research has been 50 

carried out for investigating pressures on vertical walls due to regular waves, such as [12 - 14]. The Goda 51 

formula [12] is one of the most popular equations for the design of coastal structures, and has been 52 

adopted by Japan Standard for estimating wave forces on vertical walls [37]. Lin [15] carried out a series 53 

of experiments to measure pressures on vertical breakwaters in the presence of regular waves and found 54 

that the pressure distributions on vertical walls are different from those predicted by Goda’s theory.  55 

The random and broad-banded nature of ocean waves cannot be taken into account by using regular 56 

waves. This often leads to inaccuracy in the estimation of fluid loading for practical applications. The 57 

experimental study in [16] shown that the maximum pressure on the vertical wall due to irregular waves 58 

is larger than that in regular waves near the still water level. Chiu et al. [17] found that the use of regular 59 

wave leads to an underestimation of wave forces acting on vertical breakwaters by comparing the results 60 

of regular waves and irregular waves. They found that the Goda formula [12] would either under-estimate 61 

or over-estimate the wave forces on the vertical wall. More studies on random wave impacting on vertical 62 

walls can be found in [18 - 20].  63 



Random wave simulation is very inefficient due to requirements of very long run-time in order to capture 64 

near-extreme events. Wave reflection due to finite sized tanks is another issue in long time-domain 65 

simulations. An accurate description of the average shape of an extreme event, in which a single large 66 

event formed by focusing all wave components tapers away either side of the large crest, provides a good 67 

alternative to random waves. This type of extreme events is commonly referred to as a focused wave 68 

group in which both the frequency spectrum and phase of the wave components are carefully controlled 69 

so that the constructive interference occurs at one point in space and time. Tromans et al. [21] proposed 70 

a design formulation to describe the mean shape of an extreme event, and this formulation has 71 

subsequently been validated by comparing with field measurements in [22]. Baldock et al. [23] presented 72 

a series of physical experiments in which a large transient wave group was produced by focusing a large 73 

number of wave components. The focused wave group technique has also been used for studying extreme 74 

events from a given random sea-state of known spectral content [24 - 31].  75 

To date, the knowledge on wave pressures due to focused wave groups on vertical seawalls is still rather 76 

limited. Improved understanding of spectral and extreme characteristics of wave pressure on a vertical 77 

seawall has the potential to lead to better and safe designs of coastal and offshore structures. In this paper, 78 

the fully nonlinear numerical model developed to study the evolution of the focused wave group in [32] 79 

is extended in this research. The present work is focused on the assessment of how the extended fully 80 

nonlinear numerical model performs when applied to investigate extreme wave loading on a vertical 81 

seawall. The model solved the Laplace equation for describing the fluid motion based on the time-domain 82 

higher-order boundary element method (HOBEM). A new input boundary condition is proposed to 83 

generate focused wave groups by imitating wave paddles in real wave tanks. The numerical results are 84 

compared with published experimental data, and favorable agreements are achieved. The variations of 85 

wave pressure along the wall height are presented and the effect of wave spectra on the wave pressure 86 

distribution is subsequently investigated.  87 

 88 

2. Numerical method 89 

The concerned problem can be described as an initial-boundary value problem mathematically and solved 90 

by a time-domain higher-order boundary element method (HOBEM) in which a mixed Eulerian-91 

Lagrangian technique and a 4th - order Runge-Kuatta scheme are applied as a time marching technique 92 

[32]. The present model is an extension to the model developed in [32] where a fully nonlinear solution 93 

of Laplace equation was obtained with a set of addition constraints for describing the evolution and wave 94 



kinematic of focused wave groups. In the present model, new boundary conditions are added to extend 95 

the capacity of the numerical model in [32] in simulating the interaction between focused wave groups 96 

and vertical seawalls. The underlying equation and algorithm are summarized in this section. 97 

 98 

2.1. Governing equation and boundary conditions 99 

The simplified geometry of an extreme wave hitting on a vertical seawall is shown in Fig.1. A Cartesian 100 

coordinate system Oxz is introduced such that the origin O is in the plane of the undisturbed free surface, 101 

x = 0 at the left end of the domain, z positive upwards. It is assumed that the fluid is incompressible, 102 

inviscid and the flow irrotational so that a velocity potential  (x, z, t) exists and satisfies the Laplace 103 

equation inside the fluid domain , 104 

2 0  , in                                                               (1) 105 

The fluid domain  is bounded by the instantaneous free surface Гf, the flume bottom Гd and the vertical 106 

end-wall Гr as well as the input boundary ГI on which additional constraints are posed to ensure a unique 107 

solution. That is, both the fully nonlinear kinematic and dynamic boundary conditions are satisfied on Гf, 108 

and on both Гd and Гr, the rigid and impermeable boundary condition is satisfied, 109 
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where g represents the acceleration due to gravity, xs denotes the position vector of a fluid particle on the 111 

free surface,  is the instantaneous free surface elevation and D/Dt is the material derivative. 112 

Additionally, rather than [32] in which focused wave groups were generated by specifying the velocities 113 

on the inlet boundary based on experimental measurements, incident waves here are generated by a 114 

piston-type wave-maker in which the motion of the wave-maker S and its velocity up are prescribed on 115 

ГI.  116 
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The first of these expressions is for regular waves, the second is for focused wave groups, where sa and 118 

ω are the stroke and the angular frequency of the wave-maker, respectively. For focused wave groups, N 119 

is the total number of wave components, ki and ωi are the wave number and the angular frequency of the 120 

ith wave component satisfying the dispersion relation ωi
2 = gkitanhkih. xp and tp denote the focal position 121 

and the focal time, respectively. 122 

The relationship between the linear wave amplitude ai and the wave-maker stroke Sa,i can be determined 123 

as follows assuming linear focus behavior from the wave paddle [33], 124 

, /a i iS a Tr                                                                        (4) 125 

where 2
4sinh ( ) (2 sinh(2 ))

i i i
Tr k h k h k h   is the transfer function for piston-type wave-maker and h is the 126 

static water depth. 127 

A ramping function is applied to increase the motion of the wave-maker gradually,  128 
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where Tm is a short time duration during which the input wave is ramped. In this study, for regular waves 130 

Tm = 2T, and Tm = 2Tmax for focused wave groups in which Tmax is the largest wave period of wave 131 

components. 132 

As the above boundary value problem is solved in the time domain, the calm initial water surface 133 

conditions are applied in this research. 134 

 135 

2.2. Solver and algorithm 136 

Generally, the aforementioned governing equation together with a set of boundary conditions can be 137 

transformed to a boundary integral equation by using second Green’s theorem. Then the initial-boundary 138 

value problem is solved with the HOBEM by arranging Rankine sources on all surfaces. The 4th - order 139 

Runge-Kutta (RK4) scheme is applied to advance the boundary condition on the free surface in Eq. (2) 140 

in time. Because of the motion of wave maker, the fluid domain is re-meshed at each time step to avoid 141 

unrealistically large mesh deformation. Based on the horizontal coordinates of new nodes obtained from 142 

the re-meshing process, the vertical position and the potential can be calculated by interpolation using 143 

the quadratic shape function. The detail of the fully nonlinear wave flume used in this study can be found 144 

in [32]. 145 



2.3. Wave pressure on the vertical wall 146 

After the velocity potential is solved, the transient wave pressure over the wetted surface of the vertical 147 

wall can be calculated from the following Bernoulli’s equation, 148 
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 149 

where  is the density of water. One of challenges in fully nonlinear numerical simulations is the 150 

calculation for the time derivative of the velocity potential t in Eq. (6). There are several methods for 151 

calculating t among which the backward finite difference technique is the simplest and is widely applied. 152 

However, it is unstable in most cases, especially for the cases with objects moving or piercing through 153 

the free surface [34]. In the present study, the so-called acceleration potential method is applied.  154 

     In the acceleration potential method, as the velocity potential  the temporal derivative of the velocity 155 

potential t satisfies the Laplace equation in the fluid domain  and the impermeable boundary condition 156 

on the flume bottom Гd as well as the vertical end-wall Гr.  On the free surface Гf, t satisfies the Bernoulli 157 

equation, 158 

 21
| |

2

d
g

dt


      .                                                              (7) 159 

The boundary integral equation to be solved for t is, 160 
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Once t 
is obtained, the wave pressure can be calculated from Eq. (6). Then the wave loads can be 162 

obtained from the integration of wave pressure along the wetted surface. More details in the numerical 163 

schemes and formulations can be found in the references [35]. 164 

 165 

3 Validation and Discussions 166 

3.1. Comparisons with experimental data 167 

In this section, the extended numerical model described above is used to reproduce the published 168 

benchmark experiments in [13, 40] on regular waves and focused wave groups impacting on a vertical 169 

wall, respectively. Comparisons with the experimental data and the analytical solutions are carried out 170 

to assess the performance of the present numerical model when applied to non-linear wave interactions 171 

with a vertical seawall for ranges of wave conditions. 172 

In [13], a range of regular waves with varying wave steepness and wave frequencies were generated to 173 



impact a model vertical seawall installed at the downstream end of the flume in laboratory. The water 174 

depth d was 0.315 m in all tests and four pressure transducers were installed at 0, 6.3, 12.6 and 18.9 cm 175 

below the still water level (SWL) to record the pressure distribution along the vertical seawall, i.e. z/d = 176 

0.0, -0.2, -0.4, and -0.6. Numerical results for two regular waves with wave period T = 0.55 s and 0.87 s 177 

are discussed in this paper. The wave amplitudes are 0.0064 m and 0.0241 m, respectively.  178 

In order to reproduce the experiments, a 2-D numerical wave tank is setup. The length of the numerical 179 

wave tank is set as 10λ in which λ is the wavelength. Convergence tests are carried out to determine the 180 

optimal time steps and the spatial steps, which are t = T/50 and x = λ/15 in this study, respectively. 181 

The distribution of dynamic pressures P along the height of the vertical seawall due to regular waves is 182 

shown in Fig. 2 for two selected wave conditions. The pressure is normalized by H in which  = g,  183 

is the water density, g the acceleration due to gravity and H the wave height. Both numerical results and 184 

experimental data are included as well as the solutions of linear theory. For cases with small incoming 185 

wave amplitude as shown in Fig. 2(a) (i.e., kA = 0.084, kd = 4.33), noises might be picked up in the 186 

experimental measurements. The small deviations of both linear and nonlinear solutions from the 187 

measurements are expected. The agreements with the experimental data are satisfactory for both the fully 188 

nonlinear potential flow theory and linear theory. While for a relative large wave (i.e., kA = 0.135, kd = 189 

1.77) shown in Fig.2 (b), the linear theory over-predicts the pressure due to strong wave nonlinearity and 190 

full reflection from the rigid wall. From Bernoulli equation (Eq. (6)), the wave dynamic pressure on the 191 

vertical wall is the function of the wave height. Full reflection assumption in the linear theory results in 192 

larger wave crest of reflected waves, thus, larger dynamic wave pressure. Additionally, the total wave 193 

dynamic pressure consists of nonlinear wave pressure components at frequencies both lower and higher 194 

than the incoming waves in the framework of non-linear wave theory. There is phase difference among 195 

wave pressure components which could lead to reductions in dynamic wave pressure on the vertical wall. 196 

As seen in Fig. 10, the 2nd order difference term can be 180° out of phase with the linear component. As 197 

anticipated, favorable agreement between the fully non-linear numerical results and the experimental 198 

data is achieved even for the case where nonlinearity dominates. This confirms the capability of the 199 

present numerical model in predicting non-linear regular wave interactions with a vertical seawall in 200 

coastal areas. 201 

To further validate the present numerical model, a series of experiment on focused wave groups acting 202 

on a vertical wall was performed in a flume (50 m × 3 m × 1m) at Dalian University of Technology. The 203 

static water depth for the tests was 0.5 m. The incident focused waves were generated by a hydraulically 204 

driven piston-type wave-maker at upstream end of the flume, and were supposed to be focused at x = 205 



14.16 m, which is the stagnation point of the model vertical wall. The dimensions of the model vertical 206 

wall were 0.5 m × 3 m × 0.85 m (length in longitudinal direction × width × height in vertical direction). 207 

15 pressure sensors were used to measure the pressure distribution along the surface of the model vertical 208 

wall as well as the time histories at certain points. In the experiments, a constant-steepness wave spectrum 209 

was applied, so the amplitude of ith wave component ai can be calculated as follows, 210 

                                                                   (7) 211 

where A is the linear crest value of incident focused wave groups, ki the wave number of ith wave 212 

component, and the total number of wave components N was selected as 29 in the experiment. In the 213 

numerical simulations, the target focal position was xp =15 m and the target focal time was defined as xp/tp 214 

= min/2Tmin in which λmin and Tmin are the shortest wavelength and the smallest wave period of wave 215 

components, respectively. But there was some shift in this focusing because of the nonlinear dispersion 216 

of the focused wave groups. The present numerical model is carefully calibrated to ensure all focused 217 

wave groups are approximately focused at the upstream stagnation point of the vertical wall. In the 218 

numerical simulations, the spatial and the time steps are selected as x=λmin/15 and t=Tmin/50, 219 

respectively according to the convergence tests.  220 

Fig.3 shows both the numerical and measured time histories of the free surface elevation at focused point 221 

without the presence of the vertical seawall. Here, the linear crest value of the focused wave group A = 222 

0.076 m, and the wave frequency f = (0.65 Hz, 1.35 Hz) and (0.6 Hz, 1.5 Hz), respectively. In this study, 223 

uniform increment in frequency between adjacent wave components is applied, i.e. fstep = fi+1 - fi is the 224 

same for all wave components. That is, take f = (0.65 Hz, 1.35 Hz) as example, the upper and lower 225 

frequencies are 0.65 and 1.35 Hz, respectively, and fstep = (1.35-0.65)/29 = 0.024 Hz. The difference 226 

between the upper and lower frequencies is defined as the wave spectrum bandwidth, i.e. the wave 227 

spectrum bandwidths in Fig. 3 (a) and (b) are 0.7 and 0.9 Hz, respectively. From the figures, it can be 228 

seen that there is good agreement between the experimental data and numerical results, with similar 229 

values and phases. The peak wave crests increase to 0.089 m and 0.11 m for broad-banded and narrow- 230 

banded cases, respectively, due to nonlinear evolution in waves.  231 

The time series of the wave pressure on the vertical wall at z = 0.05 m above the mean water level are 232 

shown in Fig.4 for both narrow- and broad- banded cases. Characteristic ‘one-peak’ profiles are observed 233 

in both numerical and experimental results for both cases, with short duration time. There is a favorable 234 

agreement for pressure maxima and it is noted that the rise time, which is defined as the time needed to 235 
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rise the pressure from zero to its maximum value, is larger in numerical results. The rise time predicted 236 

by the present numerical model is approximately 0.3 ~ 0.4 s, while is almost zero in model tests resulting 237 

in very sharp impacts. This difference could be due to several reasons, including the accuracy of the 238 

pressure sensor in measuring such short duration loads and the possible trapped air pocket. An empirical 239 

formula Pmax = atb was proposed by Weggel and Maxwell [38] to determine the relationship between 240 

maximum impact pressure and the rise time. a and b are non-dimensional empirical coefficients which 241 

are advised to be 232 and -1 in [38], respectively. It is found that the numerical results follow the 242 

empirical formula with Pmax ~ 0.53 kPa. The total impact duration is about 0.27 s for both cases which is 243 

shorter than the forming time of the focused wave crest (i.e., the temporal interval between two 244 

neighboring equilibrium positions of the focused wave crest, about 0.40 s), as shown in Fig.3. 245 

Additionally, the total impact duration and the rise time for both cases with different bandwidth are 246 

almost the same, indicating that the effect of bandwidth on the total impact duration and the rise time is 247 

small at least for the studied wave conditions. 248 

Fig. 5 shows distributions of the normalized wave pressure along the vertical seawall. A* is the actual 249 

crest value of the focused wave group, i.e. the undisturbed nonlinear crest of the focused wave group at 250 

actual focal point without the presence of the vertical seawall. As with the regular wave conditions, the 251 

agreements between the predicted and measured dynamic pressure on the vertical seawall due to focused 252 

wave groups are generally good, with similar values and profiles. This indicates that the present 253 

numerical model is able to capture main physics that involved in the process of focused wave groups 254 

interaction with a vertical seawall in shallow water regions. For the wave and geometry conditions 255 

investigated in this study, the maximum pressure is observed to occur at the mean water level in both 256 

numerical simulations and the experiments. This is consistent with what has been observed in [39] in 257 

which the locations of both the maximum quasi-static loads and impact loads are in the vicinity of the 258 

mean water level. 259 

In the sections to follow, the validated numerical model is used to investigate the effects of the wave 260 

spectrum bandwidths, the wall positions and the wave nonlinearity on the wave run-up and the maximum 261 

wave pressure on the vertical seawall. 262 

 263 

3.2. The effect of the vertical seawall on the wave run-up and the pressure 264 

Fig. 6 shows time series of the free surface elevation at focal point for cases with and without the vertical 265 

seawall in place. The linear crest value of the focused wave group is A = 0.06 m with f = (0.65 Hz, 1.35 266 

Hz). The results for the case with the vertical wall in place are shown in the left column and the results 267 



for the case without the vertical wall are shown in the right column. It can be seen that the peak free 268 

surface elevation in the case with the vertical wall in place is approximately 2.6 times of that without the 269 

seawall. This increase in the free surface elevation is even larger than that resulting from a perfect 270 

reflective vertical wall (which is approximately twice the height of the incident wave group). The possible 271 

reason for the enhanced response is the nonlinear interaction of the incoming wave groups with the 272 

vertical wall. 273 

Time series of the free surface elevations at the focal point for the incident wave groups with the linear 274 

crest value A = 0.01 m and 0.06 m are shown in Fig. 7 (a) and Fig. 7 (b), respectively. The results for the 275 

cases with and without the vertical wall are included. The free surface elevations for the cases in absence 276 

and presence of the vertical wall are normalized by A and 2A, respectively. It can be seen that for the 277 

small wave amplitude, the full reflection due to the vertical wall gives a combined wave with wave height 278 

of approximately twice the wave height of the incident wave group. And for the large wave amplitude 279 

with the vertical wall, the reflected wave amplitude is about 1.3×2A as shown in Fig. 7 (b). The 280 

corresponding semi-log plots of the power spectra for the free surface elevation (shown in Fig. 7) are 281 

shown in Fig. 8. The frequency in horizontal axes is normalized by the central frequency fc. It is clearly 282 

seen from the power spectra that sub- and high- harmonics components exist for the case with large wave 283 

amplitude. This is attributed to the nonlinearity in waves and interactions between waves and structures. . 284 

The harmonic structure of the free surface run-up on the vertical seawall can be extracted by a phase-285 

based harmonic separation method presented in [23, 24, 28]. In the phase-based separation method (i.e. 286 

the ‘phase-inversion’ method), the Stokes wave expansion in regular waves is extended to focused wave 287 

groups by assuming the existence of a Stokes-like harmonic series in both wave steepness and frequency 288 

for the free surface elevation of focused wave groups. The application of the ‘phase-inversion’ method 289 

requires free surface elevation time series for a focused wave group and the same wave group inverted, 290 

which are out of phase with each other. The total free surface elevation is then separated into odd and 291 

even harmonics by doing subtraction and addition to the free surface elevation time series. This makes 292 

the adjacent harmonics within both spectra for odd and even terms much further apart in frequency so as 293 

to allow a clean separation of the focused wave groups into its fundamental components by digital 294 

filtering. 295 

Fig. 9 shows the extracted harmonic structures of the free surface elevation at the focal point for cases 296 

with and without the vertical seawall in place. The linear crest value of the focused wave group is A = 297 

0.06 m with f = (0.75 Hz, 1.25 Hz). From the top to bottom are the long wave, linear and 2nd harmonics, 298 

and the left and right column show the results for the cases with and without the vertical wall in place, 299 



respectively. The harmonics of the free surface elevation are enveloped to display the energy distribution 300 

in time. The envelope of the fundamental component is obtained by applying the Hilbert transform and 301 

the envelope of each harmonic above 2nd order is derived from the envelope of the linear component, as 302 

described in [23] among others. 303 

It can be seen from Fig. 9 that the applied phase-inversion separation method works well, and the 304 

extracted harmonics and the estimated envelopes agree well with each other. The focusing time of the 305 

incoming wave groups is about ~17s for both cases with and without the vertical seawall in place. It is 306 

also found that the existence of the vertical seawall leads to an increase in the free surface elevation for 307 

all harmonics, but the amount of the increase decreases from long wave to the second-order harmonics. 308 

The peak values in the free surface elevation from long wave to the second-order harmonics for the cases 309 

with the vertical seawall in place are about 2, 1.33 and 0.33 times larger than their counterparts for the 310 

cases without the vertical wall in place. In addition, there is a phase difference of  in long waves from 311 

set-down to set-up, which indicates that the wave-induced perturbation of the mean water level is 312 

different because of the existence of the vertical seawall.  313 

Additionally, it can be seen that contributions of higher order free surface elevation above the first-order 314 

are about 14% and 20% of the total free surface elevation for the cases without and with the vertical wall 315 

in place, respectively. This indicates that the linear potential flow theory is applicable for small waves. 316 

However, for large waves, where wave nonlinearity dominates, the use of the linear potential flow theory 317 

is inadequate and would lead to a loss of a considerable percentage of energy. 318 

The same analysis is performed for the wave loading on the vertical seawall and the results are shown in 319 

Fig. 10. The wave conditions are the same as those in Fig. 9. For the cases without the vertical seawall 320 

in place, the undisturbed pressures at location of the vertical seawall in the absence of the vertical seawall 321 

are recorded and integrated, i.e. an artificial vertical seawall is placed. Similar phenomena in Fig. 9 have 322 

been observed, and compared with the free surface run-up, the non-linear effect on the wave loading is 323 

less significant, with only 77% increase in the linear wave loading. Similar conclusion has been presented 324 

in [28] in which focused wave group interactions with a vertical cylinder was investigated using viscous 325 

flow theory. Additionally, a phase difference of 180 degrees was observed between the second-order 326 

difference terms of the free surface elevation and wave loading. 327 

The effect of the vertical seawall is further studied by varying the wall position. Fig.11 shows time series 328 

of the wave run-ups on a vertical seawall that is located at three different positions, L1=xf -2λmin, L2= xf 329 

and L3= xf +2λmin. It means that the vertical seawall is placed right at the focal position for L2, and is 330 



moved 2λmin forward and backward for L1 and L3, respectively. The wave conditions are the same as 331 

those in Figs. 7 and 8. It can be seen that the most violent wave-structure interaction occurs when the 332 

focal position of the focused wave group is at the stagnation point of the vertical seawall, i.e. the vertical 333 

seawall is placed right at the focal position L2. For small waves that can be treated as linear waves, as 334 

shown in Fig. 11 (a), the wave shape for wave run-up on the vertical seawall at location of L2 is 335 

symmetrical about the focusing event, while asymmetric shapes are observed in the wave run-up when 336 

the vertical seawall is placed at L1 or L3. This process is close to the evolution of a focused wave group 337 

in a pure wave tank without structures in place, as presented in [36]. With the increase of wave 338 

nonlinearity, the asymmetry in the surface profile becomes increasingly significant as shown in Fig. 11 339 

(b). The asymmetry occurs even for the wave run-up on the vertical seawall at location of L2 as wave 340 

nonlinearity increases.  341 

Fig.12 shows the distribution of normalized peak pressures along the height of the vertical seawall at 342 

three different locations. The wave conditions and the wall positions are the same as those shown in Fig. 343 

11. It can be seen from the figures that the maximum peak pressure occurs when the vertical seawall is 344 

placed at the focal point L2. At the adjacent locations (L1 and L3), the peak pressures are reduced, but 345 

they close to each other up to the area near the mean water level. 346 

The effect of the location of vertical seawall is considered in details in Fig. 13 in which variations of the 347 

crest wave run-up and the maximum wave loading on the vertical seawall with the locations of the 348 

vertical seawall are shown. The actual focal point is xf and the vertical seawall is moved from -4min to 349 

+4min away from the focal point. The sign negative and positive mean that the vertical seawall is moved 350 

backwards and forwards, respectively. It can be seen that the wave run-up and the wave loading on the 351 

vertical seawall at the focal point are the largest compared with the results for the cases that the vertical 352 

seawall is located away from the focal point, consistent with what is observed from Figs. 11-12. It is 353 

clear that the direction of the wall movement has relatively weak effects on the run-up and the wave 354 

loading as the variations of the run-up and the wave loading are approximately symmetrical about the 355 

focal point. Additionally, differences in the wave run-up and the wave loading on the vertical seawall 356 

because of the movement of the vertical seawall is larger for incoming focused wave groups with larger 357 

linear crest amplitude due to stronger wave nonlinearity. As anticipated, differences in the wave run-up 358 

is more obvious than that in wave loading, which indicates that the wave nonlinearity in wave loading is 359 

less significant as observed in Figs. 9-10. 360 

The evolution of the focused wave group in the presence of vertical seawall is considered in Fig. 14. Two 361 

linear incoming wave amplitudes are considered (A = 0.01 m and 0.06 m) for the spectrum f = (0.65Hz, 362 



1.35Hz). tf is the actual focal time and the time increment dt = 0.0148 s. Fig. 14 shows the convergence 363 

of wave energy at the focal time and the rapid development of the maximum crest run-up on the vertical 364 

seawall. 365 

 366 

3.2. The effect of wave parameters on the wave run-up and the pressure 367 

In this section, the validated numerical model is used to study the dependence of the maximum wave 368 

run-up and the pressures on surrounding sea states. Spectrum bandwidth is one of the most important 369 

parameters that affect the characteristics of the incoming focused wave groups. Fig. 15 considers the 370 

surface elevations resulting from wave groups with three different spectrum bandwidths. (i.e.,0.75 Hz ≤ 371 

f ≤ 1.25 Hz, 0.65 Hz ≤ f ≤ 1.35 Hz, 0.55 Hz ≤ f ≤ 1.45 Hz). Two incident linear wave amplitudes are 372 

considered (A = 0.01 m and 0.06 m). The linear focal positions xp are selected as 12 m, 15 m and 18 m 373 

for spectrum bandwidth BW = (fmax - fmin) of 0.5 Hz, 0.7 Hz and 0.9 Hz, respectively. The corresponding 374 

focal times are defined according to the formula xp/tp=min/2Tmin. With a small input amplitude (Fig. 15 375 

(a)), there is a good agreement between the numerical results for the extreme crest, all equal to twice 376 

incident amplitude A and the envelopes are symmetric about the focal time. In this case, the amplitude 377 

of the individual wave components is less than 1 mm (calculated by Eqn. (13)), and, consequently, the 378 

non-linear wave-wave interactions are negligible. However, for a larger incident wave A = 0.06 m in 379 

Fig.15 (b), the increase in wave amplitude leads to a divergence from the linear solution. The maximum 380 

crest run-up on the vertical seawall reaches 0.185 m for BW = 0.5 Hz, about 1.5 times the linear solution 381 

due to strong wave nonlinearity. The wave crest at the focal position becomes large, and the adjacent 382 

wave troughs become deeper for narrow-banded spectrum. In addition, it can be seen that the wave crest 383 

decreases with increasing spectrum bandwidth for both considered input wave amplitude, though, it is 384 

more obvious for larger input wave amplitude due to stronger non-linearity. Larger spectrum bandwidth 385 

leads to larger incident wave energy and more violent energy transfer between adjacent harmonics [40]. 386 

The phase difference between harmonics could lead to the reduction in the total surface elevation, as 387 

shown in Fig. 2 and Fig. 9. The mutual effect of the increasing incident wave energy and larger harmonics 388 

at frequencies lower and higher than the linear component results in smaller wave crest for cases with a 389 

broader bandwidth. 390 

Fig.16 shows the distribution of the peak wave pressure along the height of the vertical seawall at focal 391 

time for wave groups with three different spectrum bandwidths. The wave conditions are the same as 392 

those in Fig. 15. It can be seen from Fig.16 that the peak pressure on and below the still water level 393 



increases with the spectrum bandwidth, which is opposite to what has been observed in Fig. 15. This may 394 

due to the fact that there are phase differences between the linear surface elevation and the linear wave 395 

pressure as well as the corresponding sub- and higher-harmonics. Similar to the wave run-up, the 396 

differences in peak pressure resulting from the differences in spectrum bandwidth are more obvious in 397 

the cases with larger input wave amplitude. 398 

The effect of input linear wave amplitude A on the maximum crest elevation and the maximum wave 399 

loading is investigated in Fig. 17. Three spectrum bandwidths are considered (BW = 0.5 Hz, 0.7 Hz and 400 

0.9 Hz). From the figure, it is found that the increased wave amplitude produces a rapid divergence from 401 

the linear solution especially when A > 0.03 m. And the maximum wave run-up in the narrow-banded 402 

case is larger than that in the broad-banded case with the same input linear wave amplitude. Opposite 403 

trend is observed in the maximum wave loading. This trend is more obvious for the cases with larger 404 

input amplitude A, as observed in Figs. 15-16. 405 

 406 

4. Conclusions 407 

A time-domain numerical model based fully nonlinear potential flow theory is extended and applied in 408 

this study to investigate the performance of coastal structures with vertical wall in extreme events. The 409 

fully nonlinear wave motion is captured using a mixed Eularian-Lagrangian higher-order boundary 410 

element method, and it is advanced in time by applying 4th-order Runge-Kutta technique to the fully 411 

nonlinear kinematic and dynamic free surface boundary conditions. New boundary conditions are added 412 

to extend capabilities of the numerical model in generating focused wave groups so as to allow an 413 

investigation of focused wave group interactions with a vertical seawall. The numerical model has been 414 

validated by comparing with the published benchmark experiments on both non-linear regular waves and 415 

focused wave groups impacting on a vertical seawall. 416 

The characteristics of maximum wave run-up and consequent maximum wave pressure on the vertical 417 

seawall are investigated in depth using the validated numerical model. It is found that not only the 418 

reflection from the vertical seawall but also the wave nonlinearity contributes to the increase of the 419 

maximum crest wave elevation and wave pressure. The maximum wave run-up on the vertical seawall 420 

can be 2.6 times the height of the incident wave group with larger incident wave amplitude. Also, the 421 

wave nonlinearity is found to increase with deceasing bandwidth. This indicates that the increased wave 422 

amplitude and the decreased bandwidth would produce a rapid divergence from the linear solution. In 423 

the cases where wave nonlinearity dominates, the use of linear theory is not adequate and leads to an 424 

underestimation in the maximum wave run-up and overestimation in the maximum pressure on the 425 



vertical seawall, respectively. That is, the application of the fully nonlinear potential flow theory is 426 

necessary and important for practical applications where wave nonlinearity is significant. The proposed 427 

numerical model is also appropriate for other applications such as green waters and dynamic responses 428 

of floating structures. 429 

Further investigation by extracting the harmonic structures of the maximum wave elevation and wave 430 

loading on the vertical seawall found that the existence of the vertical seawall relates to the generation 431 

of both sub- and higher harmonics, and their contributions can be large, up to 20%. Additionally, 432 

compared with the free surface elevation, the nonlinear effect on wave pressure and wave loading on the 433 

vertical seawall is less significant, with a smaller increase for the same wave condition. 434 

Furthermore, most violent wave-structure interactions are observed when the focal point is at the vertical 435 

seawall, i.e. the vertical seawall is placed right at the focal point. Moving the structure either forwards or 436 

backwards reduces both the maximum crest elevation and pressure on the vertical seawall. The effect of 437 

the direction of movement is negligible in the present study.  438 
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