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Abstract

Magnetic induction spectroscopy (MIS) has many potential applications in medical engineering as
well as industrial and food manufacturing process applications, providing a contact-less impedance
measurement. However, the applications of MIS is currently limited due to the high precision of
phase detection required over a wide band of frequencies. This paper focuses on phase detection
aspect of the MIS. The chosen phase detection method is investigated in depth and a prototype
hardware and software is developed. The phase detection system is then tested and compared to
other recent MIS system design. The prototype hardware is able to measure the phase difference of
signals from 200kHz to 20MHz with milli-radian precision which will significantly enhance the MIS
systems.

1 Introduction

Magnetic Induction Spectroscopy (MIS) is one of the bio-electrical impedance spectroscopy (BIS) tech-
nique that can be used to determine the electrical conductivity of materials as a function of frequency
[3]. It is known that for biological tissues, the conductivity property is frequency dependent because of
the cellular structure, e.g. intracellular fluid (ICF) and extracellular fluid (ECF). There is a great po-
tential for MIS based technology for biomedical engineering applications in particular for its non-contact
measurement nature. Extensive work is done in both conatct and non-contact impedadnce spectroscopy
for medical and industrial applications [15, ?, 12, 13, 9, 11, 8, 7, 6, 10]. When a low frequency electric
signal is passed through biological tissues, the highly resistive cell membranes act as barriers so the field
can only react with the ECF phase. At radio-frequencies, the field can penetrate through both the ICF
and ECF phases. By applying electrical fields using different frequencies, a complete dielectric dispersion
properties of the sample can be obtained. Based on these concept, MIS can be applied into many ap-
plications including: Medical, such as tumour and stroke detection [1]. Although the main interest area
for MIS is in biological field, it can also be used in industrial areas, such as detection of pipe blockages;
and land mine detection. The traditional BIS techniques require a direct contact between electrodes and
measuring samples, so the electric signal can be directly induced into the measuring sample. It creates a
number of difficulties such as electrode positioning, intrusive contamination and electrode-sample inter-
face consistency. In some industries like food manufacturing, direct contact is not allowed as it increase
the contamination risk. To overcome these problems, an inductive spectroscopy methods were proposed
so the direct contact of the samples is no longer required. MIS technique generally utilises two coils:
one transmitting coil and one receiving coil. By injecting an alternative current into the transmitting
coil, the primary magnetic field will be generated and induce eddy current on the testing sample. This
stimulated eddy current will generate the secondary magnetic field which contains the conductivity in-
formation of the sample itself [4]. By sensing this secondary magnetic field using the receiving coil over
a wide frequency range, the full BIS information can be obtained. Conductivity detection using MIS is
challenging because of the small magnitudes of the induced currents, which results in a small phase shift
signal on the receiving coil. Hence the performance of an MIS system is limited due to the high precision
of phase detection required over a wide band of frequencies. The phase change caused by a biological
variation is generally very small [1], therefore milli-radian measurement accuracy is required. Here we
define a number of important parameters in performance of phase detector. Phase drift is also critical
as it shows how much the measured phase changes over a long period of time [4]. Noise in the phase
measurement is a measure of how much the measured phase changes over multiple measurements taken
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over a short period of time [4], also an important consideration. Phase skew is how much the measured
phase changes when the input signal amplitude is changed was considered in [4]. The aim of this paper
is to present a novel MIS electronic design and experimental validation; results from a precision phase
detector suitable for MIS working in a wide range of frequencies. The conductivity, over a range of
frequencies, of biological material contains information about the structure of the cells, making the MIS
a potentially attractive bio-impedance device [1]. MIS has the advantage that it does not require contact
with the material being tested, bio-electrical impedance spectroscopy (BIS) requires contact to be made
with the material being tested. Following section shows the system implementation and experimental
results.

2 Phase Detection Methods

Digital phase detection by sampling signal and mixing is proposed a phase detection method. The signal
is digitally sampled, once sampled, the phase difference between the received signals can be determined
by using a discrete Fourier or Hilbert transform. Phase can be measured by mixing the signals to an
intermediate frequency before sampling and determining the phase using digital signal processing. Unlike
the systems that mix down to base-band, this system needs to be able to sample the inputs very fast,
therefore the use of a micro-controller instead of an FPGA would be less suitable. Multiplying with an
offset signal also results in noise (y(t)) at an image frequency also being mixed down to the same lower
frequency. Any noise at (2 ωLO − ω) will also be mixed down to ωIF .

y(t) = C cos((2 ωLO − ω) t− Φi) = C cos(−(2 ωLO − ω) t+ Φi) (1)

ωIF = −(2 ωLO − ω) + ωLO = ω − ωLO (2)

Wei et al [3] found that the odd harmonics from mixing with a square wave not to be an issue,
therefore the noise at the single image frequency is not likely to be a problem. If the noise at the image
frequency is an issue it is possible to use the Hartley architecture to image reject. This is our chosen
method in this study.

2.1 Complete System

The prototype circuit is constructed and assembled based on this design. Both hardware and software
development are required for controlling the phase detector effectively. Figure 1 shows the DDS signal
generator, the Arduino and the final prototype design connected for automated testing with MIS coil
system. Two coils of 12 turns each with radious of 2 cm is used for transmitting and receiving coil and
a current of 0.1(A) was used in transmitting coil.

Figure 1: Test set up with the MIS coil set up.

2.1.1 Description of hardware operation

The system consists of two analog multipliers (AD835), which mix the input signals with a locally
generated signal. Both of these are voltage signals. The locally generated signal is generated by a 10 bit,
400 MHz DDS (AD9859) which is controlled via a digital serial interface (SPI). The DDS is controlled
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to output a signal which has a frequency offset from the input signals by approximately a couple of
hundred Hz. The output of the DDS is filtered using a third order balanced LC low pass ladder filter.
The DDS control is implemented by using a FPGA to measure the frequency of the input signal, subtract
a offset, and then set the local oscillator frequency by setting the frequency control register in the DDS
via a SPI interface. The FPGA measures frequency of the input signal by counting the number of edges
over a known period of time. Before the signal is input to the FPGA for frequency measurement, the
signal is converted to a square wave by a comparator (TLV3501) with hysteresis. The signals output
from the mixers contain a frequency component at the difference in frequency between the local oscillator
frequency and the input signals, this is a couple of hundred Hz. Before sampling of the signals, frequency
components of more than half of the sampling frequency need to be removed to prevent aliasing. It is
important that the anti-aliasing filters have a very small affect on the phase of the signals because it is
not possible to have exactly identical analog filters due to real component value variations. In order to
achieve a small affect on phase of the wanted signal, a high cutoff frequency is chosen. A RC filter for
each channel is used. Because of the high cutoff frequency, a high sampling rate is required. The signals
are sampled using two 12 bit, 10 MHz ADCs (AD9220). The parallel digital outputs from the ADCs
are input to the FPGA where a large amount of the redundant data resulting from the poor analog
anti-aliasing filter and the oversampling is removed using a 10th order CIC filter and decimator. This
decimator is implemented in the FPGA’s configurable logic. The lower rate data, ( 10 MHz

1024 ) is stored to
an external SDRAM which is on the FPGA development board (Altera DE0-Nano). After a number of
samples have been written to memory, they can be read and copied to a PC via a USB interface. The PC
does further digital signal processing in order to determine the phase difference between the two signals.

2.2 Automated Test Implementation

It is decided that in order to characterise the performance of the prototype a automated test system to
be assembled. An automated test system has the major advantage that data can be collected over many
combinations of the 4 dimensions of independent variables: These are; input phase difference, input
amplitude, input frequency, and time. The test system needs to be based around a signal generator
that is capable of generating a wide range of signals with a known and adjustable phase, amplitude and
frequency. Suitable signal generators are selected: A 40MHz sample rate TTI TGA1242 dual output
arbitrary waveform generator, and a dual output 10 −Bit, 500MHz sample rate, Analog Devices DDS
(AD9958) evaluation board. The Analog Devices DDS evaluation board is chosen due to its use of SPI
interface, and the higher sample rate.

3 Experimental Results

The results from the automated testing of the final prototype design are shown here. The difference
between the measured phase difference and the input phase difference is shown against the input phase
difference and the input amplitude in Figure 2. The noise in the phase measurement is calculated as the
standard deviation of 32 measurements each sampled for 52ms and is plotted against input amplitude
and input phase difference in Figure 3. The phase drift and the noise in the phase measurement is shown
over 12 hours by Figure 4 and Figure 5. In ideal case the colormap should show zero difference between
true phase difference and recovered phase difference, but small error in this phase detection shown in
figures 2,3.

Table 1 shows the peak to peak drift and Table 2 shows the mean noise in the phase measurement.
Figure 6 and Figure 7 show the prototype is very linear. The linear regression is calculated for the
prototype for 16 data points between 0 m rad and 5.75 m rad and shown in Table 3. The measured
phase is plotted against frequency for a number of input phase differences and shown in Figure 8. The
noise in the phase measurement plotted against input signal amplitude is shown in Figure 9. Figure 10
shows the variation in the measured phase as the input signal amplitude is varied.
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Figure 2: Measurements collected during automated test. Difference between measured phase difference
and input phase difference, plotted against input signal amplitude and input signal phase difference.
Gradient horizontally gives an indication of linearity, and vertical gradient gives and indication of skew.
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Figure 3: Measurements collected during automated test. Noise in the phase measurement, plotted
against input signal amplitude and input signal phase difference.Noise in the phase measurement is
higher at low input signal amplitudes and low frequencies.
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Figure 4: Drift in the phase measurement over 12 hours with the input phase difference set to 0.0245
rad.

Table 1: Peak to peak drift over 12 hours.

Frequency Peak to peak drift (m Radians)
0.19MHz 0.7019
11.88MHz 0.6106
23.76MHz 1.2556
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Figure 5: Noise the phase measurement over 12 hours with the input phase difference set to 0.0245 rad.

Table 2: Mean noise over 12 hours.

Frequency Mean of standard deviation of 32 measurements(µ Radians)
0.19MHz 96.949
11.88MHz 40.225
23.76MHz 47.222
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Figure 6: Linearity over full range.
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Figure 7: Linearity over small range.

Table 3: The linear regression is calculated for the prototype for 16 data points between 0 m rad and
5.75 m rad.

Frequency R2

0.19MHz 0.99905
11.88MHz 0.99681
23.76MHz 0.99783
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Figure 8: Measured phase against frequency for a number of input phase differences.
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Figure 9: Noise in the phase measurement against input signal amplitude with 0.0245 rad input phase
difference.

Table 4: Noise in the phase measurement.

Frequency −16dBV input / (µ rad) −28dBV input / (µ rad) −32dBV input / (µ rad)
0.19MHz 72.647 195.251 811.630
11.88MHz 41.415 108.532 424.560
23.76MHz 40.366 148.840 367.705
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Figure 10: Phase measurement plotted against input signal amplitude with a input phase difference of
0.0245 rad.

The main focus of this paper is to show the performance of the phase detection unit. To demonstrate
the work of this phase detector several tests were carried out in an MIS coil system set up. The MIS
can be used to sense the magnetic fields in a novel way to determine the internal structure of biological
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materials through contactless methods. The MIS system here is a device that implements a planar
gradiometer configuration, where the sample is placed in between the transmitter and the detection
coil. The sensor will detect the sum of the primary field from the transmitter, and the field produced
the induced eddy current in the sample. In order to be able to measure the phase shift this sample
has created, a reference coil is placed co-axially adjacent to the transmitter, which then provides two
signals that a phase demodulation unit can differentiate. The phase shift reveals information on the
conductivity of the sample, which can be used to correlate to the internal structure. Figure 11 shows
phase shift reading of an apple in several days, showing the state of apple as it gets rotten.

Figure 11: Experimental data from the MIS test on an apple test sample as it gets rotten over time.

4 Discussions

The subsystem has been tested at frequencies between 200kHz and 20MHz and is able to operate over this
range. This frequency range is selected as the magnetic induction phase detection for low conducitivity
materials are occuring in this frequency range. The maximum drift measured over 12 hours was 1.3m rad,
this meets the drift specification. The phase skew measured is reasonably small. The maximum noise in
the phase measurement is less than 1 m rad, this is within the specification. The subsystem is able to
operate from positive and negative 5V rails. The current drawn from the positive 5V rail is 137 mA and
the current drawn from the negative 5V rail is 31 mA. The prototype is also powered via the FPGA
development board, however it is assumed that this is drawing less than 300 mA resulting in the total
current drawn from the positive 5V supply being below the 500mA specification. Currently 500ms is
required to make a measurement at a single frequency, however uploading the data to a PC for the
phase calculation takes significantly longer than this. The upload time can be reduced to be negligible
in future prototypes by moving the phase detection signal processing to the FPGA or replacing the
slow JTAG UART interface with faster USB interface. The prototype board had no restriction on size,
however the technology used meets the specification of having the capability to be scaled to within
10cm by 10cm. The device was tested at room temperature for 12 hours during the test for phase
drift. Although not tested over the specified temperature range, it is likely that further work is required
to allow useful measurements over the whole operating temperature range. Although not tested for
electromagnetic compatibility, the device operates well in the laboratory with no shielding around the
board. In order to gauge the performance for the prototype against other recent research, the performance
results are compared to Jin et al [5] precision phase detector. The device designed by Jin et al is able
to measure the phase difference between 2 signals, however has the limitation that it can only operate
at 1MHz, 11.8MHz and 21.4MHz due to the band pass under sampling method used. The prototype
has the advantage over the device developed by Jin et al because it is able to operate at all frequencies
between 0.1MHz and 24MHz. The drift, noise and linearity performance are compared:
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Jin et al record drift over 4 hours in degrees; at 1MHz there is 9 m◦ drift, at 10.7MHz there is 16 m◦

drift and at 21.4MHz there is 30 m◦ drift [5]. In order to have comparable data from the prototype, the
peak to peak drift over the first 4 hours is used; there is a 40 m◦ at 0.19MHz, 35 m◦ at 11.88MHz and
71 m◦ at 23.76 MHz. Although the device designed by Jin et al has slightly less drift than the prototype,
it is expected that the prototype can be modified to significantly improve the drift.

Jin et al calculated the noise in the phase measurement by taking the standard deviation of 20
measurements [5]. It is assumed that each measurement takes 50ms because it is stated that 200000
samples are taken at 4MHz [5]. Noise in the phase measurement from Jin et al device with a 50 mV
pk-pk signal input to one channel and 500 mV pk-pk on the other channel with the same phase, is
0.8 m◦ at 1MHz, 3 m◦ at 10.7MHz and 5 m◦ at 21.4MHz [5]. The phase noise for the prototype was
calculated as the standard deviation of 32 measurements, each measurement taking 52ms. Noise in the
phase measurement with a 38 mV pk-pk signal input to one channel and a 152 mV pk-pk signal on the
other channel with the same phase, is 7 m◦ at 0.19MHz, 6 m◦ at 11.88MHz and 6 m◦ at 23.76MHz.

Jin et al calculate the linear regression, R2, for 9 data points between 0 deg and 80 m◦. R2 is
calculated to be 0.9990 for 1MHz signals, 0.9970 for 10.7MHz signals and 0.9960 for 21.4MHz signals.
The linear regression is calculated for the prototype for 16 data points between 0 m◦ and 330 m◦ to be
0.99905 for 0.19MHz signals, 0.99681 for 11.88MHz signals and 0.99783 for 23.76MHz signals.

In Figure 11, the phase measurements of apples under different rotting conditions are plotted. It
can be seen that at 100 kHz, the phase measurement cannot provide any clear difference between apple
conditions. However, when the operation frequency is increased further to 20 MHz, the fresh apple tends
to have a larger phase shift (1.6 milli-degrees) compared to the rotten apple (1.2 milli-degrees). This
apple spectroscopy test strengthens the fact that the phase detector can be implemented into an MIS
system for BIS measurements. In this paper, it is demonstrated that by obtaining a full phase shift
spectroscopy plot, the ripeness level of fruits could be established, but further experiments are needed
to fully evaluate and demosntrate such an application.

5 Conclusions

The prototype phase detector was shown to work in an MIS system by connecting the phase detection
subsystem directly to the transmitter, detector and reference coil subsystem. This was done using the
automated test setup described in this paper. In next iteration of design some improvements that can be
made to the configurable logic and the software of this design such as implementing the Hilbert transform
on the FPGA. Fixing the synchronization of the DDS clock and the frequency measurement clock is also
expected to improve performance, this could be done by adding a buffer circuit between the DDS clock
output and the FPGA input pin. Even without these improvements the current prototype operates
well. The proposed wide-band phase detector is an important subsystem for further development of MIS
systems with many potential applications, in particular monitoring biological samples.
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