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Abstract 

Hydrogen absorption is a crucial process in energy storage (microscopic or macroscopic) 

and management and here a porous organic cage (POC) material is shown to bind and 

release hydrogen when deposited directly onto a platinum electrode and immersed into 

aqueous electrolyte. Preliminary voltammetry experiments for the POC CC3 deposited 

onto a platinum disc electrode reveal uptake and release of hydrogen gas (probably coupled 

to water release and uptake, respectively) in the vicinity of the electrode. Significant pH 

effects on the rate of binding and release are reported and explained with a change in H2 

binding rate. In future, “wet” POCs or POCs dispersed in aqueous solution could be 

employed for enhancing hydrogen capture/transport in energy applications. 

Graphical abstract:  

 

Key words: hydrogen storage; fuel cells; water splitting; gas diffusion; clathrates; porous 

organic cages.  
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Introduction 

Porous organic cages (POCs) are discrete, solution processible molecules that contain 

accessible, shape persistent cavities [1]. In the solid state they pack together to afford 

molecularly defined “open spaces” for the uptake/release of guest molecules [2,3]. 

Applications that take advantage of their well-defined pore structure, include gas and chiral 

separations [4,5], and chromatography [6], while dissolution in bulky solvents can result 

in the formation of porous liquids [7]. 

 

The porous organic cage CC3 (see Figure 1 [8]) is an imine-linked [4+6] cage that is 

formed by the reaction of four molecules of 1,3,5-triformylbenzene with six molecules of 

homochiral 1,2-trans-cyclohexanediamine. CC3 possesses tetrahedral symmetry and 

features four approximately triangular windows. In the solid state CC3 preferentially packs 

with a window-to-window arrangement that results in an interconnected 3D diamondoid 

pore network. CC3 has been reported to exhibit a nitrogen adsorption Brunauer–Emmett–

Teller (BET) surface area of between 409 and 859 m2g-1 [9], depending of the crystallinity 

of the sample. BET data also have shown the ability to bind hydrogen (H2) gas into dry 

POC cages [8]. CC3 only collapses upon reduction (hydrogenation of the imine to amine) 

and therefore the imine cage is shape persistent and always porous to provide a space for 

guest molecules. CC3 is stable to boiling water (at neutral pH) for at least 4 h and has been 

shown to adsorb up to 20.1 wt% water reversibly [10], but CC3 is somewhat sensitive to 

strongly alkaline and acidic environments, which make it unsuitable for conditions that 

substantially depart from neutrality [11]. Recently, proton conductivity was demonstrated 
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[12] with related POC molecules (where the imine was reduced to an amine) and it is 

interesting to further explore electrochemical properties and reactivity for these types of 

materials. Protonation of the POC CC3 is likely to affect the ability to bind with guest 

molecules and when immersed into aqueous electrolyte, pH-dependent changes may be 

observed. Due to CC3 being solid in neutral aqueous media, currently only estimates for 

the protonation characteristics are available.  

 

 

Figure 1. Molecular structure of CC3 and estimated (ACDlabs Ltd. [13]) protonation 

sequence in aqueous environment. Note that CC3 is chemically unstable outside of the 

neutral pH range from approximately pH 5-9 [10]. 

 

 

The estimated pKA1 for the first protonation is at pH 7.2 ± 0.4. The plot in Figure 1 shows 

the sequence of further protonation equilibria up to the 7+ cation, by which time dissolution 
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and chemical degradation of the cage structure would almost certainly have started to occur 

[10]. This pKA estimate does not take into account any structural effects introduced due to 

molecular interactions in the solid amorphous or crystalline state (or effects due to anions 

that are required to balance charge), but it provides an approximate value for the onset of 

protonation of CC3 exposed to aqueous environments. The pH range from 5 to 9 appears 

to be the most interesting range. 

 

Here, a preliminary investigation is reported of the behaviour of the solid CC3 porous 

organic cage (as a representative case for a POC) as a deposit on a platinum electrode 

surface. The modified platinum electrode is immersed into aqueous buffer solutions and 

voltammetry is employed to study host/guest phenomena during hydrogen evolution. It can 

be assumed that the pH of the buffer solution is important and that protonation will occur 

from the surface of the CC3 deposit possibly also progressing into the bulk of the porous 

material. It is shown that CC3 has the ability to accumulate (store) molecular hydrogen in 

the solid state [8] and that the aqueous solution pH can be employed to modify the hydrogen 

binding rate and/or transport within the cage material. The voltammetric measurement can 

be employed as a screening tool for hydrogen binding into “wet” POCs and similar 

materials. 

 

 

 

 

 



6 

 

 

 

 

Experimental 

Chemical Reagents 

All solutions were prepared with doubly deionized water of resistivity not less than 18.2 

MΩ cm-1 (at 293 K) from a Thermo Scientific water purification system. Chloroform, 

phosphoric acid (85%), sodium dihydrogenphosphate (99%), and sodium phosphate 

dibasic hepta-hydrate were purchased from Sigma-Aldrich and used without further 

purification. CC3 was prepared following a literature procedure [8]. For pH studies 0.1 M 

aqueous solution were prepared with the appropriate combination of sodium 

dihydrogenphosphate and sodium phosphate dibasic hepta-hydrate. For the solutions with 

pH upper 8 the pH was adjusted with aqueous NaOH. 

 

Instrumentation 

Electrochemical measurements were performed with a potentiostat system µAutolab type 

III potentiostat/galvanostat (Metrohm Ltd.) controlled by Autolab GPES software version 

4.9 for Windows XP. Experiments were performed in a conventional three electrode cell, 

with a Pt wire as a counter electrode, a KCl-saturated calomel reference (SCE, Radiometer, 

Copenhagen) as reference electrode, and a Pt disk electrode (BAS Ltd.) with 3 mm 

diameter as working electrode. The working electrode was modified by evaporation of a 

CC3 solution in chloroform (vide infra).  
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Procedures 

Before use, the cleaning of the Pt electrode was performed by wet polishing with 0.3 µm 

alumina (Buehler Ltd.) on a polishing cloth followed by rinsing with copious amounts of 

water. Next, the Pt surface was electrochemically cleaned with 50 consecutive potential 

cycles from -0.2 V to +1.1 V vs. SCE (scan rate 0.1 V s-1) in aqueous 0.5 M H2SO4 followed 

by rinsing. The working electrode was then prepared by drop-casting typically 4 µL of 

CC3 solution (1 mg in 1 cm3 chloroform) onto the Pt electrode surface followed by solvent 

evaporation in air. Typical scanning electron micrographs for CC3 deposits on platinum 

before and after electrochemistry are shown in Figure 2. The distribution of the CC3 

deposit can be seen to exhibit some non-uniformity. Importantly, CC3 deposits are clearly 

observed as round patches of about 0.5 – 5.0 m diameter both before and after 

electrochemical experiments. 
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Figure 2. Scanning electron microscopy (SEM) images for a deposit of 4 g CC3 on a 3 

mm diameter Pt disc electrode before (A) and after electrochemistry (B,C). 

 

Results and Discussion 

Voltammetric Evidence for Hydrogen Storage in Porous Organic Cages 

Deposits of CC3 on platinum are formed with globular shape (see Figure 2) rather than the 

usual octahedral crystal habit obtained from slowly crystallized CC3. In previous work 

[14] it has been shown that rapid precipitation of CC3 can result in loss of crystal habit and 

the introduction of defects, as a result of missing cages or crystal dislocations and grain 

boundaries. The original platinum surface is only partially blocked (see Figure 2), which 

is important for the reactivity of the electrode surface during the hydrogen evolution 
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reaction. The level of reactivity of the Pt | aqueous electrolyte interface versus the Pt | CC3 

interface is currently not known, but the partial blocking of current at the electrode with 

CC3 deposit suggests that the main reaction zone here is at the Pt | aqueous electrolyte 

interface (Figure 3A,B). 

 

Figure 3. (A,B) Schematic drawing of the hydrogen evolution and hydrogen oxidation 

processes in the presence of CC3. (C) Cyclic voltammograms (scan rate 50 mVs-1) for (i) 

0 and (ii) 4 g CC3 deposited onto a 3 mm diameter Pt disc electrode and immersed in 

aqueous 0.1 M phosphate buffer pH 7. (D) As above, but at (i) pH 11, (ii) pH 7.4, and (iii) 

pH 6.5. 
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Figure 3A and 3B show schematic drawings of the anticipated reactivity of protons being 

reduced to molecular hydrogen at the platinum electrode surface. Figure 3C shows 

experimental cyclic voltammetry data for (i) a bare platinum electrode and (ii) a CC3-

coated platinum electrode. The reversible reduction process with midpoint potential Emid = 

½ Ep,red + ½ Ep,ox = -0.75 V vs. SCE is consistent with the reduction of the protons (from 

phosphate buffer anions HPO4
2-) to molecular hydrogen, which is likely to occur under 

mixed diffusion and kinetic control. Due to the complexity of this process voltammetric 

data are interpreted and discussed here only for the hydrogen formation process (ignoring 

the kinetic effects in the proton reduction as well as any complexity that may arise from 

lack of supporting electrolyte around or within POC deposits or diffusion geometries). 

Electrode blocking effects that should arise from CC3 deposits (see Figure 2) could be in 

part balanced out by non-planar diffusion but are also ignored at this time. 

 

The cathodic formation of hydrogen at the platinum electrode surface leads to a local 

concentration chydrogen and diffusion away from the electrode. A hypothetical diffusion 

controlled anodic process with chydrogen in the bulk solution would lead to the same current 

peak except with hydrogen diffusion towards the electrode. This symmetry can be 

exploited to provide an estimate for chydrogen at the electrode surface. With the peak current 

for the re-oxidation peak, Ipeak ≈ 200 A, it is possible based on the Randles-Sevcik 

equation (equation 1 [15]) to estimate the concentration of molecular hydrogen generated 
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in the solution close to the electrode surface (as this would equal the value of chydrogen for 

the hypothetical process involving diffusion of hydrogen to the surface). 

 

𝐼𝑝𝑒𝑎𝑘 = 0.446𝑛𝐹𝐴𝑐√
𝑛𝐹𝑣𝐷

𝑅𝑇
                                                                                (1) 

 

Here, n denotes the number of electrons transferred per molecule diffusing to the electrode 

surface (n = 2 for H2), F is the Faraday constant, A is the geometric electrode surface, v is 

the scan rate, D stands for Dhydrogen,water the diffusion coefficient (for H2 in water 4.5 × 10-9 

m2s-1 [16]), R is the gas constant, and T denotes the absolute temperature. Note that this 

equation is strictly valid for conditions of planar diffusion and reversible electron transfer, 

both of which may not be satisfied. The estimated concentration for hydrogen at the 

electrode surface in this case is 2.5 mM, which is not far from the solubility limit for 

hydrogen in water (ca. 0.8 mM at 293 K [17]. The local (close to the electrode) partial 

pressure of hydrogen can therefore be assumed to be close to atmospheric (1 bar) during 

hydrogen evolution.  

 

With the CC3 deposit applied, cyclic voltammograms are significantly different in shape 

(see Figure 3Cii). The proton reduction peak is approximately 20% lower in current 

indicative of partial electrode blocking. More importantly, the corresponding hydrogen 

oxidation peak is much lower (ca. 80% less current), which suggests that hydrogen has 

been removed from the solution. However, upon continuing the potential scan to higher 

potentials, at approximately 0.0 V vs. SCE a new and very broad oxidation peak response 

emerges indicative of release of molecular hydrogen. These results can be interpreted in 
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terms of a capture/release model (see Figure 3A and 3B) where CC3 porous organic cages 

are able to remove the hydrogen from the aqueous phase with a delayed release as soon as 

the hydrogen is consumed again at the electrode surface. The shape of the voltammogram 

showing delayed release of hydrogen could be linked to either to capture and slow diffusion 

of hydrogen in solid CC3 or capture and slow transfer kinetics across the CC3 | aqueous 

electrolyte interface. 

 

Data in Figure 3D show cyclic voltammograms recorded as a function of the solution pH. 

At pH 11 (which is outside of the range of stability for CC3 but assumed here to not lead 

to decay of the solid within the timescale of the experiment) only the hydrogen evolution 

at the “solvent window” is observed with no significant sign of hydrogen storage under 

these conditions. At pH 7.4 clear evidence for “delayed” hydrogen oxidation is observed, 

which can be assigned to intermittent hydrogen storage in CC3 cages. At pH 6.5 both the 

hydrogen production at the electrode (see reduction peak iii) as well as the broad hydrogen 

release signal are significantly enhanced. This may point to the fact that the pH can affect 

the hydrogen storage/release ability/kinetics of the CC3 porous organic cages in wet 

conditions.  

 

Chronoamperometric Analysis of Hydrogen Storage in Porous Organic Cages 

In order to further examine the hydrogen uptake and release mechanism for porous organic 

cages deposited onto platinum electrode additional chronoamperomentry experiments are 

performed. Figure 4A shows cyclic voltammetry data for (i) a bare electrode, (ii) 4 g 

deposit, and (iii) 8 g CC3 deposit on platinum. As expected a higher amount of CC3 on 
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the electrode surface cause additional “blocking” of the electrode surface and this causes a 

further decrease in the proton reduction peak. However, the broad oxidation peak for both 

4 g and 8 g CC3 appears similar. Appropriate potential limits for chronoamperometry 

Elow = – 0.85 V vs. SCE and Ehigh = -0.40 V vs. SCE are selected. 

 

Figure 4. (A) Cyclic voltammograms (scan rate 50 mVs-1) for (i) 0, (ii) 4, (iii) 8 g CC3 

deposited onto a 3 mm diameter Pt disc electrode and immersed in aqueous 0.1 M 

phosphate buffer pH 7. (B) Chronoamperometry for (i) 0 and (ii) 4 g CC3 stepping the 

potential from Elow = -0.85 V vs. SCE to Ehigh = -0.40 V vs. SCE. (C) As above, but for (ii) 

8 g CC3. 
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Figure 4B shows chronoamperometry data for a pH 7 buffer solution and a 4 g CC3 

deposit. The two traces show current at bare platinum (i) and current at CC3 modified 

platinum (ii). During the reduction step, clearly less current flows in the presence of CC3 

due to partial blocking of the electrode surface. However, during the oxidation step the 

current at the bare platinum electrode decays rapidly (consistent with fast diffusion of 

molecular hydrogen into the aqueous solution phase) whereas a new broad oxidation 

process shows the release of hydrogen from the CC3 deposit. The process only decays 

slowly over 60 seconds. When doubling the amount of CC3 (see Figure 4C) the reduction 

of protons occurs with a slightly lower current, but the release of molecular hydrogen 

appears similar and over a similar period of time.  

 

It is interesting to compare the integrated charge for reduction and oxidation as a measure 

of hydrogen capture efficiency. In theory, for a reversible electron transfer under conditions 

of planar diffusion, the ratio of anodic charge divided by cathodic charge (at a given time 

after applying the potential) should be 0.586 or 58.6 % [18]. For the bare platinum electrode 

over a period of 120 seconds a charge of 75 mC is generated and most of this can be 

assigned to hydrogen evolution followed by diffusional (and convective) loss of molecular 

hydrogen into the solution phase. The following oxidation allows 10 mC (or only 13%) of 

the hydrogen to be recovered. Due to the long duration of the experiment diffusional losses 

are enhanced by natural convection. In contrast, in the presence of 4 g CC3 a charge of 

47 mC due to hydrogen generation (cathodic) is followed by 29 mC (or 61%) recovery 

(anodic). For a deposit of 8 g CC3 the reduction produces 44 mC hydrogen (cathodic) 
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and the oxidation suggests 22 mC (or 50%) recovery (anodic). Clearly, responses in the 

presence of CC3 seem closer to the diffusional 58.6% [18] and hydrogen appears to be 

stored in the CC3 porous organic cage material to prevent convective losses. 

 

Effects of pH on Hydrogen Storage in Molecular Cages  

With the chronoamperometry technique revealing the extent of the binding of molecular 

hydrogen into the porous molecular cages, it is interesting to explore effects of pH. Figure 

5 shows data for aqueous 0.1 M phosphate buffer solution at pH 6, 7, 8, and 11 (which is 

beyond the range of chemical CC3 stability, but employed here to contrast behaviour).  

 

When comparing the release of hydrogen from CC3 at pH 6 (Figure 5A) with pH 7 (Figure 

5B) there seems to be a change in rate. At pH 6 the release seems to persist whereas at pH 

7 the release seems to decay and stop after approximately 60 seconds. At pH 8 (Figure 5C) 

the release decays even faster after approximately 30 seconds. A better comparison of data 

is shown in Figure 5D for pH 6, 7, 8, and 11. Clearly, the release of hydrogen is higher and 

more sustained only at pH 6.  
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Figure 5. Chronoamperometry (stepping the potential from Elow = -0.85 V vs. SCE to Ehigh 

= -0.40 V vs. SCE) for 4 g CC3 deposited onto a 3 mm diameter Pt disc electrode and 

immersed in aqueous 0.1 M phosphate buffer (A) pH 6, (B) pH 7, (C) pH 8, and (D) 

comparison for pH 6, 7, 8, and at 11 (outside the stability range).  
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For the interpretation of these effects one could compare the release time for the hydrogen 

during oxidation, , estimated as 120 s, 60 s, 30 s for pH 6, 7, and 8, respectively. Diffusion 

rates of hydrogen within the CC3 are unlikely to be affected by pH, but the release kinetics 

of hydrogen at the CC3 | aqueous electrolyte may be affected by interfacial protonation.  

 

At the interface between aqueous electrolyte and CC3 solid hydrogen diffusion has to 

occur from a region of high diffusivity (solution) into a region of lower diffusivity (CC3 

solid). Therefore, at the interface the local concentration chydrogen,CC3 will be higher 

compared to the hydrogen concentration in the aqueous electrolyte, chydrogen,water. The 

charge under the oxidation response in Figure 5Div can be estimated as 6.6 mC, which 

corresponds to approximately 3.4 nmol hydrogen. The solid state crystallographic density 

of CC3 is 0.973 g cm-3 (molecular weight 1128 g mol-1 [8]), which is consistent with 0.863 

mol dm-3. The 4 g CC3 deposit is equivalent to 3.5 nmol. Therefor the ratio of hydrogen 

guest molecules to CC3 host molecules appears to be close to unity and the apparent 

concentration of hydrogen in CC3 close to 0.8 mol dm-3. The ambient molar volume for 

hydrogen in the gas phase is 0.04 mol dm-3, which suggests that a gas capture/compression 

effect is possibly. Therefore one or even several molecules of molecular hydrogen per CC3 

organic cage may be stored under these conditions. The replacement of water molecules 

from within CC3 to the aqueous surroundings is likely to be important in this process. 

Further work (theory and experiment) will be necessary to further quantify the hydrogen 

transport, permeability, and uptake/release kinetics in terms of H2 molecules per cage CC3 

in colloidal systems and as a function of pH/protonation. 
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Conclusion 

In preliminary voltammetric and chronoamperometric experiments it has been shown that 

solid forms of the porous organic cage material CC3 are able to capture and store molecular 

hydrogen in solid state and immersed in aqueous buffer media. The facile hydrogen capture 

and release process (observed voltammetrically at the surface of platinum electrodes) may 

be associated with water exchange and the process is shown to be pH dependent. The 

hydrogen release rate from solid CC3 appeared to decrease when going from pH 8 to 6. It 

is therefore suggested that the buffer solution pH can be used to change the rate of 

uptake/release and interaction of molecular hydrogen with the CC3 porous organic cage 

material. Being able to “compress” substantial amounts of hydrogen into “wet” porous 

organic cages will be of significant interest in energy technology. In future, it will be 

important to employ a wider range of techniques (e.g SECM, in situ spectroscopy, in situ 

diffraction etc.) to confirm the hydrogen storage effect as a function of particle size and to 

provide a more quantitative understanding of binding constant and transport rates. 
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