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Abstract 11 

Autotrophic ammonium oxidation in membrane-aerated biofilm reactors (MABRs) can make treatment of 12 

ammonium-rich wastewaters more energy-efficient, especially within the context of short-cut ammonium 13 

removal. The challenge is to exclusively enrich ammonium-oxidizing bacteria (AOB). To achieve nitritation, 14 

strategies to suppress nitrite-oxidizing bacteria (NOB) are needed, which are ideally grounded on an 15 

understanding of underlying mechanisms. In this study, a counter-diffusion nitrifying biofilm reactor was 16 

operated under intermittent aeration. During eight months operation, AOB dominated, while NOB were 17 

suppressed. Based on dissolved oxygen (DO), ammonium (NH4
+), nitrite (NO2

-) and nitrate (NO3
-) profiles 18 

within the biofilm and in the bulk, a 1-dimensional nitrifying biofilm model was developed and calibrated. 19 

The model was utilized to explore the potential mechanisms of NOB suppression associated with intermittent 20 

aeration, considering DO limitation, direct pH effects on enzymatic activities, and indirect pH effects on 21 

activity via substrate speciation. The model predicted strong periodic shifts in the spatial gradients of DO, 22 

pH, free ammonia and free nitrous acid, associated with aerated and non-aerated phases. NOB suppression 23 

during intermittent aeration was mostly explained by periodic inhibition caused by free ammonia due to 24 

transient periodic pH upshifts. Dissolved oxygen limitation did not govern NOB suppression. Different 25 

intermittent aeration strategies were then evaluated for nitritation success in intermittently aerated MABRs: 26 

both aeration intermittency and residual free ammonia turned to be effective control parameters.  27 

  28 
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Introduction 29 

Short-cut ammonium (NH4
+) removal via nitrite (NO2

-) is more energy- and cost- efficient than traditional 30 

NH4
+ removal via nitrate (NO3

-) due to reduced aeration and external electron donor requirements.1,2,3 This 31 

process requires full nitritation (oxidation of all NH4
+ to NO2

-) and zero nitratation (oxidation of none of the 32 

NO2
- to NO3

-); in other words minimal activity of nitrite-oxidizing bacteria (NOB) and maximal activity of 33 

ammonium-oxidizing bacteria (AOB). Similar conditions– with only partial nitritation- can also be exploited 34 

to convert NH4
+ to a 50:50 mixture of NO2

- and NH4
+, which can then be coupled to anoxic NH4

+ oxidation 35 

to attain even more resource efficient ammonium removal.4,5 36 

Various conditions have been successfully tested to suppress NOB over AOB activity or wash-out NOB over 37 

AOB biomass to attain nitritation in suspended growth systems. They include the operation of bioreactors at 38 

limited dissolved oxygen (DO) concentrations,6 at high temperature combined with low solids retention 39 

times,1 and at elevated free ammonia (FA) and/or free nitrous acid (FNA) concentrations.7 In all cases NOB 40 

suppression or outcompetition versus AOB is based on differential growth kinetics. Sometimes, the proper 41 

choice of system inoculum also accelerates AOB over NOB selection.8 By contrast, maintaining long-term 42 

nitritation in biofilm-based reactors can be more challenging9 due to long solids retention times in biofilms 43 

that interfere with outcompetition based on kinetic principles. Finding operational conditions and confirming 44 

mechanisms that suppress NOB in biofilms remains a challenge. On the one hand, the existence of strong 45 

spatial chemical gradients (e.g. of DO, pH and nitrogenous species) in nitrifying biofilms10 makes it difficult 46 

to prescribe environmental conditions that favor AOB over NOB in the system. On the other hand, the 47 

existence of multiple simultaneous chemical gradients complicates identification of the underlying 48 

mechanism(s) that suppresses NOB. For example, pH and DO gradients occur simultaneously in active 49 

nitrifying biofilms:11 it is difficult to unravel to what extent nitritation failure or success is associated with 50 

the differential effect of oxygen (AOB and NOB having different oxygen affinities)12 or the differential 51 

effects of pH (AOB and NOB responding differently to pH– as a consequence of the pH-dependent 52 

maximum growth rates13,14 and the pH-dependent speciation of FA and FNA which act as both substrates and 53 

inhibitors).  54 
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Mathematical models are one way to describe multiple processes that occur simultaneously in time and space 55 

in nitrifying biofilms.15,16 A multi-species nitrifying biofilm model (MSNBM) was explicitly developed to 56 

study the competition between AOB and NOB; effects of DO, pH, FA and FNA on growth kinetics were 57 

incorporated in a spatially explicit way to evaluate operational conditions for NOB suppression in co-58 

diffusion biofilms.3,17 Park et al.17 showed that FA inhibition of NOB was more efficient in nascent biofilms 59 

(when residual NH4
+ was still high), but that DO limitation was the dominant mechanism of NOB 60 

suppression in established biofilms. Besides bulk DO and influent NH4
+ concentration, the model suggested 61 

that bulk buffer capacity was another means to manipulate NOB suppression by affecting pH gradients 62 

within biofilms.  63 

While AOB/NOB competition in conventional co-diffusion biofilms has been studied in some detail,3,17,18 64 

there are less studies on AOB/NOB competition in the context of nitritation in counter-diffusion biofilms. 65 

Counter–diffusion biofilms develop in membrane-aerated biofilm reactors (MABRs), where air delivery is 66 

via the biofilm base.19 MABRs have been broadly explored for  autotrophic N removal.11,20,21 In counter-67 

diffusion nitrifying MABRs, active bacteria thrive at the base of the biofilm, where they utilize oxygen 68 

supplied from the membrane lumen. Growth of bacteria– including NOB- at the biofilm base would limit the 69 

chance for outcompetition, once established, due to spatial protection by the overlying biofilm layers. 70 

Efficient operation of MABRs to attain long-term nitritation has, to our knowledge, not been documented, 71 

with the exception of one, highly-loaded (33 g-N/m2/day) fully NH4
+ penetrated MABR where controlling 72 

DO concentrations at the membrane-biofilm interface sufficed to maintain nitritation.22 73 

Recently, Pellicer-Nàcher et al.21 observed that fully nitratation MABRs accumulated NO2
- immediately after 74 

switching from continuous to intermittent aeration, even at elevated oxygen loadings. The causal link 75 

between nitritation onset and aeration regime change were not explored. Here we report additional 76 

experimental evidence of NOB suppression in intermittently aerated MABRs and we develop and calibrate 77 

an improved MSNBM incorporating explicit pH calculation. Using the calibrated model, we systematically 78 

evaluate potential causes for NOB suppression associated with intermittent aeration.  From this analysis, we 79 

identify the periodic FA inhibition- caused by transient pH upshifts and decreases at the biofilm base- as the 80 
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likely key cause for NOB suppression. A suitable operational window for an effective nitritation control in 81 

counter-diffusion systems is finally proposed. 82 

Materials and Methods  83 

2.1 Reactor Operation and Measurement Methods 84 

Reactor Configuration and Operation 85 

The counter-diffusion MABRs consisted of two tubular gas filled PDMS membranes (3100506, Labmarket, 86 

Germany), both fixed in parallel to its longer dimension (Figure S1). The system had a liquid volume of 0.83 87 

L (reactors: 31.5×5×3.5 cm) and was inoculated with enriched nitrifying biomass.21 To start up the system, 88 

the reactor was first run in a batch mode with an initial NH4
+ concentration at 300 mg-N/L and continuous 89 

aeration. The onset of NH4
+ consumption without oxygen accumulation in the bulk suggested biomass 90 

attachment around the membranes. Subsequently, the MABR was operated in continuous flow mode under 91 

intermittent aeration.  Synthetic wastewater was fed continuously with an NH4
+ concentration at 75 mg-N/L 92 

and without external organic carbon. Hydraulic retention time was 12 hours. The intermittent aeration 93 

strategy consisted of a 6-hour aeration period (100% air) followed by a 6-hour non-aeration period (100% 94 

N2). The aeration cycles were controlled by a set of solenoid valves and the pressure in the lumen was 35 95 

kPa. The bulk phase was completely mixed by recirculating at 1.5 L/min. DO and pH were measured with 96 

electrodes in the recirculation line (CellOX 325 and Sentix 41, WTW, Germany). Bulk pH was not 97 

controlled and remained at 7.2±0.2 due to adequate buffer capacity (molar ratio in the influent: HCO3
-/NH4

+ 98 

= 2.1). Reactor temperature was at 32.5 ±0.7°C, which was above ambient temperature due to the 99 

unintentional heat added by the recirculation pump. N concentrations (NH4
+, NO2

- and NO3
-) were measured 100 

with colorimetric test kits (Spectroquant 14776, 00683, 09713; Merck, Germany).  101 

Microelectrode Measurements 102 

Commercially available DO microelectrode (OX-10, Unisense, Denmark) and lab-made potentiometric 103 

microelectrodes for NH4
+, NO2

- and NO3
-23 were used for in-situ profiling measurements within the biofilm. 104 

Profiling measurements were performed after biofilms reaching steady state. Microelectrodes were 105 
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controlled by a motorized micromanipulator to a precision up to 10 µm, and began from the top of the 106 

biofilm. During measurements, the influent and recirculation were kept unchanged. For each profile, 107 

replicates (n > 3) were made and the average was considered in model fitting. Besides calibration following 108 

the protocols, the signal drift of N-species sensors over time was corrected by measuring N concentrations 109 

from effluent before and after profiling.  110 

2.2 Model Development  111 

The MSNBM is a one-dimensional model based on Terada et al.,24 incorporating additional explicit pH 112 

calculation (Table S1). It was implemented in AQUASIM V2.1 with two compartments: a completely mixed 113 

gas compartment and a biofilm compartment containing biofilm and bulk liquid.25 In the counter-diffusion 114 

regime, a physical diffusion link connects the gas compartment to the base of the biofilm, defined as 115 

𝐴 ∙ 𝑘 , ( 𝐶 , − 𝐶 , )                                        (1) 116 

where Ci,air and Ci,base are concentrations of carbon dioxide (CO2) or oxygen (O2) in the gas compartment and 117 

at the biofilm base (mg/L), H is the non-dimensional Henry’s Law coefficient (1.32 for CO2, 34.55 for O2, 118 

33 ℃), kM,i is the silicone membrane gas mass transfer coefficient (kM,O2 = 6 m/d, kM,CO2 = 0.8 m/d, Table S3). 119 

Gas transfer of N2 and NH3 are not modeled. Other major modeling assumptions- regarding biofilm structure, 120 

diffusion mass transfer and boundary layer thickness are as in Terada et al.24 Process rate expressions are 121 

shown (Table S2). The calibrated nitrification model incorporating pH is available from the corresponding 122 

author. 123 

Biological Processes 124 

The MSNBM includes 3 active microbial groups- AOB, NOB, heterotrophs (HB) and inerts accumulated 125 

during decay processes. For the two-step nitrification process, FA and FNA are considered as true substrates 126 

for growth and inhibition in nitritation and nitratation.26 The growth rate expressions are described as follows, 127 

AOB: 𝜇 · 𝑋 · ·
· ,⁄

· ,

,

                            (2) 128 

NOB: 𝜇 · 𝑋 · ·
· ,⁄

· ,

,

                       (3) 129 
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where μ is the specific growth rate coefficient (1/day), dependent on local pH and 𝜇 ; 𝑆 , 𝑆  and 𝑆  130 

are O2, FA and FNA concentrations (mg/L), respectively; 𝐾 , 𝐾  and 𝐾  are half-saturation coefficients 131 

(mg/L);𝐾 ,  and 𝐾 ,  are inhibition coefficients (mg/L). Growth substrate inhibitions (FA for AOB, FNA 132 

for NOB) are incorporated with the Andrews equation. Other inhibitions (FA for NOB, FNA for AOB) are 133 

described with a noncompetitive inhibition term. 134 

For the denitrification process, NO2
- and NO3

- are modeled as separate electron acceptors. To avoid 135 

unnecessary complexity and focus on AOB/NOB competition, no intermediates (NO or N2O) are considered. 136 

Bacteria have different decay rates in aeration and non-aeration periods: to simplify the model, AOB/NOB 137 

are assumed not to decay under anoxic or anaerobic conditions,27 meanwhile, HB decay is modified by an 138 

anoxic reduction factor during non-aeration periods. 139 

Chemical Process: pH Calculation  140 

The one-dimensional model can keep track of local pH changes perpendicular to the membrane substratum. 141 

pH along biofilm depth is calculated based on the proton production via nitrification and consumption via 142 

denitrification, the equilibrium reaction with bicarbonate buffer, and CO2 stripping to the membrane lumen. 143 

The consumption of inorganic carbon for autotrophic growth is neglected as it has insignificant influence on 144 

pH changes under conditions when inorganic carbon is not limiting. 145 

Protons produced and consumed in bioprocesses are listed in the stoichiometry matrix. The acid-base 146 

balance reaction with bicarbonate buffer is assumed to occur much faster than biological processes.28 147 

𝐻 + 𝐻𝐶𝑂 ↔ 𝐻 𝐶𝑂  (𝐶𝑂 )             rate: 
·

,
− 𝑆 · 10                   (4) 148 

where SH, SHCO3- and SH2CO3(CO2) are concentrations of proton, bicarbonate and the sum of carbonic acid and 149 

dissolved carbon dioxide, respectively (μmol/L); 𝐾 ,  is the dissociation equilibrium constant of carbonic 150 

acid (0.574 μmol/L, 33 ℃, 1 atm). Protons produced in the nitritation process titrate HCO3
- to H2CO3, and 151 

over-saturated CO2 diffuses from the biofilm base to the membrane lumen (Equation 1). Acid-base reactions 152 

with phosphate ions were minor and neglected, as the molar ratio of H2PO4
-/HCO3

- in influent was lower 153 

than 3%.  154 
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Limitations/Inhibitions of AOB/NOB Activity 155 

The growth rate expressions of AOB and NOB consider DO and pH effects. DO limitation is assessed by 156 

oxygen affinity constants. Two pH effects are included. (1) pH-enzyme effect: pH can affect nitrifying 157 

activity directly by changing the enzyme reaction mechanism or increasing the demand for maintenance 158 

energy.28,29 A Gaussian bell-shaped curve is chosen to model the pH-enzyme dependency of specific growth 159 

rates.13 160 

μ =
 

1 + 𝑐𝑜𝑠 · (𝑝𝐻 − 𝑝𝐻 )                         𝑝𝐻 − 𝑝𝐻 < 𝜔                        (5) 161 

where 𝜇  is the maximum specific growth rate at the optimal pH- 𝑝𝐻 , ω is the pH range within which 162 

µ is larger than a half of 𝜇 . (2) pH substrate-speciation effect: local pH values determine FA/FNA 163 

speciation from total NH4
+/NO2

-. The speciation between ionized/unionized species is assumed at 164 

instantaneous equilibrium.30 165 

𝑆 = , ·
                        𝑆 =

·

,
                                                                   (6) 166 

where 𝐾 ,  and 𝐾 ,  are dissociation equilibrium constants of ammonium and nitrous acid, respectively 167 

(0.000794 and 628.96 μmol/L (33 ℃, 1 atm)). Substrate-speciation will result in differential degrees of 168 

FA/FNA inhibition. 169 

2.3 Sensitivity Analysis and Parameter Estimation 170 

To investigate the most determinant parameters on reactor performance, a sensitivity analysis was performed. 171 

Initial values of kinetic parameters were taken from ASMN model.26 The optimal pH ranges for AOB and 172 

NOB growth kinetics (pHopt and ω) were from Park et al..13 The temperature correction for µmax and bmax are 173 

from Hao et al..31 The MSNBM was first run in continuous aeration with default values for 300 days to 174 

achieve a stable nitrifying biofilm. Then a local sensitivity analysis was performed after switching to 175 

intermittent aeration- giving individual parameter a 100% value change while all others remained constant.25 176 

Reactor performances were evaluated in terms of ammonium removal efficiency (ARE, , ,

,
%), 177 
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nitrate production efficiency (NaE, ,

, ,
%), nitritation efficiency (NE, ,

, ,
%) and 178 

NOB fraction (fNOB, %). The normalized sensitivity function is defined as, 179 

𝛿 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑛𝑠 ,   𝑎𝑛𝑑 𝑆𝑒𝑛𝑠 , = 𝑝 ,
∆

∆ ,
,                                                                         (7) 180 

where 𝛿 , 𝑦  and pi,j are the sensitivity function, the output reactor performances (ARE, NaE, NE or fNOB), 181 

and the input parameters, respectively. Sensi,j was evaluated at different times during the aeration cycles 182 

(time interval of 0.01 day) and at 20 equidistant points within the biofilm or 1 point in the bulk phase. The 183 

averaged value was considered in the sensitivity analysis and parameter sensitivity was ranked for each 184 

targeted performance metric. We focused on biokinetic and stoichiometric parameters related to AOB and 185 

NOB, as HB parameters are of secondary importance in nitrifying biofilms.32 186 

The most sensitive parameters were calibrated with steady state experimental data. The model calibration 187 

was carried out by trial and error through adjusting the parameter values one by one to minimize the fitting 188 

error. Root mean squared error was used to assess the quality of model-data fit as the objective function, 189 

RMSE = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(∑ ∑ (
, , , ,

, ,
) )                                                                       (8) 190 

where j is the targeted variable measured or estimated (NH4
+, NO2

-, NO3
- and DO), i is a sample point along 191 

biofilm depth (i =20). The model was validated with additional experimental data from this MABR and 192 

experimental data from a separate membrane-aerated biofilm reactor (MABR2) operated under 4 different 193 

ammonium surface loadings (Table S5, detailed description of the experimental data used in model 194 

calibration and validation).33 The calibrated parameters were checked by comparing RMSE in the calibration 195 

with RMSE in the validation and the Janus coefficient (J) was calculated,34 196 

𝐽 =                                                                                                                                  (9) 197 

2.4 Model Simulations  198 

The calibrated MSNBM was run in 3 scenarios (Table S6, detailed description of each simulation scenario): 199 
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(1) To validate the model with extra experimental data, the calibrated MSNBM was ran in intermittent 200 

aeration (6-hour aeration period and 6-hour non-aeration period) under different NH4
+ surface loadings or in 201 

continuous aeration in a batch test. Then the determinant factor(s) that govern NOB suppression in this 202 

MABR was explored with the validated model. 203 

(2) To clarify why NOB suppression occurred after switching to intermittent aeration from continuous 204 

aeration, the model was run in continuous aeration to achieve a nitrifying biofilm, then aeration was switched 205 

to the same intermittent aeration as scenario 1.  206 

(3) To optimize the operational window for nitritation in intermittently aerated MABRs, different 207 

intermittent aeration strategies and influent concentrations were simulated in MSNBM after achieving a 208 

nitrifying biofilm in continuous aeration. The effects of aeration intermittency and residual NH4
+ (FA) 209 

concentrations on NOB suppression were evaluated.  210 

Results and Discussion 211 

3.1 Model Calibration and Evaluation 212 

A sensitivity function, considering the sum of reactor performances (ARE, NaE, NE and fNOB), was 213 

calculated to rank parameters (Figure S2). The most sensitive parameter is 𝜇 , followed by 𝐾 , , 𝜇 , 214 

𝐾 , , 𝐾  and 𝐾 . The ranking shows that µmax is the most determinant among all kinetic parameters in 215 

nitrogen conversion simulations. It is consistent with the sensitivity analysis of Wang et al.32 who ranked 216 

kinetic parameters in terms of nitritation performance and biofilm development in nitrifying biofilm reactors. 217 

The higher sensitivity regarding performance within the biofilm (Figure S2B) versus the bulk (Figure S2A) 218 

suggests that in-situ microprofiling data is more informative in model calibration than bulk measurements, 219 

which were typically used.22,35 Therefore, microprofiling measurements (NH4
+, NO2

-, NO3
- and DO) in the 220 

first aeration hour at steady state were used to calibrate sensitive parameter(s). Microprofiles in the last 221 

aeration hour (NH4
+, NO2

-, NO3
- and DO) and bulk profiles in an intermittent aeration cycle (NH4

+, NO2
-, 222 

NO3
-, DO and pH) at steady state were used for validation. Additional validation of the model and its 223 

parameter estimates was obtained by fitting the initial reactor performance (NH4
+, NO2

- and NO3
-) when 224 
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operated in batch start-up mode, and by fitting the biofilm performance (NH4
+, NO2

-, NO3
- and pH) of a 225 

separately operated MABR under different NH4
+ surface loadings. 226 

By fitting the most sensitive parameter- 𝜇  in the reported range,12 the RMSE decreased to 0.5 and the 227 

deviation in NO3
- fitting contributed the most to the error. Thus, the next most sensitive parameter- 𝜇 - in 228 

NO3
- sensitivity ranking (Figure S3) was added to the calibration and RMSE decreased to 0.1. Values of 229 

𝜇  and 𝜇  were within a reasonable range: the estimated maximum growth rates at the optimal pH were 230 

2.35 d-1 for AOB and 2.15 d-1 for NOB (Table 1). Predicted microprofiles agree with measurements in the 231 

first aeration hour at steady state (Figure 1A): NH4
+ is consumed along biofilm depth and NO2

- is produced; 232 

NO3
- remains at lower concentrations than NO2

- within the biofilm; DO penetrates 60 µm into the biofilm 233 

base. The greatest divergence in the overall fitting corresponds to NO2
- at the biofilm base (6 mg-N/L) but 234 

only overestimates FNA concentrations by 0.002 mg-N/L. Errors in DO fitting at the membrane-biofilm 235 

interface (6.6 mg/L predicted versus 1.7 mg/L measured) have a minor influence on the oxygen competition 236 

between AOB and NOB (Table S4), consistent with Lackner and Smets36 who reported that oxygen 237 

concentrations at interfaces were not decisive in nitritation performance in MABRs. Additionally, 238 

uncertainty in measuring the interface DO could be caused by microbial activities on the membrane and an 239 

efficiency factor E (1.3 ~ 4.3) was suggested to correct measured values.33 240 

MSNBM predicts consistent profiles in the different model validations. It predicted lower NH4
+ and higher 241 

NO2
- within the biofilm in the last aeration hour (Figure 1B) and uniform dynamic variations of bulk 242 

concentrations in a 12-hour intermittent aeration cycle. For example, it captured the pH decreases in the 6-243 

hour aeration phase and increases in the 6-hour non-aeration phase (Figure 1C). It also predicted 244 

simultaneous production of NO2
- and NO3

- in the batch mode data validation (Figure S4A) and predicted 245 

NH4
+ consumption and NO2

- production following the tendencies observed in MABR2 (Figure S4B). Janus 246 

coefficients were around 1.9 (± 0.5), showing that the RMSEs were within the same order of magnitude in 247 

calibration and validations. 248 
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3.2 Model-based Exploration of NOB Suppression in Intermittently Aerated MABRs 249 

NOB suppression is the result of indirect and direct (competitive) interactions between AOB and NOB in the 250 

local environment. Net microbial activities are captured in the specific growth rates: biomass types with the 251 

higher specific growth rate will win the local competition. In the studied system, oxygen was provided 252 

intermittently from membrane lumen. The biomass type with the higher specific growth rate (AOB or NOB) 253 

thus dominated the oxygen utilization. 254 

Consistent with experimental reactor operations, simulations were initiated with fully-nitrifying biomass and 255 

subject to intermittent aeration. Both simulation and experimental data showed that after 2 weeks in 256 

intermittent aeration bulk N concentrations became stable, especially NO3
- was below 1 mg-N/L indicating 257 

efficient suppression of NOB activity (Figure S9). To illustrate the competition in the first nitrifying stage, 258 

profiles of specific growth rates of AOB and NOB during an aeration cycle (6 hours) are plotted at day 15 259 

(Figure 2A). The averaged µ at time intervals shows kinetic variations over time: (1) 0-15 minutes, with the 260 

onset of aeration microbial activities recover from the previous non-aeration period and increase 261 

dramatically; (2) 15-180 minutes, AOB activity becomes stable, while NOB activity still recovers; (3) 180-262 

360 minutes, both AOB and NOB activity reach pseudo steady state. The model shows the ratio of 𝜇  to 263 

𝜇  increases in the intermittent aeration, compared to the ratio of 𝜇  to 𝜇  in continuous aeration 264 

(1.5±0.15 versus 1.1). AOB preferentially utilize oxygen to support growth while NOB are outcompeted or 265 

their activity is suppressed.  266 

To assess the relative contribution of DO/pH effects on NOB suppression, individual factors influencing 267 

growth rates were calculated spatially (at different biofilm depths) and temporally (at different times in the 268 

cycle). Considering the effective DO penetration depth, only results in the first 100-μm at the biofilm base 269 

are shown (Figure 2B). 270 

DO Limitation in NOB Suppression 271 

O2 is a growth substrate for both AOB and NOB. In counter-diffusion biofilms O2 is provided via the lumen 272 

and NH4
+ via the bulk. In the biofilm, DO penetrates only 60 μm during aeration periods with the highest 273 

concentration at the membrane-biofilm interface (biofilm depth= 0 µm), presenting spatial variations (Figure 274 
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S5A). Besides, DO varies over time during aeration cycles. DO at the membrane-biofilm interface is 0 mg/L 275 

at the onset of aeration and quickly increases to the maximum concentration within 15 minutes. Afterwards, 276 

DO concentrations within the biofilm remain stable until the end of aeration. 277 

The DO limitation effect was evaluated based on oxygen concentrations within the biofilm (Figure 2B, 1- 278 

DO limitation). In aeration periods, during the first 15 minutes DO strongly limits both AOB and NOB 279 

activities. During the following period, the limitation is alleviated as DO increases and stabilizes, but still 280 

remains strong above 30 µm. With a lower DO affinity NOB are more oxygen-limited than AOB. However, 281 

the relatively stronger limitation to NOB is insignificant in its suppression. Model results show that oxygen 282 

transfer and its diffusion mostly affects NH4
+ oxidation efficiency rather than nitritation efficiency (Table 283 

S7). 284 

pH-enzyme Effect on NOB Suppression 285 

Because pH affects AOB/NOB kinetics directly and indirectly, it is necessary to incorporate pH effects in 286 

models.14,37 Here MSNBM predicts local pH values within the biofilm and the response to transient aeration 287 

phases (Figure S5B). While measurements showed that bulk pH remained relatively stable (±0.2), pH within 288 

the biofilm, especially in the DO-penetrated zone, showed considerable variations (±0.6). At the onset of 289 

aeration the model indicates a transient pH upshift at the biofilm base (0-15 minutes). The accumulated 290 

alkalinity is attributed to continuous CO2 diffusion from the biofilm base to the membrane lumen where N2 291 

gas flows through in the previous non-aeration period and slight denitrification activities. As aeration 292 

continues, pH decreases due to proton production associated with NH4
+ oxidation. Simulations predict that 293 

pH within the biofilm becomes lower than in the bulk after 1-hour aeration and decreases slowly afterwards. 294 

At the end of aeration pH at the biofilm base is 0.4 units lower than the average bulk pH, which will increase 295 

again in the following non-aerated phase. Thus pH varies periodically in the intermittently aerated biofilms, 296 

a pattern similar but slower than DO variations. 297 

The pH-enzyme effect was assessed based on local pH values (Figure 2B, 2- pH-enzyme effect). It favors 298 

NOB growth over AOB as NOB have a lower pHopt (NOB: 7.7 versus AOB: 8.4) and pH varies in the 299 

optimal range for its growth. Moreover, the pH-enzyme effect is also insignificant in the overall AOB/NOB 300 
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competition due to their robust growth in broad pH ranges and the relatively small pH variations in the 301 

system.  302 

pH Substrate-speciation Effects on NOB Suppression 303 

FA/FNA concentrations rely on pH values as well as total NH4
+/NO2

- concentrations. In counter-diffusion 304 

biofilms, NH4
+, provided via the bulk, is oxidized at the biofilm base producing NO2

- which diffuses 305 

backward into the bulk.10 Based on ionic N concentrations, FA and FNA speciation synchronizes with pH 306 

variations (Figure S5C and S5D). For instance, at the onset of aeration FA concentration is high due to NH4
+ 307 

and alkalinity accumulation from the previous non-aeration period. During the following aeration period, FA 308 

concentration decreases, as pH drops and NH4
+ consumption continues. On the other hand, FNA shows 309 

reversed variations: increasing as aeration progresses and with biofilm depth as a result of the proton and 310 

NO2
- production. 311 

The pH substrate-speciation effect was assessed based on FA/FNA concentrations within the biofilm (Figure 312 

2B, 3- FA/FNA inhibition). During the first 15 minutes, FA strongly inhibits AOB/NOB microbial activities 313 

(FA > KI,FA). Afterwards, the inhibition is alleviated as FA decreases. Noticeably, FA inhibits AOB and 314 

NOB in different ways: the inhibition effect remains strong for NOB throughout the aeration period (from 315 

0.26 to 0.62), while it obviously weakens for AOB (from 0.54 to 0.89). FA inhibition rapidly becomes the 316 

most determinant factor in suppressing NOB over AOB. As FNA concentrations are always an order of 317 

magnitude lower than KI,FNA, its inhibition effect on microbial activities is always minor thereby contributing 318 

little to NOB suppression.  319 

Besides the inhibitor effect (𝐾 /(𝐾 + 𝑆)), FA/FNA exhibit the substrate limitation effect (𝑆/(𝐾 + 𝑆)) in 320 

biological processes (Equation 2). However, FA and FNA concentrations are far above the substrate 321 

affinities (𝐾  and 𝐾 ) in the system, making the substrate limitation effects negligible.  322 

Overall, FA inhibition caused by pH substrate-speciation is the crucial factor in suppressing NOB in the 323 

intermittently aerated biofilm reactors. Nitritation success is insensitive to oxygen affinity constants or DO 324 

concentrations at the membrane-biofilm interface- a conclusion different from previous studies.38,39 Downing 325 

and Nerenberg22 suggested manipulating interface DO as an effective method to control shortcut nitrification 326 
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in MABRs: with a lower interface DO, more NO2
- accumulated. However, their biofilms performed at low 327 

nitrification rates with a low influent NH4
+ concentration- 3 mg-N/L, suggesting little FA inhibition and no 328 

NO2
- accumulation or significant pH gradients. The single DO gradient within the biofilm present the 329 

interface DO as a key role in nitritation success. This method might not apply for N-rich wastewater 330 

treatment. For example Lackner and Smets36 concluded that nitritation success based only on interface DO 331 

was not possible in a counter-diffusion biofilm with high influent NH4
+ concentrations (20-800 mg-N/L), and 332 

nitritation efficiency was not predicted from oxygen affinity constants.  333 

Counter- and co-diffusion biofilms have different mechanisms of NOB suppression due to different spatial 334 

structures and population distributions.32,35,36 In counter-diffusion biofilms, the theoretically optimal habitat 335 

for NOB is the biofilm base, where both SO2/KO2 and SFNA/KFNA have the highest values. By contrast, the 336 

base is not the optimal for AOB growth, as SO2/KO2 and SFA/KFA cannot have the maximum at the same 337 

spatial position. Outcompeting NOB can be more difficult in counter-diffusion over co-diffusion biofilms, 338 

where microbes (AOB and NOB) share the optimal habitats at the biofilm top near the biofilm/liquid 339 

interphase. Others have similarly observed that NOB could survive better in counter- versus co- diffusion 340 

biofilms, even when operated under constant oxygen limited (DO < 0.1 mg/L) and high pH (8.0-8.3) 341 

conditions in the bulk.32 The inherent system geometry of membrane-aerated biofilms complicates NOB 342 

inhibition/washout. Besides, when applying intermittent aeration, periodic pH variations at the biofilm base 343 

exert a significant effect on NOB dynamics in counter-diffusion biofilms because of continuous CO2 344 

diffusion to the gas lumen. However, such pH variations are not expected in co-diffusion biofilms. Many 345 

studies have highlighted the benefits of low DO with high FA to maintain shortcut NH4
+ removal in co-346 

diffusion biofilms.17,40 Park et al.3 explored simultaneous effects of DO and FA/FNA in lab-scale co-347 

diffusion nitrifying biofilms, and found that NO2
- accumulated due to DO limitation or FA inhibition and 348 

long-term NOB suppression could not be maintained without DO limitation involved. The results were 349 

consistent with Brockmann and Morgenroth41 who suggested that oxygen limitation was the main 350 

mechanism for NOB suppression and FA inhibition was not necessarily required in co-diffusion biofilms. 351 

However, DO limitation in nitritation counter-diffusion biofilms appears not as significant as reported for co-352 
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diffusion biofilms, consistent with the observation that nitritation could not be achieved by solely 353 

manipulating air pressure in the membrane lumen in MABRs.21 354 

3.3 Potential explanation of NOB Suppression in the study of Pellicer-Nàcher et al. (2010) 355 

To answer why NO2
- accumulated after switching from continuous to intermittent aeration in MABRs, 356 

simulations were carried out with the calibrated MSNBM in continuous aeration for 200 days followed by 357 

intermittent aeration (6-hour aeration and 6-hour non-aeration cycles). The simulation shows a nitrifying 358 

biofilm during continuous aeration (NE = 0%) indicating no NOB suppression (Table 2- continuous 359 

aeration). After switching to intermittent aeration the model predicts NOB suppression- NO3
- decrease and 360 

NE increase (Table 2- strategy A, Figure S6). To find the critical factor for NOB suppression, variations of 361 

individual pH/DO effect on AOB/NOB competition were assessed: each effect  in intermittent 362 

aeration (for instance at day 215) was normalized by its value during continuous aeration. A value higher 363 

than 1 means the effect favors NOB suppression in intermittent aeration, and lower than 1 that it favors NOB 364 

growth.  365 

Only FA inhibition is identified to favor NO2
- accumulation after switching the aeration strategy, while DO 366 

limitation, pH-enzyme effect and FNA inhibition remain unchanged (Figure S7). FA inhibition shows certain 367 

varying patterns in intermittent aeration: (1) it is overall enhanced due to an increased residual NH4
+; (2) it is 368 

particularly strong during the first 15 minutes of aeration. The simulated increase of residual NH4
+ after 369 

changing to intermittent aeration was also observed in the study of Pellicer-Nàcher et al.:21 in reactor B bulk 370 

NH4
+ increased by 100 mg/L at stage 1 and 2 (intermittent aeration) compared to stage 0 (continuous 371 

aeration). Compared to continuous aeration, MABRs in intermittent aeration display a tradeoff between 372 

NH4
+ removal efficiency and nitritation efficiency (Table 2). Nitritation is assisted by the evaluated residual 373 

NH4
+, which underlines the importance of a minimum NH4

+ concentration in the bulk. Pérez et al.18 also 374 

highlighted the need for minimum residual NH4
+ for NOB suppression in co-diffusion biofilms, but 375 

attributed the nitritation success to differential oxygen limitation rather than FA inhibition- as NOB were 376 

outcompeted due to the strong oxygen limiting conditions imposed by a high residual NH4
+. The strong FA 377 

inhibition at the onset of aeration is due to pH upshifts at the biofilm base in the previous anoxic phases. It 378 
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causes a longer lag phase of NOB activity over AOB, which could be another reason in the nitritation 379 

success. Theoretically, NOB locate at the biofilm base, if enriched in MABRs, thus pH upshift at the base is 380 

more efficient to prompt FA inhibition than increasing bulk pH. This lag phase has also been observed in 381 

other intermittently aerated systems.42,43 Kornaros et al.44 and Gilbert et al.45 attributed the lag phase to a long 382 

(enzyme) reactivation time in NOB nitrogen metabolism after anoxic exposure in batch continuous stirred-383 

tank reactors. However, the possibility for pH variations was not considered in those studies, even though 384 

CO2 stripping could slowly increase bulk pH.46 385 

3.4 Nitritation in Various Intermittent Aeration Strategies 386 

For an intermittent aeration system with certain NH4
+/O2 surface loadings, the aeration duration determines 387 

residual NH4
+ concentrations: a longer aeration lowers residual NH4

+. The aeration intermittency determines 388 

pH upshift times and the variation range of bulk concentrations: a higher frequency causes more pH upshifts 389 

and a narrow variation range. This information can be utilized to optimize intermittent aeration strategies for 390 

efficient nitritation in MABRs (Table 2). MSNBM simulation shows that a higher aeration intermittency can 391 

accelerate NOB suppression (A and C) due to more times of pH upshift in non-aeration phases to retard 392 

NOB activity while slightly affecting AOB activity, or decelerate NOB suppression (B and A) due to the 393 

relatively high bulk NH4
+ (pH) at the onset of aeration phases even the averaged bulk concentrations are the 394 

same. Longer aeration duration (D) leads to a slower nitritation process but a higher NH4
+ removal efficiency, 395 

while keeping the same aeration intermittency. It is consistent with the observation in Mota et al.47 that 396 

intermittently aerated reactors with longer anoxic phase had the lower NOB abundance and relatively higher 397 

NH4
+ effluent concentrations. Both studies suggest that the maximum aeration duration should be set to 398 

ensure nitritation success in intermittent aeration, and a specific to the treated wastewater ratio of aeration to 399 

non-aeration phase is needed to balance NOB suppression against NH4
+ removal.48 Simulation with high 400 

NH4
+ concentrations predicts fast nitritation in the intermittent aeration (E), and vice versa slow nitritation 401 

with low influent NH4
+ (F). Further simulation with low NH4

+ concentrations but high bulk pH (G) shows 402 

efficient nitritation, confirming a key factor in NOB suppression was bulk FA rather than residual NH4
+ 403 

(more simulations in Table S8). In an intermittent aeration regime, the bulk FA can provide a rapid indicator 404 
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of the nitritation potential of MABRs (Figure S10). It reveals that aeration duration and aeration 405 

intermittency are two key criteria that affect nitritation efficiency in MABRs at a certain influent loading. 406 

In conclusion, we provide experimental evidence that intermittent aeration supports efficient nitritation in 407 

membrane aerated biofilm reactors (MABRs). A pH-explicit 1-D multispecies nitrifying biofilm model 408 

(MSNBM) is developed and calibrated: model analysis reveals that NOB suppression - associated with 409 

intermittent aeration - is primarily governed by periodic FA inhibition as the consequence of transient pH 410 

upshifts during non-aeration. These pH upshifts are mainly caused by alkalinity increases due to CO2 411 

stripping to the membrane lumen (which also occurs during aeration) plus the cessation of proton production 412 

(which only occurs during aeration). In counter diffusion biofilms pH effect is more important than DO 413 

(limitation) effect on NOB suppression. Both aeration intermittency and duration are effective control factors 414 

to obtain nitritation success in intermittently membrane-aerated biofilms, and maintaining nitritation and 415 

NH4
+ removal efficiency is more easily ensured if operated with high buffer capacities. 416 
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Table 1. Kinetic parameter values of AOB and NOB in the calibrated model.  548 

Kinetic parameters AOB NOB References  

𝜇 : the maximum specific growth rate, 1/d 2.35 2.721  2.15 1.751 this study 

𝐾 : half-saturation coefficient for O2, mg/L 0.6 1.2 Hiatt and Grady26 

𝑌: autotrophic yield, mgCOD/mgN 0.18 0.06 Hiatt and Grady26 

𝐾 , 𝐾 : half-saturation coefficient, mg/L 0.0075 0.0001 Hiatt and Grady26 

𝐾 , : free ammonia inhibition coefficient, mg/L 1 0.2 Hiatt and Grady26 

𝐾 , : free nitrous acid inhibition coefficient, mg/L 0.1 0.04 Hiatt and Grady26 

𝑏 : decay coefficient, 1/d 0.17 0.073 Hao et al.31 

pHopt (ω): optimal pH  8.4(3.2) 7.7(2.4) Park et al.13 

1default growth rates in ASMN with temperature correction (33◦C) 549 
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Table 2. Predicted nitritation efficiencies (NE, %) in various intermittent aeration strategies 551 

Simulation Case 

Influent2  Effluent (Bulk) 

NH4
+

in 
(mg-N/L) 

Buffer 
capacity2  

NH4
+ 

(mg-N/L) 
pH FA3 

(mg-N/L) NEnormalized
4 

continuous 75 2.1  39 6.96 0.27 0.01 

A: 6+61 75 2.1  53.0 ± 5 7.23 ± 0.15 0.71 1.004 

B: 1+1 75 2.1  52.5 ± 1 7.22 ± 0.02 0.69 0.73 

C: 12+12 75 2.1  53.1 ± 10 7.25 ± 0.25 0.78 0.79 

D: 8+4 75 2.1  47.8 ± 4 7.14 ± 0.15 0.52 0.41 

E: 6+6 100 2.1  72.0 ± 7 7.25 ± 0.15 1.02 1.74 

F: 6+6 50 2.1  35.0 ± 3 7.20 ± 0.15 0.45 0.21 

G: 6+6 50 5  31.2 ± 5 7.41 ± 0.10 0.64 0.83 

1Aeration strategy 6+6 meant a 12-hour intermittent aeration cycle consisting of a 6-hour aeration phase and 552 

a 6-hour non-aeration phase. 2Buffer capacity in the influent was recorded as the molar ratio of bicarbonate 553 

(HCO3
-) to ammonium (NH4

+_N). 3FA was calculated with the averaged NH4
+ concentrations and bulk pH 554 

during a full aeration cycle (equation 6). 4For a clear comparison, NE was normalized to the Nitritation 555 

efficiency in the default simulation case A (NE = 48.5%). MSNBM was run in continuous aeration (200 days) 556 

to achieve a mature nitrifying biofilm, followed by various intermittent aeration strategies: (A-D) different 557 

intermittent aeration but the same influent; (A,E-G) the same aeration intermittency but different influent 558 

concentrations. NEs in the NOB suppression process in intermittent aeration were recorded (e.g. at day 215) 559 

(Table S6). In simulations E-G, oxygen loadings proportionally varied with NH4
+ influent concentrations 560 

(more simulations in Table S8). 561 
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 562 

Figure 1. Experimental (discrete symbols) and predicted (line) concentrations in MABR at steady state (A) 563 

microprofiles in the first aeration hour, (B) microprofiles in the last aeration hour, and (C) bulk profiles in a 564 

12-hour intermittent aeration cycle. For each micro profile, replicates (n>3) were made and the average was 565 

shown. 566 
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 568 

Figure 2. A- Specific growth rates of AOB and NOB within the biofilm in a 6-hour aeration period at day 15 569 

(AOB- black, NOB- red). B- Individual effect on AOB and NOB within the 100μm-aerated biofilm base in a 570 

6-hour aeration period at day 15. (0- strong limitation/inhibition effect, 1- no limitation/inhibition effect) 571 
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