UNIVERSITY OF

BATH

Citation for published version:

Zhou, Y, Wu, H, Gu, C & Song, Y 2017, 'A Novel Method of Polynomial Approximation for Parametric Problems
in Power Systems', IEEE Transactions on Power Systems, vol. 32, no. 4, 7728091, pp. 3298-3307.
https://doi.org/10.1109/TPWRS.2016.2623820

DOI:
10.1109/TPWRS.2016.2623820

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019


https://doi.org/10.1109/TPWRS.2016.2623820
https://researchportal.bath.ac.uk/en/publications/a-novel-method-of-polynomial-approximation-for-parametric-problems-in-power-systems(26be4692-a6cd-42ca-8bbc-7eb10bea11bf).html

OO~ O WKN -

A Novel Method of Polynomial Approximation for
Parametric Problems in Power Systems

Yongzhi Zhou, Hao Wu, Member, IEEE, Chenghong Gu, Member, IEEE, and Yonghua Song, Feilow, IEEE

Abstract—Many problems in power systems depend on pa-
rameters, i.e., system states are decided by the magnitude of
parameters. Practically, these parameters could be stochastic
variables or deterministic system control variables, e.g., gener-
ation outputs, nodal voltages, etc. Due to the nonlinearity of
power systems, the analytical relation beiween system states
and parameters cannot be obtained directly. To evaluate the
influence of parameters on system states, the sampling method
is very powerful but time-consuming. Another feasible approach
is to use polynomial approximations, where system states are
approximately expressed in the form of polynomials in terms
of parameters. Galerkin method can be used to identify the
approximate solution with high accuracy. In reality, however, it
may encounter difficulties in solving high-dimensional equations
if a large number of parameters are involved.

In this manuseript, an innovative method for resolving high-
dimensional equations in power systems is proposed, where
a sequence of decoupled equations are constructed to make
polynomial expansions efficient to find. This new approach can
provide a local approximation in the form of Taylor expansion at
a given operation point. Its detailed process is introduced in the
application to load flow problems. 6-bus system and IEEE 118-
bus system are used to illustrate its effectiveness, where load flow
are investigated. Results show that the proposed method provides
approximation more efficiently than traditional Galerkin method,
and 3-order polynomials can gain very accurate results.

Index Terms—Parametric problems, polynomial approxima-
tion, perturbation method, Galerkin method, load flow problems.

I. INTRODUCTION

N parametric problems of power systems, the influence

of specific parameters on system states are evaluated to
provide insights and recommendations to system planning
and operation. For example, probabilistic load flow problems
[1] are investigated to show how stochastic variables (ie.,
parameters) influence the states of system operation, e.g.,
voltages, line flows, reliability, ete.

Normally, the problems are modeled as nonlinear equations
in implicit formula, which implies that the states cannot be
directly expressed in the form of analytical function of pa-
rameters. Thus, numerical approaches are typically employed,
where sampling methods, e.g., Monte Carlo method [2], are
the most straightforward approaches. Although simple and
easy to implement, sampling methods are time-consuming
and provide discrete rather than analytical continuous results.
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Hence, many other simplified methods are developed. For
example, in load flow analysis, it is beneficial to use linear
models which can be analytically handled, e.g., DC load flow
models or linearized AC load flow models. However, they will
mevitably introduce errors due to neglecting the nonlinearity.

To cope with the nonlinearity, polynomial approximation
has been widely used, where polynomial functions are utilized
to approximate the exact solutions of parametric problems.
Then, the problem is transformed to solving unknown coeffi-
cients in predefined polynomials [3, 4]. Compared to sampling
methods, the approximation provides an explicit formula to
represent the relation governed by original models, based on
which the influence of parameters on system states can be
analytically assessed. Currently, polynomial approximation has
been applied to many problems in power systems, e.g., stability
analysis [5-8], load flow prediction [9, 10], power system
modeling [11], probabilistic load flow [12-14], efc.

On the other hand, a large number of mathematical methods
have been developed to find the results of polynomial approxi-
mation. In [6, 7], Taylor series are calculated straightforwardly
by conducting corresponding derivative equations of each pa-
rameters, which however is technically difficult to implement
in the cases beyond the third order. In [8], the polynomial
approximation is obtained by least squares method based on
sampling results. In [9-11], polynomial interpolation methods
are used to determine polynomial coefficients by specific given
operation points. Both least squares and interpolation methods
are not easy to implement, if the number of parameters
are very large. In order to increase computational efficiency,
authors in [15] use particle swarm optimization method to find
mterpolation polynomial coefficients.

Many other novel methods for resolving parametric prob-
lems have attracted researchers worldwide. In [5, 13, 14],
collocation methods are used. The idea is to use polynomials
up to a certain degree as candidate solutions to find the solution
which satisfies the given equations at some specific points,
called collocation points. The main drawback of these methods
is that the collocation points should be carefully designed
for high accuracy and the stability of these methods are not
guaranteed [16, 17]. In [12], Galerkin method is applied to
stochastic analysis with generalized Polynomial Chaos (gPC),
where the orthogonal projection makes the error minimized.
Although this algorithm is very stable and accurate, the
main difficulty in its application is that the decoupled high-
dimensional Galerkin equations have to be solved at one go.

In this paper, a novel method for resolving polynomial ap-
proximations in power systems is proposed, which can provide
a local approximation at the neighborhood of an assigned
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operation point. The algorithm is mainly based on periurbation
methods, but derived in the form of generalized Galerkin
method. By starting from an exact solution of parameters with
specific values, the desired solution is expressed in terms of
power series with respect to parameters, and the polynomial
coefficients are determined in a decoupled approach. The main
advantage of this method are twofold: i) the decoupled solution
method can achieve high computational efficiency, especially
in the cases with a large number of parameters; ii) the coef-
ficients are sequentially found by substituting the previously
determined coefficients into the associated expansions, so it is
much easier to extend the approximation to higher orders.
The rest of this paper is organized as follows. Section II
presents essential mathematical background. In section III, the
detailed solution method is modeled and the application to
the load flow problem is given in section IV. In section V,
two cases are used to demonstrate the effectiveness of the
approach, followed by the conclusion in the last section.

II. POLYNOMIAL APPROXIMATION AND
CURSE-0OF-DIMENSIONALITY

In this section, the concept of polynomial approximation
and the main difficulty of its application to power systems are
introduced.

A. Concepr of Polyromials Approximation

In this paper, it is assumed that the problem is govemed by
a set of equations:

Afu;p) =0, (1

where A denotes the model, u = {u;}}, is the state vec-
tor(for example, voltages) and p = {pi}?jl is the parameter
vector (e.g., wind power output).

Polynomial approximation is to use algebraic polynomials
to approximate the exact solution u* {p) [18]. (Here, the upper
script * means the solution). The approximate solutions can
be represented by:

N
u(p) =) &di(p). 2)
i=1

where ¢; is the coefficient to be determined, $;(p) is the
predefined polynomial function in terms of p, N is the
dimension of the approximation, and the superscript A means
the coefficient is unknown.

Here, {®;}X, can be interpreted as a set of basis in the
form of polynomials, so the expansion of (2) is just the
spectrum decomposition in the N-dimensional space spanned
by {(I%}ii ;. The main purpose of polynomial approximation
is to find appropriate coefficients in (2) to approximate the
exact solution.

B. The Procedures of Galerkin Method

Galerkin method is one powerful tool to identify the un-
known coefficients. The main procedures can be described
concisely as follows [18]:

Step-1: A set of polynomial basis is chosen, and the approxi-
mate solution can be represented as (2). Here, $;{(p)
is called rial basis.

Step-2: Substituting (2) into (1) produces a nonzero R, called
residual:

N
R = A(uy(p);p) = A(Z &:d:(phip). 3)

Step-3: To identify the coefficients, Galerkin equations are
formed by projecting the residual onto the fest basis

{Fk}szl:

R,T%)=0, k=1,---,N, )
where the inner product {-, -} is defined in the manner
of (2,4} = [, zydW (p). Here, W (p) is the measure
of p on P. It should be noted that, in tradiional
Galerkin method, the test basis is the same as trial
basis; otherwise, it is called gereralized Galerkin
method.

Step-4: The coefficients can be found by solving the Galerkin
equations, and then the required approximate solution
can be obtained by substituting them into (2).

C. Curse-of-Dimensionality in Power Systems

From [3, 4], it is known that the number of unknown
coefficients for each state is

- Np+Nd
v (MM, ©

where N, is the number of parameters and Ng is the degree
of approximate polynomials.

It can be seen that N grows very fast with N, and Ny, so
that a large N, or Ng may produce a tremendous number of
coefficients to be determined, i.e., M x N (M is the number of
states). For example, in 118-bus system with 18 parameters,

if Ng = 3, the number of coefficients to be determined is

28HE (PP = S1T200]

In Galerkin method, the coupled Galerkin eguations are
formed to identify all the coefficients at one go, which may
be infeasible in the cases with a large number of parameters.
Thus, the uncoupled approaches are more attractive when
polynomial approximation is applied to large-scale systems.

ITI1. THE PROPOSED METHODOLOGY

The proposed method is started from a given operation
point pg. By linear transformation, the parameters p can be
expressed in terms of a perturbation about pg, p = pg + P,
That means the approximate solution uj,(p) can also be ex-
pressed as u}, (p’). Therefore, for convenience, the parameters
p refer to the perturbation about a given operation point in the
following analysis.
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A. Choice of Trial Basis

In our approach, the power series of parameters are chosen
as the polynomial basis in (2). For example, in the cases with
one single parameter p, the solution could be expressed as

N
wh =y &™pt 1, ©)

i=1

where u!  denotes the m-th state in u = {u;}2,. Here the
subscript NV for u? (p) is neglected for simplicity.

One conclusion can be obtained: in the expansion of multi-
plication of system states, the coefficient with p of (z — 1)-th
order is the combination of the coefficients of each state with
p whose order is equal or less than ¢ — 1. For example, in the
expansion of uX, ¥, the coefficient of p* =71 is the combinaticn
of é;m) and é,,(cn) with 4+ & = i+ 1. This is obvious, because if
j+k #i+1, then gé§m)pj1) (A1) = gl
implies that the order of pis j + k-2 #¢—1. From j§ > 1
and k > 1, it can be derived that 1 < s < ¢and 1 < k < 4.

This property can provide a decoupled solution method,
which will be explained later.

B. Generalized Galerkin Approach and Decoupled Method

In traditional Galerkin method, the residual is projected onto
the test basis, which is the same as trial basis, to form Galerkin
equations. When the projection is taken onto a special test ba-
sis, the coefficients are decoupled in Galerkin equations. Then
the coefficients can be determined in a decoupled approach.

Assume that, there exsits a set of test basis {I'; }i_, which
satisfies

1) When1 < k< N — 1,

fopTedW(p) =1, 0<i<k 0
PooTdW (o) =0, i>k
2) When k=N,
‘/ﬂMW@ZLiEO ®)
'P

When forming Galerkin equations, the residual is projected
onto {I'x 1Y ,, and then the parameter p is eliminated.

(1) For {R,T"1} = 0, the coefficients with p whose orders are
greater than 0 will be eliminated, and only coefficients
with 0-th order p will be preserved in (R, [1) =0,

(2) For {R, T2} = 0, the coefficients with p whose orders are
greater than 1 will be eliminated, and only coefficients
with O-th order and first-order » will be preserved in
(R, P2> = O;

{N-1) For (R,I'ny_1} = 0, the coefficients with p whose orders
are greater than NV — 2 will be eliminated, and only
coefficients with p whose order are less than N — 1 will
be preserved in (R, ['x_1} = 0;

(N) For (R,T's) =0, all the coefficients are preserved.
Hence, the decoupled solution can be set up as follows.

The coefficients with regard to p° can be found by solving

(R,I'1} = O firstly, and then the coefficients with regard to

TABLE I
AN EXAMPLE OF TEST BASIS WHEN Ny = 2

k By

1 Tz (225 — 1050p° + 945p*)

2 i (225 + 1200p — 1050p% — 1680p° 4 945p%)
ik

— (15 — 60p — 210p? + 140p® + 315p*)

p' can be determined by solving {R,I's} = O, where the
coefficients with regard to p® are known. This process can
be repeated until all the coefficients are found, where the
previously determined coefficients are used at each step of
this approach. It is similar to the back-substitution process
of solving linear equations by using the Gaussian elimination
approach.

One necessary condition of the proposed method is the
existence of the test basis {{'x}2_,, which should satisfy (7)
and (8). The proof of existence is shown in Appendix A.
For example, in the second order systems when Ny = 2,
the maximum order of monomials is 2 x Ny = 4. Thus, the
test basis should satisfy 5 conditions from (7) and (8), and
TABLE 1 gives the example of test basis.

Additionally, this approach can be interpreted as a kind of
perturbation method. It starts from solving coefficients with
regard to p’, where p is set to 0 in Galerkin equations,
which is just the solution at a given operation point with the
perturbation being zero. Then the following coefficients are
identified from p' to powers of p at higher levels. Although
the result is a local approximation, this approach gains high
computational efficiency from the decoupled approach. It
is very easy to extend the approximation to higher orders,
because the determination of lower order coefficients are not
mfluenced by the solution of higher order ones.

IV. IMPLEMENTATION OF PARAMETRIC L.OAD FLOW

A. Load Flow Formulation

The proposed approach is applied to load flow model in
rectangular form, where the voltage V is given by V = e+ 5 f.
Recall the load flow equations:

N
5 [Gir (eser + fife) + Bi (fiew —eifu)] — B =0
=1

Yi & slack-bus

5 0 ©®
:§1 [Gix (fiew —esfu) — Bow (fsfu +esen)] — Qs =0

¥i & PQ-bus
¥i e PV-bus

F+ V=0,

where Npg is the total bus number, G, and B;, are the
entries of nodal admittance matrix. Tn our analysis, e;, f;(i &
slack-bus) are assumed to be system states, and parameters are
other measurable variables that affect system voltages, e.g.,
generation outputs, ete.
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Ne N N N N
BF = Gin (z Be0g; S EMe+ 5 e v Agf“@:,)
k=1 =1 =1 =1 j=1
N N N N N 02
NG 5 ~(es A F;
+ B (z e, > elHg; - 5 a3 c;fﬂ@]) ~ 3 e,
=1 j=1 G=1 J=1 J=1
Ng N N N N
B = Clin (z 8ig, 3T i, T g, ¥ egf%])
k=1 g=1 J=st, 7=1 g=1
N N N N WLob)
o sz Z E(fz)@j Z é_gfk)@j 4 Z égez‘)@] Z 65%)@] o Z CEQZ)(DJU
i= j=1 j=1 j=1 j=1
2 2 2
N N N
RV = [ | + S e, — S M, . (10¢)
=1 j=1 j=1
B. Polynomial Approximation of Parametric Load Flow »
The trial basis is assumed to be {®;}, so £, Q4 and
Vi can be represented as Z] i §P P, Z : céQ’)@l, and ISI_.lbsl_ilmelhe approximale
N V) (P,) (Q ) solution into the load.ﬂow model
Z.:l ¢; ®;, respectively. The coefficients e ", , and and form the residual, R
C; ) can be obtained directly by evaluating (PZ, ;). (Ql, ;). l
and (V;, ®;), respectively. Then, the residual can be obtained k=1 |
by substituting the approximate solution into (9), given as (10). L
The determination of coefficients starts from the zeroth- v
order at a given operation point. As illustrated in subsection SOéveb(R;Tk)ZO, e 1
III-B, only coefficients of zeroth-order are contained in the NG e T 'y
Galerkin equations:
o No
S [Gar (0 a0} 4 By (Ew Yes
k=1 (10a)
- @gei)@gfk)” — P =, Vi ¢ slack-bus End
%:E [Gik (égfi)égek) B égei)égf’“)) ( A(F) A(fk) Fig. 1. Flowchart of the solution of approximation
k=1 (10b)
+ &Y 9 =0, Vie Po-bus
\E AR 4 o efen) _ el
é§Ei)é§Ei) + é%fﬁ)égfi) _ Csz‘)chz) =0, i € PVabus,  (10¢c) kz_: [Gik ( idplen) | plfed len )l
where C%Pi), chi), and cﬁVi) are the known zeroth-order — ORI | — By [ g T (11b)
coefficients of the parametric expressions of F;, ¢);, and 1}, b (Ez)A(Ek) +4 A(Ez) 0%))] _ C(QQ 2 — 0,
respectively.
Thus, the zeroth-order coefficients can be determined by cgei)égez-) + cgfi)&éfz‘) - chi)chz‘) =0, (11¢)
solving (10), where the number of equations is equal to the
original load flow medel. Note that, by taking projection onto  where Cng-)’ chi), and cgvi) are the known first-order co-

'y, the Galerkin equation is transformed into the traditional
load flow equations.

After knowing the zeroth-order coefficients, one can find
the first-order coefficients by solving (R, s} = 0, which only
contains the zeroth and first-order coefficients. The Galerkin
equations are formed as:

Ng
Z [G o ( olew) (ek) +6(ez) (en) +C(fz)A(fk)
k=1
+ é(fz) (fk)) 1. Bix (C(fz Aler) +8 A(fz) (ek) (11a)
ey Aley P
765 )C(ka) _ C(Q )Cgfk)):l 76(2 ¥ 0,

efficients of the parametric expressions of F;, ¢);, and V;,
respectively.

Here, the previous determined zeroth-order coefficients are
used. The following coefficients can be determined by solving
R,Tg) = 0,(3 < k < N) successively. The main process
can be summarized as Fig. 1.

C. Extension of Parametric Load Flow

In the previous subsection, the process of solving the
approximation of system voltages is discussed. If one want
to analyze some other states, e.g., system netloss, line flow,
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BUS-2 BUS-3 :
@_ BUS-6

o :

(: )_ BUS-5

Buhw O_l Generator
P |—+ Load

Fig. 2. 6-bus system

etc., additional equations with respect to these states should
be involved. For example, if the system netloss is considered,

the additional equation is Y P, — > P; — Flsss = 0, whose
i€G ieL
residual, Rj,ss, can be expressed as

N
Bionn = Z (Z C;F’i) - Z(}gﬂ) . 6‘§F?(,ss)> ®;, (12)

j=1 \ieg i€l

where G is the generation set, £ is the load set, ég-P“’“) is the
coefficients of netloss to be identified.

Similarly, other system states can be considered when
additional equations with respect to them are involved in the

approximation.

V. CASE STUDIES

In this section, two cases are studied to show the effective-
ness of the proposed method. Firstly, a 6-bus system with a
small number of parameters is used to illustrate the accuracy.
Secondly, the IEEE 118-bus system with a large number of
parameters are analyzed to verify the computational efficiency.
All calculations are performed on the platform of Wolfram
Mathematica 10.0 with a CPU of Intel i7-4710MQ 2.5 GHz.

A. Case 1: 6-bus system

As shown in Fig. 2, the 6-bus system in [19] is used. It is
assumed that the capacity of the three generators is 100 MW.
The Newton-Raphson method is used to solve the nonlinear
equations, where the iteration threshold is set to 1 x 107,
In our analysis, the active power output of generators at bus-
2 (Pgo) and bus-3 (Pgs) are regarded as parameters, while
bus-1 is the swing bus.

1) Results Presentation: The approximate solution of es,
f3 and netloss, are given in TABLE II when N; = 3. As
seen, explicit expressions with respect to P and Prs can be
obtained, and Fig. 3 depicts the system netloss, Pj,ss-

The results of states can be obtained directly by substituting
the value of Pgo and Pgs into the expressions, rather than
evaluating the whole load flow equations. This is very efficient
if we want to evaluate the states quickly for a new set of
parameters.

TABLE I
RESULTS OF 6-BUS SYSTEM WHEN Ny =

approximate solutions
1.0418 -+ 0.0237Pg + 0.0455Pg3 — 0.0057 P2,
e3 —0.0195P%, — 0.0205Pg2 Pas + 0.0002P2,
—0.0010P, + 0.0014P2, Pgs + 0.0014Pgs P2,
—0.2444 + 0.1015 g2 + 0.1961 Pg3 — 0.0030PZ,
I3 +0.0002P%, — 0.0044Pg2 Pgs + 0.0002P2,
—0.0002P2; — 0.0003P2, Pgs + 0.0003Pg; P24
0.1926 — 0.1430 P2 — 0.1787Pg3 + 0.0517PZ,
40.0754 P2, + 0.0930 Pgg Pz — 0.0021 P2,
—0.0041P3, — 0.0060P2, Pas — 0.0060Pge P2,

netloss

I

Minimum value: 6.674 MV

QANDSSONRNL

Fig. 3. Approximate solution of netloss

The results can provide additional insights of the depen-
dence of states on parameters. For example, the minimization
of system netloss can be obtained directly by evaluating
Ghes = G = 0, where Pgz = T78.91 MW and
Pas = 83.16 MW.

TABLE III
RMSE OF ALL RESULTS WHEN Ny = 1,2,3

]Vd =] ]Vd = 2 ]Vd =3
es 212x 1073 118 x10~* 1.78 x 10~°
e3 419x 1073  1.82x10~%* 3.0l x 10—°
eq 1.44 x 1073 797 x10~% 1.17x10~°
es 223 x 1073 1.09 x10~* 1.50 x 10—°
e6 3.19%x 1073 145 x10~% 203 x 10~°
fa 1.22x 1073  7.26 x 107° 1.53 x 10~°
f3 1.26 x 1073 246 x 10~%  4.68 x 102
fa 847 x 10~% 411 x10~° 7.38x 10~ 6
fs 8.50 x 10~%  1.38 x10~° 8.20x 106
fs 9.81 x 107*  1.30 x 10~% 249 x 103

Average 1.83x 1073  7.99 x 1075  1.98 x 10~?

2) Accuracy: For benchmarking, the results from sampling
method and traditional Galerkin method are considered respec-
tively. In sampling method, Pso and Pgs are sampled with
equal intervals for 21 times from the lower boundary to the
upper boundary, where the calculation is performed repeatedly
just as the traditional load flow. From [20], it is known that the
traditional Galerkin method using orthogonal basis can provide
global optimal approximation, where the basis is chosen from
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Fig. 5. Absolute error of ez by traditional Galerkin method

Legendre Polynomials in our analysis.

To show the accuracy, Roor Mean Sguare Error (RMSE)
is used here. As seen, the RMSE of e and f at all buses are
given in TABLE III with N, increasing from 1 to 3. When
Ng becomes larger, the RMSE of every state decreases very
fast. The average value of RMSEs of all states decreases from
1.83 x 1075 when Ny =1 to 1.98 x 10® when N; = 3 ex-
ponentially, indicating that the approximate solutions converge
to the exact solutions at a very fast speed. When Ny = 3, the
approximate results at bus-3 have the maximum RMSE, which
are 3.01 x 1075 for es and 4.68 x 107> for f3 respectively.

The absolute error of es is selected to show the error
distribution where Ny = 3, as shown in Fig. 4 and Fig. 5. Tt
can be seen that the result by our method is larger than that by
traditional Galerkin method. In our method, the biggest error
is 0.16%e, while the maximum error is only about 0.04%. in
traditional Galerkin method. However, from practical view, the
approximation by our method can provide very accurate results
by increasing N.

3) Trend of coefficients: The convergence property of co-
efficients when N, increases is investigated. For facilitating
analysis, we consider the case with a single parameter Pgo,
and Fos is set to 60 MW. The absolute value of coefficients
of es is shown on a semi-log plot in Fig. 6 when Ny = 20.
It is seen that the coefficients converge exponentially. In the

14
0.013 ——,

g B4
S 1E-6]
z b
» 1E83
= ]
S 1E-104
2 ]
= 1E12]
1E-144
1E-164

1E-18 4—>+—Tr—"—"TF""—"T"—"T""—T""T"—TTTTT T

0 2 4 6 8 10 12 14 16 18 20

Degree of coefficients’ basis

Fig. 6. Convergence of coefficients

TABLE IV
TIME CONSUMPTION COMPARISON OF TRADITIONAL GALERKIN METHOD
AND PROPOSED METHOD

Ny 1 2 3 4 5
N 3 6 10 15 21
. TGM | 0.234 2688 14157 62,766 227.078
Time (8)
PM 0.016 0.037 0.061 0.104 0.187
Equation TGM 30 60 100 150 210
dimension PM 10

proposed method, the coefficients are identified from Oth-order
successively, such that the approximation can be extended
to higher orders. If the coefficients are small enough, it is
reasonable to say the corresponding monomial terms have little
influence on the results. In our method, the calculation can
be terminated if the coefficients are small enough, i.e., the
absolute value of coefficients are less than 1074,

4) Compurational efficiency: The efficiency of the proposed
method is demonstrated from two aspects: the computational
time; the maximum memory. To show the improvement on
numerical effort, the time consumption and maximum memory
used by traditional Galerkin method (TGM) and proposed
method (PM) is compared. Ny is increased from 1 to 5, and
the results are shown in TABLE IV and Fig. 7.

=) = Bl B
b= =} F=S =1 b=
M N N

o
b=
N

Maximum memory used (MB)

g om
F=T =1
L N

Fig. 7. Comparison of memory used between TGM and PM

From the table, it can be seen that the computational time
of TGM is much larger than that of PM. In TGM, the time
has increased about 970 times when Ny increases from 1
to 5, while the time in PM only increases about 12 times.
As seen in Fig. 7, in the TGM, the consumed memory
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increases exponentially with growing /V, but in our approach
the occupied memory grows much slower. For example, when
the order is 5, the consumed maximum memory increases
around 7 times of that increased in our approach. The proposed
method enjoys much better efficiency than TGM from both
two aspects. Particularly, when N, becomes even larger, the
computation will be easier to conduct by using the proposed
method but the TGM might fail.

The reason is that the TGM solves an (M x N)-dimensional
equation at one go, while our new method only needs to solve
M-dimensional equations for /N times. For example, when
Nz = 5, TGM needs to solve a 210-dimensional equation, but
our method only needs to solve 10-dimensional equations for
21 times.

B. IFEE 118-bus system

To show the effectiveness of proposed method in large
scaled system, IEEE 118-bus system is utilized here [21].
The generators, whose active power output are nonzero, are
regarded as parameters, shown in TABLE V, and 3rd-order
polynomial is used as approximation.

TABLE V
PARAMETERS IN I[EEE 118-BUS SYSTEM

Paraimeigis Node number
numbers
18 10, 12, 25, 26, 31, 46, 49, 54, 59,

61, 65, 66, 80, 87, 89, 100, 103, 111

From (5), we know that the number of coefficients to be
identified is 234 x S50 — 311290 In traditional Galerkin
method, it is very hard to solve such high-dimensional equa-
tions. If there are more parameters, the equations will have
even higher dimension, causing that the solution of coefficients
may fail. In the proposed method, the coefficients are found by
solving the decoupled Galerkin equations successively. Thus,
the difficulty in solving high-dimensional Galerkin equations
at one go has been avoided. The results by the proposed
method are shown in TABLE VI, and the calculation in this

case by traditional Galerkin method fails.

TABLE VI
REsULTS OF THE IEEE 118-BUS SYSTEM
Order Oth 1st 2nd 3rd Total
Number of o0\ 010 4po1a 266760 | 311220
coefficients
Time 414 3125 54562 453986 | 515.0093
consumed (s)

It can be seen that the coefficients number of first-order is
18 times of zeroth-order, but the time for solving the first-
order coefficients is less than that for zeroth-order. The reason
is that the load flow model is a second-order system, so the
Galerkin equation for zeroth-order shown as (10) is nonlinear,
while the equation for first-order given as (11) is linear.

Fig. 8 shows the trend of coefficients with respect to
different polynomial orders. As seen, the coefficients have

001+
1E-3 4

1E-41

Average absolute value

1E-5

1 2 3
Coefficients order

[

Fig. 8. Trend of coefficients in 118-bus system

an exponential convergence trend as well, when polynomial
order increases. The average absolute value of the third-order
coefficients is only 9.49 » 1075, which is very small from a
practical view.

VI. CONCLUSION

In parametric problems, polynomial approximation is one
powerful tool to cope with the nonlinearity. In traditional
Galerkin method, the practical problems with large number
of parameters and states may involve coupled and high-
dimensional equations, causing the computation to be very
difficult and sometimes even to fail. A new methodology for
this type of problems in power systems is introduced in this
paper, which is derived in the form of generalized Galerkin
method. In our approach, we choose the power series as trial
basis functions and then the Galerkin equations are decoupled
by projecting the residual onto a set of special test basis. Thus,
the equations can be solved in a low-dimensional manner
successively.

It is admitted that the approximate solution by our method is
not as accurate as that by traditional Galerkin method, but the
accuracy can be improved if the polynomial order is increased.
The decoupled solution process enables the approximation to
be extended to higher order cases easily. Case studies show
that the proposed method gains better efficiency especially in
large-scaled systems.

APPENDIX A
PrROOF OF THE EXISTENCE OF TEST BASIS

For the test basis satisfying (7) and (8), we try to proof the
T’y does always exist. It is assumed that, for any continuous
arbitrary parameter p, one can find a neighborhood [a, 8] where
p can be turned into p’ € [—1,1] by a linear transformation.
Thus, the parameter domain is assumed as [—1, 1].

In parametric problem, the maximum polynomial order of
governing equations is assumed to be Nasp, so the maximum
polynomial order of the residual will be Npp x Ny, denoted
as Ng. To implement the calculation, the condition in (7) and
(8), Ng + 1 equations should be satisfied for each k, so a
polynomial

Ng . )
Tp=> PP (A1)
=0

with Ny + 1 unknown coefficients ﬁ’gﬂ can be uniquely
determined for every I'y € {I'x}00 ;.
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60

Substitute (A.1) into {7) and (8), then for 1 < &k < N,

%Ek,j oty = 1, 0<i<k

9;; ) (A.2)

Y, Brs JLetdp = 0, k<i<Ng

=

and for k = N

Ng 1
S buy [ p=1 0<i<No (A
=0 =

Rewrite the left side of (A.2) and (A.3) in matrix form:

[ 0dp [1opPtedp Bro
; : {(A4)

[, pMetodp [l pMetNedp
For simplicity, we use Hf)k to represent (A.4). Here H is a
Hankel matrix with dimension (Ng 4-1) x (Ng + 1), and bk
is the vector (Bxo,-- - ,Bk,Ng)T.

If Bk is solvable, the matrix H should be invertible. From
[22], it is known that this matrix is always definite positive,
such that the test basis in the form of (A.1) does always exist.

Be.Ng
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