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Abstract

Online banking fraud is a significant source of criminal revenue in the modern world, causing
losses of over 133M in the UK alone during 2015. We have seen a five-fold increase in the
number of monthly phishing attacks reported since 2007, with 466,065 unique attacks detected
in the second quarter of 2016. Current efforts to detect phishing websites draw upon a wide
variety of sources for their data, including the HTML content of the website, and the DNS
records associated with the domain. Although such approaches are precise, the processing
rate is heavily limited by network latency and bandwidth.

In this dissertation, we investigate the classification of phishing websites using only lexical
features derived from the URL itself. We implement an online random forest classifier, and
using a novel lexical feature set we achieve a precision 0.98106 and a recall of 0.93594 at
a processing rate that is over 660,000 times faster than current content-based approaches.
In addition, the proposed system is also more robust to feature manipulation from the at-
tacker and free from any potential security risks posed by fetching a URL and analysing the
contents.
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CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 Phishing: A Definition

The practice of phishing is a criminal mechanism which employs both social engineering and
technical subterfuge in order to collect personal data or credentials through the impersonation
of a trusted party (APWG, 2016; Whittaker, Ryner and Nazif, 2010).

This is achieved by directing the customers of some target organisation to a website that has
been crafted to appear as similar as possible to the website of the organisation being targeted.
An example of a phishing website is shown in figure 1.1. These websites exploit the trust
that exists between the customer and the target organisation in order to convince the user
to part with sensitive information—typically in the form of passwords or credit card details
(OECD, 2009, p.29). Such details are then recovered by the attacker, who may in turn sell
the details on to other fraudsters, or use them to defraud the victim themselves.

1.1.2 Common Phishing Practices

The OECD (2009) identifies a number of common methods that are used by fraudsters to
direct potential victims to their phishing sites. Automation is commonly exploited in order to
distribute large numbers of phishing URL1s to potential victims, with relatively little expense
to the attacker (OECD, 2009, p.24). The most common of these methods are identified below:

a) Spam E-mail. Perhaps the most common and rapidly expanding vector for sending
phishing URLs is through the use of spam e-mail (OECD, 2009, p.26). Here, attackers
make use of compromised mail servers to send out large numbers of emails containing
links to currently active phishing sites. Often, these e-mails will be created using
the logos and slogans of a legitimate company (James, L. and Thomas, 2013), and
usually include ungrounded threats, such as that of account termination, in order to
persuade the user to take action (Ludl et al., 2007). The work of Dhamija, Tygar
and Hearst (2006) notes that attackers will often forge the headers of such e-mails in
order to alter, or “spoof”, the sender address to appear legitimate to the untrained
eye. Combining this seemingly legitimate address with a deceptive appearance and
threatening language, spam e-mails form an inexpensive and effective method of not
only distributing phishing URLs, but also of convincing the victim of the legitimacy of
the site—perhaps even before they have visited it.

b) SMiShing. SMiShing is an emerging technique that allows phishers to target a larger
range of devices (OECD, 2009, p.25). This technique involves sending out SMS mes-
sages to mobile phone users, the contents of which are similar to that of the spam
e-mails discussed previously. SMS messages have the inherent downside of only con-
taining textual information, however this is enough for the attacker to send messages
purportedly claiming to represent some legitimate organisation, with a link to the URL
of a phishing site. First seen in August 2006, this vector has been predicted to be-
come increasingly popular (OECD, 2009), and has been observed in use as a method
of malware distribution, as well as for phishing.

1Uniform Resource Locator, RFC 3986: 1.1.3
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The OECD (2009) also defines a number of phishing practices that do not require the open
distribution of phishing URLs:

a) Vishing. Vishing operates in a similar fashion to a traditional phishing attack, where
an attacker will send out either deceptive e-mails or SMS messages, however, instead of
inviting the recipient to visit a URL, the attacker provides a telephone number (OECD,
2009, p.25). A typical example of such an attack would request personal information
or credentials in order to complete some bogus process, usually with the use of an
automated attendant (OECD, 2009, p.25). It has been proposed that victims usually
feel safer with a telephone call than a website, and are therefore more willing to share
their details. The OECD (2009) also notes that in some cases the initial step is skipped
altogether, and instead the attacker will adopt a more pro-active role of “cold-calling”
the victims. This method of attack is interesting, as it exploits customers who are less
confident with technology, and by taking a pro-active role the attacker gains an element
of surprise over the victim, which may aid the deception.

b) Pharming Pharming utilises malware on the victim’s machine in order to interfere with
DNS2 lookups in such a way as to redirect the user to an illegitimate version of the
site that they were searching for (OECD, 2009, p.24). This method of attack has the
advantage of using the victim’s own intentions against themselves, as they are unlikely
to suspect that the site is a forgery if they came to the site from a reputable source,
such as a search engine.

2Domain Name System, RFC 1035

https://costumer-service-accounts.com/webapps/3320c/index.php?u=victim@example.com

Figure 1.1: A visual comparison between a phishing site (left) and the legitimate site being
impersonated (right).
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1.2 Motivation

1.2.1 A Rising Threat

A study by Dhamija, Tygar and Hearst (2006) has shown that the average user will fail to
distinguish a legitimate site from a phishing site, even when they are aware that at least one
of them is phishing. Their conclusion was attributed to a number of key factors:

a) A lack of understanding as to the structure and meaning of the different parts of a
URL.

b) A lack of knowledge of security indicators and how to identify them, such as the presence
of SSL3.

c) The use of visually deceptive text in the URL, such as a close misspelling of a legitimate
domain.

d) A deceptive look and feel to the website, and a lack of visualisation as to where their
data is going.

e) A willingness to believe falsified security indicators, or a failure to recognise their ab-
sence.

This lack of understanding with regards to online safety, coupled with the rising popularity
of the Internet has allowed phishing to become an increasingly popular vector of attack.
Since 2007, the APWG4 has reported an increase of nearly five-fold in the number of unique
phishing sites detected in a single month, with 466,065 unique phishing sites detected in total
for the second quarter of 2016 (APWG, 2007, 2016). Online banking fraud was estimated to
have caused losses of at least 133M in the UK alone during 2015 (FFA, 2016), and with the
number of attacks continuing to grow these losses will only increase unless further preventative
measures are taken.

1.2.2 Phishing Countermeasures

All popular modern browsers implement URL blacklists as the primary method of protecting
their users from phishing websites (Ludl et al., 2007; Whittaker, Ryner and Nazif, 2010).
Blacklists are lists containing patterns that match on fraudulent URLs that have been dis-
covered. If the user of a browser attempts to visit a URL that matches a pattern in the
database, the browser will prevent access to the website—displaying a warning instead. This
method of protection is only effective once the phishing site has been discovered, and as the
life cycle of a typical attack lasts less than 58 hours (Anderson et al., 2013; Blum et al., 2010)
it is critical that the blacklist is updated quickly. Current approaches attempt to address this
through the application of machine learning to the process of identifying phishing websites
(Whittaker, Ryner and Nazif, 2010).

Modern approaches to phishing site classification employ feature sets selected from a number
of different sources. For example, Google’s own phishing detection system utilises multiple

3Secure Sockets Layer Protocol RFC 6101
4Anti Phishing Working Group, http://apwg.org/
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features from the site content, such as the proportion of external links, terms used in high
frequency and the presence of a password field. The system also considers a number of
binary features from the URL, as well as a number of proprietary statistics, producing a false
positive rate of below 0.1% (Whittaker, Ryner and Nazif, 2010). This precision comes at
a cost, however, as feature extraction requires a number of specialised operations, such as
locally rendering the page content. Such operations cost time to implement and add an extra
level of processing overhead that could adversely affect the rate of classification.

Fetching the content of a site presents a number of additional downsides. Most importantly,
the inherent latency of network requests limits the rate of processing, which could impact
the responsiveness of a blacklist-based system at large scales. The content-based approach
described in the work of Whittaker, Ryner and Nazif (2010) reported a mean classification
time of 76 seconds per URL. When scaled up to millions of potential phishing sites a day,
the time spent classifying quickly becomes very large. Network load must also be considered,
as well as the monetary cost involved in installing and operating an infrastructure capable
of supporting large amounts of data transfer. Another, less economically focussed drawback
of visiting the site is that it provides the attacker with an opportunity to evade detection—
perhaps by responding with seemingly benign content, such as a 404 page. This is less than
ideal, especially if the decision is weighted heavily on the content of the page, as an attack
using such an approach may not be caught as a result.

1.2.3 Uncertainty in Lexical Feature Sets

Previous studies have suggested that the limitations of content-based approaches could be
avoided by using a feature set derived purely from the URL (Ma et al., 2011; Le, Markopoulou
and Faloutsos, 2011). These features are collectively described as lexical features. A wide
variety of lexical features have been suggested, which we separate into two categories: simple
lexical features and situated lexical features. Definitions for these are given in section 3.2.1.

Deciding on the importance of a feature, along with its relevance in the presence of other fea-
tures remains an ongoing research issue. For example, the number of dots in the hostname—
used in the work of Ma et al. (2011)—may be indicative of an attempt to hide an unrelated
domain from the view of the victim in the following manner:

http://login.my-bank.com.a5b32y3n86s8d{...}8j34jk35.example.com/

This feature provides very little information, however, in the case where a domain has been
registered with the intention of fraud:

http://my-b4nk.com/login/

This feature may even become irrelevant in the presence of a different feature—for example,
in this case, when used in conjunction with the length of the hostname.

We can demonstrate this uncertainty by applying principal component analysis to the simple
lexical features described in the work of Ma et al. (2011). The length of the URL, the
number of dots within the hostname and the length of the hostname are calculated for a
random sample of 1000 phishing sites and 1000 benign sites from the April 2016 training
data (for details on this data, see section 7.1). These features are then normalised to a value
between 0 and 1 and plotted using principal component analysis to project the data into
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two dimensions, the results of which can be seen in fig. 1.2. This simple exercise shows
that although there is some discrimination between the two classes of URL, these features
alone are not enough to separate the data. It is often the case that a study will suggest
particular lexical features with little empirical reasoning as to the choice. This is particularly
prevalent in the case of online learning, as previous studies—such as the work of Blum et al.
(2010)—often fail to address the computational cost of their suggested methods.

In this dissertation we seek to address the issue of uncertainty in the selection of lexical
features for online learning by providing empirical evidence in favour of a particular method
of lexical feature selection.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
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Figure 1.2: A plot of the data spread between phishing and non-phishing using URL length,
number of dots within the hostname and hostname length. Green indicates benign sites, and
red indicates phishing sites.

1.2.4 Online Learning

Online learning algorithms have been shown to have high accuracies and low latencies at large
scales Ludl et al. (2007); V and A (2014). They are well-suited to phishing URL classification
as they can train on an incoming stream of data, allowing them to stay up-to-date without
having to store large numbers of URLs to support batch learning. Online learning in the
context of phishing URL classification has been explored in previous work, however these
studies either did not been test the system over large, real world data sets (Blum et al.,
2010), or have false positive rates that are too high to be feasible in a real world application
(Zhao and Hoi, 2013).

Our work expands upon this area of research by implementing an online classifier that has
not yet been applied to this problem, performing an empirical evaluation of our proposed
feature sets using a large, real world data set of over 7.5 million URLs.
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1.2.5 Dissertation Focus

This dissertation seeks to investigate whether lexical features from the URL can be lever-
aged to produce a suitably accurate classifier in an online setting using real-world data. In
order to achieve this, we shall consider a number of different methods of feature extraction,
providing novel suggestions in order to address their shortcomings and supporting this with
empirical evidence. If successful, processing latencies could be significantly reduced, which
would increase the number of users protected by blacklist based systems—as well as reduc-
ing infrastructural and operational costs. Furthermore, the resulting system would be more
robust to feature manipulation from the attacker and free from any potential security risks
posed by fetching a URL and analysing the contents.

1.3 Hypothesis

Our hypothesis for this dissertation is as follows:

Lexical features drawn purely from the URL are sufficiently discriminative to allow for the
accurate classification of phishing websites in an online setting. The use of these lexical

features will decrease processing latency whilst maintaining a precision and recall similar to
that of current content-based approaches.

1.4 Aim

The aim of this dissertation is to investigate the feasibility of purely lexical feature sets in
the context of phishing URL classification in an online setting, and to provide novel recom-
mendations on both a suitable classifier and feature extraction methods through empirical
evaluation using a large, real-world dataset.

1.5 Objectives

I. Identification of existing feature extraction methods. The existing work re-
garding the classification of phishing URLs will examined to provide an overview of the
current sources and methods of feature extraction, as well as the classification mecha-
nisms used.

II. Critique and extension of existing lexical feature sets. Once the existing litera-
ture has been examined, critique of the different feature sets and experimental designs
will be provided. This critique will then inform the proposal of at least one novel lexical
feature set.

III. Implementation of an online classifier. Research into online classification meth-
ods will be conducted. At least one online classification method will be selected for
implementation. The selected classification method(s) must not have been applied to
the task of phishing URL classification in previous work. The selected method(s) will
be implemented, the details of which shall be documented.
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IV. Experimental design. An experiment will be designed to investigate the hypothesis.
This experiment will use a large, real-world dataset and shall evaluate the performance
of the selected classifier(s) over time with varying feature sets.

V. Evaluation of the proposed feature sets. The results from the experiment designed
in objective 4 will be used to critically evaluate the proposed feature sets with respect
to existing methodologies—providing empirical evidence to support or challenge my
hypothesis.

1.6 Summary

In this chapter we have outlined various phishing practices and identified them as a significant
threat to businesses and web users alike. The problem of phishing site classification using
machine learning has been proposed, and various state-of-the-art methods have been briefly
discussed. It was shown that whilst accurate, content-based methods of phishing site classifi-
cation are often slow—impacting the effectiveness of blacklist-based solutions and increasing
operational costs. Lexical URL analysis was proposed as a potential solution to these issues,
as it does not require costly network requests to operate. Previous work has suggested a wide
variety of lexical features, but often little time is spent on understanding the effectiveness of
individual features, or how they interact once combined. The current uncertainty surround-
ing the selection of lexical features for online learning was identified as the motivation for the
project, and the following hypothesis generated:

Lexical features drawn purely from the URL are sufficiently discriminative to allow for the
accurate classification of phishing websites in an online setting. The use of these lexical

features will decrease processing latency whilst maintaining a precision and recall similar to
that of current content-based approaches.

From this hypothesis, the aim of the project was identified, along with five objectives to
define and constrain the scope of the project.

1.7 Dissertation Structure

In chapter 2, we critically examine the existing literature surrounding the classification of
phishing sites and provide a justification of the contributions made in our work. Chapter
3 concerns lexical feature sets in more detail, and defines two different categories of lexical
features: simple lexical features and situated lexical features. Chapters 4 and 5 examine
simple and situated features in more detail. Here potential limitations of existing methods
are identified, and novel solutions proposed. Chapter 6 covers online learning, and details our
implementation of an online random forest classifier. In chapter 7, we cover the optimisation
of our classifier, and the design and execution of an empirical evaluation into the performance
of the various feature sets described in our work. Chapter 8 forms our concluding chapter,
and reflects upon the extent to which our aim and objectives are met, as well as reflecting
upon what we have learned.
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CHAPTER 2. LITERATURE SURVEY

2.1 Existing Literature

2.1.1 Feature Sources

Phishing site URL classification has received a reasonable amount of attention from the
research community. A number of different methodologies already exist, however, many are
not without their limitations. In order to critically examine each of these methodologies, it
is useful to first discuss the different sources of features that are available from a URL.

(a) The first, and perhaps most obvious, source of features is the URL itself. Features which
have been obtained directly from the URL shall be referred to as Lexical Features.

(b) The second source of features used to classify a phishing URL are known as Host Based
Features. James, L. and Thomas (2013) defines host based features to be features
which “explain “where” phishing sites are hosted, “who” they are managed by, and
“how” they are administered.”. Such features can be obtained by performing certain
specialised requests, such as forward and reverse DNS resolution requests or WHOIS
lookups.

(c) A third source of features is the content of the web page that is returned by the hosting
web server when the phishing URL is requested. Features derived from the web page
of the URL being classified will be referred to as Content Based Features.

(d) The final source of features used for classifying phishing URLs involves making requests
to a third party. Examples of this include the Google PageRank (Brin and Page,
1998), and the Alexa Site Rankings1. Such features shall be referred to as Third Party
Heuristics.

2.1.2 Early Work

Phishing URL Categories and First Steps

In 2007, Garera et al. (2007) proposed a framework for detecting phishing sites which laid
the groundwork for much of the research in this area. In order to further understand how
phishing URLs might differ from those of benign sites, they identified four separate categories
of phishing URLs.

(a) Obfuscation of the hostname with an IP address. These forms of attack use the
IP address of the fraudulent site in place of the domain name, often including the name
of the target organisation in the path instead.

(b) Obfuscation of the hostname with a legitimate domain. Here, a valid looking
domain name is used, usually with the name of the target organisation in the path.
This is usually done in order to imitate a URL that would contain a redirect.

(c) Obfuscation with large hostnames. These attacks will include the name of the
target organisation, or a related phrase, in the hostname, with a large string of subdo-
mains appended in order to push the actual domain off of the end of the URL bar in
the victim’s browser.

1Alexa site ranking: http://www.alexa.com/topsites
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(d) Domain name unknown or misspelled. Here, a close misspelling of the target
domain has been registered in order to make the URL appear legitimate at first glance.
Unknown domains, or URLs which do not fit into any of the above categories, are also
included in this final category.

Using the four categories, Garera et al. (2007) identified a number of lexical features within
the URL with the aim of finding features that could best represent these different forms of
attack. Such features included the presence of an IP address in the hostname, whether a
target organisation is mentioned in the path but not the host, and the number of characters
present in the hostname after a mention of an organisation name. The domain name was
also checked against a white list of known benign domains, and whether it matched or not
was used as a feature.

These lexical features were then combined with a number of third party heuristics. It was
assumed that, as many phishing sites are short-lived, the pages themselves would not yet
have been indexed by search engine web crawlers. Using this, the Google crawl database was
queried to find whether or not the URL was present in the site index. It was found that
39.5% of the benign URLs in the training set were present in the site indices, as opposed
to only 8.2% for the phishing URLs (Garera et al., 2007). The absence of a URL from the
crawl database index, the PageRank of both the host and the URL, along with the Google
indexing quality scores were all chosen as features for classification.

Along with the lexical features and third party heuristics discussed above, Garera et al.
(2007) also identified a number of common “suggestive” word tokens in their training set.
Using a sub-string extraction algorithm, tokens were extracted from the URLs within the
phishing training set, and their frequencies recorded. After discarding any tokens with a
length less than five characters, and any organisation names, the eight most frequent tokens
were selected. These tokens included words such as “signin” and “secure” (Garera et al.,
2007). The presence of each of these eight tokens were used as binary features for the
classifier, bringing the total number of features to 18.

A logistic regression classifier was trained and tested over a labelled set of 2508 URLs, 1245
of which were phishing, and 1263 were benign with a 66% to 44% training to testing split
(Garera et al., 2007). The classifier was then evaluated “over multiple runs with randomized
partitioning”, yielding an average accuracy of 97.31%, with a true positive rate of 95.5% and
a false positive rate of 1.2% (Garera et al., 2007).

Although a reasonably high accuracy was achieved with this method, it is required that
both a list of target organisations, as well a white list of legitimate domains, is maintained.
This inherently limits the scalability of this solution, as generating and maintaining such
lists would likely require human involvement. The use of the presence of suspect tokens
allows for the exploitation of the use of language within URLs, however the selection of a
limited number of tokens does not allow for the system to respond to a change in frequency
of these tokens. The training and testing sets are also relatively small, at only 2508 URLs in
total, which may not be enough to provide a representative sample. The use of third party
heuristics also requires that network requests be made for every URL that is classified. This
may further limit the scalability of the solution, especially if rate limits are applied to the
use of such heuristics. There is also the concern that if the third party decides to no longer
provide the information, then the feasibility of the classification method would need to be
re-evaluated. Finally, the false positive rate achieved of 1.2% is too high to be feasible for a
large scale solution (Whittaker, Ryner and Nazif, 2010).
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CANTINA - A Content-Based Approach

Around the same time, Zhang, Hong and Cranor (2007) proposed a content based framework
for the classification of phishing URLs, known as CANTINA. This approach operates on
the same assumption that was made by Garera et al. (2007) that a search engine, such as
Google, will index the vast majority of legitimate sites, but that many short-lived sites—in
particular, phishing sites—will not appear in the search indexing. This framework uses term
frequency-inverse document frequency (TF-IDF) to analyse the relative importance of the
different terms within the HTML content of the phishing page. The five terms with the
highest TF-IDF weightings are selected and treated as a “lexical signature”. This lexical
signature is then queried using the Google search engine, and the domain of the URL being
classified is compared with those of the top N search results. If the domain appears in the
top N results, it is treated as legitimate, otherwise it is considered to be a phishing site. The
method described above was tested on a set of 200 URLs, 100 benign and 100 phishing. A
true positive rate of 94% was achieved, however, a false positive rate of 30% was also observed
(Zhang, Hong and Cranor, 2007).

In order to reduce this false positive rate, the domain of the URL being classified was also
included in the lexical signature. This had the effect of reducing the false positive rate
from 30% to 10%, increasing the accuracy to 97%. Following this, Zhang, Hong and Cranor
(2007) proposed an expansion of the TF-IDF methodology by incorporating several additional
“heuristics” in order to further reduce the false positive rate. These heuristics included the
age of the domain, whether the URL contains an ‘@’ symbol, or a ‘-’, whether the URL has
an IP address in place of the domain, the number of dots in the URL, and whether the page
content contains a text entry field. Each heuristic was assigned a weight that was calculated
from 100 phishing sites from PhishTank, and the same 100 benign URLs that were used in
the earlier evaluations. A forward linear model was used to classify a new set of 200 URLs
(again with a 50-50 phishing to benign split). By including these heuristics, the false positive
rate was decreased from 10% to 1%, with a slight decrease in the true positive rate from 97%
to 89% (Zhang, Hong and Cranor, 2007).

Zhang, Hong and Cranor (2007) acknowledged a number of drawbacks with this method.
Firstly, the use of TF-IDF means that a dictionary must be maintained for the classification
mechanism to work. This also limits the system to only pages which are using the same
language as the dictionary. In particular, it was discovered that TF-IDF does not perform
well with east Asian languages (Zhang, Hong and Cranor, 2007). It was also noted that
the speed of classification was greatly limited by the “time lag involved in querying Google”
(Zhang, Hong and Cranor, 2007). Similarly to the work of Garera et al. (2007), the use of a
third party system also means that an implementation would rely on the continued availability
of the third party service, and could potentially be affected by rate limiting measures, which
is not suitable for a large scale system. The training and testing sets used in the evaluation
are also relatively small, with only 200 samples in each, and so it is hard to say whether
the results achieved would be reproducible over larger data sets. Finally, by fetching and
analysing the content of the web page itself, not only does the system incur another lengthy
time delay, but it also allows the attacker an opportunity to evade detection. For example, if
an attacker was to recognise the IP address of the fetching system, they could serve a benign
response, such as a 404 page, or they could design the phishing site to use images instead of
text such that no lexical signature could be generated.
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Evaluating CANTINA

To address the concerns over the small data samples used in the evaluation of CANTINA,
Miyamoto, Hazeyama and Kadobayashi (2009) performed a more rigorous evaluation of the
CANTINA framework over multiple different machine learning methods. A slightly larger
data set of 3000 URLs was used, with a 50:50 phishing to benign URL split. The machine
learning methods evaluated included AdaBoost, Bagging, SVM, CART, Logistic Regression,
Random Forests, Neural Networks, Naive Bayes and BART. The f1 measure of each of these
methods was calculated with four-fold cross validation, repeated ten times to achieve an
average result (Miyamoto, Hazeyama and Kadobayashi, 2009). The f1 measure is defined by
the following:

2 · p · r
(p+ r)

Where p is the precision and r the recall. The original implementation of CANTINA was
found to have an f1 value of 0.7606 (Miyamoto, Hazeyama and Kadobayashi, 2009). The
highest f1 measure achieved was 0.8581 with AdaBoost, with Bagging, Logisitic Regression,
Random Forests, Neural Networks, Naive Bayes and BART also outperforming the original
CANTINA implementation (Miyamoto, Hazeyama and Kadobayashi, 2009).

A number of the content based features from CANTINA, along with a couple of lexical
features first seen in the work of Garera et al. (2007) were combined with host based features in
the work of Aburrous et al. (2010). The focus of this work was to investigate the effectiveness
of various data mining techniques for the detection of phishing websites. A number of lexical
features were identified, some of which have already been seen in the work of Garera et al.
(2007), such as the use of an IP address in place of a hostname, the length of the hostname,
and the use of suspicious characters such as ‘@’ and ‘-’. Along with these, a number of
novel lexical features were used, including the use of hexadecimal characters in the URL, and
the total length of the URL as a whole. In addition to the lexical features, this approach
also considered content based features such as the use of forms with submission buttons, the
presence of spelling errors, and the use of pop-up windows. Interestingly, a social-human
factor was also considered here. In a similar approach to Garera et al. (2007), a number
of words and phrases were identified relating to an emphasis on security, as it was assumed
that many phishing sites would use such phrases in an attempt to convince their victims that
the site was legitimate. The presence of such words was used as a feature, along with the
use of generic salutations (Aburrous et al., 2010). Host based features were also considered,
including the content of the DNS records, along with the details of any SSL certificates
present.

These features were then used with jRIP, PART, PRISM, C4.5, CBA and MCAR over a data
set of 1006 URLs. MCAR was found to have the highest accuracy of 88.1% (Aburrous et al.,
2010).

Although the use of host based features give us a greater amount of information to work
with, the effect of network latency on the classification process is not addressed by this
method, as both the page content and DNS records must be requested over the network.
By moving away from the use of TF-IDF, the solution proposed by Aburrous et al. (2010)
removes the dependency on third party systems that was seen in the work of Zhang, Hong
and Cranor (2007), and also reduces the issue of language dependence, though it does not
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remove it entirely. The overall accuracy achieved is slightly higher than that of the original
CANTINA implementation, however it does not achieve false positive rates as low as those
seen in the work of Miyamoto, Hazeyama and Kadobayashi (2009). It is clear that reducing
the proportion of content based features has reduced the overall accuracy of the system,
however, it was also found that there is a significant relation between the lexical features and
the presence of SSL for identifying phishing sites, and that the content based features used
provided little to no influence on the outcome (Aburrous et al., 2010). This suggests that the
URL alone may contain enough information for accurate classification.

CANTINA Revisited

Following this, Xiang et al. (2011) revisited CANTINA, this time incorporating features
described by Garera et al. (2007), as well as applying a number of different machine learning
techniques. The issue of latency was addressed by the inclusion of a filtering stage before
URLs are submitted for classification. Here, the content of the page is hashed and compared
to the hashes of previously classified sites. This allows near-duplicate phishing sites to be
classified without having to calculate the TF-IDF values and perform the associated search
query to Google. In addition to the filtering stage, a number of new lexical features are
proposed. The presence of the ‘sensitive’ terms in the URL, identified in the work of Garera
et al. (2007), are proposed as eight new binary features for the classifier, along with the
presence of an out of position brand name, and the presence of an embedded domain in the
URL path. The content based feature set is also expanded to include the presence of forms
with mentions of terms related to credentials, input tags and no SSL, as well as the presence
of non-absolute action fields and whether or not the most frequent domain in the hyper-links
coincides with the domain of the URL. The lexical signature generated from the TF-IDF
analysis was also updated to include the name of the company specified in the copyright
footer of the page content.

These new features were then applied to an SVM, Logistic Regression, Bayesian Network,
J48 Decision Tree, Random Forest and AdaBoost and evaluated over a much larger sample of
over 8000 URLs, collected over an extended period of time. The Bayesian Network was found
to perform the best with the given feature set, achieving a 92.54% true positive rate, and a
0.407% false positive rate (Xiang et al., 2011). The Bayesian Network was then trained on
each feature individually in order to evaluate the contribution of each feature to the overall
performance. It was found that the most influential features were those derived from the page
content, such as the presence of suspicious login forms, along with the third party heuristics;
such as PageRank—or the presence of the URL domain in the Google search results. Lexical
features, such as those proposed by Garera et al. (2007), or the number of dots in the URL,
were shown to be of limited contribution, which appears to contradict the findings of Aburrous
et al. (2010).

Whilst the introduction of the filtering stage seeks to address the issues of latency seen in the
original implementation of CANTINA, the work by Xiang et al. (2011) still requires that the
page content is fetched, which means that this issue of latency is only mitigated slightly. It
also fails to address the previously identified concern that in fetching the content of the site,
the attacker is provided with an opportunity to evade detection.
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2.1.3 Third Party Heuristics

The use of third party heuristics, such as Google Pagerank, or the use of search engines
(as seen in the work of Zhang, Hong and Cranor (2007) and Xiang et al. (2011)), has been
explored in a variety of different ways, with the aim of reducing false positive rates.

Exploiting Search Engines

Khonji, Jones and Iraqi (2011) proposed a new method of identifying out of position domain
names in URLs that does not have the disadvantage of maintaining a list of target organi-
sations that was observed in the work of Garera et al. (2007). The approach proposed the
use of rank-based heuristics that take into account the number of domain names within a
URL. If an out of place domain in a URL has a higher rank than that of the actual domain,
then the rank of the actual domain will fall by some amount. If the rank of the domain falls
below a certain threshold, then the URL is considered to be phishing. Ranks are calculated
based on the number of results obtained from a Google search query of the domain, where
sites on the domain itself are excluded from the results. Using this method, an 83.31% true
positive rate was achieved over a data set of 220,000 URLs, though the false positive rate was
unacceptably high at 27.34% (Khonji, Jones and Iraqi, 2011). It was also noted that issues
were experienced with Google rate-limiting the search requests, which limits the speed and
scalability of this solution.

Another method of phishing URL classification using search engines was proposed by Huh
and Kim (2012). Here, a number of popular search engines are queried for the full URL that is
being classified. The assumption put forward by Huh and Kim (2012) is that phishing websites
are often not indexed, and will have a low number of results. The total number of results
returned by each query, along with the ranking of each result is recorded, and is then used as
a feature for classification. Results from Google, Bing and Yahoo were used to form feature
vectors of six features each. A data set of 200 URLs, with a 50:50 phishing to legitimate
split, was used to test and train an LDA classifier, Naive Bayes, K-Nearest Neighbours, and
an SVM. The highest accuracy achieved was 98% with the K-Nearest Neighbours classifier.
Similar to the work of Zhang, Hong and Cranor (2007), Xiang et al. (2011) and Khonji, Jones
and Iraqi (2011), the use of third party search engines greatly limits the scalability of this
solution due to rate-limiting, and the use of multiple search engines only compounds this.
The sample size used in the evaluation is also small, and the assumption that all phishing
sites will not be indexed or have a low number of results is not necessarily true, particularly
in the case where a legitimate site has been compromised by the attacker.

Another application of search engines to the problem of phishing URL classification can be
found in the work of Nguyen et al. (2014). Using the top level domain, primary domain,
hostname and path, it was found that the Levenshtien distance between these values and
the Google search engine spelling suggestions for each one could be used to identify phishing
URLs. This method makes the assumption that the majority of phishing URLs are type d
URLs (Garera et al., 2007), where the URL contains close misspellings of the target domain
name. This feature was augmented with the use of third party heuristics, namely the PageR-
ank of the URL, as well as its Alexa rank and reputation rating. A weight based approach
was used for classification, reporting an accuracy of 97.6% over a data set of 16,600 URLs.
This approach is interesting, as it is the first we have seen that attempts to address the
detection and classification of type d phishing URLs.

15



CHAPTER 2. LITERATURE SURVEY

The work of Nguyen et al. (2014) was then later built upon by Kausar et al. (2014), who
combined the features previously used by Nguyen et al. (2014) with a selection of lexical
features drawn from the work of Xiang et al. (2011). These lexical features include whether
or not an IP address is present instead of a hostname, the number of dots in the URL, the
number of special characters, such as ‘@’ or ‘-’ in the URL, and the number of slashes. Using
these features with a Naive Bayes classifier produced a 48% accuracy, with the heuristics on
their own producing an accuracy of 87.5%. These results are surprising, however, with a
sample size of only 300 URLs, it is likely that the data set is not representative, and that
larger scale testing is required to determine the effect of including simple lexical features in
the feature set.

The Dangers of Third Party Heuristics

More recently, Feroz and Mengel (2015) proposed a method of phishing URL classification
using the Microsoft Reputation Services2 (MRS). Using this method, each URL is submitted
to the MRS system, which returns a number of categories that have been associated with the
content on the site. Each type of category was placed into one of three bags: benign, moderate
and severe, the latter being for the categories most likely to be malicious. As each URL may
return multiple categories, the category with the highest severity was selected and used as a
feature for the classifier. This feature was then combined with a number of lexical and host
based features drawn from the work of Ma et al. (2011), and used with a K-Means classifier
to achieve an accuracy of 98.46% (Feroz and Mengel, 2015). Unfortunately, on December
31st 2015, the Microsoft Reputation Services were shut down. This aids to demonstrate that
the largest downside to incorporating third party heuristics into a classification system is the
reliance on said third party to continue to provide the heuristic throughout the lifetime of
the system.

2.1.4 Large Scale Classification

Real world implementations for large scale phishing URL classification classically use a com-
bination of all of the previously discussed feature sets. For example, Google’s own phishing
URL classification uses content based features, such as the terms with the highest TF-IDF
values, first used by Zhang, Hong and Cranor (2007), (Whittaker, Ryner and Nazif, 2010).
Tokens are generated from the URL and used in a bag of words approach similar to the work
of (Baykan et al., 2009). Third party heuristics, such as the PageRank of the site—first pro-
posed in the work of Garera et al. (2007)—, along with proprietary meta-data are also used
(Whittaker, Ryner and Nazif, 2010). Host based features, including those used by Aburrous
et al. (2010) and Xiang et al. (2011), such as the geolocation of the host an name server are
included in the feature set as well (Whittaker, Ryner and Nazif, 2010). All features are then
scaled to a value between 0 and 1, and a logistic regression model used to classify incoming
URLs. Using this method, a 94.97% true positive rate is achieved, with a false positive rate
of only 0.03% (Whittaker, Ryner and Nazif, 2010).

This precision comes at a cost, however, as the process of extracting these features requires
a number of specialised operations—such as locally rendering the page content (Whittaker,
Ryner and Nazif, 2010)—that cost time to implement and add an extra level of processing
overhead that could adversely affect the rate of classification. As discussed in sections 2.1.3

2Microsoft Reputation Services: https://www.microsoft.com/security/portal/mrs/
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and 2.1.5, the inclusion of host based and content based features means that the classification
system is also affected by network latency. This is reflected in the median processing time
reported of 76 seconds per URL (Whittaker, Ryner and Nazif, 2010), which, when scaled
to “millions of potential phishing sites a day”, quickly becomes very large. Another major
disadvantage of this approach is that by using a batch learning algorithm, the model must
be retrained daily using the data from the past three months (Whittaker, Ryner and Nazif,
2010).

2.1.5 Purely Lexical Feature Sets

As has been discussed in sections 2.1.2 and 2.1.3, the use of host based and content based
features, along with third party heuristics, allows for accurate classification, but has a number
of downsides. Most notably, the inherent latency of the network requests that are required
in fetching these features limits the rate of processing (Zhang, Hong and Cranor, 2007),
which could impact the responsiveness of a system at large scales. This latency is especially
prevalent in the use of third party heuristics, as such requests may be rate limited by the
organisation providing the data (Khonji, Jones and Iraqi, 2011). Another danger of using
third party heuristics is that the availability of the data is subject to change, and is often out
of the control of the user (Feroz and Mengel, 2015). This is a problem for large scale systems,
as a change in the availability of some of the features used for classification would require
that the entire system be re-evaluated. Network load must also be considered, as well as the
monetary cost involved in installing and operating an infrastructure capable of supporting
large amounts of data transfer. Another, less economically focussed, drawback of visiting
the site is that it provides the attacker with an opportunity to evade detection—perhaps by
responding with seemingly benign content, such as a 404 page, or simply by replacing any
textual data with images (Zhang, Hong and Cranor, 2007). This is less than ideal, especially
if the decision is weighted heavily on the content of the page, as an attack using such an
approach may not be caught as a result.

Are Lexical Features Alone Sufficient?

Le, Markopoulou and Faloutsos (2011) studied whether or not lexical features alone could be
feasible for accurate phishing URL classification. Using the four different types of phishing
sites defined by Garera et al. (2007), a number of hand-selected lexical features were defined
for the different regions of the URL.

(a) The features defined for the full URL are the length of the URL, the number of dots in
the URL, and the presence of any blacklisted words.

(b) The features defined for the hostname are the presence of an IP address, port number,
the number of tokens, the number of hyphens and the length of the longest token.

(c) The features identified from the URL path are the length of the first directory, the
number of sub-directory tokens, the length of the longest token, the maximum number
of dots in any token and the maximum number of other delimiters in any token.

(d) The features proposed for the file name of the URL are the length of the file, and the
number of dots in the file name.
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(e) For the argument section of the URL, the total length of the arguments, the number
of variables, the length of the longest variable and the maximum number of delimiters
in any variable are all defined as features.

These hand-selected features were combined with the token based binary features used in
the work of Ma et al. (2011), and compared against the same selection of features, but with
the addition of the registration details from the WHOIS, along with geolocation data. A
number of different machine learning techniques were evaluated, including an SVM, On-
line Perceptron, a Confidence-Weighted (CW) approach, and an Adaptive Regularization of
Weights (AROW) method. Using lexical features alone, an accuracy of 97% was achieved
using AROW over noisy data (Le, Markopoulou and Faloutsos, 2011). This shows that lexical
features alone can indeed be leveraged to produce high classification accuracies, however, it
is unclear as to the size of the data sets that were used for training and testing in this study.

From URL Topic Classification to Fighting Phishing

The use of pure lexical feature sets for URL topic classification has been explored in the
work of Baykan et al. (2009, 2011). Taking inspiration from document classification, they
investigated the application of a bag-of-words approach to examine the contents of the URL.
In their approach, each URL is represented as a histogram of its comprising segments. Feature
vectors are constructed by comparing this histogram against a dictionary of terms. They
experimented with two different methods of producing segments from the URL. First, URLs
were first split (tokenised) into simple tokens on any non-letter character. N-gram segments
were then constructed using sequences of consecutive tokens. A second approach was also
considered, whereby all punctuation and numbers are removed from the URL, and n-gram
segments are generated from the resulting string using characters instead of tokens. For each
approach, positional information was also explicitly encoded by duplicating each n-gram
segment, or token, and appending the position in the form of a numeric character. Each of
these feature sets were applied to a Naive Bayes classifier, SVM, Maximum Entropy classifier
and various forms of boosting.

A large training set of over 2 million URLs was used to evaluate each classifier. The token
based approach was shown to yield the lowest accuracy, whilst 6-grams were found to be the
most effective of the n-gram from token approaches. A mixture of 4-, 5-, 6-, 7-, and 8-grams,
known as all-grams was found to give a greater accuracy than any one set of n-grams, and
all-grams with explicitly encoded positional data performed better than all-grams without
this encoding. Overall, the highest accuracy achieved was 82% with all-grams generated from
the URL (Baykan et al., 2011). Following this, the outputs from the Naive Bayes, SVM and
Maximum entropy classifiers using all-grams from both the URL and tokens were collected
into feature vectors of 6 features, and a number of boosting meta-classifiers were used to
improve the classification accuracy. Using this approach, ModestAdaBoost was shown to
increase the classification accuracy, but only by a couple of points (Baykan et al., 2011).

The techniques described in the work of Baykan et al. (2009, 2011) allow the classifier to
capture the use of language within URLs, making it a promising candidate for phishing URL
classification. The work of Ma et al. (2011) took the token based bag of words approach
proposed by Baykan et al. (2009), combined it with a number of simple lexical and host
based features, and applied it to the problem of phishing URL classification. The proposed
system used the length of the hostname, the length of the URL and the number of dots in
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the URL as features, along with binary features for each token derived from the URL. Tokens
were generated by splitting the hostname on the “.” character, and the path by any of the
following: “/”, “?”, “.”, “=”, “-” or “ ”. In conjunction with these lexical features, details
of the WHOIS properties of the domain, such as the age of the domain and the name of the
registrant were also used as features. Furthermore, properties of the IP address were also
considered, such as the Autonomous System that the address belongs to, and whether or not
the IP addresses given in the DNS records are prefixes of one another. Geolocation services
were also used to obtain the continent, country and city where the URL is being hosted,
and these too were used as features. A request to the page was also made to measure the
connection speed, as it was postulated that many phishing sites were likely being hosted on
compromised machines on residential networks. A batch learning process was used to train
an SVM to obtain a false positive rate of 2.09%, and a false negative rate of 2.55%.

Despite the expansion of the lexical feature set, the method proposed by Ma et al. (2011)
still requires the use of a number of host based features. In order to obtain these host based
features, a number of requests need to be made. DNS requests are made to establish the IP
address of the website, as well as the details of the AS and MX records associated with the
domain. WHOIS lookups must be performed on both the IP address and the domain name
to identify the registrant, registrar and the hosting organisation, and a further request must
be made to determine the connection speed of the host machine. Although these requests
provide a greater amount of information to work with, the effect of network latency on the
classification process originally noted in the work of Zhang, Hong and Cranor (2007) is not
addressed. By moving to a more URL-based approach, the attacker now has less of an
opportunity to interfere with the detection process, as the page content itself is no longer
considered. This does not make the system immune to tampering, however, as the WHOIS
and DNS records for the domain could still be under the control of the attacker.

Positional Encoding

It has been shown that by encoding positional data into an n-gram bag of words model,
classification accuracy can be improved (Baykan et al., 2011). Khonji, Iraqi and Jones (2011)
proposed an alternative method of including distance metrics using a token based approach.
In this approach, URLs are broken into tokens in the same fashion as described in the work
of (Baykan et al., 2009). Initial investigation into the frequencies of the tokens showed that
benign URLs often contained a higher number of previously seen tokens, and that there was
only a 12% overlap in tokens between phishing and benign URLs (Khonji, Iraqi and Jones,
2011). To further reduce this overlap, the distance from the TLD is also considered for
each token. Using a supervised, batch based learning method using a statistical classifier,
the “phishiness” of each token is calculated and then compared against a threshold (Khonji,
Iraqi and Jones, 2011). Using this approach, an accuracy of 97.31% was achieved over a data
set of 73,733 URLs (Khonji, Iraqi and Jones, 2011).

Online Learning - The State of The Art

One particular disadvantage of the method proposed by Khonji, Iraqi and Jones (2011) is
that the training of the classifier must occur in a batch based fashion. It has been shown
that the average phishing attack lasts, on average, for only 58 hours, and as such it is
important the URL based classification systems respond quickly to the ever-changing nature
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of phishing sites (Moore and Clayton, 2007; Blum et al., 2010). Batch based learning methods
are inherently less responsive to a changing environment, as the model must be re-trained
frequently to account for these changes (Whittaker, Ryner and Nazif, 2010; Ma et al., 2011).
In response to this, Blum et al. (2010) proposed an extension to the token based feature set
described by Baykan et al. (2009); using an online classification mechanism to continuously
train on incoming data samples. Much like the work of Baykan et al. (2011) and Khonji,
Iraqi and Jones (2011), the position of each token was taken into consideration. Rather than
explicitly encoding the relative position of each token, position sensitive tokens were recorded
for certain levels. This differs from the work of Khonji, Iraqi and Jones (2011) in that there is
a specific dimension for tokens at specific points in the URL, such as the second token in the
domain. This has the effect of increasing the dimensionality of the model considerably (Blum
et al., 2010). Using a confidence-weighted algorithm, continuous training over a stream of
34,234 URLs gave an average accuracy of 97%, with a 3% error rate (Blum et al., 2010). The
use of an online learning classifier has the advantage of eliminating “the delay, security risks,
and overhead associated with examining content” (Blum et al., 2010). It was noted, however,
that the feature set used was fairly basic, and that the false positive rate could potentially
be reduced through the investigation into a more diverse lexical feature set, and training on
real world data.

One limitation of online learning classifiers that was identified in the work of Blum et al. (2010)
is that the updating of the model requires a reference label for each new training instance.
Zhao and Hoi (2013) took the work of Blum et al. (2010) one step further, and attempted
to address this issue by applying active learning to the classification method. Through using
active learning, the goal is to automatically select the URLs which would be most useful for
training. The confidence weighted algorithm proposed in Blum et al. (2010) was augmented
to include an active component, over a set of 1 million URLs. This algorithm was then
compared against a number of state of the art classification methods, namely Perceptron,
Passive-Agressive, Confidence-Weighted, PAUM, CPA, LEPE and CSRND (Zhao and Hoi,
2013). A cumulative accuracy of 97.146% was achieved using this method, using only 0.5%
of the 1 million URLs for training, greatly reducing the overall cost of training (Zhao and
Hoi, 2013).
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2.2 Contribution

A wide variety of simple lexical features have been proposed, the most popular of which
include the presence of an IP address in place of a hostname (Garera et al., 2007; Zhang,
Hong and Cranor, 2007; Aburrous et al., 2010; Xiang et al., 2011; Sunil and Sardana, 2012;
Huang, Qian and Wang, 2012; Kausar et al., 2014; V and A, 2014; Whittaker, Ryner and
Nazif, 2010; R et al., 2014), the length of the URL, hostname or path (Huang, Qian and
Wang, 2012; James, L. and Thomas, 2013; R et al., 2014; Nguyen and Nguyen, 2016; Ma
et al., 2011; Le, Markopoulou and Faloutsos, 2011), the number of specific characters such as
dots, or slashes (Zhang, Hong and Cranor, 2007; Xiang et al., 2011; Huang, Qian and Wang,
2012; Kausar et al., 2014; Ma et al., 2011; Le, Markopoulou and Faloutsos, 2011), and the
presence of brand names or suspicious terms (Garera et al., 2007; Zhang, Hong and Cranor,
2007; Xiang et al., 2011; Huang, Qian and Wang, 2012; James, L. and Thomas, 2013).

Le, Markopoulou and Faloutsos (2011) have shown that these simple lexical features can
have a positive impact on the accuracy of classification, however, these features have only
ever been used in conjunction with host based features (Ma et al., 2011; Garera et al., 2007),
or a more complex bag of words model (Blum et al., 2010) due to high false positive rates.
To this end, multiple authors have suggested that further investigation into expanding the
set of effective simple features is needed (Ma et al., 2011; Blum et al., 2010; Le, Markopoulou
and Faloutsos, 2011; Khonji, Iraqi and Jones, 2011).

Various sparse bag-of-words models using n-gram segments have also been considered (Blum
et al., 2010; Khonji, Iraqi and Jones, 2011; Baykan et al., 2011). These approaches have
successfully demonstrated that it is possible to base the feature set purely on the URL and
achieve an reasonable accuracy, however nearly all of them failed to use a large sample size
for their experimentation, leaving questions as to whether the results would generalise to a
real world setting. Baykan et al. (2011) performed their experimentation over a larger set of
two million URLs, with a maximum accuracy of 82%. This suggests that further work is still
needed to improve the bag of words approach using a large, real world data set.

This dissertation takes inspiration from the future work outlined by Blum et al. (2010) to
investigate the effectiveness of the simple lexical features already identified in existing litera-
ture, and to then expand this set through the suggestion of further novel features. This will
then be combined with the work of Blum et al. (2010), Khonji, Iraqi and Jones (2011) and
Baykan et al. (2011) to evaluate how the use of simple lexical features compares to a bag of
words approach, and whether we can achieve better results by combining them. Concerns
over the accuracy of the results from the work of Blum et al. (2010) and Khonji, Iraqi and
Jones (2011) will be addressed in this dissertation by performing our experimentation over
a large, real world data set. This data set comprises of over 7.5 million URLs provided by
Netcraft, spanning 6 months worth of data over the course of 2016. We will also expand
upon the most recent developments in the area of online phishing URL classification by im-
plementing and testing two online learning approaches, neither of which have been applied
in this area before.
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2.3 Summary

In this chapter, we have discussed the existing literature surrounding the area of phishing site
classification. Four different sources of features for classifying sites were identified: Lexical
features from the URL, host-based features from sources such as DNS requests, third party
heuristics including Google PageRank and content-based features from the source of the web
page itself. We examined the early work in this area, identifying four different categories of
phishing URL from the work of Garera et al. (2007). It was shown that these four categories
heavily influenced the work that followed, with many authors choosing to select features from
a combination of the four identified sources in an attempt to account for these different types
of phishing URL.

The use of third party heuristics was criticised for being too reliant on the actions of outside
organisations, a point which was highlighted in the work of Nguyen et al. (2014). Their
proposed methodology focussed on the use of the Microsoft Reputation Service to generate
categories based upon the content of the site. However, despite being published fairly recently
in 2014, the Microsoft Reputation Service no longer exists—rendering much of the work that
was done obsolete.

Following this, we also criticised the use of host based and content based features for in-
troducing latency into the classification process. Obtaining the source data from which to
draw such features requires sending and receiving network requests, which limits the rate of
processing (Zhang, Hong and Cranor, 2007)—potentially reducing the responsiveness of the
system. This is a problem in situations where the results of the classifications are used to
protect internet users, as longer delays mean a greater number of unprotected users.

We then looked at how the work of Ma et al. (2011) attempted to address some of these
concerns by increasing the number of lexical features being considered. They achieved this
by using a bag of words approach inspired by the work of Baykan et al. (2009) on URL topic
classification. In their work, Ma et al. (2011) split URLs into “token” segments which then
formed the dictionary for a sparse binary feature model. Although these features were still
combined with various host-based features, it was shown that this work formed an important
first step towards building a purely lexical feature set.

Further studies into the use of purely lexical feature sets for phishing URL classification were
then discussed. The possibility of positionally encoding tokens within the bag of words model
was also discussed, though it was shown that previous attempts had little success (Khonji,
Iraqi and Jones, 2011). These approaches successfully demonstrated that it could be possible
to base the feature set purely on the URL, achieving an reasonable accuracy in most cases.
Unfortunately, it was also shown that many of them failed to use large enough sample sizes
for their experimentation, leaving questions as to whether their results would generalise to a
real world setting.

Next, we reviewed the most recent developments in the area of lexical phishing URL classi-
fication, most of which focusses on the application of online learning in order to improve the
rate of classification. Following this, the contribution of this dissertation was outlined. We
showed how further work was needed to examine and extend the set of simple lexical features
laid out in previous studies. It was also shown how our work would expand upon the work
of Blum et al. (2010), Khonji, Iraqi and Jones (2011) and Baykan et al. (2011), and how our
study would address a previous lack of data through the use of a large, real-world dataset
obtained from Netcraft. Finally, we demonstrated that this dissertation would explore new
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areas within the state of the art by implementing and testing two online classifiers that have
yet to be applied in this setting.

In the next chapter, we will consider lexical features in more detail. We shall examine a num-
ber of different methodologies, before proposing novel feature sets for empirical evaluation.
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3.1 Making Observations From The URL

The URL of a web-hosted resource, such as a website, contains a great deal of useful informa-
tion. We can often infer a number of things about the resource—as well as the configuration
of the provider—simply by examining the URL. For example, consider the following fictional
URL:

The protocol being used to access the resource is https://, which is the encrypted version of
the HTTP protocol. This tells us two things, firstly, it tells us that we will be retrieving the
resource from an HTTP server. Depending on where the URL was discovered, the presence
of the HTTPS protocol may indicate that the resource will be a web page, as HTTP is the
primary method for the transfer of Hyper-Text Mark-up Language—the mark-up language
supporting the majority of websites in existence today. Note however, that it does not tell us
for certain that the resource will be a web page, as it is possible to serve other file types over
HTTP. The second thing to note from the protocol is that the connection is encrypted. This
suggests that the resource in question is involved in the manipulation of sensitive information,
and that the owner has taken the time to set up extra precautions. You might assume that
this would therefore indicate that the site is popular and most likely legitimate, however, it
is becoming more common for sites that do not handle sensitive information to adopt SSL,
so—again—this observation should be taken with a pinch of salt.

In a similar sense to the protocol, the hostname of the URL can give us an indication of
the legitimacy of the site, amongst other things. Most importantly, the domain allows us to
identify the owner of the resource. If we know that my-bank.com is owned by a legitimate
organisation, then it is likely that a resource located on secure.my-bank.com would also
belong to the same organisation. It should be noted that this does not always hold true,
as methods such as pharming exist to redirect the user to a different domain—but it is
nonetheless a useful observation in the context of URL classification.

Furthermore, the hostname also allows us to identify attempts to include the domain of a
target organisation within a sub-domain, or to use a domain with a similar appearance to
that of the target organisation. For example, if it is known that example.com does not belong
to the owner of my-bank.com, then a resource located on my-bank.example.com is likely to
be suspicious. Similarly, the domain my-b4nk.com would also indicate that the resource is
unlikely to be legitimate. The use of secure in the hostname of the example above might
also indicate that the resource we are accessing is part of a sensitive operation, and that
other subdomains of my-bank.com may not be using SSL. On the other hand, it could also
be symptomatic of an attacker’s attempt to convince a victim that the resource is safe and
“secure”, when in fact this may not be the case.

The path of the URL helps to give us more context as to the function of the resource, as
well as the layout of the providing file system. Here, the use of portal and login seem
to confirm our earlier suspicions that the resource is indeed involved in the manipulation of
sensitive data. The location of such terms within the path can also give us an indication as
to whether the URL is legitimate. If suspicious terms such as login are present towards the
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beginning of the path, then it is likely that the URL is legitimate—or that the domain has
been registered for fraud. Suspicious terms in locations where it would not normally make
sense to put them, such as under /images/, /js/ or /~oy213/ may be indicative of a benign
web server that has been compromised by an attacker. The path of the URL may also give
us details as to the technologies being used by the provider. For example, a path ending in a
.php extension would indicate that the web content being accessed has been produced using
the PHP language, whereas a path containing wp-content may suggest that the owner is
using the content management system, Wordpress. This presents an interesting extra piece
of information, and could be useful to us as certain technologies may be more popular with
fraudsters, or could be indicative of vulnerable systems commonly exploited by fraudsters.

The arguments of the URL are also helpful in determining the function of the request being
made. In the case above, we can see that an id, along with a locale, are passed to the web
server when the URL is requested. Arguments such as these are more likely to be seen when
handling sensitive user data during processes such as logging in or signing up, whereas other
arguments—like article—might be more common for sites that do not handle sensitive data.
These arguments therefore have the potential to allow us to identify URLs that are likely to
be involved in the handling of credentials, as well as to filter out URLs that are likely to be
benign.

3.2 Recognising Phishing URLs

Following the discussion from section 3.1, it is not be unreasonable to suggest that an expert
user should be able to discern a phishing URL from a legitimate URL without visiting the
site itself. For example, consider the following real URLs:

1. https://www.paypal.com/signin?country.x=GB&locale.x=en GB (legitimate)

2. https://www.pansarijewels.com/PayPal-Update/6bce85405/ (phishing)

3. http://www.paypal.com.intelligence.is/signin/ (phishing)

The first URL is clearly legitimate, as it has a domain of paypal.com, which we know
belongs to the real PayPal Inc. Despite the use of HTTPS, the second URL is much more
suspicious. The use of the target name PayPal in the path is particularly indicative, especially
when the domain (pansarijewels.com) is completely unrelated. The third URL is more
difficult to discern than the second, using a similar path to the legitimate URL and using
www.paypal.com in the hostname. The only real clue we have here is the unrelated domain
name, which shows this URL to be fraudulent also. This demonstrates that it is possible
to decide upon the relative likelihood of each of the three URLs being a phishing site, using
only the appearance of the URLs themselves.

3.2.1 Lexical Features: A Definition

Lexical features are items of data selected from the URL that allow us to capture this ob-
servable difference between the appearance of a legitimate URL and that of a phishing URL.
A wide variety of lexical features have been suggested in previous work, and in this disserta-
tion we group these into two separate categories: simple lexical features and situated lexical
features.
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We describe simple lexical features as statistics which may be obtained from the URL without
the maintenance of an internal model. Examples of simple lexical features identified in
previous work include the number of characters in the hostname, or the total number of dots
in the URL (Ma et al., 2011). We discuss simple lexical features in greater detail within
chapter 4.

Situated lexical features maintain a context outside of the URL, that is, they are “situated”
within some environment. Maintaining this context requires the use of an internal model to
represent some portion of the state of the world within which the URL exists. As the world
is constantly changing, the model must also be updated frequently so as to remain accurate.
For example, recognising the presence of a target organisation name within the URL requires
a list of all of the potential targets that are likely to appear (Garera et al., 2007). It is
unlikely that this list of targets will remain the same throughout the operational life of a
classifier, so a process for updating the target list must also be designed and implemented.
This often makes situated lexical features more computationally expensive to maintain than
simple lexical features, however—as we shall discuss in chapters 4 and 5—their complex
nature allows us to capture a number of details from the URL that cannot be obtained using
simple lexical features.

3.3 Characteristics of Phishing URLs

A wide variety of lexical features can be found in the literature, and in order to analyse them
it is useful to first reconsider the different types of phishing URL that are identified in the
work of Garera et al. (2007).

1. Obfuscation of the hostname with an IP address. These forms of attack use the
IP address of the fraudulent site in place of the domain name, often including the name
of the target organisation in the path instead.

2. Obfuscation of the hostname with a legitimate domain. Here, a valid looking
domain name is used, usually with the name of the target organisation in the path.
This is usually done in order to imitate a URL that would contain a redirect.

3. Obfuscation with large hostnames. These attacks will include the name of the
target organisation, or a related phrase, in the hostname, with a large string of subdo-
mains appended in order to push the actual domain off of the end of the URL bar in
the victim’s browser.

4. Domain name unknown or misspelled. Here, a close misspelling of the target
domain has been registered in order to make the URL appear legitimate at first glance.
Unknown domains, or URLs which do not fit into any of the above categories, are also
included in this final category.

These categories represent an important first step towards understanding the visual charac-
teristics of phishing URLs, but leave much to be desired.

Since the publication of the work of Garera et al. (2007), fraudsters have had to adapt
their techniques in response to advances in prevention methods. This has lead to the rise
of a number of practices that were likely never anticipated in 2007. For example, the rise
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in popularity of website builders—such as Squarespace and Wix—has increased the market
competition, resulting in many website builders offering incentives to potential customers.
These incentives often take the form of free trial periods or offers for free website hosting.
Such incentives can be exploited by fraudsters, allowing them to host their phishing sites for
free during trial periods. The categories suggested by Garera et al. (2007) fail to accommodate
many of these new practices.

It is also important to note that phishing URLs may exhibit certain visual characteristics
regardless of “category”. For example, the attacker could include the email address of the
victim in the arguments of the URL in order to populate the username field with said email
address. To the unsuspecting user, the automatically populated field could be taken as
an indication that the site is legitimate. Such an approach could be taken regardless of
whether the hostname was an IP address, or a long string of random characters. The use
of “categories” is, then, perhaps a little heavy-handed. Instead of identifying a number of
discrete possible forms that a phishing URL may take, we instead propose a number of visual
“characteristics”, where one or more of these characteristics may be exhibited within a single
URL. This helps to focus our discussion of simple lexical features, as we define a number of
visual clues that we wish to identify.

Our proposed set of phishing URL characteristics is given below, along with a number of real
world examples:

1. Hostnames with an IP address. These forms of attack use the IP address of the
fraudulent site in place of the domain name, often including the name of the target
organisation in the path instead.

http://192.185.73.38/~novel/service.admin.paypal.info/webapps/

2. Generic domains for multiple targets. Here, the fraudster will register a suspicious
domain related to the phishing process, rather than a particular target. Such a domain
may include terms such as “account”, “verification” or “update”, allowing the fraudster
to set up multiple subdomains targeting different specific organisations.

https://www.paypal.verification-infoupdate.com/

3. Long hostnames. These attacks will include the name of the target organisation, or
a related phrase, in the hostname, with a large string of subdomains appended in order
to push the actual domain off of the end of the URL bar in the victim’s browser.

http://my.hypovereinsbank.de.secure.login.77d2{...}fb9a.proluxcleaning.uk/

4. Compromised sites. This is where the fraudster exploits some security vulnerability
in a previously benign site in order to upload a phishing attack onto the host. This
often results in the URL containing an unlikely path root, or a user directory, as the
attacker is usually limited to uploading the phishing content into a directory owned by
the vulnerable service.

http://store.webkittechnology.com/system/logs/sign/up/

5. Subdomains provided through free site builders. Here, the fraudster will use
a free website builder, such as Squarespace or myfreewebsite, to host their attack.
These website builders will often allow customers to choose their own subdomain, which
fraudsters can exploit in order to produce a more believable URL.

http://ufrgsbrr.my-free.website/
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6. Shortened URLs. Here a URL shortening service, such as tinyurl or bitly, is used
to hide the suspicious nature of a phishing URL. These services generate a unique
shortened URL which will redirect visitors to a URL of the fradster’s choice. Users
may be more inclined to follow a shortened link, as they do not appear as visually
suspicious as many longer phishing URLs.

http://bit.ly/2pwm4n2

7. Deceptive domains. These URLs are the result of the fraudster registering a close
misspelling of the target domain in order to deceive visitors.

http://ubssecure.com/ubs/uk/en.html

8. Deceptive file paths. Here the attacker manipulates the file path to appear more
convincing. This is achieved by either mimicking the directory structure of the le-
gitimate site, fabricating a seemingly relevant file path, or including the hostname of
the legitimate organisation within the file path. Users who are not familiar with the
structure of a URL may see this hostname and assume that the site is legitimate.

http://www.inmueble.web.ve/~tequetap/cgi-bin/online/banking/id/verification/

http://www.csfparts1-clientsex.com/--/www.impots.gouv.fr/file/

9. Deceptive arguments. Attackers will often alter the arguments of the URL to either
mimic the appearance of legitimate URLs, or to add context to URLs that would
otherwise appear unrelated.

http://ow.ly/4mIpzC?Facebook-acount-disable

10. Randomised directory names. In an attempt to evade being blocked by blacklist-
based systems, attackers will sometimes generate random directory names for each
visitor. This is usually done by calculating the md5 hash of a randomly generated
number, as seen below.

http://verificationzone.shannonnoel.com/update-paypal/1a0b5ee9e8371895674b810a0b/

11. Personalised URLs. Here the attacker includes the email address of the victim within
the URL arguments. This is usually indicative of an attempt to personalise the phishing
page in some way, for example, by automatically populating a username field.

http://www.hotrodsdecals.com/wp-content/mailbox/post.php?email=victim@example.com

12. Port number manipulation. Similarly to the randomised directory names, fraudsters
may also provide the attack over a non-standard range of ports, specifying a random
port within this range in the URL. This is done not only to avoid detection by blacklist-
based systems, but to also fool content-based systems fetching the URL over the default
port.

http://zeotsw.gq:1996/indexx.asp
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3.4 Summary

In this chapter, we have considered lexical features in greater detail, providing definitions
along with a set of novel phishing URL characteristics. The various components of a URL were
identified, and it was shown how each component could be used to make inferences regarding
the content of the resource associated with the URL. Following this, we demonstrated that
by considering the appearance of a URL it was possible to discern between a phishing URL
and a legitimate URL. Lexical features were then defined as items of data drawn from the
URL that allow us to capture elements of this difference in appearance between phishing
and legitimate URLs. This concept of a lexical feature was then decomposed further into
two categories: simple lexical features and situated lexical features. Simple lexical features
were defined as statistics which may be obtained for the URL without requiring an internal
model. Conversely, situated lexical features were identified as those which maintain a context
outside of the URL itself. We then went on to consider a number of categories of phishing
URL that had been identified in the work of Garera et al. (2007). These categories were
criticised for being outdated and restrictive, leading us to propose a new set of twelve visual
“characteristics” for recognising phishing URLs.

In chapter 4, these new categories will be applied to the analysis of the simple lexical features
found in previous work. In doing so, we will provide a critique of the existing work, as well as
of simple lexical features as a whole. This critique will inform the selection of a novel simple
lexical feature set with the aim of improving classification accuracy.

In chapter 5, situated lexical features will be explored in further detail. The advantages of
using situated features over simple lexical features will be discussed, as well as the issues that
arise when using such features in an online setting at a large scale. Following this discussion,
a number of solutions are proposed and our implemented solution is detailed.
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4.1 Overview

In section 3.2.1, we defined simple lexical features as statistics which may be obtained from
the URL without the maintenance of an internal model. These features should be capable
of capturing some observable difference between a legitimate URL and a phishing URL. In
section 3.3, we identified a number of possible characteristics for identifying phishing URLs
in order to give us an indication as to some of the differences that we may wish to capture.

For example, the hostname of a URL containing an IPv4 address will likely always have the
same number of periods, as well as containing only numeric characters between the periods. In
order to capture the difference between an alphanumeric domain name and an IP address, we
could measure the number of periods, the proportion of numeric to non-numeric characters,
or make use of a regular expression.

From this simple example it is already apparent that there are a number of options available to
us. These options are usually the results of conjecture, and as such they cannot be guaranteed
effective without empirical evidence. This forms the root of our uncertainty when it comes
to selecting lexical features. Previous work has suggested a wide variety of simple features,
but often little time is spent on understanding their effectiveness on an individual scale, or
how they interact once combined.

In section 4.2, we identify a set of simple features drawn from existing research. Following
this, in section 4.3, we use the existing set of simple features to inform the suggestion of novel
additions to the simple lexical feature set.

4.2 Existing Simple Features

Table A.1 lists all of the simple lexical features that we have identified within previous
research. Twenty five features are identified in total, the most common of which are the
presence of an IP address within the hostname, the total length of the URL, and the number
of ‘.’ characters present in the hostname.

We consider each feature with respect to our set of phishing URL characteristics (defined in
section 3.3), to see how the existing set of features covered said characteristics. This is done
by consulting the study in which the feature was first identified and noting their justification
for the use of said feature. For example, Whittaker, Ryner and Nazif (2010) use the number
of ‘.’ characters in the hostname as a feature for recognising URLs with long hostnames.
As a result, URLs with a type 3 characteristic are marked as identified by the use of this
feature. Table A.2 shows the coverage of characteristics that we identified for each simple
lexical feature.

The information from table A.2 is visualised in figure 4.1. From this, we can see that most
of the characteristics are targeted by at least one existing simple feature, however, some
have fewer applicable features than others. URLs with deceptive file paths (type 8) have
the largest number of applicable features, whilst URLs containing deceptive domains (type
7) and subdomains provided by website builders (type 5) are not covered by the existing
features at all. This highlights an important limitation of simple lexical features. In order
to recognise deceptive domains, or subdomains provided by website builders, some form of
information regarding the world outside of the URL is required. In the case of deceptive
domains, for example, a list of potential target domains would be required in order to be
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Figure 4.1: A histogram showing the coverage of phishing URL characteristics by the simple
lexical features identified from existing literature

able judge whether or not a particular domain is deceptive. This further information forms a
model that exists beyond the context of the URL, which is not something that a simple lexical
feature can provide. In order to recognise all of the characteristics that we have identified, it
is likely that we will need a more complex set of features that is capable of capturing the use
of specific language within the URL.

Figure 4.2 shows the separation between phishing URLs and benign URLs produced with the
set of existing simple lexical features. This data spread was produced by selecting a random
sample of 1000 phishing URLs and 1000 benign URLs from our April 2016 training data (for
more details on this data, see 7.1), normalising each feature to a value between 0 and 1 and
performing principal component analysis to project the data into two dimensions.
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Figure 4.2: A plot of the data spread between phishing and non-phishing using the simple
lexical features from existing literature. Green indicates benign sites, and red indicates
phishing sites.
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Figure 4.3: A histogram showing the distribution of URL length within a sample of 1000
phishing URLs and 1000 benign URLs.

From figure 4.2 we can see that the identified features do produce some separation between
the two classes of URL, however, there is still an observable amount of overlap. This overlap
indicates that the existing feature set is not discriminative enough to fully distinguish between
phishing URLs and benign URLs.

In order to understand why this overlap exists, we take a closer look at three popular simple
lexical features from existing literature: total URL length, the number of dots in the hostname
and the number of slashes in the path. The frequencies of each value for every one of these
three features are taken across a random sample of 1000 phishing URLs and 1000 benign
URLs from the April 2016 training data. In doing so, we are able to visualise the distribution
of values for each feature between the two classes of URL.

The results for total URL length are shown in figure 4.3. The values appear to be normally
distributed for both classes of URL, and we can see that the spread of phishing URLs is
wider than that of the benign URLs in this sample. This indicates that phishing URLs are
more likely to be longer than benign URLs. This observation is expected, as many of the
characteristics defined in section 3.3—such as types 2, 3 and 8—involve adding terms into
the URL in order to make them more deceptive.

Figure 4.4 shows the number of dots within the hostname for the two classes of URL within
the sample. Similarly to URL length, there appears to be a difference between the two classes,
however it is less distinct. The spread of data for benign URLs is tightly centred around two,
whereas the data for phishing URLs is spread more widely. We can see that within this
sample, phishing URLs are more likely to have a single period within the hostname than
benign URLs. Interestingly, a URL is more likely to be a phishing when the number of dots
in the hostname is greater than five.

The number of slashes within the path for the two classes of URLs are shown in figure 4.5.
Here again we can see a difference in the distribution of values between each class of URL.
The majority of benign URLs are centred around a single slash, whilst the phishing URLs
are centred around three slashes. Again, the spread of the data for phishing URLs is greater
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than that of the benign URLs.
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Figure 4.4: A histogram showing the distribution of dots within the hostnames of a sample
of 1000 phishing URLs and 1000 benign URLs.
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Figure 4.5: A histogram showing the distribution of slashes within the paths of a sample of
1000 phishing URLs and 1000 benign URLs.

For each of these three simple features, it has been demonstrated that there is an observable
difference between the distributions of values. This shows that it is be possible to use these
features to discern between a phishing URL and a benign URL, however the overlap in the
data seen in figure 4.2 suggests that the existing feature set still has room for improvement.
Given the uneven spread of features shown in figure 4.1, we believe that there is an oppor-
tunity to improve the existing feature set by designing further features to target the URL
characteristics that are not well covered.
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4.3 Feature Set Expansion

In section 4.2, twenty five simple lexical features from existing literature were identified.
It was shown that these features could be used to discern a phishing URL from a benign
URL, but that they were not sufficiently discriminative to be effective in every case. We
explored the relationships between these features and the various characteristics of phishing
URLs that we defined in section 3.3. From this, we were able to see that a number of the
characteristics had fewer applicable features than others (see figure 4.1). We proposed that
through identifying more features to capture the characteristics that are currently less well
covered, the discriminative power of the feature set could be improved. To this end, we will
consider each characteristic in reverse order of coverage with the aim of identifying novel
features that can be used to expand upon the existing feature set.

4.3.1 Deceptive Domains and Subdomains From Free Site Builders

Our analysis showed that the existing simple feature set does not contain any features de-
signed to identify URLs with deceptive domains, or URLs using subdomains provided by free
site builders. As discussed in section 4.2, this is due to a fundamental limitation of simple
lexical features. In order to decide whether or not a domain is deceptive, we must first iden-
tify the legitimate domain that is being impersonated. This requires the use of information
beyond that which exists purely within the URL, and as such cannot be achieved using a
simple lexical feature. Similarly to deceptive domains, identifying URLs using subdomains
that have been provided by free site builders cannot be achieved without knowing the domain
names owned by the free site builders. As a result, there is little that we can do to directly
identify these characteristics using simple lexical features. In chapter 5 we consider the use
of situated lexical features as a potential solution to this issue.
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Figure 4.6: A histogram showing the distribution of port numbers within the hostnames of a
sample of phishing URLs from April 2016.
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Figure 4.7: A histogram showing the distribution of port numbers within the hostnames of a
sample of benign URLs from April 2016.

4.3.2 Port Number Manipulation

Figure 4.1 shows that only a single simple feature for identifying URLs containing a port num-
ber was found in the literature. This feature was identified in the work of Le, Markopoulou
and Faloutsos (2011), where a regular expression was used to extract the port number from
the URL. The value of this feature was defaulted to zero in the case where the URL did not
contain a port number. One possible alternative to identifying the port number is to measure
the number of ‘:’ characters within the hostname. This has the advantage of being simpler
to compute than isolating the port number, however it gives us less information regarding
the port number itself.

For example, in our training data from April 2016, only 15 of the 325,837 benign URLs
contained one or more colon characters within the hostname, compared to 805 of the 325,837
phishing URLs. This suggests that simply extracting the number of colons from the hostname
would be sufficient to identify likely phishing URLs, but the fact that a number of benign
URLs also contain a port number means that we could not be certain of our decision. Figures
4.6 and 4.7 show the distributions of port numbers within the samples of phishing and benign
URLs respectively. We can see that the majority of port numbers found in benign URLs are
centred around port 8000, probably due to the use of 8080 as an alternative to the default
HTTP port, 80. For phishing URLs, however, the spread of the port numbers seen is much
broader, centred around 1003, but ranging as high as 43443. By identifying the port number,
we can model differences in the distributions between classes, giving us a greater amount of
information upon which to base our classification. As a result, it is unlikely that the number
of colon characters in the hostname could provide any new information, but it may prove
useful as a faster alternative to the extraction of the port number.
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4.3.3 Shortened URLs

Similarly to URLs containing deceptive domains or subdomains from free site builders, there
is little that can be done to identify shortened URLs using simple lexical features alone. In
order to be certain that a URL has been shortened, we would require a list of the domains
of all the URL shortening services. This information goes beyond the context of the URL
itself, and as such cannot be expressed with a simple lexical feature. The only simple lexical
feature that could be useful for identifying possible shortened URLs is the total length of the
URL itself, as first found in the work of Aburrous et al. (2010).

4.3.4 Randomised Directory Names

We identified three simple features from the existing literature for identifying URLs with ran-
domised directory names. Those features are the presence of hexadecimal characters within
the URL (Aburrous et al., 2010), the length of the longest subdirectory (Le, Markopoulou
and Faloutsos, 2011) and the total length of the path (Le, Markopoulou and Faloutsos, 2011).

The presence of hexadecimal characters within the URL does not necessarily imply the pres-
ence of hexadecimal characters within the path, however. Therefore, we propose that this
feature be made more specific, to identify the presence of hexadecimal characters only within
the path. Regular expressions could also be leveraged to identify hexadecimal strings of
particular lengths, as well as subdirectories formed entirely of such strings.

It is also possible that not all random directories are formed from a hexadecimal string. To
accommodate for this, we identify three new simple features. The proportion of the number
of digits to letters in the path of the URL would allow for the identification of randomisation
techniques that make use of numerical strings for directory names. The total number of
digits in the path may also prove useful for identifying long strings of numbers within the
path. One issue with simply counting the number of digits in the path is that long paths are
more likely to contain a greater number of digits. In order to account for this, the maximum
number of digits in any one subdirectory could also be measured.

4.3.5 Generic Domains For Multiple Targets

The existing simple feature set contains three features targeted towards identifying generic
phishing domains: the numbers of ‘-’ and ‘@’ characters in the hostname (Zhang, Hong
and Cranor, 2007), as well as the number of tokens in the hostname (Le, Markopoulou and
Faloutsos, 2011).

Because generic domains are re-used for multiple different targets, they often take the form
of multiple words—such as “verification” or “account”—separated by delimiters, rather than
containing the name of a company. The presence of ‘-’ and ‘@’ characters can therefore be
indicative as these characters are often used to separate the words within the domain. The
subdomains are then used to target a specific organisation, and as such, are usually shorter
than the domain itself. By measuring the proportion of the length of the domain to the
length of the first sub-domain, we expect to be able to capture this difference in length.
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4.3.6 Compromised Sites

We identified four existing simple features for recognising compromised sites: the number of
‘/’ characters and tokens in the path (James, L. and Thomas, 2013), as well as the total length
of the path and the number of sub-directories in the path (Le, Markopoulou and Faloutsos,
2011).

The phishing content on a compromised site is often buried within the existing file system,
leading to longer file paths consisting of short sub-directories. The existing features help to
capture the increased length of the path, as well as it’s dense nature. The “tokens” mentioned
in the work of (James, L. and Thomas, 2013) are only mentioned in passing, however, with
little detail given as to their actual nature. In the interests of precision, we propose that this
feature be replaced by counting the number of special characters in the path, namely ‘ ’, ‘-’
and ‘@’. Similarly to how the work of Le, Markopoulou and Faloutsos (2011) treats URL
arguments, it may also be beneficial to measure the maximum number of special characters
in any one sub-directory, as it is less dependent on the total length of the path.

By measuring the proportion of the path length to the total URL length, we hope to be able
to separate long URLs with short hostnames from long URLs with long hostnames. This is
useful as compromised sites are more likely to have a short hostname, due to the attacker
usually only having control over the file path. Along with this, we also consider the average
sub-directory length, the length of the shortest sub-directory and the length of the longest
sub-directory

4.3.7 Personalised URLs

The existing literature provides five simple lexical features for identifying personalised URLs:
The presence of hexadecimal characters in the URL (Aburrous et al., 2010), the number of
arguments (Le, Markopoulou and Faloutsos, 2011), the total length of the argument string
(Le, Markopoulou and Faloutsos, 2011), the length of the longest argument (Le, Markopoulou
and Faloutsos, 2011) and the presence of an ‘@’ character in the URL (Aburrous et al., 2010).

We make these features more specific to personalised URLs by measuring the presence of
hexadecimal and ‘@’ characters within the arguments, rather than the full URL.

4.3.8 Deceptive Arguments

The identification of deceptive arguments has been covered previously in the work of Le,
Markopoulou and Faloutsos (2011). They suggested a number of simple features including
the number of arguments, the length of the longest argument and the maximum number of
special characters in a particular argument.

In this dissertation, we specify these special characters as ‘-’, ‘@’ and ‘.’. This allows us
to identify the use of email addresses, hostnames and hyphen-separated terms within the
arguments. Fraudsters are also more likely to include arguments that have no associated
values in an attempt to add context to the URL. For example, consider the following shortened
URL:

http://ow.ly/4mIpzC?Facebook-acount-disable
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By including an argument with the key “Facebook-acount-disable”, the shortened URL can
be made to appear related to the target organisation. In normal operation, URL arguments
exist as key-value pairs. This is not true in the case above, as the fraudster is simply using
the argument for it’s visual impact—rather than for passing information to the web server.
We can identify this characteristic by measuring the number of arguments in the URL that
do not exist as key-value pairs. In order to extract further information from the arguments,
we also measure the length of the longest and shortest keys and values, as well as the average
length of the keys and values.

4.3.9 Hostnames With An IP Address

Previous work has identified IP addresses within hostnames using regular expressions (Gar-
era et al., 2007), or through measuring the number of ‘.’ characters within the hostname
(Whittaker, Ryner and Nazif, 2010).

Hostnames containing IP addresses are likely to contain a greater number of digits than
hostnames that do not. If IP addresses are more common in phishing URLs than benign
URLs, it stands to reason that the distribution of digits in the hostname varies between
phishing URLs and benign URLs. Figure 4.8 shows the distribution of digits within the
hostnames of a sample of 1000 phishing URLs and 1000 benign URLs from our April 2016
training data. We can see that the distributions do indeed differ, with phishing URLs having
a larger spread in the number of digits. In order to capture this, we measure the proportion
of digits within the host. Another interesting property of IPv4 addresses is that they contain
maximum values of 255. To distinguish URLs containing high amounts of digits from URLs
containing IP addresses, we also measure the highest numerical value observed within the
hostname.

4.3.10 Long Hostnames

URLs with long hostnames are fairly well covered by the existing literature, with a total of
seven simple lexical features identified. These features include the length of the hostname
(Ma et al., 2011), the number of ‘@’, ‘-’ and ‘.’ characters within the hostname (Zhang, Hong
and Cranor, 2007) and the length of the longest token in the hostname (Le, Markopoulou
and Faloutsos, 2011).

These features focus on detecting long hostnames, but greater focus could be placed on
identifying particular methods commonly used by fraudsters to extend the length of their
hostnames. From our sample phishing sites, we can observe that—in a similar fashion to
the randomisation of directory names—frausters will commonly extend the length of their
hostnames by using long hexadecimal strings generated by hashing random numbers. We
aim to identify this by measuring the number of digits and hexadecimal characters present
within the hostname.
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Figure 4.8: A histogram showing the distribution of digits within the hostnames of a sample
of 1000 phishing URLs and 1000 benign URLs.

Feature Targeted characteristic

Number of ‘:’ characters in the hostname Port number manipulation

Proportion of digits within the path Randomised directory names

Number of hex characters in the path Randomised directory names

Max. number of digits in any one directory Randomised directory names

Number of digits in the path Randomised directory names

Hash present in path (\/[a-fA-F0-9]+[\/\.]) Randomised directory names

Length of the longest sub-domain in the hostname Generic domains for multiple targets

Average directory length Compromised sites

Path length / total URL length Compromised sites

Length of the shortest directory Compromised sites

Number of hex characters in the arguments Personalised URLs

Number of ‘@’ characters in the arguments Personalised URLs

Average argument value length Deceptive arguments

Average argument key length Deceptive arguments

Length of the shortest argument value Deceptive arguments

Length of the longest argument key Deceptive arguments

Presence of a non key-value argument Deceptive arguments

Length of the shortest argument key Deceptive arguments

Max. numerical value in the hostname Hostnames with an IP address

Proportion of digits in the hostname Hostnames with an IP address

Number of hex characters in the hostname Long hostnames

Max. number of digits in any one sub-domain Long hostnames

Number of digits in the hostname Long hostnames

Table 4.1: Our novel simple lexical features and their targeted characteristics.
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4.4 Summary

In section 4.2, we identified twenty five simple lexical features from existing literature (see
table A.1). Using principal component analysis, we observed a significant overlap in the
distribution of phishing and benign URLs when using these existing features (see figure
4.2). We explored the relationships between these features and the various characteristics
of phishing URLs that we defined in section 3.3. From this, we were able to see that a
number of the characteristics had fewer applicable features than others (see figure 4.1). We
proposed that through identifying more features to capture the characteristics that are less
well covered, the discriminative power of the feature set could be improved.

In section 4.3, we considered each of our phishing characteristics, proposing novel features
to identify each one. A total of 27 novel simple lexical features were proposed. Table 4.1
details each of these novel features and the particular characteristic that we believe they can
identify.

In chapter 7, we evaluate the effectiveness of both the existing simple lexical features and our
novel set empirically—with the goal of providing a single effective simple lexical feature set.

Our work in section 4.2 also demonstrated that number of phishing URL characteristics
cannot be identified using simple lexical features alone. In the following chapter, we discuss
situated lexical features as a possible method of detecting such characteristics.
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5.1 Overview

In chapter 4, we explored the application of simple lexical features in the context of phishing
URL classification. It was suggested that a number of phishing practices may remain unde-
tected when using simple features due to a fundamental lack of context. For example, we
cannot assess the similarity between a deceptive domain and the domain of the target organ-
isation without knowing the potential target organisations. Simple lexical features operate
solely within the context of the URL itself, and as such, it is difficult—if not impossible—to
exploit the use of language within URLs due to the lack of a dictionary.

In this chapter, we consider the use of situated lexical features as a method of overcoming
the limitations of simple features. Section 3.2.1 defines situated lexical features as statistics
obtained from the URL which maintain a context outside of the URL itself, that is, they
are “situated” within some environment. Through the use of an internal model, situated
features allow us to identify the presence of particular words and phrases within URLs. This
is significant, as it enables us to evaluate the URLs on a more semantic level—bringing us a
step closer to perceiving the content of the URLs as a human would.

In section 5.2, we briefly review a number of situated features identified from existing liter-
ature. We discuss a number of potential limitations to these approaches, which informs the
development of our approach; detailed in section 5.3.

5.2 Existing Situated Features

Table 5.1 lists the situated features that we identified during our literature survey. We
identified a total of nine individual features and four more complex feature models.

The majority of the individual features require the maintenance of a list of potential phishing
targets. Doing so presents the further problem of keeping the list updated, and due to
time constraints, such features are beyond the scope of this project. Instead, we focus our
attention on the use of token and URL-based n-grams to produce sparse feature vectors in
high dimensions.

Perhaps the most ubiquitous situated feature model for textual classification is the bag of
words model (Harris, 1954; Le and Mikolov, 2014). The bag of words approach originates
from the field of document classification and natural language processing (Harris, 1954). In
the simplest case, documents are represented as histograms of the frequencies of the words
that they contain. These histograms can then be transformed into feature vectors by mapping
the term frequencies to a dictionary. Each term in the dictionary is assigned a particular
index within the feature vector, resulting in vector dimensions equal to the number of terms
in the dictionary.

The work of Baykan et al. (2009) applies the bag of words approach in the context of URL
topic classification. URLs are converted to lower case and separated into tokens by splitting
them on any non-letter characters. Tokens containing fewer than two characters are removed,
with the remainder forming the terms that represent the content of the URL.

One limitation of the simple bag of words approach is that the relative position of each of the
terms is ignored (Le and Mikolov, 2014). This information could potentially be useful, as it
provides context regarding the terms that surround a particular token. To this end, Baykan
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et al. (2009) also investigated the application of n-grams (Jurafsky, 2000) as a method of
positional encoding. Here, terms are formed from multiple tokens in a contiguous fashion,
where the number of tokens in a term is defined by n. For example, given a bi-gram approach
(n = 2) and the tokens “www”, “secure”, “example”, “com”, “login”, “html”, the following
terms are generated:

1. “www secure”

2. “secure example”

3. “example com”

4. “com login”

5. “login html”

This approach retains some information regarding the terms surrounding a particular token,
therefore encoding the positions of each particular term. A number of alternative methods
for encoding positional information within the bag of words model have also been explored
in the context of URL classification.

Baykan et al. (2011) revisit their work on URL topic classification, introducing the notion of
extracting n-grams directly from the URL. Instead of parsing URLs into tokens, each URL is
converted to lowercase and all non-letter characters removed. N-gram segments of the URL
string are then taken using individual characters, as opposed to entire tokens. This approach
improves classification accuracy, however, the increase in the dimensionality produced by this
method would likely prove unmanageable at large scales (Blum et al., 2010).

Lexical Feature Earliest Study

Hostname contains target organisation domain Khonji, Iraqi and Jones (2011)

Path contains target organisation domain Garera et al. (2007)

Number of characters between the end of the target
organisation’s name and the end of the hostname

Garera et al. (2007)

Suspicious TLD present Ma et al. (2011)

Prefixed/Suffixed target organisation name present Abdelhamid, Ayesh and Thabtah (2014)

Number of characters replaced with visually
similar characters

Aburrous et al. (2010)

Use of a URL shortening service Nguyen and Nguyen (2016)

Presence of suggestive tokens Garera et al. (2007)

TLD in sub-domain or path Xiang et al. (2011)

Presence of an unknown noun V and A (2014)

Token-based n-gram (1, 4-8) frequencies Baykan et al. (2009)

URL-based n-gram (4-8) frequencies Baykan et al. (2011)

Token-based n-gram (1, 4-8) frequencies with
explicit positional encoding

Baykan et al. (2011)

Regional token-based n-gram frequencies Blum et al. (2010)

Token-based n-gram tuples Khonji, Jones and Iraqi (2011)

Table 5.1: Situated features identified from previous research.
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Along with URL-based n-grams, Baykan et al. (2011) also experiment with explicitly encoding
the relative position of each token into the token string itself. This is done by duplicating each
token and appending its position in the URL using an underscore and then the numerical
value of the position. This approach doubles the dimensionality of the feature space, and has
no significant impact on the classification accuracy (Baykan et al., 2011).

(Blum et al., 2010) take a different approach, defining a number of feature groups, each
with separate dictionaries. Each feature group represents a token from a particular lo-
cation in the URL. For example, the token from feature group “domain{2}” of the URL
“https://mail.example.com/login/” is “mail”. Feature vectors are formed from a num-
ber of feature groups, each targeting a specific position within the URL. This has the effect
of greatly reducing the dimensionality of the feature vectors. However,by targeting specific
locations within the URL, this approach discards potentially valuable information in the case
where the URL does not conform to an expected pattern.

In the work of (Khonji, Jones and Iraqi, 2011), tokens are encoded as tuples, rather than
simple terms. The position of each token is calculated relative to the position of the top
level domain, such that tokens within the hostname are assigned a negative value, and tokens
within the path a positive value. These tuples then form the terms of the dictionary.

5.3 Our Approach

5.3.1 Feature Extraction

N-Grams

Our situated lexical feature set uses token-based n-grams drawn from the URL in a manner
similar to the work of Baykan et al. (2011) and Blum et al. (2010). First, URLs are split into
hostname, path and arguments. Each of these strings are stripped of all non-letter characters
not contained within the set of delimiters defined for that particular section of the URL:

Hostname ‘:’, ‘/’, ‘-’, ‘.’, ‘@’
Path ‘/’, ‘-’, ‘.’, ‘,’, ‘@’, ‘ ’, ‘;’
Arguments ‘=’, ‘&’, ‘@’, ‘-’, ‘ ’, ‘/’, ‘#’, ‘.’, ‘,’, ‘;’

These characters were chosen as they are usually found separating words within each section
of the URL. This places a focus on the semantic content of the URL, rather than the syntactic
use of symbols and delimiters—as was the case for simple lexical features. Tokens are formed
from the processed URL string by splitting on the non-letter characters identified above. The
tokens are then converted to lower case, and any tokens longer than 32 characters, or shorter
than 2 characters in length are removed. This is done to ensure that only tokens that are likely
to contain words or common abbreviations are considered. The tokens from each section are
then assembled in the order in which they appear in the URL, and n-gram segments taken
from this list of tokens. A histogram is then produced representing the frequency of each
segment within the URL.
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Positional Encoding

Along with the frequency of each segment, we also record the position within the URL.
Similarly to the work of James, L. and Thomas (2013), the position of each n-gram segment
is calculated relative to the position of the top level domain. We then calculate the absolute
distance from the number of tokens between the central token in the segment and the token
of the top level domain. Rather than forming our feature vectors from the frequencies of
each token, we instead populate the feature vector with the position of the token. This was
done to avoid the increase in dimensionality of the dictionary that would occur by directly
encoding the position into the segment itself.

5.3.2 Feature Selection

IDF

Our method of feature extraction described in section 5.3.1 does little to combat the issue of
high dimensionality resulting from the bag of words approach. Using only uni-gram segments,
a sample of 1000 phishing URLs and 1000 benign URLs from the April 2016 training data
produces a total of 60,466 terms. If all of these terms were to be included in each feature
vector, the resources required to support the system in a real world deployment would soon
become infeasible. It is therefore clear that some form of dimensionality reduction is required.

Many forms of dimensionality reduction exist for applications within a batch learning context,
such as principal component analysis (Fodor, 2002), Laplacian Eigenmaps (Van Der Maaten,
Postma and Van den Herik, 2009) and Sammon mapping (Van Der Maaten, Postma and
Van den Herik, 2009). Dimensionality reduction in the online context is alltogether more
challenging, as we do not have a complete picture of our data before we begin.

In the work of Zhang, Hong and Cranor (2007), a statistic known as term frequency-inverse
document frequency—or TF-IDF—was leveraged to select the terms from a document that
best represent it within a corpus. As the name suggests, TF-IDF is calculated from the
multiplication of two statistics: term frequency, tf, and inverse document frequency, idf.

Term frequency measures the frequency of the occurrence of some term, t, in a document, d
(Salton and Buckley, 1988):

tf(t, d) = ft : t ∈ d

Where ft,d denotes the frequency of term t.

Inverse document frequency represents the amount of information provided by a particular
term (Salton and Buckley, 1988). It is calculated by taking the logarithmically-scaled inverse
of the proportion of documents in the corpus that contain the term. Given a term, t, and
some corpus, D, the inverse document frequency can be defined as follows:

idf(t,D) = log
||D||

1 + |{d ∈ D : t ∈ d}|

In our work, we leverage inverse document frequency to select the most representative terms
from both phishing and benign URLs. During training, we store the frequencies of terms
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within each URL, treating URLs as individual documents. These documents are split into
two corpora, one containing phishing URLs and one containing benign URLs. When the
number of documents observed reaches some threshold, we calculate the idf for all terms
in each corpus, and select the top 5% of terms from each corpus for inclusion within the
dictionary. The stored data is then cleared, and the process repeated. In this way, we hope
to identify the most representative terms from each class of URL concurrently to the training
process.

Performing this process over the 651,674 training URLs from April 2016, we identify a total
of 3,473 terms—which is far more manageable than the 60,466 previously seen with only 2000
training URLs. Table B.1 shows a sample of the terms identified through this process. As we
can see, a number of suspicious terms such as “verify”, “signin” and “secure” are identified,
along with the names of potential targets including “google”, “dropbox” and “usaa”. It
is also observed that the dictionary produced contains a number of nonsensical terms such
as “dcabccfaadd”. Ideally, we wish to exclude such terms from the dictionary as they are
unlikely to generalise beyond the URLs observed in the training set.

Metric Entropy

Previously, we observed that inverse document frequency could be leveraged to perform
dimensionality reduction in an online setting. We also noted, however, that the resulting
dictionary contained a number of nonsensical terms which appear to have been randomly
generated. Such terms generally consist of long strings comprised of a few different characters.

Given a string of symbols, the Shannon Entropy provides an estimate of the minimum number
of bits required to encode said string (Shannon, 2001). This is useful to us because the
nonsensical strings often contain little variation in the number of characters, and thus require
fewer bits to encode than most other strings of the same length. Consider some string
of symbols, X = {x1, x2, ..., xn}, and some vocabulary Y = {y1, y2, ..., yz}. The Shannon
entropy, H, of X can be found as follows:

H(X) = −
n∑
i=1

p(xi) log2 p(xi)

Where p(xi) is the probability of observing xi given the vocabulary Y :

p(xi) =
Y (xi)

n

In our case, the vocabulary is a histogram of the frequency of xi within X. Using the Shannon
entropy, we then calculate the metric entropy (Batenkov, Friedland and Yomdin, 2015) of
the term by dividing the Shannon entropy by the number of characters in the term. This is
done in order to obtain a normalised value representing the randomness of the string. By
only considering terms with a high enough metric entropy, we ensure that the nonsensical
terms are excluded from our dictionary. Using the same set of 651,674 training URLs from
April 2016, we sort the nonsensical terms according to their metric entropy and identify the
maximum. We obtain a value of 0.25, and—using this as a minimum bound for selection
into the dictionary—the number of identified terms is reduced from 3,473 to a more focussed
2,567.

48



CHAPTER 5. SITUATED LEXICAL FEATURES

5.4 Summary

In this chapter, we have considered a number of existing methods for the extraction of situated
lexical features from phishing URLs. We discussed how the use of an internal model enables
the exploitation of language within URLs—something which cannot be achieved using simple
lexical features. In section 5.2, our attention was directed towards the use of a bag of words
approach to represent the terms present within URLs. It was described how URLs could be
tokenised and applied to a bag of words model, and we identified that this approach results in
a loss of positional information. We then reviewed a number of existing methods for encoding
positional information into a bag of words model, including the use of n-grams from tokens,
n-grams from the URL and explicit encoding within the term itself. Limitations to each of
these approaches were identified, informing a discussion of our approach to situated feature
extraction and selection.

In section 5.3.1, we described our process for extracting token-based n-gram segments from
the URL, and our novel method of positional encoding. We discovered that this approach
produced infeasibly large feature spaces, and so, in section 5.3.2, we investigated the use
of inverse document frequency and metric entropy for dimensionality reduction in an online
context.

In the next chapter, we move on to discuss online learning in greater depth, as well as detailing
the implementation of our classifier.
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6.1 Overview

In this chapter, we discuss online learning in greater detail. In particular, we describe the
implementation of an ensemble learning method as an extension to the Hoeffding tree.

In section 6.2, we define the classification problem and examine online learning in contrast
to batch-based approaches.

Section 6.3 focusses on decision trees. Here, we describe the fundamental principles behind
decision trees, and identify the Hoeffding tree as a particular method for online learning.

We then move on to discuss an existing implementation of the Hoeffding tree, known as the
“Very Fast Decision Tree”—or VFDT (section 6.4). In section 6.5, we develop a number of
improvements upon the VFDT for use within our work.

Finally, in section 6.6, we consider random forests as a potential method of improving the
Hoeffding tree, and detail the implementation of an online random forest classifier using our
modified VFDT.

6.2 Background

6.2.1 The Classification Problem

Given two or more distinct classes of data, classification may be broadly described as taking
some input data and assigning it to a particular class (Alpaydin, 2010). Ideally, we wish to
assign the input data to the class that it actually belongs to. This is achieved through the use
of discriminants and a predictor. Alpaydin (2010) defines a discriminant as a function that
separates the examples of different classes. A predictor makes use of one or more discriminants
to select the most likely class given the discriminants of previous examples.

More concretely: We define a discriminant as some function f mapping raw observational
data, D, to some value, x = f(D) : x ∈ R.

Given some set of discriminants F = {f1, f2, ..., fn}, we can define a feature vector X in d ≤ n
dimensions as X = 〈x1, x2, ..., xd〉, where xi = fi(D) : fi ∈ F

Given a set of N distinct classes Y , and an example set of feature vectors T of the form
ti = (X, y) : y ∈ Y , we can construct a predictor g through some training process t : T 7→ g.

The predictor function g maps some feature vector X to a class y ∈ Y such that:

p(y) = max
1≤i≤N

p(yi|T )

Thus, our classification problem becomes:

Produce some predictor, y = g(X) such that the class y for some unseen feature vector X
can be accurately predicted.
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6.2.2 Binary Classification

Our classification problem is binary, that is, our set of possible classes consists of only two
elements: phishing and benign. We can refine our earlier definition of the classification
problem for the binary case. For binary classification, we need only consider the probability
of belonging to one of our two classes: the positive class. Given some feature vector X, and
our classes Y = y1, y2 our predictor function g can be redefined as a function mapping X to
some class y ∈ Y such that:

g(X) =

{
y2, if p(y2) > ρ

y1, otherwise

Where y2 is the positive class, y1 is the negative class and ρ is some confidence bound. In our
work, we define “phishing” to be the positive class, and “benign” to be the negative class.

The use of a confidence bound allows us to find a trade-off between the number of false
positives and the recall of the classifier. This is useful to us because marking benign sites
as phishing could potentially cause more harm than marking a phishing site as benign, and
using a confidence bound enables tuning the classifier towards minimising this risk. This is
discussed in further detail in section 7.2.2, where we consider how to select an optimum value
for ρ

6.2.3 Batch vs Online learning

Traditional approaches to solving the classification problem use batch-based methodologies
(Blum et al., 2010). In batch learning, all of the training data is available simultaneously,
and an optimal predictor is generated using the training data in a single ‘batch’. Once
the classifier has been trained, the predictor is never updated again. If the distribution
being modelled changes, then the classifier must be re-built using a new batch of training
examples (Le, Markopoulou and Faloutsos, 2011). Because the entire sample of data is
available, batch-based approaches can make more informed statistical decisions, and as such
are known to generalise well (Blum et al., 2010). Batch-based approaches have a number
of disadvantages, however. The training process requires the entire data set to be loaded
into memory, which may not be feasible for massive amounts of data (Domingos and Hulten,
2000; Le, Markopoulou and Faloutsos, 2011). In addition, as touched upon previously, models
produced with a batch-based approach cannot react to changing distributions, and as a result
require frequent re-training in order to stay up to date (Blum et al., 2010; Whittaker, Ryner
and Nazif, 2010). These limitations are particularly disabling in the case of phishing URL
classification, due to the massive number of URLs and their dynamic nature (Le, Markopoulou
and Faloutsos, 2011; Blum et al., 2010).

In contrast to batch learning, online learning methods update the predictor continuously,
with training instances arriving in a sequential fashion (Le, Markopoulou and Faloutsos,
2011; Saffari et al., 2009). As the data is handled one item at a time, the memory required
by online learning methods is often far less than that of a batch-based approach (Blum et al.,
2010), and the process of training is often much faster (Le, Markopoulou and Faloutsos, 2011).
It has been shown that online algorithms can incrementally adapt to changing data (Ma et al.,
2011), making them more applicable than batch learning when dealing with non-stationary
data (Laskov et al., 2006).

Due to the rapidly changing nature of phishing URLs, it is important that our chosen method
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responds quickly in order to remain effective (Blum et al., 2010). This makes online learn-
ing the better choice for our application, due to the low training latency, minimal resource
requirements and the ability to update the predictor continuously.

6.3 Decision Trees

6.3.1 Outline

Decision trees are a popular choice of classifier for the problem of phishing site classification
(Ludl et al., 2007; James, L. and Thomas, 2013; V and A, 2014). Much of the current
literature explores the use of various batch learning decision trees such as C4.5 and CART to
achieve high precision with impressive processing rates (James, L. and Thomas, 2013; V and
A, 2014). Because high processing rates are critical in ensuring that our system provides the
most effective protection possible (Blum et al., 2010), we have selected a tree-based prediction
model for use this project.

In general, decision trees represent the classification problem space in the form of a tree
structure, where nodes of the tree represent a test on some particular feature, and each
branch of the tree represents a possible outcome of said test. Leaves of the tree correspond
to a particular class prediction, and as such the predicted class of a particular feature vector
can be calculated by traversing the tree, starting at the root node and following the branches
based on the tests until a leaf node is reached. Learning is achieved by replacing leaves with
nodes, where the “best” attribute to test on is given by some heuristic measure. Batch-based
decision trees are able to iteratively expand the model using the entire data set, until some
desired precision or model depth is met—or the maximum number of iterations is exceeded.
Due to the structure of decision trees, predictions can be made in O(log n) time, leading to
fast processing rates with high prediction accuracies (Saffari et al., 2009).

6.3.2 Hoeffding Trees

Hoeffding Trees provide a way of building decision trees in an online fashion (Domingos and
Hulten, 2000). The main problem with the construction of an online decision tree is deciding
the minimum number of examples that are required at a node before a test can be selected.
Hoeffding Trees use a statistical measure, known as the Hoeffding bound, to decide whether
a sufficient number of examples have accumulated at a node to be able to make a decision
with a confidence greater than some specified minimum.

Hoeffding’s Inequality

Hoeffding’s Inequality provides a bound on the probability that the mean of n real valued
random variables xi ∈ X deviates from it’s expected value (Domingos and Hulten, 2000).
Let x0, ..., xn be independent random variables strictly bounded by the interval [ai, bi]. We
can define the empirical mean of these variables by

X =
1

n

n∑
i=1

xi

53



CHAPTER 6. ONLINE LEARNING

Hoeffding’s inequality states that

P(X − E(X) ≥ ε) ≤ exp

(
− 2nε2

R2

)

Where R =
∑n

i=1(bi − ai), the range of the random variable x.

That is, that the probability of the observed mean deviating from the expected mean by at
least ε is bounded by some value relative to the number of observations. Therefore, given
some probability δ, we can say with confidence 1−δ that the true mean of some feature given
n observations is at least X − ε. We can derive a value for ε in the following fashion:

δ ≤ exp

(
− 2nε2

R2

)

ln(1)− ln(δ) ≥ 2nε2

R2

R2ln

(
1

δ

)
≥ 2nε2

ε2 ≤
R2ln

(
1
δ

)
2n

ε ≤

√
R2ln

(
1
δ

)
2n

Thus, we can form a conservative estimate of the deviation from the mean using the maximum
bound of the value for ε above. This bound is known as the Hoeffding bound.

Using the Hoeffding Bound

As mentioned previously, in order to select a feature to test on at a particular node, some
heuristic measure G(xi) is needed. In the case of our implementation, this measure is infor-
mation gain, however, alternatives—such as the Gini index—do exist (Domingos and Hulten,
2000).

At each leaf l of the tree, we store the frequencies of each of the n observed values of every
feature xi in every training vector X, for each class y ∈ Y . From these values, we can
calculate the entropy of the leaf E(l) as a measure of the balance between the classes of the
accumulated examples. The entropy E(l) of the leaf l can be expressed as follows:

E(l) = −
∑
∀y∈Y

p(y|l) log2 p(y|l)

Where p(y) is the probability of observing the class y given the examples that we have
accumulated at node l.

Given some value v for a feature xi, we can define the entropy E(xi, v, l) at leaf l as follows:
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E(xi, v, l) = −
∑
∀y∈Y

p(y|v, xi, l)
p(v|xi, l)

log2
p(y|v, xi, l)
p(v|xi, l)

Where p(y|v, xi, l) is the probability of observing class y given a value of v and feature xi at
node l, and p(v|xi, l) the probability of observing value v given feature xi.

Following this, we can calculate the weighted sum E(xi, l) of the entropies of all observed
values V = {v1, v2, ..., vd} for the feature xi at leaf l:

E(xi, l) =

n=d∑
n=1

l(vn|xi)
N

E(xi, vn, l)

Where l(vn|xi) is the number of examples observed with value vn for feature xi at node l,
and N the total number of examples seen at l.

Using this, we can compute the information gain G(xi, l) provided by splitting on some feature
xi at leaf l by subtracting the weighted entropy sum of the feature from the entropy of the
leaf:

G(xi, l) = E(l)− E(xi, l)

Using the Hoeffding bound, we can provide a probabalistic confidence that the feature chosen
to split on using n observations (where n is as small as possible) is the same as would be chosen
given infinite observations (Domingos and Hulten, 2000). In the case of information gain, we
wish to maximise G, where xa is the feature with the largest observed G after n observations,
and xb is the feature with the second largest. Let ∆G = G(xa, l) − G(xb, l) ≥ 0 be the
difference in their information gains. Given a desired δ, the Hoeffding bound guarantees that
xa is the correct choice with probability 1− δ after n observations if ∆G > ε (Domingos and
Hulten, 2000).

Upon selecting some feature xa to split the leaf l, the value to split on is calculated using the
weighted mean Xa of the observed values V = {v1, v2, ..., vn} for xa:

Xa =

i=n∑
i=1

vi
l(vi|xa)
N

Where l(vi|xi) is the frequency of examples at l given value vi and feature xa, and N is the
total number examples observed at l.

When classifying future examples, the value of the feature xa is considered, and the example
passed to the left child unless the value of xa is greater than Xa, in which case it is sent
to the right child. This process is repeated along the branches of the tree until a leaf node
is reached. Here, a prediction g(X) is given using our binary classification rule defined in
section 6.2.2:

g(X) =

{
y2, if p(y2) > ρ

y1, otherwise

Where y2 is the positive class (phishing), and y1 the negative class (benign).
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The Hoeffding Tree Algorithm

We summarise the Hoeffding tree training algorithm used in our work in algorithm 1. The
Hoeffding tree classification algorithm is detailed in algorithm 2.

for training example (X = 〈x1, x2, ..., xn〉,y) in data stream S do
sort (X,y) into a leaf node l using the existing tree
for each value xi ∈ X do

update the feature-value count l(xi, v, c) in leaf l
end
if the examples at leaf l are not all of the same class then

compute the entropy of l, E0 = E(l)
for each feature index 1 ≤ i ≤ n do

compute the weighted sum Ei = E(xi, l)
compute the information gain Gi = G(xi, l) = E0 − Ei

end

xa ← max
1≤i≤n

(Gi)

xb ← max
1≤i≤n|i 6=a

(Gi)

compute the hoeffding bound, ε
if G(xa)−G(xb) > ε then

split l on xa
set the split value as the weighted mean Xa

remove the feature-value counts for leaf l
end

end

end
Algorithm 1: A summary of the Hoeffding tree training algorithm, based on the work of
Domingos and Hulten (2000).

for instance (X = 〈x1, x2, ..., xn〉,y) in data stream S do
n← root note
while n is not a leaf node do

a← split attribute for node n
Xa ← split value for node n
if xa > Xa then

n← right child node
else

n← left child node
end

end
y1 ← negative class
y2 ← positive class
if p(y2|n) > ρ then

return y2
else

return y1
end

end
Algorithm 2: A summary of the Hoeffding tree classification algorithm, based on the work
of Domingos and Hulten (2000).
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6.4 Very Fast Decision Trees

The “Very Fast Decision Tree”, or VFDT, is an implementation of the Hoeffding tree—
described in the work of Domingos and Hulten (2000). The VFDT model extends the Hoeffd-
ing tree algorithm, proposing a number of optimisations to make the model more applicable
to the real-world. We carry a number of these optimisations over into our own work, which
we discuss in the following sections.

6.4.1 Tie Confidence

In sections 6.3.2 and 6.3.2, we discussed our use of the hoeffding bound in identifying the
best attribute to split a node on given some minimum confidence 1− δ. The ‘best’ attribute
xa for some leaf l was defined as the attribute with the highest information gain G(xa, l). If
the difference between G(xa, l) and the information gain of the second best attribute G(xb, l)
is greater than the Hoeffding bound ε given n observations, we select xa as the attribute
to split on. In the case where there is little difference between the information gain of xa
and xb, a large number of examples would be required to reach a decision, which is wasteful
(Domingos and Hulten, 2000). To overcome this, we define a tie confidence, τ , such that we
always split on xa if ∆G < ε < τ (Domingos and Hulten, 2000). Whilst this means that we
sometimes have less confidence in the decision to split, we are able to move past potentially
expensive decisions—allowing the model to continue to grow.

6.4.2 Split Threshold

According to Domingos and Hulten (2000), the majority of the time cost during training
occurs when computing the information gain for each feature. It is unlikely that the infor-
mation gain of any particular feature will change dramatically between any two consecutive
samples, and so it is therefore inefficient to recompute information gain for every example
(Domingos and Hulten, 2000). To avoid this, we define a split threshold nmin to represent
the minimum number of new examples required at a node before splitting the node may be
re-considered. This effectively reduces the time cost of computing the information gain by a
factor of nmin (Domingos and Hulten, 2000), improving the rate of training.

6.4.3 Leaf Deactivation

As the number of leaves within the tree increases, so does the memory required to store
the frequencies of the values observed (Domingos and Hulten, 2000). In order to conserve
memory and therefore construct a larger model, we deactivate nodes once the confidence in a
positive classification at that node exceeds the specified confidence bound, ρ. Once a node is
deactivated, the majority of the frequency information is discarded and the node is no longer
considered for splitting. The only data maintained by a deactivated node are the frequencies
of the classes of each example, and the total number of examples observed. These values
must be maintained and updated to ensure that we can re-activate the node in the event
that the confidence drops below the confidence bound. Nodes are considered for re-activation
periodically, after every 1000 training examples.

This is safe to do so as we only require a particular confidence in the predictions, ρ. Refining
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a node beyond the confidence bound does not benefit us as much as reclaiming some of the
resources held by said node.

6.5 Building Upon VFDT

The original implementation of VFDT by Domingos and Hulten (2000) is written in C, and—
as a proof-of-concept—omits a number of features that could potentially be useful in a real
world deployment. Our implementation, written in Java, builds upon VFDT by providing a
number of extra features, discussed in the following sections.

6.5.1 Stabilising Prediction Confidence

In the original VFDT training algorithm, nodes are split in a binary fashion into two child
nodes. Upon splitting, each of these child nodes becomes a leaf node, and the frequency
data of the parent node is discarded. Due to the structure of the frequency information,
it is impossible to reconstruct the examples seen by the parent node, and as a result, this
information cannot be passed down to the child nodes. This means that the child nodes are
initialised with no previous examples, causing the positive prediction confidence to drop to
zero. This could result in incorrect classifications, as the online nature of the classifier means
that prediction can occur at any point during the training process. For example, given the
confidence bound ρ = 0.7, a node with a positive prediction confidence of 0.76 would yield
the class “phishing”. If the decision was then made to split this node, the positive prediction
confidence would drop to 0.0, despite the fact that any examples reaching the node would
very likely be phishing.

This fluctuation in the positive prediction confidence not only presents an opportunity for
both false positives and false negatives to arise, but could also cause unwanted side-effects
in systems utilising the numerical value of the prediction confidence. If a customer facing
toolbar, for example, was to display the positive prediction confidence as a “likelihood” of
a URL being suspicious, the large fluctuations in values—even given the same URL—would
make the toolbar appear less trustworthy.

To address this, we introduce the concept of a learning node alongside leaf nodes. When
splitting a leaf node into two child nodes, the child nodes become learning nodes, and the
parent remains a leaf node. Training examples are filtered all the way down the tree to the
learning nodes, where the training process occurs as normal. Learning nodes become leaf
nodes once the difference in entropy between the parent node and the current node is less
than the Hoeffding bound calculated from the current node. This ensures that the learning
node is not used for classification until the fluctuation has settled down, and an appropriate
number of examples have been observed. As a result, the positive prediction confidence
changes less dramatically over time. Once both children become leaf nodes, the resources
used by the parent for maining frequency data may be freed for use elsewhere.

One limitation of this practice is that it may take some time before newly created nodes
contribute to the prediction, resulting in a slightly less accurate model than the original
VFDT given the same data.

58



CHAPTER 6. ONLINE LEARNING

6.5.2 Variable-Length Vectors

The original VFDT implementation assumed that the length of the feature vectors would
remain constant throughout the operation of the classifier. This limitation makes it impossible
to use a bag-of-words feature extraction methods such as those detailed in chapter 5. Our
implementation uses data structures that are capable of expansion, to ensure that the classifier
can cope with changing dimensionality.

The addition of this feature also provided us with the opportunity to exploit hashing to reduce
the amount of resources required to store frequency data at each node. The original VFDT
implementation stores frequency data in three-dimensional arrays indexed by feature index,
feature value and class. Inevitably, this approach wastes memory by having to store zero
values, and restricts the range of the values allowed for each feature. Our approach uses the
Java ArrayList to store frequency entries for each feature in a variable-sized vector. Each
entry in the ArrayList contains a HashMap mapping the observed values of that particular
feature to a Tuple of integers. This tuple represents the number of examples observed for
each class, positive and negative. By using hash-mapping to store the frequencies of values
for each feature, we avoid the need to allocate memory for values that are never observed,
whilst also allowing for a greater variation in feature values.

6.5.3 Database Utilisation

Due to the large number of training instances required to build the VFDT model (Domingos
and Hulten, 2000), it is beneficial to have the ability to save the state of the model at regular
intervals in order to ensure that the model can be reconstructed in the event of a system
failure. Our implementation utilises the H2 1 database for this purpose. Database updates
are enqueued whenever a node is split, activated or deactivated. These updates are then
periodically committed to the database in an asynchronous fashion so as not to interrupt
training and classification. In the event that the system must be restarted, the predictor
model can be rebuilt from the state contained within the database.

For our bag of words approach, the use of a database also allows us to offload the dictionary
onto the disk. This is particularly beneficial to us as the dimensionality of the dictionary
increases over time. Using disk storage as opposed to RAM storage for modelling the dictio-
nary allows the system to run over a much longer period of time—ensuring that we are fully
exploiting the benefits of online learning.

6.5.4 Web API

The processing rate benchmarks for content-based classification, provided in the work of
Whittaker, Ryner and Nazif (2010), were obtained from a large-scale system. In order to
make our results more comparable to such a system, our implemented system utilises both
a database and a JSON web API. URLs may be enqueued for training using the train

endpoint, as demonstrated below:

Endpoint request: /train?url=<encoded url>&label=PHISHING

Response: {"submitted":true}
1http://www.h2database.com/html/main.html
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Similarly, up two four simultaneous classifications can be requested via the classify end-
point:

Endpoint request: /classify?url=<encoded url>

Response: {"result":"PHISHING","confidence":0.9238371441686885}

6.6 Random Forests

6.6.1 Outline

Random forests are an example of an ensemble prediction method, which means that they
exploit a collection of simpler predictor models in order to produce a classification. More
specifically, random forests are a collection of tree predictors where each tree depends on a
random subset of both the training data and the features within the vectors themselves—
sampled independently and with the same distribution for all trees in the forest (Breiman,
2001). During prediction, each tree casts a ‘vote’ and the most popular class is selected
(Breiman, 2001).

The rationale behind the random forest methodology is that by training each tree on a subset
of the available features, different trees will become more or less effective at recognising
particular features than others. By combining the outputs of these trees into a majority,
the resulting system becomes more robust to noisy data (Breiman, 2001). Because random
forests still utilise tree-based models, they have been shown to be faster than other boosting
alternatives, such as AdaBoost, whilst still maintaining a comparable prediction accuracy
(Saffari et al., 2009; Breiman, 2001). This is attractive to us, as it is unlikely that the
training data provided to our classifier is a complete ground truth (see section 7.1). Random
forests provide us with a straightforward method of improving the prediction accuracy of our
VFDT-based system, with little sacrifice in terms of processing speed.

6.6.2 The Online Random Hoeffding Forest

In a batch learning context, bagging is often used to train each decision tree on a subset of
the training examples (Breiman, 2001). This is where a random selection of the training data
is chosen without replacement, such that the distribution of training examples is the same
across all of the decision tress in the forest (Breiman, 2001). In order to construct an online
random forest from our VFDT-based system, we use an online bagging method identified in
the work of Saffari et al. (2009). Because the training samples arrive one at a time in an
online context, we cannot select a subset of the training data in the same way as batch-based
bagging. Instead, for each new training sample, each tree is trained k times in a row using the
sample, where k is a random number generated from a Poisson distribution centred around 1
(Saffari et al., 2009). It has been proven that, given enough samples, this method converges
to same result as traditional batch-based bagging approaches (Oza and Russell, 2001).

In addition to the sampling described above, each decision tree considers a random subset
of the available features when deciding the node to split upon. The proportion of features
considered is controlled by the inclusion bound, µ.

We refer to our online random forest as the “Online Random Hoeffding Forest”. To the best
of our knowledge, a VFDT-based online random forest has never been developed using the
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methods described in this chapter—and certainly hasn’t been applied before in the context
of online phishing URL classification.

6.6.3 Adapting To Changing Distributions

Despite their speed and respectable prediction accuracy, tree-based prediction models suffer
an inherent limitation due to the nature of their structure. Once the decision to split at a
particular node has been made, there is no way to re-evaluate the decision without discarding
the rest of the tree below said node (Saffari et al., 2009). This means that if the distribution
being modelled is dynamic, changes in the distribution may not be reflected in the prediction
model (Saffari et al., 2009).

This is particularly important to us, as the nature of phishing URLs is likely to change over
time as different phishing targets become popular, or as fraudsters develop new practices
(Blum et al., 2010). We hope to mitigate this through the selection of an online classifier,
as the model can always generate new branches in response to changes in the training data.
This is not a perfect solution, however, and inevitably the classifier will have to be re-trained
from the ground up if the modelled distribution changes significantly. We believe that this is
only likely to occur over a period of months or years, so the benefit over batch-based methods
of not having to re-train the classifier every week is not lost.

One potential method of ensuring that the model can adapt to changing data is provided
in the work of (Saffari et al., 2009). Here, they suggest the continual removal of the most
erronious tree from the random forest, replacing it with a new tree. Unfortunately, due to
time constraints, we could not explore this possibility; however, we believe this to be an
interesting area for future development.

6.7 Summary

In this chapter, we have discussed online learning, and given details of the online random
forest classifier that has been developed as part of this project.

In section 6.2, we defined the classification problem, and described online learning approaches
in contrast with traditional batch learning. Here we discussed how online learning approaches
are faster and less resource intensive than batch learning methods, making online learning
the better choice for the classification of phishing URLs.

Section 6.3 reviews decision trees as a form of predictor modelling. We showed that decision
trees are a popular choice amongst previous research, and that due to their structure they
can perform classification in O(log n) time. Given the fast processing rates and impressive
prediction accuracies of decision trees from previous literature, we selected the decision tree
as our prediction model for this dissertation. We then expanded upon the use of decision
trees in an online context, detailing the particular algorithm used in our work, the Hoeffding
tree. The Hoeffding tree exploits a statistic known as the Hoeffding bound to decide whether
a node in the tree should be split given the number of examples observed.

Following this, in section 6.4, we described an existing implementation of the Hoeffding
tree—written in C—the Very Fast Decision Tree. We identified a number of optimisations
from VFDT—namely the use of a tie confidence, split threshold and leaf deactivation—and
described how each of these optimisations was included within our own work.
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In section 6.5, we described a number of innovations made within our implemented system
to improve upon the limitations of the previous VFDT implementation. The notion of a
learning node was introduced to smooth out the fluctuations in prediction confidence that had
been observed with the previous VFDT methodology. Memory efficiency was also improved
through the use of hashing, and the flexibility of the model was improved to cope with
variable-length feature vectors. The use of a database to reduce memory usage and to rebuild
the predictor model in the case of system failure was described. A JSON web API was also
developed to ensure that our results are comparable to those drawn from large-scale systems.

Finally, in section 6.6, we explored random forests as a method of improving tree-based
classifiers. Here, we covered our implementation of the online random Hoeffding tree, which—
to the best of our knowledge—is unique in the field of phishing URL classification.

In the following chapter, we turn our attention to experimental design, detailing our methods
of data collection and the empirical evaluation of our classifier and various lexical feature
sets.
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7.1 Data Sets

7.1.1 Data Collection

One of the biggest challenges faced in previous work is the collection of a representative
sample of URLs (Khonji, Iraqi and Jones, 2011; Baykan et al., 2009). The sheer volume of
potential phishing targets means that collecting a sufficient number of example URLs is often
a time consuming process. To make matters worse, anti-phishing organisations rarely provide
phishing URL data for free, as such data forms a profitable part of their business. As a result,
the majority of previous work draws phishing samples from PhishTank 1, which is a free
service operated by OpenDNS (Huh and Kim, 2012; Huang, Qian and Wang, 2012; V and A,
2014). PhishTank relies on a community of users to submit and verify active phishing attacks.
Due to the manual nature of the verification process, the volume of URLs identified forms
only a subset of phishing attacks on the whole. In June of 2016, the PhishTank community
verified 16,360 phishing sites (PhishTank, 2016)—a mere 10% of the 158,782 unique attacks
identified by the APWG during the same period (APWG, 2016). This means that it could
take months to acquire enough data to simulate even a single month of operation in the real
world. Furthermore, because the sites on PhishTank are verified by users it is possible that
only the more obvious phishing URLs will be identified. This casts some doubt over whether
PhishTank URLs can form a truly representative sample of the real-world distribution of
phishing URLs.

This dissertation overcomes these limitations by using real-world phishing data provided
by the anti-phishing organisation, Netcraft 2. Netcraft’s anti-phishing systems have been
operating since 2005, with over 31.6 million unique phishing sites detected as of April 2017
(Netcraft, 2017). Our phishing data set consists of the unique phishing URLs that were
detected and blocked by Netcraft during the months of April, May, June, July, August and
September of 2016. This comes to a total of 3,772,994 phishing URLs, which—to the best
of our knowledge—is the largest collection of phishing URLs ever applied in the context of
online lexical phishing URL detection.

Collecting a sample of benign URLs presented us with a challenge. This is because URLs that
have been submitted to anti-phishing services, such as Netcraft, are inherently suspicious in
nature, whether they are blocked or not. We therefore decided that collecting benign URLs
from Netcraft would not be representative of the real world. Instead, we used an open source
web crawler (Ganjisaffar, 2017) to collect benign URLs. One potential problem with this
approach is that there is no way to guarantee that the sites collected will be benign. In order
to minimise the likelihood of crawling a phishing site, we began by crawling pages from DMOZ
3; a peer-reviewed directory of websites. We chose to use DMOZ as it’s peer-reviewed nature
makes it less likely to contain phishing sites—though we still cannot discount the possibility
of a compromised site making it into our dataset. Our decision was also influenced by a
number of related studies that also utilised DMOZ for the collection of benign URLs (V
and A, 2014; Feroz and Mengel, 2015; Le, Markopoulou and Faloutsos, 2011). The crawling
process fetches the HTML content of a URL, extracts the URL links within the content and
then repeats this process for the newly discovered URLs. To ensure that our sample did not
contain large numbers of URLs from any one site, the maximum number of URLs crawled

1https://phishtank.com/
2https://netcraft.com/
3http://www.dmoz.org/
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for a particular hostname was set to five. By setting a maximum value to five, it ensures
that we collect URLs from pages other than the front page—giving us greater variety in URL
structure—whilst ensuring that no one site is unfairly represented. The web crawler ran for
seven days from the 5th of January 2017 to the 12th, collecting 3,772,994 URLs—giving us
an equal proportion of phishing and benign URLs, and bringing the total number of URLs
in the data set to 7,545,988. An important thing to note here is that the benign URLs were
collected over a matter of days, whilst our phishing dataset was collected over the course of
six months. The difference in time-scales during data collection presents a possible limitation
of our study, however, we believe it to be a safe assumption that benign URLs change less
over time than phishing URLs. This is because phishing URLs are released in campaigns
targeting specific organisations, making it highly likely that the URLs seen will change from
day to day as different targets become popular. The appearance of benign URLs is only likely
to change as new development practices and tools are adopted, which could take months or
even years.

7.1.2 Training and Testing Sets

Figure 7.1 shows the number of phishing URLs collected from Netcraft during the months
from April to September of 2016. Our set of benign URLs was distributed between each
of these months such that the number of phishing and benign URLs for each month were
equal. The data for each month was then split into training and testing sets using an 80-20
training-testing split. Table 7.1 shows the size of each resulting set of data.
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Figure 7.1: A histogram of the number of phishing URLs in our data set, categorised by the
month in which they were collected.
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Month (2016)
Number of URLs
Training Testing Total

April 651,674 162,920 814,594

May 1,195,028 298,756 1,493,784

June 1,023,946 255,986 1,279,932

July 971,894 242,974 1,214,868

August 1,078,364 269,592 1,347,956

September 1,115,886 278,971 1,394,857

Total 6,036,792 1,509,199 7,545,991

Table 7.1: A monthly breakdown of the number of URLs in our training and testing sets.

7.2 Optimisation

7.2.1 Performance Measures For Binary Classification

In order to discuss optimisation, we must first define a number of performance measures
for use during our empirical investigation. Given some binary classification problem, the
outcome will be one of four distinct possibilities (Powers, 2011). In the case where the real
class of an item is the positive class, the classifier can either correctly label the item with
the positive class (a true positive, tp), or incorrectly with the negative class (a false negative,
fn). Conversely, in the case where the real class of an item is the negative class, the classifier
can either correctly label the item with the negative class (a true negative, tn), or incorrectly
with the positive class (a false positive, fp). This is demonstrated visually in table 7.2. We
can derive further performance measures from these four simple statistics:

1. Precision. The precision of a binary classifier represents the confidence in a positive
prediction, that is, the probability that the result is correct given a positive classification
(Powers, 2011). Precision is expressed as follows:

precision =

∑
tp∑

tp +
∑

fp

2. Recall/True Positive Rate. The recall, or true positive rate (tpr), of a binary clas-
sifier represents the likelihood of correctly classifying an item belonging to the positive
class (Powers, 2011). Recall can be expressed as follows:

recall =

∑
tp∑

tp +
∑

fn

3. Fall-Out/False Positive Rate. The fall-out, or false positive rate (fpr) of a binary
classifier represents the probability of incorrectly classifying an item as belonging to the
positive class (Powers, 2011). Fall-Out is defined by the following expression:

fall-out =

∑
fp∑

fp +
∑

tn
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Real Positive Real Negative

Predicted Positive true positive false positive

Predicted Negative false negative true negative

Table 7.2: A visual representation of true positive, false positive, false negative and true
negative in the context of binary classification.

Whilst further performance measures exist, precision, recall and fall-out are the most appli-
cable to our problem. When using a binary classifier to identify phishing URLs, the positive
class represents a classification of “phishing”, and the negative class a classification of “be-
nign”. Classifying a benign site as phishing, i.e. generating a false positive, could result in
unnecessary service interruptions for the owner of the site, making it critical that we avoid
false positives as much as possible. The fall-out is therefore an important statistic, as it
allows us to assess the likelihood of this occurring. Precision is also a useful statistic here,
as it provides a measure of our confidence in classifying a site as phishing. In addition, if we
wish for our classifier to be effective in mitigating the threat of phishing, we must ensure that
the majority of phishing sites are being caught. Recall allows us to measure this, however,
by maximising recall we will also introduce a greater number of false positives (Cortes and
Mohri, 2004).

We can visualise this trade-off using the Receiver Operating Characteristic, or ROC. The ROC
plots recall as a function of fall-out (Cortes and Mohri, 2004). An example of this is shown
in figure 7.2. Ideally, we wish to find the optimum balance between recall and fall-out such
that we are catching as many phishing URLs as possible whilst minimising false positives.
By measuring the area under the ROC curve (AUC), we can place a value on this trade-off,
as a larger AUC means that the recall is closer to 1.0 and the false positive rate closer to 0.0.
The AUC can be estimated using the following expression (Powers, 2011; Cortes and Mohri,
2004):

AUC =
tpr− fpr + 1

2

The performance measures discussed above will be used extensively in the following sections,
as we discuss parameter optimisation and the empirical evaluation of our feature sets. All of
the experiments detailed within this chapter were performed on an Intel i7-6560U @ 2.20GHz
using a single thread.
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Figure 7.2: An example ROC curve. The dotted line represents the expected curve of a
random classifier.
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7.2.2 Optimising Model Parameters

Before we can use our classifier in our empirical experimentation, we need to select sensible
values for each of the classifier’s parameters. The online random forest classifier that we have
implemented has six different parameters, shown below.

δ Split confidence

The maximum probability that our decision to split on a
particular feature is incorrect. Lower values are more
likely to produce an accurate model, at the risk of
increased computational expense.

τ Tie confidence

The minimum difference in information gain considered
to be significant. Lower values will lead to an increase
in the accumulation of examples at inseparable nodes,
potentially wasting computational time.

nmin Split threshold

The minimum number of examples required at a node
before it will be considered for splitting. Lower values
will result in a deeper, potentially more accurate, model
but will also increase computational complexity.

µ Inclusion bound
The proportion of features to be considered when
splitting a node. Higher values will increase the
similarity between trees within the random forest.

ρ Confidence bound
The minimum confidence required to classify a URL as
phishing. Lower values will decrease precision in favour
of increased recall, and vice-versa.

N Ensemble size
The number of trees within the random forest. Higher
values are likely to lead to a more accurate model, but
will also increase resource usage.

The problem of parameter optimisation is combinatorially complex, and it is often unclear as
to which combination of values will provide the best performance (Domingos, 2012). This is
confounded further by the possible existence of multiple sets of optimum values (Domingos,
2012). A wide variety of optimisation methods exist, each of varying levels of complex-
ity. Popular combinatorial optimisation techniques include greedy search (Feo and Resende,
1995), beam search (Ponte, Paquete and Figueira, 2012) and branch-and-bound (Domingos,
2012; Feo and Resende, 1995). Continuous methods of optimisation have also been explored,
with examples including gradient descent (Domingos, 2012) and Quasi-Newton methods (Gill
and Murray, 1972).

Due to time constraints, we employ a somewhat naive grid-search technique to find suitable
values for five out of our six parameters. First, we choose initial values for each parameter—
informed by recommendations from the surrounding literature (see “Default Value” in table
7.3). Once our initial values are chosen, the value of each parameter is varied and the AUC
and rates of training and classification recorded as our performance measures. Enumerating
all of the possible combinations of values for all five parameters simultaneously proves to
be too time consuming for our project time-scale, so instead we vary the value of a single
parameter at a time, fixing the value once an optimum configuration is reached. Values for
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Parameter Default Value Starting Value Maximum Value Increment Step

Split threshold 100 1 20,000 +5, 000

Split confidence 0.01 0.000001 0.1 ×10

Tie confidence 0.1 0.0 0.5 +0.1

Inclusion bound 0.5 0.1 1.0 +0.1

Ensemble size 12 1 200 +50

Table 7.3: The default values and ranges for each parameter in our broad grid-search. The
search is performed row by row, from top to bottom

.

each parameter are initially varied on a broad scale so as to provide a general indication of
where the optimal value is located. Table 7.3 shows the ranges of values used for the broad
grid search on each parameter, and the order in which we perform the search.

In order to perform the grid search optimisation, we train a random Hoeffding forest (see
section 6.6.2) using the existing simple lexical features identified in table A.1. As we wish to
later assess how well our model generalises to unseen data, the optimisation step uses only
the training data, split into a training set and a validation set. This training set consists
of 70% of the training data from April 2016 (456,172 URLs), and the validation set formed
from the remaining 30% of the training data from the same month (195,502 URLs). In
dividing the training data into training and validation sets, we ensure that the testing data
remains completely unseen—preventing over-fitting to the testing data. This is important in
ensuring that the results obtained from the use of the testing set are truly representative of
the generalised case.

Split Threshold

To optimise the split threshold, we first perform a broad search ranging from a value of 1 to
a value of 20,000. The results (see table 7.4) indicate that as the value of the split threshold
increases, the training rate increase from 7,191 to 25,771 but the AUC experiences a slight
decrease from 0.92716 to 0.88682. This aligns with our expectations, as increasing the split
threshold increases the number of examples required in order to consider splitting a node. An
increased number of examples means that splitting is considered less frequently, leading to
an increased training rate, however, the resulting tree will have fewer nodes and is therefore
less likely to reflect the data accurately.

In order to find a suitable trade-off between processing rate and accuracy, we perform a more
focussed search on values for the split threshold in the range of 1 to 450 (see table 7.5). Figure
7.3a confirms the positive correlation between training rate and the split threshold that was
observed in the broad search, increasing sharply between a split threshold of 1 and 50, and
then levelling off between 200 and 450. We also confirm a negative correlation between AUC
and the split threshold in figure 7.3b, decreasing from 0.92716 to 0.91324. Given these results,
we select 75 as our optimum value for split threshold as it is high enough that the increase
in training rate is beginning to level off, whilst the AUC suffers only a minor penalty.
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Split Threshold Training Rate (URL/s) Classification Rate (URL/s) AUC

1 7,191 25,164 0.92716

5,000 25,295 26,316 0.89968

10,000 25,444 24,444 0.88834

15,000 26,622 27,107 0.88575

20,000 25,771 27,350 0.88682

Table 7.4: Broad grid search optimisation results for varying values of nmin

Split Threshold Training Rate (URL/s) Classification Rate (URL/s) AUC

1 7,191 25,164 0.92716

50 17,051 24,009 0.92288

100 18,812 23,819 0.92474

150 19,043 25,310 0.91849

200 20,767 25,369 0.91748

250 21,729 25,365 0.91526

300 21,820 24,860 0.91375

350 21,533 24,411 0.91492

400 21,971 25,846 0.91422

450 21,503 24,084 0.91324

Table 7.5: Focussed grid search optimisation results for varying values of nmin
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Figure 7.3: Processing rates and AUC over varying values of nmin.

Split Confidence

To find a value for the split confidence, δ, we perform a grid search ranging from 0.000001
to 0.1. Table 7.6 shows the results of the search. We observe a minor increase in training
rate from 19,925 as the value of δ increases, with little apparent change in the AUC. Larger
values of δ require a lesser degree of confidence in the decision to split a node, and as such,
decrease the computational cost of calculating the information gain of each feature because
fewer examples need be considered. This leads to the minor increase in training rate observed
in Figure 7.4a—though it is far less significant than the increase observed when changing the
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split threshold. Due to the lack of any significant correlations, we selected a value of 0.00001
for δ as it provided the highest AUC of 0.91712 and the fastest classification rate of 25,854.

Split Confidence Training Rate (URL/s) Classification Rate (URL/s) AUC

0.000001 19,925 25,549 0.91448

0.00001 19,964 25,854 0.91712

0.0001 19,742 25,207 0.91565

0.001 20,057 25,321 0.91697

0.01 21,683 25,373 0.91556

0.1 21,994 25,281 0.91362

Table 7.6: Grid search optimisation results for varying values of δ
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Figure 7.4: Processing rates and AUC over varying values of δ.

Tie Confidence

To optimise the tie confidence, we first perform a broad grid search over values from 0.0 to
0.5 (see table 7.7). The results show an increase in training rate and AUC between 0.0 and
0.1. Beyond 0.1, we observe a decrease in the training rate from 20,473 to 14,918, whilst the
AUC continues to increase slightly. As the tie confidence increases from 0.0 to 0.1, less time
is spent deciding between attributes with similar information gains—therefore leading to an
increase in the training rate. Between 0.1 to 0.2, the cost of splitting nodes more frequently
begins to outweigh the benefit provided by the tie confidence, leading to the observed decrease
in training rate. Splitting nodes more frequently results in a deeper tree, however, which is
likely responsible for the observed increase in AUC.

We then perform a more focussed search between 0.1 and 0.2, in an attempt to identify the
point at which the cost of frequently splitting nodes outweighs the benefit of the tie confidence
(see table 7.8). Figure 7.5a shows a decrease in both classification and training rates, with
figure 7.5b confirming the increase in AUC observed earlier. Due to the inverse nature of
the correlations observed for processing rates and AUC, we select the midpoint, 0.15, as our
value for τ .
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Tie Confidence Training Rate (URL/s) Classification Rate (URL/s) AUC

0.0 18,389 25,768 0.91592

0.1 20,473 24,009 0.91999

0.2 19,318 22,472 0.92386

0.3 15,751 20,798 0.92656

0.4 14,803 20,795 0.92657

0.5 14,918 21,674 0.92630

Table 7.7: Broad grid search optimisation results for varying values of τ

Tie Confidence Training Rate (URL/s) Classification Rate (URL/s) AUC

0.1 20,473 24,009 0.91999

0.12 19,511 22,235 0.92270

0.14 19,346 21,437 0.92156

0.16 20,250 22,479 0.92277

0.18 19,765 22,642 0.92282

0.2 19,318 22,472 0.92386

Table 7.8: Focussed grid search optimisation results for varying values of τ
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Figure 7.5: Processing rates and AUC over varying values of τ .

Inclusion Bound

To optimise the value of the inclusion bound, µ, we perform a grid search over values from 0.1
to 1.0 (see 7.9). Figure 7.6a shows that the processing rates appear to increase slightly with an
increasing inclusion bound; which is at odds with our expectations. Given a larger inclusion
bound, a greater number of features are considered when splitting a node. Our immediate
assumption is that considering a larger subset of the features will increase the computational
expense—leading to a decrease in the rate of processing. One possible explanation for the
observed increase in the rate of processing is that by considering a larger subset of the features,
highly discriminative features are selected more often, leading to fewer examples accumulating
at each node. Fewer examples at each node means that calculating the information gain
for each feature is less expensive, leading to an increase in processing speed. Due to the
unexpected nature of these results, we select 0.6 as our value for µ, as it is one step above
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from the midpoint of 0.5.

Inclusion Bound Training Rate (URL/s) Classification Rate (URL/s) AUC

0.1 18,759 21,427 0.920479

0.2 18,200 22,982 0.922091

0.3 20,719 23,037 0.923776

0.4 20,538 22,898 0.922073

0.5 20,979 22,734 0.922684

0.6 20,010 23,189 0.922918

0.7 19,840 21,872 0.921621

0.8 20,596 22,791 0.922268

0.9 19,640 22,569 0.922341

1.0 19,826 23,434 0.923019

Table 7.9: Grid search optimisation results for varying values of µ
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Figure 7.6: Processing rates and AUC over varying values of µ.

Ensemble Size

To select an optimum value for the ensemble size, we first conduct a broad grid search on
values ranging from 1 to 200. The results (see table 7.10) show a strong negative correlation
between the ensemble size and the training rate, with a decrease from 35,614 to 1,321 between
1 and 200. This negative correlation is also observed in the classification rate, decreasing from
29,424 to 2,137. We do see an increase in AUC with increasing ensemble size, however the
effect is minimal.

A more focussed grid search is then conducted between an ensemble size of 1 and 50 (see
table 7.11). These results reflect the earlier observed decrease in training and classification
rates (see figure 7.7a). From figure 7.7b we can see that AUC increases sharply between 0
and 20, before beginning to level off. We select 15 as our value for N because it is high
enough to ensure that we gain the majority of the AUC increase, whilst minimising the cost
to the rate of processing.

73



CHAPTER 7. EMPIRICAL EVALUATION

Ensemble Size Training Rate (URL/s) Classification Rate (URL/s) AUC

1 35,614 29,424 0.914163

50 6,070 15,066 0.923192

100 3,043 14,900 0.924001

150 1,835 3,118 0.923190

200 1,321 2,137 0.923759

Table 7.10: Broad grid search optimisation results for varying values of N

Ensemble Size Training Rate (URL/s) Classification Rate (URL/s) AUC

1 35,614 29,424 0.914163

10 22,253 23,621 0.921427

20 13,891 21,120 0.923142

30 8,575 18,927 0.922933

40 7,034 17,032 0.923014

50 6,070 15,066 0.923192

Table 7.11: Focussed grid search optimisation results for varying values of N
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Figure 7.7: Processing rates and AUC over varying values of N .

Final Values

Table 7.12 summarises the optimum values selected through our optimisation process for
each of the five parameters. These values are used throughout the remainder of our empirical
evaluation.

Parameter Value

Split threshold 75

Split confidence 0.00001

Tie confidence 0.15

Inclusion bound 0.6

Ensemble size 15

Table 7.12: Final values for each parameter after optimisation
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7.2.3 Optimising Feature Extraction Parameters

In section 5.3.2, we detailed our use of IDF and metric entropy to reduce the dimensionality
of the dictionary for the situated feature sets. Because our classifier operates in an online
fashion, our approach to dimensionality reduction operates over a buffer of terms—the size of
which, we must decide upon. A larger term buffer gives us a greater sample of URLs, allowing
us to identify the most representative terms, as well as wasting fewer resources on terms that
are not interesting. The downside to using a larger buffer is that it is more difficult for terms
to enter the dictionary, which could impede our ability to react to a change in phishing URL
composition. We therefore need to find a value for the size of the term buffer that allows the
dictionary to grow in response to changes in URL composition, without making the dictionary
so large that it is unsustainable. Similarly to our model parameter optimisation in section
7.2.2, we employ a simple grid-search technique in order to achieve this.

Because we are interested in the rate of the dictionary growth over time—and its effect on
performance—each term buffer size is tested on a monthly basis over the six months of data
that we have available, rather than just a single month. Our training data for each month
is split into 70% training and 30% validation, with training and validation occurring in a
cumulative fashion so as to simulate a real-world deployment. During each simulated month,
the average rate of training is recorded. Once the training data for the month has been
processed, the validation set is used to calculate the AUC and the rate of classification. By
simulating the operation of the classifier over an extended period of time, we can select an
appropriate trade-off between the expected processing rates and the classification accuracy.

The size of the term buffer is varied from 100 to 100,000, with an incremental step of ×10.
Tables C.1, C.2, C.3 and C.4 show the results of the grid search. These results are summarised
in figures 7.8a and 7.8b. Figure 7.8a indicates that the optimum rate of processing is achieved
with a term buffer of between 1,000 and 10,000 items—with the rate of processing decreasing
either side of this margin. It is likely that a buffer smaller than 1,000 items introduces
too many useless terms into the dictionary—wasting time and resources—whilst a buffer
larger than 10,000 becomes so large that the time spent calculating the IDF values outweighs
the benefit of the dimensionality reduction. Figure 7.8b shows that a buffer size of 10,000
consistently produces the best classification rate for each month, and as a result, we selected
10,000 as our value for the term buffer size.
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Figure 7.8: Processing rates over varying term buffer sizes
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7.3 Evaluating Feature Set Performance

7.3.1 Simple Feature Importance

In this section, we evaluate the discriminative power of each of the 25 existing simple lexical
features identified in section 4.2, as well as each of the 23 novel simple lexical features that we
proposed in section 4.3. In order to achieve this, we exploit the natural feature selection that
occurs within our Hoeffding tree model. At each node in the tree, the feature providing the
greatest information gain is selected to test upon (see section 6.3.2). By counting the number
of nodes that select each particular feature, we can compare their discriminative power.

To compare the 25 existing simple lexical features, we train a single Hoeffding tree using the
full 6 months of data within our training set in a cumulative fashion. Once the classifier
has been trained, we take a histogram of the features selected to test on at each node in the
model. These frequencies are then normalised to produce a proportional frequency for each
of the simple features. Table C.5 shows the results of this process, with table 7.13 showing
the top five most frequently selected features. The most discriminative features include the
length of the hostname, the length of the path and the number of dots within the hostname.
Other features, such as the total number of ‘.’ characters in the URL, were not selected
selected at all.

To evaluate the contribution of our novel simple features, we performed the same experi-
ment described above, but this time training the model using both the 25 existing simple
features and the 23 novel features that we have proposed. Table 7.14 shows the proportional
frequencies of each feature, with our novel features highlighted in bold. 17 out of the 23
novel simple features were selected by the classifier, with 6 out of the top 10 selected features
consisting of our features. In the presence of our novel features, the length of the hostname
rose to become the most frequently selected feature, with the maximum numerical value in
the hostname coming second. Table C.6 shows the features that were not selected by the
classifier. We can see that a number of novel suggestions were not selected, including the
number of ‘@’ characters in the arguments, and the presence of a non key-value argument.

Whilst the discriminatory power of each feature will vary depending on the dataset, we believe
that these results successfully demonstrate that the majority of the novel simple features
proposed within our work improve upon the existing simple features suggested in previous
literature. The ranking of each feature based on proportional frequency is something which,
to the best of our knowledge, has never been attempted in the context of online phishing
URL classification, and we believe that these results provide new evidence in favour of the
selection of particular simple features—something which we believe to be useful to future
research.

Simple Feature Proportional Frequency

Longest token in hostname 0.16364

Hostname length 0.15303

Path length 0.14849

Longest directory in path 0.11666

Number of dots in hostname 0.07424

Table 7.13: The top 5 most frequently selected existing simple lexical features over 6 months
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Simple Feature Proportional Frequency

Length of the hostname 0.14404

Max. numerical value in the hostname 0.11219

Average directory length 0.08311

Length of the longest token in the hostname 0.06787

Length of the longest sub-domain in the hostname 0.06510

Path length / total URL length 0.06233

Proportion of digits within the path 0.06094

Length of the file name 0.05678

Number of hex characters in the hostname 0.05401

Length of the longest directory in the path 0.05401

Total length of the arguments 0.03601

Number of ‘.’ characters in the hostname 0.03324

Number of tokens in the hostname (split on ‘.’, ‘-’, ‘ ’, ‘@’) 0.01939

Length of the longest argument value 0.01523

Proportion of digits in the hostname 0.01246

Number of hex characters in the path 0.01246

Average argument value length 0.01246

Max. number of special characters in any one directory
(‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’)

0.01246

Max. number of ‘.’ characters in any one directory 0.01108

Max. number of digits in any one directory 0.00969

Average argument key length 0.00969

Number of hex characters in the URL 0.00831

Number of ‘/’ characters in the path 0.00831

Length of the path 0.00692

Number of digits in the path 0.00554

HTTPS present 0.00415

Number of special characters in the hostname (‘@’, ‘-’, ‘ ’) 0.00415

Max. number of digits in any one sub-domain 0.00277

Number of special characters in the path (‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’) 0.00277

Number of special characters in the file name (‘-’, ‘ ’) 0.00277

Total number of arguments 0.00277

Length of the shortest argument value 0.00138

Length of the longest argument key 0.00138

Number of hex characters in the arguments 0.00138

Number of digits in the hostname 0.00138

Total URL length 0.00138

Table 7.14: A table showing the normalised proportion of nodes testing on each simple
feature within a Hoeffding tree trained over 6 months of data using both the existing simple
lexical features and our novel simple lexical features. Features proposed within our work are
emboldened. See table C.6 for the features not present within the tree.
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7.3.2 Cumulative Error

In section 6.3, it was suggested that tree-based models fail to respond well to changes in
the distribution being modelled. This poses a potential problem in our case, as the lexical
contents of phishing URLs are likely to change over time as fraudsters develop new techniques,
or as new target organisations appear. We seek to mitigate this problem through the use
of an online classifier, as it allows the model to update in real-time. It was acknowledged,
however, that this is still not a perfect solution. As a result, it is important that we evaluate
the performance of our model in a way that reflects the possibility of change within the
modelled distribution.

In order to account for change in the modelled distribution, we attempt to simulate a real-
world deployment using the data described in section 7.1.2. This is done by constructing the
classification model in a continuous fashion, using each of the six monthly training sets in
chronological order. At the end of each simulated month of training, the cumulative error
rate is calculated as a measure of the performance over time. The cumulative error rate, e,
for some time, t, is defined by Ma et al. (2009) as the proportion of misclassified examples
for all URLs encountered up until that time. This can be expressed as follows:

et =

∑
fpt +

∑
fnt∑

tpt +
∑

tnt +
∑

fpt +
∑

fnt

The cumulative error rate is a useful statistic for us as an increasing error rate will indicate
that our model is failing to adapt to changes in the modelled distribution.

7.3.3 Feature Set Performance

Following our performance evaluation of individual simple features in section 7.3.1, we move
on to consider the performance of various lexical feature sets. In the following sections, we
empirically evaluate the performance of six different lexical feature sets from our work.

First we consider two simple lexical feature sets (see chapter 4). The first feature set we
consider contains only the 25 simple features identified from existing research (see table A.1).
The second feature set combines the 25 existing simple features with our 23 novel features
defined in section 4.3 (see table 4.1).

Following this, we consider two situated lexical feature sets (see chapter 5). Here, we examine
the performance of a uni-gram bag of words feature set, as well as a bi-gram bag of words
feature set.

Finally, we look at combining simple and situated lexical features into two composite feature
models. Here, we select the top 24 simple features identified during our evaluation of indi-
vidual features in section 7.3.1 (see table 7.14) and combine these with both a uni-gram and
a bi-gram feature set.

Each feature set is evaluated using a random Hoeffding forest trained in a cumulative fashion
over the full 6 months of training data and using the parameter values identified from our
previous optimisation steps (see sections 7.2.2 and 7.2.3). During training for each month,
the average training rate is measured, and at the end of each month the AUC, average
classification rate and cumulative error are calculated using the corresponding testing data.
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Simple Lexical Features

In section 4.2, we identified 25 simple lexical features from existing literature. Following
this, in section 4.3, we proposed a further 23 novel simple lexical features, bringing the total
number of simple features to 54. In order to support our hypothesis, we must demonstrate
that lexical features are sufficiently discriminative and that their use improves the rate of
processing compared to content-based feature sets. In section 7.3.1, we provided evidence
to suggest that a number of our novel features are more discriminative than the majority of
the simple features proposed in previous work. Now, we investigate the effects of our novel
simple features on the performance of our classifier.

Table 7.15 shows the performance statistics for the existing simple lexical feature set over
6 months. An average training rate of 20,160 URL/s is observed, along with an average
classification rate of 22,541 URL/s. This is over 1.7 million times faster than the content
based approach documented in the work of Whittaker, Ryner and Nazif (2010). A maximum
precision of 0.95259 was observed, with a recall of 0.97244. Whilst this is not as high as
previous content based approaches, we are not aware of any previous research that uses a
feature set derived solely from simple lexical features. Furthermore, the observed precision
and recall is comparable to much of the existing literature, despite the use of only simple
lexical features. For example, Le, Markopoulou and Faloutsos (2011) were able to achieve
a 98% accuracy using a combination of both simple and situated lexical features and a
confidence weighted approach—whereas our random Hoeffding tree achieves around a 95%
accuracy using simple features alone.

Table 7.16 shows the performance statistics of our classifier using a combined feature set
containing both the existing simple features and our novel suggestions. Precision and recall
appear unaffected, however the increased number of features reduces the average training
and classification rates from 20,160 and 22,541 to 14,773 and 15,622 respectively. The lack
of a change in predictor performance suggests that the existing simple features are suitably
discriminative given our data set. It is likely that a more ambiguous data set would be able to
separate the performance of these feature sets, however, given our current results it appears
as though the novel features provide little benefit to the overall performance of the classifier.

Figure 7.9d shows the cumulative error of the classifier for each feature set over the course of
the 6 months. We can see that the cumulative error decreases each month for both feature
sets—suggesting that the feature sets are resistant to changes in the modelled distribution.

Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 17,062 22,856 0.91311 0.95583 0.86593 0.08669

May 14,833 21,009 0.93129 0.96465 0.89505 0.07493

June 22,229 21,494 0.93205 0.96376 0.89734 0.07235

July 23,055 21,581 0.93011 0.96413 0.89289 0.07165

August 19,915 23,233 0.93879 0.96723 0.90813 0.06933

September 23,869 25,077 0.95259 0.97244 0.93142 0.06526

Table 7.15: Performance statistics over time with existing simple features
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Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 15,535 15,803 0.91612 0.96060 0.86754 0.08369

May 14,572 14,493 0.93422 0.96645 0.89934 0.07198

June 12,357 15,495 0.93336 0.96608 0.89776 0.06998

July 15,333 15,419 0.92851 0.96616 0.88760 0.07028

August 15,079 15,782 0.93978 0.96876 0.90865 0.06804

September 15,763 16,741 0.95420 0.97292 0.93425 0.06391

Table 7.16: Performance statistics over time with existing + novel simple features
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Figure 7.9: Performance statistics over time with simple lexical features
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Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 5,495 10,545 0.89946 0.97736 0.81773 0.10021

May 5,240 9,043 0.91828 0.98498 0.84939 0.08801

June 7,878 9,527 0.90012 0.98240 0.81463 0.09201

July 7,290 8,698 0.88820 0.98275 0.79004 0.09723

August 6,873 8,693 0.87602 0.98206 0.76593 0.10302

September 7,456 8,955 0.86544 0.98156 0.74480 0.10880

Table 7.17: Performance statistics over time with uni-gram features

Situated Lexical Features

In chapter 5, we defined a situated bag of words approach using n-gram tokens from the URL.
We have previously suggested that the use of situated features is likely to construct a more
accurate model than simple features, but that it comes with an increased computational cost.
In order to validate this claim, we evaluate the performance of the classifier when using both
uni-gram and bi-gram situated feature sets.

Table 7.17 shows the performance statistics of our classifier when using a uni-gram situated
feature set. An average training rate of 6,705 URL/s and an average classification rate of
9,243 URL/s are observed, around three times slower than the rates observed with simple
lexical features. A maximum precision of 0.98156 is achieved, along with a recall of 0.74480.
This precision is higher than that observed with the simple lexical features, suggesting that
the use of uni-gram features provides fewer false positives. These results are akin the work of
Khonji, Iraqi and Jones (2011), where a precision of 0.97 and a recall of 0.64 observed using
a similar token-based approach but without our positional encoding.

Table 7.18 shows the performance statistics for our bi-gram situated feature set. The average
training and classification rates of 2,302 URL/s and 2,438 URL/s observed with the bi-gram
feature set are lower than those observed with the uni-gram features. This is expected, as
the increased number of n-grams increases the dimensionality of the dictionary—increasing
the database query times and slowing down processing. The disparity in processing speeds
between uni-gram and bi-gram features is illustrated in figure 7.10a This increase in dimen-
sionality does result in an increase in precision and recall, however, from 0.98156 to 0.99157
and 0.74480 to 0.84879 respectively. Even at a classification rate of 927 URL/s, the bi-gram
feature set is still 70,452 times faster than the content-based approach detailed in the work
of Whittaker, Ryner and Nazif (2010)—a significant improvement.

Figure 7.10c shows the difference in recall over time between the uni-gram and bi-gram feature
sets. Interestingly, the recall of the uni-gram feature set appears to decrease over time, whilst
the recall of the bi-gram feature set increases. This suggests that bi-gram features are more
robust to changes in the modelled distribution. We also see this reflected in the cumulative
error for each feature set (see figure 7.10d). The cumulative error of the classifier using
the uni-gram feature set decreases from 0.10021 to 0.09201 from April to June, but then
begins to rise back to 0.10880 from June to September. On the other hand, the cumulative
error observed with the bi-gram feature set consistently decreases over time from 0.15351 to
0.10648. Whilst this is higher than the cumulative error observed with the uni-gram features,
the continual decline in cumulative error supports the theory that the bi-gram feature set is
more resistant to change than uni-grams—supporting the work of (Baykan et al., 2009).
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Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 4,483 6,333 0.84592 0.98488 0.70255 0.15351

May 2,684 3,200 0.88831 0.99022 0.78428 0.12611

June 2,347 1,835 0.89016 0.98551 0.79179 0.12005

July 1,649 1,325 0.89059 0.98822 0.79045 0.11715

August 1,368 1,008 0.90267 0.98874 0.81455 0.11273

September 1,283 927 0.92080 0.99157 0.84879 0.10648

Table 7.18: Performance statistics over time with bi-gram features
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Figure 7.10: Performance statistics over time with situated lexical features

Composite Lexical Features

We have now evaluated the performance of both simple and situated lexical features. We
found simple lexical features to be faster than situated lexical features, with a higher recall.
Situated features were shown to have a higher precision than simple features, but were found
to be lacking when it comes to recall. Now, we consider combining these feature sets in order
to investigate whether we can maintain the high precision of the situated feature sets, whilst
improving recall. In order to achieve this, we select the top 24 simple features identified
during our evaluation of individual features in section 7.3.1 (see table 7.14) and combine
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these with both a uni-gram and a bi-gram feature set. From hereon in, we refer to these
feature sets as uni-gram and bi-gram composite lexical feature sets.

Table 7.19 shows the performance statistics for the uni-gram composite feature set. Average
rates of training and classification of 6,051 URLs/ and 8,661 URL/s are observed—which
appears faster than the rates observed with uni-grams alone. This is counter-intuitive, as the
addition of further features to the training set would increase the processing time for each
URL. It is likely that the inclusion of the simple features allows fewer examples to accumulate
at each node, reducing the time taken to identify the feature to test on. This suggests that
our method of positional encoding is perhaps not as discriminative as the simple features
in the general case. A maximum precision of 0.98106 is observed, which appears unaffected
when compared to the 0.98156 observed with uni-gram features alone. However, with the
addition of simple features, the composite uni-gram feature set achieves a recall of 0.93594,
which is a significant improvement over the recall of 0.74480 observed with uni-gram features
alone.

Table 7.20 shows the performance statistics of the bi-gram composite feature set. An average
rate of training of 4,625 URL/s is observed, along with an average classification rate of 8,144
URL/s. These processing rates are slower than the rates observed with uni-gram composite
features, however, once more we see an improvement over the rates observed with bi-gram
features alone. The observed precision of 0.97464 is slightly lower than the 0.99157 seen with
bi-gram features alone, however, we see a significant increase in precision from 0.84879 to
0.93375.

In figure 7.11d, we see the cumulative error rates over time for both the uni-gram and bi-
gram composite feature sets. Interestingly, we see a consistent month by month decrease
in the cumulative error for both feature sets. With situated features alone, we observed an
increase in cumulative error for the uni-gram feature set. This suggests that the addition of
the simple features makes the uni-gram feature set more resilient to a changing distribution.
Figure 7.11d also shows us that the cumulative error is consistently higher for the bi-gram
composite features, implying that the uni-gram composite features are now more expressive
than the bi-gram composite features.

Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 4,286 8,856 0.92951 0.96847 0.88769 0.07032

May 4,027 8,577 0.94408 0.97659 0.90975 0.06089

June 7,335 8,805 0.94310 0.97622 0.90798 0.05937

July 6,979 8,467 0.93798 0.97560 0.89805 0.05995

August 6,663 8,572 0.94684 0.97810 0.91400 0.05843

September 7,021 8,691 0.95898 0.98106 0.93594 0.05519

Table 7.19: Performance statistics over time with uni-gram composite features
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Month Tr. URL/s Class. URL/s AUC Precision Recall Cum. Error

April 3,591 8,601 0.91702 0.95833 0.87164 0.08279

May 3,350 8,004 0.93612 0.96783 0.90191 0.07044

June 5,748 5,234 0.93566 0.96694 0.90168 0.06818

July 4,965 8,319 0.93361 0.96696 0.89737 0.06765

August 4,732 9,242 0.94225 0.97024 0.91229 0.06545

September 5,369 9,465 0.95480 0.97464 0.93375 0.06169

Table 7.20: Performance statistics over time with bi-gram composite features
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Figure 7.11: Performance statistics over time with composite lexical features

Comparing Feature Sets

Our hypothesis can be decomposed into two separate statements:

1. The use of lexical features alone will increase the rate of processing in comparison to
the use of content-based features.

2. Lexical features are sufficiently discriminative that they may be leveraged to produce
a predictor performance equal to that of a content-based approach.
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Our results show that for every lexical feature set considered, a significant increase in pro-
cessing rates is observed. In the work of (Whittaker, Ryner and Nazif, 2010), the mean
classification rate for their content-based approach was reported as 1 URL every 76 seconds.
Even with the slowest of our lexical feature sets—the situated bi-gram feature set—we ob-
serve an average processing rate that is over 185,000 times faster than the content-based
approach. We can therefore discard the null hypothesis that the use of lexical features has
no significant effect on the rate of processing.

Table 7.21 provides a summary of the performance statistics for each of the lexical feature
sets considered within our work. We can see that simple lexical features provide the fastest
processing rates by a margin of at least 8,300 URL/s, obtaining respectable predictor perfor-
mances. Situated feature sets are the slowest of the feature sets that we consider, however,
they achieve a higher precision than simple lexical features at the expense of recall. Uni-grams
are significantly faster than bi-grams, however, we have shown that bi-grams are more robust
to changing data—though the observed cumulative error suggests that they are not as robust
as the simple features. Combining simple lexical features with situated features is shown to
improve the processing rates of situated features, as well as improving recall. Using a compos-
ite feature set of uni-gram segments and 24 simple lexical features, we achieved a maximum
precision of 0.98106 and a recall of 0.93594. This rivals the use of host-based features in the
work of Garera et al. (2007), who obtained a precision of 0.958 and a recall of 0.988. Our
precision of 0.98106 is also higher than the content-based approach proposed in the work
of Xiang et al. (2011), however, our recall of 0.93594 is lower than the 0.99593 reported in
their work. We therefore fail to demonstrate that simple lexical features alone can be used
to produce a prediction performance equal to that of a content-based approach—though our
results provide evidence to suggest that this may yet be possible.

Despite our failure to reproduce the recall observed in previous content-based approaches, we
believe that our results still provide a number of useful innovations.

Our investigation into the importance of the individual simple lexical features in 7.3.1 provides
a novel insight into the relative power of all of the simple features described in previous work.
We believe this to be a useful contribution as it would help to inform the selection of simple
lexical features in future work.

We have proposed a total of 23 novel simple features, the majority of which are demonstra-
bly more discriminative than the simple features detailed in previous work. Given a more
ambiguous data set, we believe that these novel features could be exploited to improve the
predictor performance in future studies.

Our work on situated features in chapter 5 describes a novel positional encoding system,
as well as detailing a number of simple methods for performing dimensionality reduction
in an online context. Whilst the contribution of these is fairly minor, we believe that our
methodology forms a sufficiently solid foundation for future study in these areas.

In chapter 6, we detailed the implementation of a novel online random forest classifier, known
as the random Hoeffding tree. We described a number of optimisations which may prove
useful in future work, such as the handling of variable-length feature vectors. It has been
demonstrated that our classifier can operate at high speeds with accurate predictor perfor-
mance, whilst coping well with noisy data and a changing distribution. We therefore believe
that the described classifier has the potential for application anywhere within the broad field
of online learning.

85



CHAPTER 7. EMPIRICAL EVALUATION

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fall-Off

R
ec

al
l

Existing Simple
Bi-Gram Situated

Uni-Gram composite

Figure 7.12: ROC curves for the existing simple features, the situated bi-gram features and
the composite uni-gram features. The dotted line represents the expected curve of a random
classifier.

Concerning phishing URL classification more specifically, every single feature set described
in our work performs orders of magnitude faster than current content-based approaches,
whilst maintaining a high precision and recall. We believe that our work could be used to
significantly reduce the amount of URLs that have to be examined using current content-
based approaches. By using our system to filter the stream of URLs being submitted to a
content-based evaluation system, the majority of phishing and benign sites could be identified
and removed from the stream without having to pay the cost of fetching the content of the
URL. This would significantly increase the rate of processing in the general case, particularly
for large-scale systems. By increasing the rate at which the majority of URLs are processed,
blacklist-based systems could be updated faster and as a result, a greater number of users
could be protected from the threat of phishing.

Feature Set Tr. URL/s Cl. URL/s AUC Precision Recall Cum. Error

Existing Simple 23,869 25,077 0.95259 0.97244 0.93142 0.06526

Existing +
Novel Simple

15,763 16,741 0.95420 0.97292 0.93425 0.06391

Situated
Uni-Grams

7,456 8,955 0.86544 0.98156 0.74480 0.10880

Situated
Bi-Grams

1,283 927 0.92080 0.99157 0.84879 0.10648

Uni-Gram
Composite

7,021 8,691 0.95898 0.98106 0.93594 0.05519

Bi-Gram
composite

5,369 9,465 0.95480 0.97464 0.93375 0.06169

Table 7.21: A summary of the performance statistics for all of the lexical feature sets consid-
ered
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8.1 Aim Revisited

In section 1.4, we defined the aim of our project:

The aim of this dissertation is to investigate the feasibility of purely lexical feature sets in
the context of phishing URL classification in an online setting, and to provide novel

recommendations on both suitable classifiers and feature extraction methods through
empirical evaluation using a large, real-world dataset.

Chapter 3 described lexical features, and identified two classes of lexical features, simple
features and situated features. In chapters 4 and 5, we considered simple and situated
lexical feature sets in greater detail. We provided 23 novel simple features, and described a
novel method of positional encoding in situated feature sets. In addition, we also discussed
the problem of dimensionality reduction, and presented a number of simple solutions. In
chapter 6, we detailed the implementation of a novel online random forest classifier, the
online random Hoeffding tree. In chapter 7, we evaluated the performance of our various
lexical feature sets using the proposed classifier over a data set of 7.5 million URLs spanning
6 months. We then gave a critique and comparison of each of the proposed feature sets,
culminating in the recommendation of a particular methodology. During this critique, we
successfully demonstrated the feasibility of lexical feature sets in comparison to content-based
approaches—concluding that they are much faster at the expense of recall, but still a viable
option for stream pre-processing. In this way, we believe that we have successfully met the
aim that we defined for this project.

8.2 Objectives Revisited

In section 1.5, we identified the following five project objectives:

I. Identification of existing feature extraction methods. The existing work re-
garding the classification of phishing URLs will examined to provide an overview of the
current sources and methods of feature extraction, as well as the classification mecha-
nisms used.

II. Critique and extension of existing lexical feature sets. Once the existing litera-
ture has been examined, critique of the different feature sets and experimental designs
will be provided. This critique will then inform the proposal of at least one novel lexical
feature set.

III. Implementation of an online classifier. Research into online classification meth-
ods will be conducted. At least one online classification method will be selected for
implementation. The selected classification method(s) must not have been applied to
the task of phishing URL classification in previous work. The selected method(s) will
be implemented, the details of which shall be documented.

IV. Experimental design. An experiment will be designed to investigate the hypothesis.
This experiment will use a large, real-world dataset and shall evaluate the performance
of the selected classifier(s) over time with varying feature sets.
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V. Evaluation of the proposed feature sets. The results from the experiment designed
in objective IV will be used to critically evaluate the proposed feature sets with respect
to existing methodologies—providing empirical evidence to support or challenge my
hypothesis.

Throughout our literature survey—in chapter 2—we discussed the different methods of feature
extraction that have been applied to the classification of phishing websites. Such methods
included the use of host-based features (Garera et al., 2007), content-based features (Xiang
et al., 2011), third-party heuristics (Nguyen et al., 2014) and a variety of lexical features
(Baykan et al., 2009; Khonji, Iraqi and Jones, 2011). The cost of performing network requests
in the extraction of host-based, content-based and third party heuristics was criticised for
potentially being unnecessary, with lexical features being offered as a potential solution. In
doing so, we successfully achieve our first objective: the identification of existing feature
extraction methods.

In chapter 3, we discussed lexical features in greater detail, and defined twelve common
characteristics of phishing URLs. We divided lexical features into two categories: simple
lexical features, and situated lexical features, each discussed in further detail in chapters 4
and 5 respectively. We identified twenty five simple lexical features from existing literature,
comparing the motivation behind the selection of each feature with our twelve phishing URL
characteristics. From this, we were able to identify a number of characteristics with few or no
applicable simple features. Using this information, we proposed a further twenty three simple
features to identify the characteristics that were less well-covered. We identified a subset
of these characteristics, namely suspicious domains and domains provided by site builders,
which could not be recognised with simple features alone due to the lack of an internal
model. In order to identify these characteristics, we turned our focus towards situated lexical
features. We considered n-gram models in particular detail, describing a novel method of
positional encoding for tokens extracted from the URL. At this point, we also identified
high dimensionality as a limitation of this approach, and developed a simple method of
dimensionality reduction using IDF and metric entropy. In doing so, we provide both a
critical evaluation and an extension of existing lexical feature extraction methods, achieving
our second project objective: the critique and extension of the existing lexical feature sets.

In chapter 6, we formalised our concept of online learning. We identified decision trees as an
accurate—but most importantly—fast model for binary classification, and detailed the theory
behind an online decision tree using the Hoeffding bound. A previous implementation of the
Hoeffding tree—known as VFDT—was discussed, and we identified a number of optimisations
that we transfer through into our own work. Following this, we discussed a number of features
specific to our implementation, before finally proposing an online ensemble classifier: the
random Hoeffding forest. Thus, we complete objective III: the implementation of an online
classifier.

In chapter 7, we performed an empirical evaluation of the various feature sets identified
within our work. We detailed a number of experiments designed to optimise the parameters
of the classifier, evaluate the contribution of our novel simple features, and compare the
performance of each of our feature sets. In doing so, we achieve our fourth project objective:
experimental design. Following this, we executed our experimentation. We identified the most
discriminative simple features from existing literature, before demonstrating how our novel
suggestions from chapter 4 contribute to enriching the simple feature set—our results giving
the first ever empirical evidence in support of each specific simple lexical feature. We then
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compared the performance of six different lexical feature sets. The results showed that simple
lexical features were the fastest, but that situated features were more precise. By combining
the simple and situated features into composite feature sets, we were able to maintain a high
precision whilst also improving the recall of the classifier. This experimentation completes
the last of our project objectives: the evaluation of the proposed feature sets. Thus, we
successfully meet all of the project objectives that have been defined.

8.3 Future Work

8.3.1 Dimensionality Reduction

In section 5.3.2, we discuss the use of IDF and metric entropy as methods of reducing the
dimensionality of our dictionary of terms. Whilst this practice is simplistic, our empirical
evaluation demonstrated that it was effective in most cases. However, in the case of the
uni-gram situated feature set, we saw an increase in the cumulative error rate of the classifier
between the months of June and September. Whilst it is possible that this increase is simply
a result of our use of a tree-based classifier, the fact that it was not observed with any of the
other feature sets suggests that the dictionary was failing to respond to the changing lexical
contents of the URLs over time. One possible solution to this problem may be to employ
Latent Dirichlet Allocation (LDA). Latent Dirichlet Allocation uses the Dirichlet distribution
to cluster observations into unlabelled topics (Blei, Ng and Jordan, 2002). Online variations
of LDA exist (Hoffman, Bach and Blei, 2010), which could be utilised to identify topics
within the n-gram segments. Each topic would then form an element of the feature vector.
As the number of topics is less than the number of n-gram segments, the dimensionality of
the feature vectors would be greatly reduced. Unfortunately, due to time constraints, this
option could not be considered as part of our project—leaving the application of online LDA
open for future research.

8.3.2 Data Collection

Our work considers the identification of phishing URLs in comparison to benign URLs. As in
previous work, our benign URLs were collected from a web crawl of DMOZ, a peer-reviewed
directory of websites. This was done in order to minimise the possibility of introducing noise
into our data set. However, in a real-world deployment of our system, submitted URLs are
likely to be more suspicious in nature than the URLs collected from DMOZ. As a result, it is
unclear as to whether our evaluation truly represents the expected performance of the system
over data submitted to anti-phishing organisations. Ideally, further research with the aid of
such an organisation would be required to fully examine the performance of our system.

In section 7.3.1, we failed to identify any significant improvement in predictor performance
when using our novel simple feature set compared to the existing feature set—despite earlier
indications that a number of the novel features were more discriminative. We believe that
this is likely due to the composition of our data set. A more ambiguous data set would allow
us to tease out any potential differences in performance between the feature sets—furthering
the need for future research as discussed earlier.
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8.3.3 Classifier Optimisation

In section 7.2.2, we searched for the optimum values of five parameters of our learning model.
Due to time constraints, we resorted to optimising each parameter one-by-one, fixing the
value for each parameter once an optimum value was found. By fixing values individually,
this method is unable to account for complex relationships between parameters, and as such is
unlikely to provide optimal results. We believe that this method is sufficient for our purposes
as our project is focussed on the relative strength of the particular features in use, rather
than testing the limits of our chosen classifier.

It is also worth noting that the optimum set of values is likely different for each feature set
in use. Again, due to time constraints, we optimised our classifier using the existing set
of simple lexical features. This places a bias on the existing simple features, meaning that
any performance increase seen using other feature sets is likely underestimated. Given more
time, or an opportunity to revisit our work, it is likely that we would be able to improve the
performance of our classifier through the use of a more sophisticated optimisation plan, such
as beam search (Ponte, Paquete and Figueira, 2012).

8.3.4 Responding To Change

In section 6.6.3, we described how tree-based prediction models are unable to adapt to sig-
nificant variation in the distribution being modelled. We attempted to mitigate this through
using an online classifier, the rationale being that new branches may be generated quickly
in response to changes in the training data. This is not a perfect solution, however, and
inevitably the classifier will have to be re-trained from the ground up if the modelled dis-
tribution changes significantly. We believe that this is only likely to occur over a period
of months or years, so the benefit over batch-based methods of not having to re-train the
classifier every week is not lost.

One potential method of ensuring that the model can adapt to changing data is provided
in the work of (Saffari et al., 2009). Here, they suggest the continual removal of the most
erroneous tree from the random forest, replacing it with a new tree. Unfortunately, due to
time constraints, we could not explore this possibility; however, we believe this to be an
interesting area for future development.

8.4 Learning

8.4.1 Domain Specific

Through undertaking this project, I have explored a great number of areas of research that
extend beyond the units I have been taught during my course. In particular, I have furthered
my knowledge of machine learning—especially in the online context—as well as developing a
deeper understanding of feature selection and evaluation. I have gained an insight into state
of the art methods of phishing prevention, as well as an intimate knowledge of the various
practices employed by fraudsters. In addition, I have also explored various techniques of di-
mensionality reduction, as well as improving my knowledge in the area of textual classification
in general.
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8.4.2 Technical

The implementation of my classifier has strengthened my knowledge of Java 8, giving me an
opportunity to explore the use of JSP and servlets—something that I had never encountered
previously. Other relevant technical areas of learning include SQL (H2), JSON processing,
concurrency and LATEX.

8.4.3 Academic

Working on this dissertation has given me an unparalleled opportunity to develop my aca-
demic skills. Through the literature review, I learned to research a particular domain with
both breadth and specificity. I learned to critically evaluate the work of others, and to estab-
lish my contribution with respect to existing work. My command of the written word has also
improved as a result, as well as my ability to construct a hypothesis and draw conclusions
from experimental results.
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APPENDIX A. SIMPLE LEXICAL FEATURES

Simple Lexical Feature Earliest Study

IP address present in the hostname Garera et al. (2007)

Number of ’.’ characters in the hostname Whittaker, Ryner and Nazif (2010)

Number of ’/’ characters in the path James, L. and Thomas (2013)

Number of hex characters in the URL Aburrous et al. (2010)

Total length of the URL Aburrous et al. (2010)

Number of tokens in the hostname
(split on ‘.’, ‘-’, ‘ ’, ‘@’)

Le, Markopoulou and Faloutsos (2011)

Length of the longest token in the hostname Le, Markopoulou and Faloutsos (2011)

Length of the path Le, Markopoulou and Faloutsos (2011)

Length of the longest directory in the path Le, Markopoulou and Faloutsos (2011)

Max. no. of ‘.’ characters in any directory Le, Markopoulou and Faloutsos (2011)

Max. no. of special characters in any directory
(‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’)

Le, Markopoulou and Faloutsos (2011)

Number of special characters in the path
(‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’)

Le, Markopoulou and Faloutsos (2011)

Length of the file name Le, Markopoulou and Faloutsos (2011)

Number of ‘.’ characters in the file name Le, Markopoulou and Faloutsos (2011)

Number of special characters in the file name
(‘-’, ‘ ’)

Le, Markopoulou and Faloutsos (2011)

Number of arguments Le, Markopoulou and Faloutsos (2011)

Total character length of the argument string Le, Markopoulou and Faloutsos (2011)

Length of the longest argument value Le, Markopoulou and Faloutsos (2011)

Max. number of special characters
in an argument value (‘-’, ‘ ’)

Le, Markopoulou and Faloutsos (2011)

Number of ’@’ characters in the URL Aburrous et al. (2010)

Number of special characters in the hostname
(‘@’, ‘-’, ‘ ’)

Zhang, Hong and Cranor (2007)

Number of ’.’ characters in the URL Zhang, Hong and Cranor (2007)

Use of ’https’ Aburrous et al. (2010)

Length of the hostname Ma et al. (2011)

Port number present in the hostname Le, Markopoulou and Faloutsos (2011)

Table A.1: The simple lexical features identified from previous research
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Simple Lexical Feature
Phishing URL Characteristics
1 2 3 4 5 6 7 8 9 10 11 12

IP address present in the hostname X
Number of ’.’ characters in the hostname X X
Number of ’/’ characters in the path X X
Number of hex characters in the URL X X X
Total length of the URL X
Number of tokens in the hostname X X X
Length of the longest token in the hostname X X X
Length of the path X X X
Length of the longest directory in the path X X
Max. number of ’.’ characters in any directory X
Number of special characters in the path X
Length of the file name X
Number of special characters in the file name X
Number of arguments X X
Total character length of the argument string X X
Length of the longest argument value X X
Max. number of special characters in an argument value X
Number of ’@’ characters in the URL X
Number of special characters in the hostname X X
Number of ’.’ characters in the URL X X X
Use of ’https’

Length of the hostname X
Port number present in the hostname X

Table A.2: The phishing characteristic coverage by existing simple lexical features
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APPENDIX B. SITUATED LEXICAL FEATURES

Term

www angelfire google rand

com blogspot dropbox paypal

verify members cmd js

submit web mobile email

co yahoo user includes

uk wellsfargo css signin

html themes verification images

templates newmail userid inboxlight

moncompte impaye fav apple

battle log appleid webapps

https support archives account

security online service update

document wordpress dcabccfaadd bookmark

isapidll cartasi visa ebay

banking mpp uploads admin

connect jehfuq mailbox secure

icloud offerid confirm fichiers

sitestate asdafvg usaa plugins

vjoxkqwhtogydw pages webmail websc

Table B.1: A sample of the terms identified in the April 2016 training data using IDF
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APPENDIX C. EMPIRICAL EVALUATION

Month Tr. Rate (URL/s) Class. Rate (URL/s) AUC

April 5,739 7,199 0.89027

May 4,550 8,636 0.91212

June 6,950 8,822 0.88734

July 5,829 9,223 0.87390

August 5,438 9,216 0.87164

September 5,724 9,850 0.86123

Table C.1: Performance statistics over 6 months of data with a term buffer of 100 items

Month Tr. Rate (URL/s) Class. Rate (URL/s) AUC

April 7,481 11,358 0.88946

May 5,976 7,565 0.90615

June 8,568 7,558 0.89239

July 8,627 6,290 0.87169

August 7,986 9,108 0.87127

September 7,546 6,184 0.86025

Table C.2: Performance statistics over 6 months of data with a term buffer of 1,000 items

Month Tr. Rate (URL/s) Class. Rate (URL/s) AUC

April 5,818 10,779 0.89817

May 5,555 9,447 0.91986

June 8,604 9,881 0.89279

July 8,030 9,595 0.88739

August 8,020 9,598 0.87417

September 8,809 10,476 0.86520

Table C.3: Performance statistics over 6 months of data with a term buffer of 10,000 items

Month Tr. Rate (URL/s) Class. Rate (URL/s) AUC

April 6,114 11,797 0.85448

May 3,061 6,019 0.91143

June 5,128 8,839 0.89228

July 5,825 8,906 0.87763

August 5,921 8,538 0.86285

September 6,288 9,793 0.85965

Table C.4: Performance statistics over 6 months of data with a term buffer of 100,000 items
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APPENDIX C. EMPIRICAL EVALUATION

Simple Feature Prop. Freq.

Length of the longest token in the hostname 0.16364

Length of the hostname 0.15303

Length of the path 0.14849

Length of the longest directory in the path 0.11666

Number of ‘.’ characters in the hostname 0.07424

Length of the file name 0.06970

Total length of the arguments 0.06667

Number of hex characters in the URL 0.03333

Number of ‘/’ characters in the path 0.03182

Length of the longest argument value 0.02727

Number of tokens in the hostname (split on ‘.’, ‘-’, ‘ ’, ‘@’) 0.02121

Number of special characters in the hostname (‘@’, ‘-’, ‘ ’) 0.02121

HTTPS present 0.01970

Max. number of special characters in any one directory (‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’) 0.01364

Max. number of ‘.’ characters in any one directory 0.01364

Number of ‘@’ characters in the URL 0.01061

IP address present in the hostname 0.00455

Number of ‘.’ characters in the file name 0.00455

Number of special characters in the path (‘@’, ‘-’, ‘ ’, ‘˜’, ‘,’) 0.00303

Number of special characters in the file name (‘-’, ‘ ’) 0.00303

Total number of ‘.’ characters in the URL 0.00000

Max. number of special characters in any one argument value (‘-’, ‘ ’) 0.00000

Number of arguments 0.00000

Port number present in the hostname 0.00000

Total length of the URL 0.00000

Table C.5: A table showing the normalised proportion of nodes testing on each simple feature
within a Hoeffding tree trained over 6 months of data using only the existing simple lexical
features.

Simple Feature Prop. Freq.

Number of ‘.’ characters in the URL 0.00000

Presence of an IP address in the hostname 0.00000

Max. number of special characters in any one argument value (‘-’,‘ ’) 0.00000

Port number present in the hostname 0.00000

Number of ‘@’ characters in the arguments 0.00000

Number of ‘:’ characters in the hostname 0.00000

Hash present in path (\/[a-fA-F0-9]+[\/\.]) 0.00000

Presence of a non key-value argument 0.00000

Length of the shortest argument key 0.00000

Length of the shortest directory 0.00000

Number of ‘@’ characters in the URL 0.00000

Number of ‘.’ characters in the file name 0.00000

Table C.6: A table showing the simple lexical features not selected by the Hoeffding tree.
Features proposed within our work are emboldened.
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