
        

Citation for published version:
Medzinskii, D 2017, Large-Scale Lexical Classification of Phishing Websites. Department of Computer Science
Technical Report Series, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://researchportal.bath.ac.uk/en/publications/largescale-lexical-classification-of-phishing-websites(8b126ad6-8887-4443-9393-3cc55d5f30f6).html


CM30082: Dissertation

Large-Scale Lexical Classification of
Phishing Websites

Author
David Medzinskii

Supervisor
Dr. Julian Padget

Second Marker
Dr. Russell Bradford

Course
BSc. (Hons) Computer Science

The University of Bath

May 2, 2017



Access

This dissertation may be made available for consultation within the University Library, and may be
photocopied or lent to other libraries for the purposes of consultation.



Large-Scale Lexical Classification of Phishing Websites

Submitted by: David Medzinskii

COPYRIGHT
Attention is drawn to the fact that copyright of this dissertation rests with its author. The Intel-
lectual Property Rights of the products produced as part of the project belong to the author unless
otherwise specified below, in accordance with the University of Bath’s policy on intellectual property
(see http://www.bath.ac.uk/ordinances/22.pdf). This copy of the dissertation has been supplied on
condition that anyone who consults it is understood to recognise that its copyright rests with its author
and that no quotation from the dissertation and no information derived from it may be published
without the prior written consent of the author.

DECLARATION
This dissertation is submitted to the University of Bath in accordance with the requirements of the
degree of Bachelor of Science in the Department of Computer Science. No portion of the work in this
dissertation has been submitted in support of an application for any other degree or qualification of
this or any other university or institution of learning. Except where specifically acknowledged, it is the
work of the author.



Cover sheet

This page is replaced by the departmental cover sheet in the bound version of the document.



Abstract

The prominence of phishing has risen over the past years, with the number of unique attacks reaching
an all time high in 2016. Attacks can be deployed with minimal cost and effort, enabling attackers
to launch large volumes of attacks in short spaces of time. The fast-paced nature of phishing makes
automated detection processes critical for the safe-guarding of Internet users.

This study investigates the use of machine learning for phishing detection, with features extracted
from the URL only. Through experimentation, a set of 87 effective features were identified, including
a significant number of novel features not found in existing research. An evaluation of classification
algorithms identified that a Random Forest model with 150 trees maximized classification performance,
obtaining an F1 score of 0.92 and ROC AUC of 0.97 when testing on a noisy data set of URLs obtained
from spam email - a major communication channel where phishing attacks are found. A comparison
against existing research indicated that the model built in this study outperforms state-of-the-art
lexical classifiers, and often outperforms classifiers that use external features too.

The obtained results were used to build a large-scale lexical classifier, Poseidon, that is able to accelerate
the classification of phishing sites, reducing the load on a more expensive classification process by
99%. It is shown that Poseidon outperforms existing systems of this nature with respect to various
evaluation metrics. Testing on a live feed of 2 million unlabelled URLs/day, Poseidon is able to detect
6000 phishing attacks/month, costing $0.01 per true positive when using a mainstream cloud services
provider.

This study is one of the few to evaluate classification in a real-life scenario, using phishing and benign
URLs retrieved from an environment in which a large proportion of phishing attacks operate.
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1 Introduction 1

1 Introduction
Phishing is a lucrative crime. For a mere $20, one can obtain the resources necessary to deploy a
phishing attack with minimal human intervention (Ramzan, 2010), enabling the collection of sensitive
information (passwords, bank-details, credit-card information) from those who fall victim. While
some of the stolen credentials can facilitate direct financial theft by the attacker, they are also a
highly-demanded commodity in the underground, with particular credentials being bought in the
region of $1000 (Ramzan, 2010).

2016 saw phishing reach an all-time high (Anti-Phishing Working Group, 2016), with the number of
unique phishing sites increasing by 300% from Q4 2015. The rising volume in phishing attacks indicates
the need for intelligent systems to protect individuals. Existing measures of phishing mitigation rest
on the shoulders of effective detection mechanisms - a constantly evolving field due to novel approaches
introduced by attackers in attempts to evade detection.

User-facing applications such as web-browsers and email-clients have built in mechanisms to shield
users from phishing attacks, though these rely on the principle of having a blacklist of known phishing
URLs. Reliable detection processes are essential for ensuring blacklists are frequently maintained,
which is critical due to the fast-paced nature of phishing attacks, with individual phishing attacks
often only lasting for a few hours (Sheng et al., 2009).

It has been shown that automated detection through the use of machine learning is effective for the
purposes of maintaining blacklists (Whittaker et al., 2010). However, a large proportion of these
systems pose caveats due to the method of data retrieval. Accessing potential phishing websites in order
to perform classification introduces increased latency and high-memory usage, as well as providing the
attacker with the opportunity to evade the systems by masking their attacks (Le et al., 2011). While
these limitations can be overcome, this incurs an economic cost that can make processing large feeds
of websites infeasible.

A possible solution to this is to perform detection purely using information extracted from the URL,
without the dependency of external data retrieval. Research on lexical classification of phishing URLs is
limited, though experiments have shown that lexical classification can be fast and reliable (Blum et al.,
2010, Darling et al., 2015, Gyawali et al., 2011), with minimal reduction in predictive performance (Le
et al., 2011).

A lightweight classifier also has uses as a filter for a more expensive classification process, with existing
systems enabling up to 90% load reduction (Gyawali et al., 2011), allowing large-volume feeds to be
processed by complex classifiers. This can subsequently support the frequent updating of blacklists,
aiding applications to effectively safeguard users from phishing attacks, as well as enable take-down
efforts to be launched quicker, killing phishing campaigns earlier in their life cycle.

Unfortunately, there is significant disparity amongst the recommended features and classification
algorithms in existing literature, highlighting the need for an investigation to take place to evaluate
these under the same conditions and constraints. The results of this can inform the implementation of
a classification system that can be used to tackle the increasingly growing number of phishing attacks.

1



1 Introduction 2

1.1 Aims and Contributions

This study consists of three distinct phases. The initial phase involves evaluating lexical features
identified by existing studies, as well evaluating a significant number of novel features to identify an
optimal feature vector.

The second phase of the study involves identifying the optimal classification algorithm for this domain,
producing a classification model that is subsequently compared against existing studies. An investi-
gation is also performed to observe the impact of the evolution of phishing attacks on classification
performance of the produced model.

The results of the first two phase of the study are used to build and evaluate a large-scale classification
system, which processes a live feed of spam URLs obtained from Netcraft (Netcraft, 2017b).

Existing research in lexical-only classification is limited, with little evidence of investigations undertaken
in real-life scenarios. This study aims to improve upon this by evaluating the classification system
against live phishing attacks, in a real-time environment that exhibits the true conditions and constraints
under which a system of this nature would be used.

2



2 Literature and Technology Survey 3

2 Literature and Technology Survey
Phishing is a method by which confidential or sensitive data is stolen through “both social engineering
and technical subterfuge” (Abu-Nimeh et al., 2007, Abunadi et al., 2013, Anti-Phishing Working Group,
2016). Through various communication channels (email, IM, social media and more (Vasava and
Mangrule, 2015)), the attacker will lure the victim to a website that mimics a website of a legitimate
organisation (Likarish et al., 2008), and present input fields that request the victim’s confidential
details, e.g. login details for an individual’s online banking account. Data entered by the user
will then be stored, and once collected by the attacker, may be used to commit fraud or sold to a
bidder (Ramanathan and Wechsler, 2012).

Figure 2.1: An example of a phishing page (left) mimicking a real PayPal (PayPal,
2017) login page (right).

Figure 2.1 shows the degree of deceptiveness possessed by phishing sites. The phishing site on the left
is almost structurally identical to the real login page (right). Submitting the form on the phishing
site will store the entered credentials on the server, and the victim will be presented with a fake page
indicating an issue with their PayPal account. In this instance, the attacker has employed several
methods to create an illusion of legitimacy:

• Using elements which are visually similar to the legitimate page.
• Using a domain (login-pcypcl.com) with visually similar characters of the target brand substi-

tuted. In this case, the a in paypal is switched to a c.
• Using graphical assets that are sourced from the target brand’s web-server. The PayPal logo in

this case is loaded from one of PayPal’s webservers.

While indicators to detect phishing exist (the misspelled brand name in the URL, invalid anchor links
within the page, lack of HTTPS indicator), many users will ignore these cues when presented with a
phishing site. Links to phishing sites will also often be accompanied with content that is alarming in
nature, e.g. informing the user that failing to submit their details will lead to the suspension of their
bank account (Ludl et al., 2007). Under the pressure of the warning, the user may overlook certain
features that could help indicate that the site is a phishing site, and therefore fall victim to the scheme.
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With the ease of acquiring large email lists on the black market (Stringhini et al., 2014, Vömel et al.,
2010), accessibility to users’ social media profiles and other communication channels, phishing attacks
can reach a huge audience. Vömel et al. (2010), for example, found the sale of an email list containing
5 million target email addresses through their investigation of criminal services offered online. This
indicates the importance of anti-phishing tools in safe-guarding potential victims from financial loss,
theft of confidential material, industrial espionage and more (Weider et al., 2008).

2.1 Tackling Phishing

Approaches to tackling phishing fall into four categories: Detection, Offensive Defence, Correction
and Prevention (Abu-Nimeh et al., 2007, Balusamy et al., 2016, Khonji et al., 2013). Through these
approaches, the effects of phishing campaigns can be mitigated at difference stages of the campaign
lifecycle, and ultimately lead to the end of the campaign. Figure 2.2 visualizes the process by which
anti-phishing techniques kill phishing campaigns.

Phishing Campaign Begin

Attack 
Detected?

Individual visits website Website enters automated 
classification

Improve automated 
classification

Offensive Defence Corrective Action Preventive Action

Phishing Campaign End

No

Yes
Improve user education

Detection

Figure 2.2: Process by which anti-phishing techniques bring phishing campaigns to an
end. Based on the process outlined by Khonji et al. (2013).

Through an analysis of the length of phishing campaigns, Sheng et al. (2009) observed that 63% of
phishing campaigns in their data set lasted for only 2 hours, however only 7.9% of these were detected
and had corrective measures put into place. Attackers will often undertake short campaigns in order
to avoid detection, since a shorter campaign reduces the exposure of the phishing website to existing
detection tools and diminishes the advantages provided by blacklists (Blum et al., 2010).
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2.2 Detection

The detection phase is the first process involved in weakening and mitigating a phishing campaign, which
highlights its importance since further downstream process rely on the success of detection. Methods
of detecting phishing sites generally fall into 2 distinct categories: User Training and Automated
Classification (Khonji et al., 2013).

2.2.1 User Training
A phishing website is usually first visited by a human, since the link is distributed via communication
channels such as email and social media. Since the phishing website will not exist in any blacklists at
that point in time, the classification process carried out by the human is therefore the only barrier that
can prevent the human from disclosing their personal details. Sheng et al. (2010) identified that user
education does in fact lead to the user being “less susceptible” to phishing attacks. Through exposure
to various phishing-education resources (web-based materials, cartoons), users were found to be 40%
less likely to divulge their confidential details on a phishing site. Robila and Ragucci (2006) found that
their method of user-education for improving phishing identification was successful, and that their
participants in the study “were able to identify most of the threats.”

To further support this, Kumaraguru et al. (2007) carried out a study to identify the effectiveness of
different methods of phishing-education (security-notices, comic strips and a poster). The comic-strip
proved to be most effective, with only 23% of participants falling for a phishing attack post-education
(100% fell for the phishing attack pre-education). There is, however, an issue of credibility in this
particular study as it only involved 30 participants. While there were efforts to diversify the demo-
graphics, the study did not ensure that each group for each method of education had the same gender
split, and mean age. Sheng et al. (2010) expresses the fact that both gender and age can determine
the effectiveness of user-education, therefore these results may not be as reliable.

User-education is not, however, regarded as the complete solution to being protected from phishing.
Görling (2006) explains that a user’s behaviour in a particular situation (within the context of computer-
security) is dependent on much more than solely the “education” that they have received. The real
challenge lies with ensuring that the user applies their knowledge, the likelihood of which is often
impacted due to security being a “secondary task”(Görling, 2006), when compared to the actual task
the user is undertaking. A user may choose to ignore certain cues in order to ensure that the primary
task is completed, and therefore leave themselves vulnerable to attack despite having received education.

Similarily, in the study by Robila and Ragucci (2006), it is highlighted that many attacks are successful
as they appeal to the user emotionally. Despite the success achieved by Robila and Ragucci (2006)
through their methods of education, the manipulative nature of phishing attacks can prevent a user
applying their phishing-education effectively, thus leaving them susceptible to losing their confidential
information.

2.2.2 Automated Classification
The drawbacks of user-education can be tackled through the use of preventative tools that make use of
automated classification. These tools are discussed further in Section 2.5, however the majority will
perform either real-time detection using heuristics, such as SpoofGuard (Stanford Security Lab, 1998),
use a blacklist, or a combination of both (Zhang et al., 2007). Regardless of the time of detection
(real-time versus relying on a blacklist of phishing sites detected in the past), an automated classification
process is involved to perform the detection. Performing detection through software is advantageous
since human error is removed as a factor from the effectiveness of detection (Khonji et al., 2013), and
is less vulnerable to the social-engineering aspect of a phishing attack (Robila and Ragucci, 2006).

5



2 Literature and Technology Survey 6

In terms of cost, automated classification can also be a more effective financial investment, as it is less
expensive than user-education (Khonji et al., 2013).

Another benefit of automated classification is its adaptability to the evolution of phishing attacks (Ab-
delhamid et al., 2014). Attackers continuously modify the techniques used in phishing websites to
evade detection, and therefore detection mechanisms need to be able to be able to evolve, too, in order
to ensure that new attacks are successfully detected. Machine-learning is a widely-used approach that
supports adaptation to the evolution of attacks - Section 2.6 reviews machine-learning algorithms used
prominently in this field.

2.3 Offensive Defence

The purpose of Offensive Defence is to reduce the effectiveness of a phishing campaign (Karthika and
Perumal, 2016) by the means of a counter-attack. While preventative measures intend to stop a user
from submitting their confidential information, Offensive Defence aims to protect users for whom detec-
tive and preventative measures failed, and have subsequently revealed their credentials (Knickerbocker
et al., 2009). This is usually done by submitting multiple fake credentials to the phishing site, hence
making it difficult for the attacker to identify the real credentials within their data set (Kumaraguru
et al., 2007). Offensive defence has several advantages, one of which is that it does not rely on a
user’s technical aptitude or ability to detect phishing sites. As explained in Subsection 2.2.1, it can be
difficult to ensure that a user acts appropriately when faced with a phishing website, regardless of the
education they have received in this context. Furthermore, a user may ignore a warning of a phishing
website if they feel that their primary task takes precedence (Whalen and Inkpen, 2005), and hence
Offensive Defence can be used to protect in such a scenario. The attack process is transparent to the
user, and therefore does not usually interfere with a user’s primary task or workflow (Ake-Johnson
et al., 2010).

Offensive Defence mechanisms can also take advantage of NAT technology to protect users. If an
attacker recognizes that submissions from certain IP addresses are due to Offensive Defence tools, they
may decide to block those IP addresses. NAT is a widespread technology that allows many systems on
a network to share the same IP address, therefore if one system causes the IP address to be blocked,
then all systems behind the same IP will be unable to interact with the phishing site (Khonji et al., 2013).

BogusBiter (Yue and Wang, 2010) is a tool that falls in the category of Offensive Defence. It is built
to be agnostic to detection methods, so that various blacklists and detection services can be used to
identify and attack phishing websites. This means that as detection methods improve, the perfor-
mance of BogusBiter will also improve proportionally (Yue and Wang, 2010). The tool is implemented
as a browser extension, and leverages the use of detection tools that are already installed on the browser.

If a user follows the warning provided by a browser when navigating to a phishing site and leaves the
web-page, BogusBiter will generate and submit a set of n credentials. If a user ignores the warning
and submits data to the phishing site, BogusBiter will generate and submit n− 1 credentials, therefore
hiding the user’s credentials amongst the generated set. While the former does not directly protect
the user, this will still inject fake credentials to the attacker’s collected data, thereby increasing the
amount of labour required to identify real victims’ credentials. BogusBiter also attempts to perform
all HTTP requests in parallel, aiming to reduce the delay from performing many requests simultaneously.

The client-side nature of BogusBiter, however, has several disadvantages. If BogusBiter attacks a
legitimate website, then the user could be prevented from logging in due to the large submission
of requests to the website. Many websites implement a policy of maximum login attempts from a
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particular IP address, and may lock or even suspend an account. Furthermore, many websites also
make use of tests such as a CAPTCHA (Von Ahn et al., 2003) to prevent automated logins. These
tests can be triggered by many login attempts too, and hence negatively impact a user’s work-flow. In
addition, BogusBiter does not provide protection against scenarios where the user’s credentials are
retrieved through the use of key-logging in JavaScript.

Humboldt is the implementation of a distributed approach to Offensive Defence (Knickerbocker et al.,
2009). It overcomes some of the drawbacks of BogusBiter, such as the pattern produced by the
multiple submissions from a single user and the reliance on the browser’s detection mechanisms. The
system requires a network of Humboldt clients, each of which submit small amounts of ‘poisonous‘ data
that creates a significant disruption in the attacker’s data set. The pattern created by Humboldt’s
submissions are more difficult to detect than those of BogusBiter, and therefore make the phisher’s
task of cleaning their data set more of a costly task.

Attackers are able to evade Humboldt by the means of using URLs with unique IDs. In order for Hum-
boldt’s submissions to be effective and not be filtered out easily, Humboldt will need to recognize URL
parameters which are used for unique IDs, and make these parameters unique across all submissions.
Humboldt could overcome this by collaborating with email providers to gain a feed of detected phishing
URLs from users emails, and being the first to submit data to those links. This is difficult, however, as
it requires the end-user’s agreement to extraction and transmission of information from their emails.
Humboldt also relies on blacklists which can often be slow to update, especially due to short campaign
lengths (Marchal et al., 2012) and if submissions to the blacklist require human intervention (Xiang
et al., 2011).

The Offensive Defence technique has a heavy reliance on existing detection mechanisms. Through
empirical evaluations, it has been shown that these techniques are effective (Knickerbocker et al.,
2009, Yue and Wang, 2010), however the performance can be limited by the effectiveness of phishing
detection. Therefore, an improvement to detection processes and services will positively impact the
effects of Offensive Defence.

2.4 Corrective Action

The correction process involves using take-down methods to end phishing campaigns. Take-down
methods focus on compromising the resources that phishing campaigns take advantage of (Khonji et al.,
2013). The following describes ways in which campaigns can be disrupted and rendered non-functional
once detected:

• Suspension of Hosting and Domain — Hosting service providers and domain registrars can
suspend the attacker’s accounts and therefore make websites inaccessible. This requires prompt
cooperation from the service providers in order to be effective, and can be evaded through the
‘Fast-Flux’ technique (Moore and Clayton, 2007). If attackers have access to multiple hosts, then
if one is taken down, the domain can be instructed to point at another host instantly.

• Suspension of Communication Channels — Similar to the method above, suspension of channels
by which phishing URLs are distributed will limit the number of individuals exposed to the
attack. These channels include Email, Social Media accounts, Phone Numbers (Abunadi et al.,
2013).

• Removal of Hotlinked resources — Many phishing sites will link directly to resources on the
legitimate pages, such as logos and background images (Mohammad et al., 2015). These can be
amended on the system hosting the resources, therefore crippling the visual similarity between
the phishing site and the target organisation.

7



2 Literature and Technology Survey 8

• Tracing Botnet Command & Control Centers — As many phishing websites are also distributed
through the use of botnets, the compromised system can be analysed to identify the command and
control centre for the botnet, and therefore undertake processes to take these down too. This is
effective in scenarios where the zombie1 machine is either hosting the phishing website (Moore and
Clayton, 2007), or the zombie machine itself is used to distribute the attacker’s message (Khonji
et al., 2013).

2.5 Preventive Action

Preventive Action ultimately aims to stop the submission of a user’s credentials to a phishing website.
Yue and Wang (2010) argue that users are the most unreliable component in the process of avoid-
ing a phishing attack, and therefore services exist that take advantage of the detection process and
block access to detected phishing sites, without requiring any detection work to be performed by the user.

Many of these services operate on the user’s browser, some integrated by the developers of the
browser (Ludl et al., 2007) as well as third party solutions such as the Netcraft Extension (Netcraft,
2017a), B-APT (Likarish et al., 2008) and SpoofGuard (Stanford Security Lab, 1998). When these
tools detect that the user is accessing a phishing site (through various means such as using a maintained
blacklist, heuristics, etc.), the user is shown a warning indicating the dangerous nature of the site. The
performance of toolbars depends on both the reliability of the detection component, as well as the
effectiveness of the warnings presented to the user from a usability perspective.

There has been a large focus on enhancing detection mechanisms, particularly through the use of
machine learning (Abu-Nimeh et al., 2007, Aydin and Baykal, 2015, Khonji et al., 2011, Whittaker
et al., 2010). These techniques can result in creating blacklists that are “comprehensive, error-free,
and timely” (Whittaker et al., 2010), and therefore the preventative tools that are built upon these
can better protect users from falling victim to phishing attacks. Sections 2.6 and 2.7 investigate the
development of classifiers including choosing classification algorithms and performing feature selection.

2.6 Detection Through Machine Learning

In the context of phishing, the purpose of a classifier is to predict whether or not an input website is a
phishing website, based on its characteristics (Abu-Nimeh et al., 2007). Initially, a set of properties are
extracted from the website and are grouped together as a set of ‘features’. Phishing website features
are characteristics that, when observed, provide evidence of the website as being phishing or not. In
order to perform an informed prediction, a classifier requires a ‘training’ phase where it ‘learns’ the
characteristics that belong in each category. Two of the ways in which this can be done is through
supervised and unsupervised learning.

Supervised learning is performed by supplying the classifier with feature vectors that are already
labelled with the correct category (Mohri et al., 2012). The unsupervised approach, on the other hand,
involves supplying unlabelled feature vectors, and the classifier infers the categories through processes
such as clustering (Zander et al., 2005). Once the learning phase has occurred, the classifier will be
able to categorise unseen inputs.

Choosing which classification algorithm to use depends on nature of the data being classified, as well
as the behavioural requirements. It is evident that different classifiers will have different predictive
performance, as investigated by Abu-Nimeh et al. (2007). In the context of phishing website classifi-

1A machine that has been compromised for malicious purposes and is under remote control.

8



2 Literature and Technology Survey 9

cation, poor predictive performance can lead to benign sites being blocked or phishing websites not
being blacklisted. This chapter will compare existing implementations of phishing website classifiers to
understand the features which are most effective, and analyse the performance of various classification
algorithms. The classifiers reviewed in this chapter were chosen due to their prominence in phishing
detection literature, as well as the availability of sufficient data from their testing.

2.6.1 Classification Evaluation Metrics
The process of optimizing a classifier can be seen as a maximisation problem of various evaluation
metrics. Initially, the results of classification involving n classes can be represented by a n×n ‘confusion
matrix’ (Davis and Goadrich, 2006). The confusion matrix for a binary problem (Figure 2.3) allows
the extraction of metrics such as accuracy, precision, and recall (Batista et al., 2004), as shown below.

Positive Negative

Positive

Negative

32 56

13 89Tr
ue

Predicted

FN

TNFP

TP

Figure 2.3: A confusion matrix for a binary classification problem where the classes are
‘Positive’ and ‘Negative’, with various metrics labelled. An example interpretation would
be that 32 of truly ‘Positive’ samples were classified as ‘Positive’.

Accuracy (Batista et al., 2004)
Accuracy represents the proportion of samples that were classified correctly, and can be calculated as:

TP + TN

TP + FN + FP + TN
(2.1)

Error Rate (Batista et al., 2004)
The error rate is the converse of accuracy and represents the proportion of samples that were classified
incorrectly, and is calculated as:

FN + FP

TP + FN + FP + TN
(2.2)

Batista et al. (2004) indicate that, however, accuracy and error rate can be misleading as they favour
the ‘majority class’. For example, if 95% of the samples belonged to the positive class, then labelling
all samples as belonging to the positive class would generate a classification accuracy of 95%. In the
context of phishing classification, this is particularly important due to the imbalanced distribution of
phishing urls in various url feeds. Gyawali et al. (2011) state that in their investigation of phishing
URLs in a ‘realistic-scenario’, it was identified that the average ratio of phishing:non-phishing in the
feed they used was 1 : 654.

Precision (Davis and Goadrich, 2006)
Precision measures the number of samples labelled as positive that are in fact positive. This is
particularly important as labelling a benign website as phishing can lead to a disruption in the service
provided by the benign website. It is given by:

TP

TP + FP
(2.3)
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Recall (Davis and Goadrich, 2006)
Recall, also known as the True Positive Rate, measures the proportion of positive samples that were
correctly labelled as positive. It is calculated as:

TP

TP + FN
(2.4)

F1 Score (Yang and Liu, 1999)
The F1 measure is a balanced mean of precision and recall, and ranges from 0 to 1. It is given by:

2rp
r + p

(2.5)

where r is recall and p is precision.

Receiver Operating Characteristic
A ROC curve can be generated for a classifier by plotting True Positive Rate, TPR, against False
Positive Rate, FPR, at various decision thresholds. The generated curve thus indicates the trade-off
between the TPR and FPR for various decision thresholds (Fawcett, 2006). The ability of the classifier
to discriminate between classes is depicted by the area under the curve, AUC. A classifier that performs
random classification of samples would have an AUC of around 0.5 (dashed red line on Figure 2.4). A
classifier that is worse than this would have an AUC < 0.5. A better ability to discriminate between
the positive and negative class is indicated by a larger AUC.
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Figure 2.4: ROC curves for two classifiers, “classifier a” and “classifier b”.

2.6.2 Classification Algorithm Review
Several classification algorithms were found to be prominent in existing literature, including Support
Vector Machines, Random Forests and Neural Networks. The following section will aim to provide
an overview of these algorithms, and identify the performance achieved when applied to phishing
classification.

2.6.2.1 Naive Bayes
The Naive Bayes classifier assumes that the values of features in the feature vectors are indepen-
dent (Nunan et al., 2012). The algorithm computes the posterior probability that a vector of features,
x, belongs to a particular class, and the class with the highest probability indicates the category that
the feature vector belongs to (Ma, Saul, Savage and Voelker, 2009a). Nunan et al. (2012) stated that
Naive Bayes can display a “high recognition rate”, and has “low computation cost”, though within the
context of phishing classification, this algorithm is often the worst performing (Ma, Saul, Savage and
Voelker, 2009a, Miyamoto et al., 2008).
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2.6.2.2 Support Vector Machines (SVM)
Support Vector Machines operate by identifying the largest margin (a hyperplane) by which a collection
of feature vectors can be split into two classes (James et al., 2013). Due to this nature, SVMs are well
suited towards binary classification problems, such as whether or not a particular website is a phishing
website. In order to classify an unseen feature vector, the distance between the hyperplane and the
feature vector is calculated, and subsequently used to predict the class of the feature vector.

Abu-Nimeh et al. (2007) indicated that the training process for SVMs is computationally expensive,
and SVMs can also suffer from overfitting due to noisy data. Training of an SVM is performed by
using a kernel function, the purpose of which is to map the vectors into a dimension where linear
separation is possible. Various kernel functions exist, though the best SVM performance was observed
when the ‘Radial Basis Function (RBF) kernel’ was used (Bergholz et al., 2008, Chu et al., 2013, Ma,
Saul, Savage and Voelker, 2009a). Unfortunately, Ma, Saul, Savage and Voelker (2009a) also identified
that using the RBF kernel resulted in slow performance when compared to using a linear kernel, with
an increase in computational time by almost a factor of 2. Abu-Nimeh et al. (2007), Gyawali et al.
(2011), Miyamoto et al. (2008) found that SVMs performed consistently worse than other algorithms
in terms of precision, recall and accuracy.

2.6.2.3 Random Forest
The Random Forest algorithm is based on the principle of constructing multiple decision trees, such
that each tree is generated from a random sample of training data (Breiman, 2001). This is similar to
“Bootstrap Aggregation” where multiple decision trees are created too, however, the difference lies with
the logic used to perform splits at nodes in the trees. With “Bootstrap Aggregation” all features from
the feature vector are considered to find the best split of data. With Random Forest, however, only a
random sample of features are considered at the point of splitting in order to reduce the correlation
between trees (Liaw and Wiener, 2002). This has proven to increase both classification accuracy and
classification speed (Breiman, 2001). Once the trees have been created, each tree generates a predicted
class for a particular unseen feature vector. The class of the feature vector is determined by an average
of all outcomes. Liaw and Wiener (2002) also describe a weighted approach when averaging the classes
produced by the forest.

This algorithm exhibits characteristics that are desirable for the purposes of phishing website clas-
sification, and has been implemented and tested with success in various studies (Abu-Nimeh et al.,
2007, Mohammad et al., 2014, Ramanathan and Wechsler, 2012). Abu-Nimeh et al. (2007) identified
that Random Forest had the lowest prediction error and lowest false negative rate amongst all the
algorithms that were investigated. Sanglerdsinlapachai and Rungsawang (2010) also identified a similar
result with the performance of the algorithm.

Whittaker et al. (2010) also state the suitability of Random Forest for phishing website classification.
When compared against their proprietary algorithm (which maintains Google’s phishing blacklist), it
was identified that Random Forest performs similarly, and would sufficiently “substitute” the propri-
etary algorithm.

Ramanathan and Wechsler (2012) analysed the computation time of the algorithms investigated, and
Random Forest was found to be the fastest when performing multi-class classification, and second-
fastest when performing binary classification. Abu-Nimeh et al. (2007) mentions that Random Forests
have the disadvantage of being difficult to reproduce due to the random generation of trees. However,
Ramanathan and Wechsler (2012) found similar performance when testing the performance of the
algorithm, indicating that while the trees may be generated differently, the output remains similar.
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2.6.2.4 AdaBoost
AdaBoost is a classification algorithm that is similar to Random Forest due to the principle of using
multiple “weak” classifiers to estimate the class of a sample. Using the training samples, an initial
decision tree is constructed. An analysis is then performed to identify the incorrectly classified samples,
and a new iteration of the tree is constructed such that incorrectly classified samples carry a greater
weight when impacting the model (Zhu et al., 2009). The process of assigning increased weights to
these samples is known as “boosting”, and the iterative construction of trees is repeated until a desired
number of classifiers is reached, often in the numbers of 500-1000 (Zhu et al., 2009). In order to classify
a sample, a weighted average is taken of the decisions of all trees.

This algorithm has been used in various studies (Sanglerdsinlapachai and Rungsawang, 2010, Xiang
et al., 2011), though the observed performance was worse than the performance observed for other
algorithms using the same data sets. While not performing as poorly as Naive Bayes, AdaBoost
achieved an error rate of 9-10% when evaluated by Sanglerdsinlapachai and Rungsawang (2010), and
F1-scores of 89.5-90.5%. Other algorithms in the same study, however, achieved error rates as low as
7.5% and F1-scores as high as 91.7%.

Miyamoto et al. (2008), however, found that using AdaBoost yielded results that were very similar to
the best-performing algorithms in terms of error rate, F1-score and ROC AUC. This suggests that
AdaBoost may be beneficial for particular heuristics, as some of the features used by Miyamoto et al.
(2008) are very different to those used by Sanglerdsinlapachai and Rungsawang (2010).

2.6.2.5 Artificial Neural Network
An Artificial Neural Network consists of interconnected nodes (neurons). The connections (synapses)
send signals to nodes based on a weighting that is determined during the training phase (Abu-Nimeh
et al., 2007). The nodes apply a summation function to all input values from synapses, and apply an
activation function using the resultant value. A neural network consists of 3 types of layers - an input
layer, n > 0 hidden layers and an output layer. The input layer depends on the size of the feature
vector, and the output layer contains a single node which outputs the predicted class.

Sanglerdsinlapachai and Rungsawang (2010) observed the performance of a Neural Network for the
purposes of phishing website classification, and identified that it had the lowest error rate of 8% when
compared against other algorithms. Abu-Nimeh et al. (2007), however, observed a much higher error
rate with the majority of false detections being false negatives. The discrepancy between the results
may be due to the differences in nature of the feature vectors used; Abu-Nimeh et al. (2007) used a
feature vector of size 48, whereas Sanglerdsinlapachai and Rungsawang (2010) only used a feature
vector of size 8.

2.6.2.6 Logistic Regression
Logistic Regression is often used for binary classification (Friedman et al., 2001). The model uses
linear functions to predict the probablity of a sample belonging to a class, and therefore is useful when
there exist linear relationships between the feature values and sample classes (Ma, Saul, Savage and
Voelker, 2009a). Abu-Nimeh et al. (2007) identified that using Logistic Regression resulted in the
highest precision, and closely followed the performance of Random Forest when observing the F1-score.
Ma, Saul, Savage and Voelker (2009a) also had success when using Logistic Regression, achieving the
lowest error rate on 2/4 data sets, only being marginally defeated when other data sets were used.
Garera et al. (2007) interestingly remark that the algorithm is “computationally efficient to evaluate”,
indicating its possible suitability for large-scale systems.
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Miyamoto et al. (2008), however, found mixed results when using LR, often ranking in the middle when
compared against eight other classification algorithms. Random Forest, SVM, Adaboost and Neural
Network surpassed Logistic Regression when considering the various evaluation metrics described in
Section 2.6.1.

2.7 Features

A feature vector contains pieces of information (features) which can be used to distinguish between
phishing and non-phishing websites. The nature of these features can range from elements from within
the page content (Abdelhamid et al., 2014, Fette et al., 2006, Mohammad et al., 2014) to information
extracted from the domain (Abunadi et al., 2013, Whittaker et al., 2010), and therefore must be
considered in terms of their effect on classification performance. The number of features being used is
also a factor of consideration, as using large numbers of features could lead to over-fitting (Abu-Nimeh
et al., 2007).

Le et al. (2011) provide a distinction that separates features into two categories: lexical and external.
Lexical features are extracted solely from URL, and do not require accessing external resources.
External features encompasses features that are extracted from the webpage and any third-party
services that can provide useful information for classification purposes. While external features provide
a larger amount of information regarding the phishing attack, retrieving these features comes at the
following costs (Le et al., 2011):

• Additional latency during the feature extraction period.
• Introduction of a dependency on the availability of mentioned external services.
• Increased usage of client resources, e.g. network bandwidth.
• Side-effects may occur as a result of making the request, e.g. submitting a form with GET

parameters in the URL (Garera et al., 2007).

Aburrous et al. (2010) proposed an initial categorization of features, however do not explicitly make
the distinction between lexical and external. The following sections are a refinement of the original
categorization proposed by Aburrous et al. (2010) with the above taken into consideration. A sample
of features, examples and the studies that used the features can be found in Table A.1.

2.7.1 Lexical Characteristics of URLs
Lexical features range from whether or not a suspicious TLD 2 is used, to counting the number of
special characters. Figure 2.5 is an example of a phishing website URL with some of the features
identified that could be used for classification:

http://www.paypal.com@account.pavpal-verify.com/pages/secure.php?id=%6A%4E&t=346

3 4 61 72 5 8

Figure 2.5: An example of features that could indicate phishing activity. Table 2.1
contains explanations for each feature.

2Top-Level Domain, e.g. .com
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# Description
1 Phishing attackers often do not acquire SSL certificates, which is reflected by the lack of

HTTPS (Mohammad et al., 2015).
2 The presence of the name of an organisation is suspicious if the domain itself is not owned

by the organisation (Khonji et al., 2011).
3 Using an @ symbol is suspicious since a web-browser would ignore parts of the URL before

the @ symbol (Aburrous et al., 2010).
4 pavpal is visually similar to paypal. The swapping of the ‘y’ to a ‘v’ could mislead a user,

and hence is suspicious (Aburrous et al., 2010).
5 The presence of a character from a set of ‘suspicious characters’ (Vasava and Mangrule, 2015)

could indicate phishing activity.
6 Le et al. (2011) found that the number of sub-directories could indicate phishing activity.
7 Phishing URLS often contain large numbers of arguments (Le et al., 2011).
8 Characters can be encoded using hexadecimal, in order to mask the actual URL. This is a

form of obfuscation that many phishing attackers employ to mislead victims, and therefore
the presence of hexadecimal values is suspicious (Shekokar et al., 2015).

Table 2.1: Description of features identified in Figure 2.5.

Use of N-Grams
Gyawali et al. (2011), Blum et al. (2010) and Darling et al. (2015) investigated the use of n-gram

modelling for the purposes of phishing classification. N-grams are overlapping chains of n consecutive
tokens extracted from the URL. For example, from the word PHISH we can generate 4 bigrams using
individual characters: PH, HI, IS, SH.

The approach taken by Gyawali et al. (2011) and Blum et al. (2010) involves using n-grams of URL
tokens to contribute to their bag-of-words representation. Unigrams and bigrams of various segments of
URLs are extracted and used as binary features if more than 1 URL from the same class share the partic-
ular unigram/bigram. It is important to note that this causes the overall feature vector to be very large.

Darling et al. (2015), however, use characters extracted from the URL to form their n-gram models.
The investigation extracted n-grams of up to 4 characters from only benign URLs, and calculated the
probability of the n-grams appearing in both the benign class and phishing class. The rationale behind
collection from only benign URLs lies on the author’s assumption that the phishing data set had a
“higher degree of variability” and thus is more difficult to characterise as n-gram models. A set P was
created:

P = {p1, p2...pn}

where each element of P is the probability of a particular n-gram occurring in the benign class. Thus,
for each URL, a score was calculated as the sum of probabilities in P for every n-gram that appeared
in the URL. While this approach appeared to be effective, a concern regarding credibility can be raised.
Gyawali et al. (2011) and Whittaker et al. (2010) both observed that in a real-life scenario, there is a
large imbalance in the ratio of phishing to benign URLs. However, this imbalance is the converse of
the data set used by Darling et al. (2015) - the volume of phishing URLs is in fact much lower than the
volume of benign URLs. Gyawali et al. (2011) observed a ratio of 1:650, and Whittaker et al. (2010)
observed a ratio of 1:100 of the number of phishing to benign URLs. The effectiveness of the approach
taken by Darling et al. (2015) could perhaps be attributed to overfitting of their smaller benign data set.

14
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It has been shown that lexical features of URLs alone can help successfully detect phishing activ-
ity (Blum et al., 2010, Darling et al., 2015, Le et al., 2011). A primary advantage of classification
based on lexical features is the fact that no further content needs to be fetched, hence decreasing the
overall computation time.

Furthermore, the security risks that are involved when fetching content is eliminated, as is the overhead
with having to process extra content (Blum et al., 2010). This is particularly important since attackers
often “cloak” their websites by ensuring that requests from certain clients are served with benign
content (Ma, Saul, Savage and Voelker, 2009a), and therefore performing a content-based analysis
may result in failure to detect phishing activity. Figure 2.6 is an extract from a php script found in a
phishing-kit, demonstrating the mechanism used to “cloak”.

1 $blocked_words = array(
2 'google',
3 ...
4 'cloudflare'
5 );
6 $bannedIP = array(
7 'ˆ104.236.153.*',
8 'ˆ107.170.*.*',
9 ...

10 'ˆ95.76.156.*'
11 );
12 if (in_array($_SERVER['REMOTE_ADDR'], $bannedIP)) {
13 header('HTTP/1.0 404 Not Found');
14 exit();
15 } else {
16 foreach ($bannedIP as $ip) {
17 if (preg_match('/' . $ip . '/', $_SERVER['REMOTE_ADDR'])) {
18 header('HTTP/1.0 404 Not Found');
19 die('<h1>404 Not Found</h1>The page that you have
20 requested could not be found.');
21 }
22 }
23 }
24 foreach ($blocked_words as $word) {
25 if (substr_count($hostname, $word) > 0) {
26 header('HTTP/1.0 404 Not Found');
27 die('<h1>404 Not Found</h1>The page that you have
28 requested could not be found.');
29

30 }
31 }

Figure 2.6: Extract from a phishing-kit demonstrating the mechanism behind cloaking.
The kit was found during collection of phishing URLs.

The code in Figure 2.6 shows that the website will serve a “404” message to clients requesting content
from a banned IP range or from a banned host. A host is considered “banned” if it contains a “banned
token” (the list of banned tokens includes names of many cyber-security organisations), and therefore
directly requesting this content from such hosts would result in benign content being served, and
possibly leading to misclassification. Using lexical features from the URL, however, is not susceptible
to this form of evasion.

15
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Le et al. (2011) conducted a study to understand the differences in performance between using just
lexical features, and in combination with external features (e.g. domain information, page content).
A very small decrease (1%) was found when using solely lexical features of URLs, supporting the
notion that lexical features alone are sufficient for classifying phishing-websites. While Whittaker et al.
(2010) have indicated that lexical characteristics of urls are much more easily manipulated by the
attacker, many common indicators of phishing are still prevalent in URLs as they play a role in the
social-engineering aspect of the phishing attack. Garera et al. (2007) categorize these indicators as
methods by which attackers “obfuscate” the true nature of a phishing URL.

A comprehensive list of lexical-features used in literature can be found in Table A.2.

2.7.2 Host and Domain Based
While it has been proven that it is possible to use lexical features only from a URL to distinguish
between phishing and benign websites, external information regarding the host and the domain is
useful too (Ma, Saul, Savage and Voelker, 2009a). Pan and Ding (2006), for example, describe that an
empty/incomplete DNS record should raise suspicion, especially if the identity claimed does not match
the WHOIS identity (ICANN, 2016).

Information regarding the popularity of the domain and traffic statistics can also help distinguish
between legitimate and phishing sites. As mentioned earlier, phishing campaigns are usually very
short (Marchal et al., 2012), and therefore websites that have receive low traffic can be considered
suspicious (Xiang et al., 2011). Various third party services such as the traffic ranking provided by
Alexa (Alexa, 2017) and Google’s PageRank (Brin and Page, 2016) provide measurable statistics that
can be used for this purpose. Xiang et al. (2011) used external information regarding the website
heavily in their classifier which was able to achieve a true positive rate of 92%.

2.7.3 Security
A common identifier that is used in various studies (Aburrous et al., 2010, Zhang et al., 2007) is to
observe if SSL is being used, and if not, the website should be flagged as a potential phishing website.
However, Mohammad et al. (2014) mention that some phishing sites may use SSL but obtain their
certificate from an untrusted certificate authority. The study subsequently states that a website is only
considered ‘legitimate’ if it meets the following criteria:

• The HTPPS protocol is being used.
• The issuer of the SSL Certificate is from a set of trusted Certificate Authorities.
• The certificate is over 2 years old.

If the website does not meet any of the above conditions, it is considered either ‘Phishing’ or ‘Suspicious’
depending on how many conditions weren’t met.

2.7.4 Script Analysis
Mohammad et al. (2015) and Pan and Ding (2006) provide several JavaScript-related features that
phishing websites implement in order to deceive potential victims. For example, phishing sites may
disable the right click option in a web-browser to prevent a visitor from observing the source code,
which could reveal a phishing website’s true nature.

Phishing pages usually extract personally information through the use of HTML forms, as this is the
method by which users log in to legitimate services (Suriya et al., 2009). HTML forms have an action
attribute which specifies the location of the resource which will process the data from the form. It has
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been found that phishing websites often override the value in the action attribute to perform a void
action, or point to a resource on a different domain (Alkhozae and Batarfi, 2011). Legitimate websites,
on the other hand, will process results of a form submission on the same domain, therefore the value
of the action attribute will point to a resource on the same domain.

Some features found in certain studies, however, are no longer very effective in detecting phishing sites.
Many studies, for example, identify the use of the JavaScript onMouseOver function as an indicator of
a phishing site. When a user hovers over a link, the web-browser will show the destination of the link
in the ‘status’ textbox. Nguyen (2013) explains that this value is override-able using the onMouseOver
function, therefore allowing an attacker to mask the real destination of a link. As most web-browsers
have now prevented the modification of the ‘status’ textbox through code, this feature would be less
prominent in new phishing campaigns.

2.7.5 Page Contents
Analysing the content of a web-page has proven to be a successful method by which phishing sites can
be distinguished from legitimate sites. While phishing sites aim to imitate the target organisation,
the importance of similarity is mainly on the visual aspect of the website as opposed to the DOM 3,
i.e. the underlying elements of the web-page (Pan and Ding, 2006). An example of this is the use of
external resources, such as images and links (Alkhozae and Batarfi, 2011). Since phishing websites will
make use of existing images such as logos of the target organisation, it is easier for the attacker to
embed the image directly from its location on the target organisation’s web-servers. Furthermore, in
order to better imitate the target organisation’s website, the author may link to certain pages on the
target organisation’s site, such as Contact and Help pages. Therefore, by observing the number of
resources that are hosted on a different domain, it is possible to distinguish between legitimate and
phishing websites.

Moreover, analysing the page content can also reveal abnormal behaviour that a user may experience on
the phishing website. An example of this would be anchor elements (<a>) that do not provide any action
when clicked on, or link to a blank page through the use of the about:blank URI (Pan and Ding, 2006).

It is important to note that one particular study carried out by Ludl et al. (2007) determined that an
analysis of page features did not in fact allow them to differentiate between phishing and non-phishing
webpages. A review of this study shows that the reasoning behind picking some of the features is
not in fact well founded. A large portion of the feature vector comprised of identifying the number
of different types of form elements, due to the “prevalence of web forms on phishing pages”. While
it is true that phishing pages will most certainly include a form into which the user can enter their
personal data, the target organisation will most likely have a web form too. In order to convince a
potential victim that they are on a legitimate website, the attacker may structure the form similarly to
the target organisation. Therefore, the number of form elements is not directly related to whether
nor not the website is a phishing page. Such an error decreases the reliability of the results obtained
by Ludl et al. (2007) and therefore page content can still be considered an effective resource to use for
feature selection.

3Document Object Model (Robie, 1998)
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2.7.6 Feature Selection
Several statistical methods also exist to support the selection of features, and quantify the ability for
a particular feature to distinguish between classes. The chi-squared statistic is a popular method of
measuring the performance of a feature (Novaković et al., 2011). An initial null hypothesis, H0, is
assumed, i.e. The feature cannot distinguish between the classes. An I × J “contingency-table” can
then be created, where the value in nij is the frequency of a sample in class i having the value j for
this feature (Stanberry, 2013). The chi-squared statistic (χ2) can subsequently be computed using the
following formula:

χ2 =
I∑

i=1

J∑
i=1

nij − µij

µij
(2.6)

where µij is the expected frequency under the null hypothesis (Stanberry, 2013).

The value for χ2 indicates the strength of the feature to reject the null-hypothesis, i.e. a strong
feature will have a larger χ2 value. A corresponding p-value, p, can also be generated for the χ2 value,
which indicates the probability that a same or larger χ2 value would be observed if H0 is true. If
p < α, where α is a pre-determined threshold of statistical significance, then the test is considered
statistically significant and the null hypothesis can be rejected (Pennsylvania State University, 2017).
It is important to note that the chi-squared statistic does not perform well for small occurrences of
features (Yang and Pedersen, 1997).

Related to the chi-squared statistic is Matthew’s Correlation Coefficient (Matthews, 1975), also known
as the Phi-Coefficient. It provides an indicator of the accuracy of a binary-classifier in relation to
the accuracy of randomly labelling the data (Matthews, 1975). It can also be used to measure the
performance of a feature, as the metric can be calculated for binary-classifier that uses a single feature,
i.e. the feature being investigated. The value can be generated from the resultant confusion matrix
(see Section 2.6.1), using the following equation:

C = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2.7)

C will always lie between 1 and -1, where C = 0 indicates performance that is the same as a random-
classifier, and C < 0 indicates performance that is worse than a random-classifier.

Mutual Information is another useful statistic for feature selection (Kwak and Choi, 2002). In the
context of feature selection, this statistic can quantify how much information a feature provides in
determining the class of a sample (Tourassi et al., 2001). The mutual information, I, of two variables
X and Y (where X is the class of a sample, and Y is the value of the feature) can be calculated
as (Cover, 1991):

I(X;Y ) =
∑
x,y

p(x, y)log p(x, y)
p(x)p(y) (2.8)

where p(x) and p(y) are the probability distribution functions of X and Y respectively. A weakness of
Mutual Information, as indicated by Yang and Pedersen (1997) is that for two features that have the
same conditional probability, the rarer feature will have a higher score.
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2.7.7 Feature Weighting
As certain features will be more effective than others to distinguish between classes, a form of weighting
may be useful where certain features can carry a different weighting than others when contributing to
the overall classification (Zhang et al., 2007). A simple method of calculating weights for features, as
proposed by Zhang et al. (2007), is as follows:

1. For each feature, xi, the True Positive (TPi) and False Positive (FPi) rate is calculated.
2. An effect, ei, is calculated for each feature by TPi − FPi.
3. The weight, wi, is calculated for xi using: ei∑

ei

An advantage of this method is that the weighting can be recalculated easily on demand, and therefore
the weights can be kept up to date relative to the population of websites that flow through the classifier.
Mohammad et al. (2014) also employ a similar form of weighting - the weight wi of feature xi is the
ratio of that feature occurring in the data set of phishing sites.

Weighting can also occur at classifier-level, as opposed to feature-level. For example, the Random
Forest algorithm involves generating a number of decision trees, each of which use a random selection
of features to perform decisions. As the effectiveness of each tree is dependent on the features used,
weights could also be assigned to the trees themselves when calculating the output class (Winham
et al., 2013).

2.8 Use in a Large-scale Environment

A few studies have been performed to understand the usefulness of a machine-learning classifier in a
large-scale environment. Prophiler is a malware classifier built by Canali et al. (2011) to reduce the
load on a more expensive classification process. Prophiler used full features, and an incoming feed of
crawled URLs as well as URLs extracted from a spam feed. Over 60 days, Prophiler analysed 18,939,908
web-pages, determining 14.3% as malicious (and subsequently reducing the load on the more expensive
downstream process by 85.7%). During this period, a 13.7% false positive rate was observed. Prophiler
is able to classify URLs at a rate of 3.7 pages/s4 after creating a cache for retrieving external information.

The lexical classifier developed by Gyawali et al. (2011) reduced the load on their downstream process
by 90%, and observed a 7.5% cumulative error rate over 90 days. This 90-day trial involved processing
a combination of previously verified phishing sites, and a feed of spam URLs in which 0.01% URLs are
phishing, with an overall ratio of 1:651 (0.0015) of phishing to non-phishing URLs.

Whittaker et al. (2010) tested their classifier with a large number of URLs (9,388,395) where 1.1% of
the URLs are phishing. Using five-fold cross validation, a 0.03% false positive rate was observed. This
classifier is much more computationally expensive, however, with each URL taking a median of 76s for
classification. In relation to Prophiler (Canali et al., 2011), this classification system is more similar to
the downstream system that Prophiler filtered the initial set of URLs to. This investigation also uses
a proprietary classification algorithm, though the authors have stated that a Random Forest model
consisting of 100 trees trained on 25% of the training data performs similarly.

As mentioned by Canali et al. (2011), a fast classifier can support a slower, more intensive classifier by
acting as an initial filter. Due to the short-life nature of phishing campaigns, detection needs to be as
fast as possible. The architecture of using a two-step classification process described in this section
makes tackling phishing in a large-scale environment possible.

4A system with an 8-core Intel Xeon Processor and 8GB RAM was used.
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3 Data Collection
The following is a description of the data sets used for both the experimentation phase and the
implementation phase.

Data set
Name

Source Size
(Urls)

Notes

Benign URLs
dmoz† DMOZ (2016) 100,000 Archive of reviewed benign websites.
feroz Feroz and Mengel

(2015)
8,023 The benign data set used by Feroz and

Mengel (2015).
alexa Alexa (2017) 200,000 Taken from the top 1 million sites

list Alexa (2017).
google Google (2016) 2380 URLs taken from Google Search using

the allinurl: operator. Used by Ludl
et al. (2007), Sanglerdsinlapachai and
Rungsawang (2010).

startingpoint Google (2016) 200,000 As used by Mohammad et al. (2014).
spam benign† Netcraft (2017a) 100,000 A collection of spam urls verified as non-

phishing by Netcraft (2017a). This is
a noisy data set where some phishing-
urls may exist, however were categorized
as benign as at the time of detection
the sites were offline. It is also impor-
tant to note that these URLs in general
are much more similar to the syntax of
phishing URLs, with complex path and
query components.

Phishing URLs
phishtank† PhishTank (2017) 26,508 Archive of manually-verified phishing

URLs.
cleanmx net4sec (2016) 47,547 A public list of verified phishing URLs.
openphish OpenPhish (2016) 2,345 A public list of verified phishing URLs.
spam phish† Netcraft (2017a) 100,000 A collection of verified phishing URLs

sourced from a feed of spam URLs.

Table 3.1: A description of the data sets used in this report. Sets indicated with † are
used primarily, with the remaining used to aid with comparisons against existing studies.

For experiments that aided with the identification of an optimal feature vector (Chapter 4), and
optimal classification algorithm (Chapter 5), two distinct pairs of balanced data sets were used:

• SBSP: Spam-Phish-Spam-Benign, consisting of 100,000 URLS from spam benign and 100,000
URLs from spam phish.

• DP: Dmoz-Phishtank, consisting of 25,000 URLS from dmoz and 25,000 URLs from phishtank.
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4 Optimal Feature Vector
The aim of this investigation is to identify features that can effectively distinguish between phishing and
benign URLs, where the “effectiveness” is calculated and empirically evaluated. Initially, the structure
of a URL is defined to a level of granularity appropriate for URL classification. A set of features is then
constructed, which consists of features found in existing literature, as well as novel features. Finally,
the features are evaluated using appropriate statistical tests, enabling the identification of the features
that have the greatest ability to distinguish between phishing and benign URLs. The most effective
features are used to compose an “optimal feature vector”. The following section outlines this process
in detail.

4.1 URL Structure

A URL can be defined as having the following syntax, as per RFC 1738 (Berners-Lee et al., 1994):

http://<host>:<port>/<path>?<searchpart>

Figure 4.1: Structure of a HTTP URL as per RFC 1738 (Berners-Lee et al., 1994).

The following diagram shows the way in which a URL can be decomposed to a finer level, therefore
allowing more granular feature extraction:

http://www.hijkl.defh.abc.co.uk:8080/path/to/file/file.php?cmd=test&id=1

urlSansProtocolPrtcl.

hostname port path query

hostnameSansDomain domain dir dir dir filename

key val

keyValPair

Figure 4.2: The decomposition of a URL to a finner level than RFC 1738 (Berners-Lee
et al., 1994). Figure A.1 shows the grammar for this decomposition.

From the aggregated list of features (Table A.1), it is evident that many studies decompose a URL to
a similar level, differentiating between the host and path components of a URL for example. However,
there is a need to decompose these parts further, due to the discrepancies that can arise when evaluating
properties such as number of tokens. For example, a feature used by many studies (Le et al., 2011,
Ma, Saul, Savage and Voelker, 2009a, Zhang et al., 2007) is to count the number of dots in the
hostname part of a URL, as phishing attackers will often use multiple subdomains to mislead users, e.g.
verify.paypal.acc0unt.com. A higher value for this feature indicates that the URL is suspicious.
However, a legitimate URL may use a generic Second-Level-Domain (SLD), such as .co.uk which
immediately increases the number of dots by 1 in the hostname. Being able to account for this will
enable better differentiation of situations when an increased number of subdomains is suspicious rather
than due to using a generic SLD. A similar principle can be applied to instances where path portions
of URLs contain default file names such as index.html which increases the token count but may refer
to the same resource had the file name not been explicitly defined.
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4.2 Initial Feature Vector

An initial feature vector was chosen from the aggregation of features used in literature (Table A.2). All
features were included, except those that aim to extract the brand that a phishing attack is imitating,
and n-gram-based features for which a novel approach was taken. Brand extraction features were
avoided as the purpose of the classifier is to highlight URLs that contain cues indicative of phishing,
as opposed to cues that relate to a particular brand. It is important to note that features that indicate
that “brand-imitation” in general might be taking place do not fall under this category, because these
features still retain the generic nature of classification. The work by Pan and Ding (2006) indicate that
brand extraction is best performed when taking into account external content such as the web-page,
and therefore attempting to extract the brand using lexical features only may not be effective.

4.3 Novel Features

The following section describes the novel features that were identified. The features fall into three
distinct categories - token-frequency-based features, binary features, and frequency/continuous features.

4.3.1 N-gram and Token Frequency Based Features
As shown in Section 2.7.1, n-grams have been used by other studies when extracting features from a
URL. The bag-of-words approach by Gyawali et al. (2011) and Blum et al. (2010) involved allocating a
value in the feature vector for each n-gram, where the value indicated the frequency of the particular
n-gram appearing in the URL. This results in a very large, sparse feature vector (Blum et al. (2010)
obtained a feature vector of size 369,585 features).

While Darling et al. (2015) describe that their approach of using n-grams is more effective than the
bag-of-words approach, concerns can be raised about real-world performance as these n-grams are
extracted from benign URLs only and it is based on the assumption that highly-frequent tokens in the
benign set are not frequent in the phishing set.

The approach taken in this investigation was to use n-gram data to generate a score for a URL,
indicating its likeness to a particular class based on the presence of previously observed n-grams
extracted from various parts of the URL. A description of the algorithm to generate the score is as
follows:

1. Define a tokenizer function, g, that will convert a URL into the list of tokens, and return a list of
n-grams. For example, this function may extract all directory elements of a URL’s path, and
convert it into bigrams (n = 2), as shown in Figure 4.3.

g( http://www.abc.com/dir1/dir2/dir3/file.php )

1. Retrieve individual tokens

dir1

dir2

dir3

2. Generate n-grams

dir1 dir2

dir3dir2

3. Return list

[ 
  dir1-dir2,
  dir2-dir3
]

Figure 4.3: An example of a tokenizer function that generates bigrams of directory
elements.
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2. Obtain a set phishing URLs, Cp, and a set of benign URLs, Cb.

3. Define two new sets, Tp and Tb. For each URL in Cp, tokenize using g and update Tp with the
tokens obtained. Repeat for Cb. As a result, we have a set of tokens for each class.

Tp = tp0, t
p
1, ..., t

p
n (4.1)

Tb = tb0, t
b
1, ..., t

b
n (4.2)

4. For each token tci , from Tc, a score sc
i is calculated, and stored in set Sc. The score indicates the

ability of the particular token to distinguish between classes based on its presence/absence.

Sp = sp
0, s

p
1, ..., s

p
n (4.3)

Sb = sb
0, s

b
1, ..., s

b
n (4.4)

Consider a classifier that labels URLs as belonging to class c based on the presence of tci . A 2x2
confusion matrix can be created, and the score for tci is calculated as the Matthew’s Correlation
Coefficient (MCC) of this classification (see Section 2.7.6). For example, if the token “login”
appeared in 1923/2000 phishing URLs, and 73/1400 benign URLs, the confusion matrix would
be constructed as shown in Figure 4.4, and the MCC would be extracted using Equation 2.7.
Section 2.6.1 describes the method by which confusion matrices are constructed.

1923 77

73 1327B

P

P B

MCC(login) = 0.913

Figure 4.4: Calculating the score for the token “login”.

Tokens which appear with similar frequencies in both classes will obtain a low score, whereas
tokens with a larger difference in frequency between the classes will have proportionally higher
scores. A advantage of using MCC as the scoring function is that the effects of class imbalance
are mitigated.

5. Given an out-of-sample URL, the likeness of the URL to a particular class, c, can now be
calculated. The URL is initially converted into a list of tokens, W = w1, ..., wn using g. W ∩ Tc

provides a set of tokens from the URL for which respective scores exist in Sc. The values in Sc

corresponding to the tokens in W ∩ Tc are summed and returned. Thus, the likeness Lc, of a
tokenized URL, W , to a class, c, is defined as:

Lc =
∑

tc
i
∈W

sc
i (4.5)

This algorithm is particularly advantageous over the efforts by Darling et al. (2015) as it takes into
account the occurence of the same tokens in both phishing URLs and benign URLs (unlike Darling
et al. (2015) who only look at the benign class), and therefore can provide a higher weight to tokens
that appear frequently in one class, and lower in the other.

Finally, this algorithm is very loosely-coupled with the scoring metric used (in this case MCC). Other
statistical methods exist that can also provide a value for discriminatory ability, as discussed in
Section 2.7.6, which can be integrated with ease.
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Tokenizers
The above algorithm requires a tokenized representation of the URL. Some methods of tokenization
can be extracted from literature, such as obtaining tokens from the entire URL by splitting using
special characters as delimiters (Blum et al., 2010). Table 4.1 is a list of tokenization methods used
with the above algorithm in this study. The sizes of the subsequent n-grams generated from the tokens
are shown in the ‘n’ column.

For most methods, likeness scores were generated for the phishing class only, based on the assumption
that benign URLs exhibit more variation, and thus generating a representative list of tokens for benign
URLs is more difficult. This assumption is justified as instances where phishing detection has been
observed in a real-life scenario, the number of benign URLs encountered has been significantly larger
than the number of phishing URLs (Gyawali et al., 2011, Le et al., 2011, Whittaker et al., 2010).

Tokenizer n Description Example
URL TOKENS 1, 2, 3,

4
A region from the URL is split using a list of special characters,
{?, -, , ., =, &, / } Blum et al. (2010), Darling et al. (2015),
Garera et al. (2007).

www, example,
website, abc,
com, 3232, path,
to, the, file,
php, cmd, test,
id, 1

HOSTNAME
TOKENS

1, 2, 3,
4

The URL TOKENS tokenization applied to the host portion of the
URL only.

www, example,
website

DOMAIN
TOKENS

1, 2, 3,
4

The URL TOKENS tokenization applied to the domain portion of
the URL only.

abc, com

PATH TOKENS 1, 2, 3,
4

The URL TOKENS tokenization applied to the path portion of the
URL only.

3232, path, to,
the, file, php

PATH MODEL 3, 4,
max1

The path region is split into a list of segments using ‘/’, and
each segment is encoded using a symbol representing the
types of characters in the segment. A particular distinction
is made for segments that contain only letters, only digits,
only symbols, and mixtures of both. Table 4.2 is a table
showing the symbols used to encode particular path segments.

The justification for this arises from the fact that phishing
urls will often have common paths due to the re-use of phishig
kits (Wardman et al., 2009), and therefore identifying prominent
paths in phishing URLs may be beneficial. Furthermore, phishing
attackers will use vulnerabilities in existing applications running
on web-servers to upload their phishing content, and therefore
avoiding the need to invest in a web-server themselves (Wardman
et al., 2009). Certain vulnerabilities may be the same across
web-servers, and therefore can be picked up using this method.

d, n, a, n

QUERY KEYS 1 The query part of a URL is list of keys and values. This tokenizer
generates a list of keys.

cmd, id

QUERY VALS 1 Same as QUERY KEYS, except the values of the query string are
used instead.

test, 1

FILE NAME 1 The file name without the extension. file
FILE EXT 1 The file extension from the URL is retrieved. php
LAST PATH
SEGMENT

1 The last element of the path is retrieved. If a file is specified
then this is usually the file name, otherwise this will be the last
directory.

file.php

Table 4.1: The different methods of tokenization, using which likeness scores are
calculated.

1max: A concatenation of all elements.
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Type of Characters Contained Encoded As
Letter Digit Symbol -
• - - a

- • - d

- - • s

• • • n

• - • n

- • • n

• • - m

- - - x

Table 4.2: The scheme used to encode a path as a sequence of symbols, each symbol
representing the type of characters present in each path segment. This is used with the
PATH MODEL tokenizer described in Table 4.1.

4.3.2 Binary Features
Binary features indicate either the presence or absence of a particular quality. Table 4.3 is a list of the
novel binary features that were identified.

Feature Description
path php 1 if the URL points to a php file, 0 otherwise. In an evaluation

of 584 phishing kits by Cova et al. (2008), all kits were found to
be using PHP. The reason for this is believed to be because PHP
is widely offered by web-hosting providers and is “supported by
most web-servers” if it needs to be installed (Cova et al., 2008).
Using a more obscure technology would limit the hosts that the
phishing attack could be deployed on.

path sensitive 1 if the path contains sensitive terms, 0 otherwise. While concep-
tually this is not a novel feature, several studies devise separate
sets of “sensitive terms”. This feature looks from a pool of sensitive
terms aggregated from all studies (Bergholz et al., 2008, Lee et al.,
2015, Ma, Saul, Savage and Voelker, 2009a, Zhang et al., 2007).
The full list of sensitive terms can be found in Figure A.2.

host sensitive Same as path sensitive, however applied to the hostname region
of the URL only.

more than one dot path 1 if the path contains more than one dot (‘.’), 0 otherwise. Based
on the obfuscation techniques attackers use, as investigated by Le
et al. (2011).

underscore path 1 if an underscore (‘ ’) is present in the path, 0 otherwise. Based
on the obfuscation techniques attackers use, as investigated by Le
et al. (2011).
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Feature Description
suspicious prefix 1 if a token contains a sensitive-term AND an underscore or

hyphen, 0 otherwise. Tokens are found by splitting the url by
special characters (except underscores and hyphens). Based on the
findings of (Mohammad et al., 2015) where phishing URLs were
found to exhibit this characteristic, though (Mohammad et al.,
2015) only checked for the presence of a hyphen.

suspicious brand prefix 1 if a token contains a brand name AND an underscore or hy-
phen, 0 otherwise. Tokens are generated in the same way as for
suspicious prefix. The reasoning behind this is the same as
for suspicious prefix. A list of brand names that are used by
phishing attacks was obtained from Netcraft (2017b).

brand in <region> 1 if a brand name is embedded in a particular region of a URL, 0
otherwise. This is calculated for domain, host and path regions.
A further feature is included for presence of a brand name in a
list of path tokens, requiring an entire token to match the brand
name. This allows differentiation of when a brand name is merely
embedded due to being part of a word, as opposed to forming an
entire token. Looking for a presence of a brand has been shown to
be effective (Chu et al., 2013).

Table 4.3: The list of novel binary features identified.

4.3.3 Frequency/Continuous Features
These features are either means or frequencies of particular characteristics.

Feature Description
numbers in path Number of individual digits found in the path.
max dots path segment Largest number of dots (‘.’) found in a path segment.
num dots host Number of dots found in the hostname (excluding the domain

name).
hyphens host Number of hyphens (‘-’) found in the hostname.
hyphens path Number of hyphens (‘-’) found in the path.
num tokens url Number of tokens found in the URL.
longest sub dir The length of the longest sub-directory found in the path region.
shortest
<host|path> token

The length of the shortest token from the hostname tokens and
path tokens.

num special chars Number of special characters in the full URL.
num special chars path Number of special characters in the path region.
max arg value length The largest url argument length.
mean arg value length The mean url argument value length.
full host name length The length of the hostname.
path length The length of the path.

Table 4.4: The list of novel frequency/continuous features identified.
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4.4 Testing

The next step in the process is to empirically evaluate the performance of the current set of features,
and remove those that are not effective at distinguishing between classes. Each feature was evaluated
using the chi-squared test (See Section 2.7.6), to obtain a score and p-value indicating the strength
and statistical significance of a feature’s ability to determine the class of a sample.

For each data set, SBSP and DP, meta-data (such as MCC scores of tokens) was collected from a train-
ing partition and a Feature Extractor was initialized. Using the Feature Extractor, a feature vector was
generated for every URL in the test set. Chi-squared scores were subsequently generated for each feature.

This process was carried out using 5-fold cross validation, where the data is split into 5 partitions, and
4/5 partitions are used for training and the remaining partition is used for testing. Each fold uses a
different partition as the testing set. The scores from each combination of partitions were subsequently
averaged. Figure 4.5 outlines the process of generating scores for one fold.

Feature 
Extractor

Train

Test

1) Meta-data collected

2) Each test URL 
fed into Extractor

Feature 
vectors 
for test 
samplesD

at
as

et

Chi-squared 
scoring

Chi-squared 
scores 
analysed

Figure 4.5: The process of evaluating the features, given a data set.
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4.4.1 Results
The following is the results of generating chi-squared (χ2) values (and associated p-values) for all
features on both data sets, using 5-fold cross validation. The features are shown in descending order of
χ2 values for the SBSP data set.

SBSP DP
Feature R2 χ2 p−val Sig3 R χ2 p−val Sig OR4

length hostname 1 124592.575 0.0000 • 64 81.009 0.0890 - •
path length 2 66459.618 0.0000 • 1 117296.169 0.0000 • •
longest token hostname 3 59457.743 0.0000 • 52 257.807 0.0000 • •
length url 4 59044.710 0.0000 • 2 93576.529 0.0000 • •
full host name length 5 44372.928 0.0000 • 63 87.783 0.0189 - •
avg token len hostname 6 31885.265 0.0000 • 46 484.150 0.0000 • •
longest token path 7 27902.769 0.0000 • 5 40012.369 0.0000 • •
num non alpha url 8 22122.133 0.0000 • 6 34112.026 0.0000 • •
longest query value 9 17157.785 0.0000 • 7 23510.221 0.0000 • •
max arg value length 10 17157.785 0.0000 • 8 23510.221 0.0000 • •
longest token url 11 15270.532 0.0000 • 15 8424.214 0.0000 • •
length querystr 12 15061.192 0.0000 • 3 52973.586 0.0000 • •
longest sub dir 13 14466.720 0.0000 • 4 48717.006 0.0000 • •
avg token len path 14 11217.758 0.0000 • 9 19516.500 0.0000 • •
num slashes url 15 10109.021 0.0000 • 17 6486.114 0.0000 • •
token count path 16 8773.012 0.0000 • 12 15782.357 0.0000 • •
shortest host token 17 7996.940 0.0000 • 38 724.019 0.0000 • •
mean arg value length 18 5582.846 0.0000 • 10 16177.028 0.0000 • •
shortest path token 19 4193.956 0.0000 • 16 8249.082 0.0000 • •
path sensitive count 20 4186.583 0.0000 • 18 2928.144 0.0000 • •
num dots url 21 4121.906 0.0000 • 49 373.407 0.0000 • •
num dots host 22 3594.038 0.0000 • 58 166.261 0.0000 • •
numbers in path 23 3533.073 0.0000 • 13 14939.689 0.0000 • •
length filename 24 3238.417 0.0000 • 11 16173.162 0.0000 • •
path sensitive 25 3070.399 0.0000 • 22 2061.096 0.0000 • •
sensitive term url 26 2639.047 0.0000 • 21 2209.261 0.0000 • •
url ngram 1 matches 27 2545.779 0.0000 • 24 1887.563 0.0000 • •
num tokens url 28 2534.364 0.0000 • 14 10200.130 0.0000 • •
num params 29 2504.242 0.0000 • 25 1829.896 0.0000 • •
brand in hostname sans domain 30 2466.500 0.0000 • 70 42.837 0.0000 • •
benign url ngram 1 matches 31 2142.657 0.0000 • 43 517.214 0.0000 • •
dots in path 32 1853.564 0.0000 • 20 2389.017 0.0000 • •
brand in host 33 1532.595 0.0000 • 74 27.198 0.0002 • •
phishy path model matches 2 34 1443.244 0.0000 • 19 2602.647 0.0000 • •
benign url ngram 2 matches 35 1417.604 0.0000 • 89 0.755 0.3854 - •
url ngram 2 matches 36 1196.771 0.0000 • 45 489.654 0.0000 • •
out of pos tld 37 1180.834 0.0000 • 47 432.418 0.0000 • •
max dots path segment 38 1165.009 0.0000 • 23 2032.283 0.0000 • •
avg token len url 39 1154.173 0.0000 • 51 279.513 0.0000 • •
avg token len domain 40 806.537 0.0000 • 71 37.387 0.0000 • •
longest token domain 41 782.377 0.0000 • 76 24.132 0.0006 • •
suspicious prefix 42 781.160 0.0000 • 32 1050.831 0.0000 • •
brand in path 43 735.735 0.0000 • 34 925.033 0.0000 • •
organisation in path 44 735.735 0.0000 • 35 925.033 0.0000 • •
path ngram 1 matches 45 723.937 0.0000 • 44 505.393 0.0000 • •

2Rank within the data set.
3Statistically significant, p < 1 × 10−3.
4Statistically significant in either data set.
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SBSP DP
Feature R χ2 p−val Sig R χ2 p−val Sig OR

url ngram 3 matches 46 630.605 0.0000 • 55 180.430 0.0000 • •
target brand garera 47 575.053 0.0000 • 36 909.260 0.0000 • •
digit letter ratio 48 571.610 0.0000 • 40 549.524 0.0000 • •
phishy path model matches max 49 540.827 0.0000 • 54 224.523 0.0000 • •
phishy path model matches 3 50 536.180 0.0000 • 31 1185.643 0.0000 • •
underscore path 51 474.867 0.0000 • 33 1011.314 0.0000 • •
subdomain presence 52 367.011 0.0000 • 39 588.971 0.0000 • •
host ngram 1 matches 53 356.762 0.0000 • 80 4.447 0.0443 - •
embedded domain 54 341.953 0.0000 • 75 26.600 0.0000 • •
suspicious file name 55 317.319 0.0000 • 59 158.203 0.0000 • •
phishy path model matches 4 56 312.389 0.0000 • 48 406.359 0.0000 • •
contains at 57 300.497 0.0000 • 56 168.800 0.0000 • •
url ngram 4 matches 58 275.377 0.0000 • 61 107.283 0.0000 • •
query key ngram 1 matches 59 272.620 0.0000 • 67 73.005 0.0000 • •
contains hex 60 258.268 0.0000 • 60 121.121 0.0000 • •
hyphen url 61 237.447 0.0000 • 37 862.066 0.0000 • •
more than 1 dot path 62 233.263 0.0000 • 50 373.242 0.0000 • •
max num delim value 63 206.063 0.0000 • 41 534.141 0.0000 • •
suspicious file ext 64 185.750 0.0000 • 42 525.119 0.0000 • •
domain ngram 1 matches 65 178.141 0.0000 • 79 7.662 0.0102 - •
suspicious brand prefix 66 173.577 0.0000 • 62 91.230 0.0000 • •
num special chars in path 67 169.703 0.0000 • 30 1309.511 0.0000 • •
num delim fileName 68 128.194 0.0000 • 27 1568.690 0.0000 • •
path ngram 2 matches 69 128.092 0.0000 • 78 16.347 0.0001 • •
query val ngram 1 matches 70 122.687 0.0000 • 77 23.977 0.0000 • •
path php 71 119.289 0.0000 • 29 1321.762 0.0000 • •
vowel cons ratio 72 85.690 0.0000 • 66 76.783 0.0000 • •
hyphens path 73 79.158 0.0000 • 28 1334.333 0.0000 • •
whitedomain 74 66.906 0.0000 • 72 34.455 0.0493 - •
contains ip 75 66.246 0.0000 • 69 49.400 0.0000 • •
host ngram 2 matches 76 64.119 0.0000 • 83 2.091 0.2168 - •
path ngram 3 matches 77 52.069 0.0000 • 81 4.279 0.0449 - •
hyphens host 78 30.259 0.0003 • 57 166.929 0.0000 • •
host ngram 3 matches 79 25.497 0.0000 • 85 1.117 0.3978 - •
ratio num to non num url 80 25.252 0.0000 • 53 225.378 0.0000 • •
path ngram 4 matches 81 22.556 0.0000 • 86 0.973 0.3394 - •
domain ngram 2 matches 82 17.753 0.0000 • 87 0.870 0.3594 - •
benign path model 83 14.219 0.0002 • 91 0.031 0.8661 - •
brand in domain 84 12.377 0.0023 - 65 79.875 0.0000 • •
num special chars 85 5.218 0.1764 - 26 1750.270 0.0000 • •
contains port 86 3.984 0.3076 - 82 3.560 0.0948 - -
host sensitive 87 2.592 0.4291 - 68 67.630 0.0000 • •
host ngram 4 matches 88 1.887 0.1780 - 88 0.863 0.4034 - -
token count domain 89 1.344 0.2602 - 84 1.835 0.2182 - -
num hyphens domain 90 1.025 0.3631 - 73 31.722 0.0000 • •
domain ngram 3 matches 91 0.234 0.6332 - 90 0.150 0.7138 - -
domain ngram 4 matches 92 0.034 0.8594 - 92 N/A N/A N/A N/A
slash redir 93 N/A N/A N/A 93 N/A N/A N/A N/A

Table 4.5: Results of evaluating feature performance. A green cell with the • symbol
indicates those that have a statistically significant ability to distinguish between phishing
and benign URLs for the particular data set.
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4.4.2 Discussion
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Figure 4.6: χ2 scores of features tested on each data set. Scores which were found to
be statistically significant are shown in green and blue for the SBSP and DP data sets,
respectively.

Figure 4.6 shows χ2 scores of features plotted against their respective indexes for both data sets. Scores
that were not statistically significant (p >= 0.001) are shown in red. The index assigned to a feature
reflects its performance ranking in the SBSP data set, therefore a feature with index 1 indicates that it
is the strongest feature for the SPSB data set. 93.5% of features can provide statistically significant
evidence for classification in at least 1 data set, with 76.3% of these features being able to do so for
both sets. The fact that the scores for the DP set follows the scores for the SBSP set closely indicates
that majority of the features are similarly important in both data sets.
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Figure 4.7: Distributions of values for path length of each sample in SBSP (left) and
DP (right).

The feature path length, for example, is ranked top for the SBSP data set, and second for the DP
data set. The discriminatory ability is evident from Figure 4.7, which highlights the difference in
distributions of values for each data set. The difference in area under the two curves (shown by the
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area shaded in gray) indicates the degree to which the values of the feature differ between the classes.
However, it is important to note that the curves on the graph for SBSP on Figure 4.7 are closer, and
all the SBSP URLs are sourced from a communication channel where phishing is prevalent (Fette
et al., 2006), whereas the benign URLs for DP are sourced from DMOZ (DMOZ, 2016). This therefore
raises concerns regarding the results reported by studies where benign URLs were sourced solely from
DMOZ and sources alike (Darling et al., 2015, Feroz and Mengel, 2015, Huang et al., 2012, Le et al.,
2011, Ma, Saul, Savage and Voelker, 2009a).

Some features that were reported in literature as being effective, however, were not found to provide
statistically significant evidence for classification. contains port, for example, is a binary feature
indicating if the URL contains a port number after the domain, and only was true for 0.25% and 0.8%
of phishing URLs in SBSP and DP respectively. The double-slash redirection technique (slash redir)
used by Mohammad et al. (2015) were not found in any URLs at all.

Other features found to be ineffective are: brand in domain, num special chars, host sensitive,
and num hyphens domain. It is interesting to note that while brand in domain was found not to
be statistically significant, brand in host is ranked 33/93 and 74/93 for SBSP and DP respectively.
This is most likely due to the fact that domain registrars can monitor domain registrations for the
presence of brand names, especially brands that are targeted frequently, whereas inserting a brand in
other regions of the URL (subdomain, path) is not susceptible to this and is only revealed once the
URL has been distributed.
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Figure 4.8: χ2 scores of features tested on each data set. Statistically significant scores
for novel features are shown in colour, whereas non-novel features are shown in grey.

Figure 4.8 highlights the performance of novel features, amongst non-novel features (shown in grey).
85% and 77.5% of novel features were found to be effective with statistical significance for the SBSP
and DP data sets respectively. 92.5% were effective for at least one data set, and 50% of these were
ranked in the top 50% features for the SBSP data set. 70% were effective in both data sets, and 45%
of these were in the top 50% ranked features for the SBSP data set. This indicates that the novel
features are in fact useful for classifying phishing features, and in some instances more effective than
many features found in existing literature.
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4.4.2.1 Novel Token-frequency-based Features
Most of the token-frequency-based features are effective for classification. Unigrams extracted from
full phishing URLs (url ngram 1 matches) were most effective, ranked 27/93 for SBSP and 24/93
for DP. The distribution graph for values of this feature can be seen in Figure 4.9.
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Figure 4.9: Distributions of values for url ngram 1 matches (unigrams from phishing
URLs) of each sample in SBSP (left) and DP (right).

Another particularly effective feature in this category is phishy path model matches 2, which
use bigrams of path model symbols from phishing URLs. This feature was ranked 34/93 for SBSP
and 19/93 for DP, therefore indicating that modelling the path of URLs based on the nature of the
characters in segments is useful. Figure 4.10 shows the distribution for this feature’s values.
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Figure 4.10: Distributions of values for phishy path model matches 2 (bigrams of
path model symbols) of each sample in SBSP (left) and DP (right).

Token-based features which have not been found to be effective are: host ngram 4 matches,
domain ngram 3 matches, domain ngram 4 matches. This is due to the fact that the regions
from which the n-grams are sourced from often do not contain enough tokens to create n-grams of size
3 and 4, and so these n-grams will rarely be found in out-of-sample data.
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4.4.2.2 Other Novel Features
Aside from the token-frequency features, the most effective feature for the SBSP data set was
max arg value length, ranked 10/93, followed by longest sub dir, ranked 13/93. From Fig-
ure 4.11, it can be inferred that the longest query value found in benign URLs are generally longer
than those found in phishing URLs. It can also be inferred that the longest subdirectory in phishing
URLs are generally longer than those found in benign URLs. A comparison for the DP data set is not
made due to the lack of representative benign URLs, as described earlier in this chapter.
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Figure 4.11: Distributions of values for max arg value length and
longest sub dir for the SBSP data set.

4.5 Selected Features

With empirical values for feature performance, ineffective features can be discarded, and the feature
vector can be reduced to only those features considered ”useful” for classification. The initial step in
this process involved selecting the subset of features that provided statistically significant evidence for
distinguishing between phishing and benign URLs. These features are shown with the • character in
the column Sig for SBSP in Table 4.5 - a total of 83 features.

The next step was to chose features that may not have been significant for the SBSP data set, but were
significant for DP. It is important to consider why these features may not have been significant for SBSP
- it may be due to the poor quality of benign URLs in DP, or simply due to the fact that the nature
of phishing attacks included in DP are not present in SBSP. These features are: brand in domain,
num special chars, host sensitive, num hyphens domain. It was decided that the features
should be included as they do not take advantage of the primary deficiency of the DP data sets, i.e.
the lack of path components on many benign URLs.

Furthermore, these features may have been highlighted as insignificant for the SBSP data set due to
the phishing URLs being sourced from different locations, and therefore the phishing attacks may
have varied in nature. Ignoring the indicators that are useful for DP may mean that particular
phishing attacks will be ignored by a classifier in the future. In addition, many classification algorithms
incorporate feature weighting, and therefore low performing features will have a smaller impact on the
classification decision, mitigating possible negative effects of their inclusion.

The final optimal feature vector is comprised of features that are have a • character in the column OR
in Table 4.5 - a total of 87 features.
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5 Optimal Classification Algorithm
Section 2.6.2 identified multiple classification algorithms that are prominent in the phishing-classification
space. This investigation will aim to identify the best performing classification algorithm, using the
SBSP data set and the optimal feature vector established in Chapter 4.

The process of this investigation will require an initial selection of algorithms that have been reported
as being suitable for phishing classification. As each classification algorithm relies on a number of
hyperparameters which influence the construction of the model, hyperparameter tuning is undertaken
to identify values for these parameters that maximize classification performance.

With these results, an inter-algorithm comparison can subsequently take place between the algorithms
(with their optimal hyperparameters), finding the best-performing algorithm. In order to rank the
classifier instances on performance, F1-score and AUC will be used. F1-score weights Precision and
Recall equally, which is advantageous as neither of these metrics are significantly more important
than the other. The ROC AUC indicates the trade-off between false positives and true positives when
adjusting thresholds. A higher TPR comes at the cost of a higher FPR, though a larger ROC AUC
indicates that the cost of FPR to obtain a high TPR is lower.

...

Instances of a classifier 
using the same 
algorithm but different 
parameters

The best 
instances of 
each algorithm 
are compared

The best instance is 
selected

Figure 5.1: The process of selecting the optimal classification algorithm and parameters.

All classifiers were instantiated in Python (64-bit, v2.7) (Python Software Foundation, 2017a) using
the scikit-learn library (scikit-learn, 2017a) (excluding XGBoost which used a separate open-source
implementation (DMLC, 2017)). Each classifier was evaluated on the SBSP data set, using 5-fold cross
validation.
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5.1 Algorithm Selection

All algorithms identified and described in Section 2.6.2 were chosen for the investigation, excluding
Naive Bayes and SVM due to their poor performance in this domain (Abu-Nimeh et al., 2007, Gyawali
et al., 2011, Ma, Saul, Savage and Voelker, 2009a, Miyamoto et al., 2008).

In addition to those, a further classification algorithm known as XGBoost was included. Whilst
this algorithm is similar to AdaBoost and Random Forest (See Section 2.6.2) in the sense that an
ensemble of multiple trees are created, the method of training the classification model is different.
Like Adaboost, the model is created by creating multiple trees consecutively, each next tree aiming
to improve classification performance. The difference, however, arises when deciding how to split
at new nodes. AdaBoost weights previously misclassified samples higher, whereas gradient boosting
aims to minimize an objective function (Chen, 2014). The objective function is a sum of training loss
and model complexity, and minimizing this indicates a model that can represent the training data
well but is not overfitted. Trees are grown in a greedy-fashion such that at each node, the possible
splits are evaluated in terms of impact to the objective function and the best split is chosen (Chen,
2014). XGBoost has been applied to a wide variety of problems successfully - in 2015, 60% of winning
solutions at Kaggle (Kaggle, 2017) used XGBoost (Chen and Guestrin, 2016), indicating its potential
suitability for this domain.

5.2 Hyperparameter Tuning

The methodology used to find the optimal hyperparameters follow the steps outlined by Hsu et al.
(2003), and is summarized below:

1. The hyperparameters to be tuned are chosen. A set of values for each hyperparameter is decided,
and hence a “hyperparameter space” is created. As the number of hyperparameters dictates the
dimensions of the “hyperparameter space”, thus only the most important hyperparameters are
used to keep computation costs minimal.

2. An objective function is chosen. Hsu et al. (2003) use “Accuracy” as this measure, though the
disadvantages of using accuracy have been discussed in Section 2.6.1. In this case, the F1-score,
the harmonic mean of Precision and Recall, is used instead. Maximisation of both of these
metrics are desirable for classification performance.

3. Models are trained using every combination of the hyperparameters in the “hyperparameter
space”, and the combination which maximises the objective function are identified as the “optimal”
hyperparameters. This form of exhaustive search is known as grid-search. Hsu et al. (2003)
describe grid-search as being naive, yet easily parallelised as each combination is independent, and
therefore suitable for this problem. It is important to note that sometimes multiple permutations
of parameters will yield maximums, and therefore a second goal can be used to order these. In
this experiment, the permutation that requires the least computation time will be chosen.

The above processes was undertaken for all algorithms using 5-fold cross validation and 12.5% of SBSP
data set (12,500 benign samples and 12,500 phishing samples). Only a fraction of the data set was
used to reduce the overall time required for this process. In addition to th F1-score, the mean time
taken to classify all the test samples in a fold was recorded (mean time taken), to understand the
impact of the hyperparameters on classification time.
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5.2.1 Random Forest
Hyperparameter tuning of the Random Forest model involved varying the number of trees (num trees)
in the ensemble, and the maximum number of features (max features) used when finding the best
split at a node. A large value for max features would lead to little variance amongst the trees, which
is not beneficial as only some of the patterns in the data set will be reflected. Breiman (2003) suggests
using the

√
n for the max features (where n is the total number of features), which translates to

around 10% for this feature set. This parameter was subsequently varied from 2% to 60%.
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Figure 5.2: The F1-scores
achieved when varying the number
of trees and maximum number of
features.
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Figure 5.3: The mean classifica-
tion time for one fold when varying
the number of trees and maximum
number of features.

The results support the recommendation by Breiman (2003) for the max features property, as
Figure 5.2 shows the highest F1-scores being observed around 10% of the features. Figure 5.3 also
indicates that classification time increases as the number of trees increases. Using the recommendation
of Breiman (2003) for max features=

√
n, and with the aim to maximise F1-score with as few as

possible trees, the optimal parameters are found to be: num trees: 150, and max features: 10%
(
√

87 ≈ 9 features (rounded) ≈ 10%).

5.2.2 AdaBoost
The number of trees (num trees) was varied for this algorithm from 50-2000 trees, and it can be seen
that the F1-score is maximised at 1600 trees.
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Figure 5.4: The performance obtained when using AdaBoost with 50-2000 trees.
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5.2.3 Multi-layer Perceptron (Neural Network)
MLP is a forward-propagating Neural Network, as used by Abu-Nimeh et al. (2007). This experiment
will use an MLP with one hidden layer, and vary the number of nodes in the hidden layer (num nodes)
as well as the activation function (activation).
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Figure 5.5: The F1-scores
achieved when varying the number
of nodes and activation function.
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Figure 5.5 indicates that the highest F1 scores were achieved with the tanh and logistic activation
functions, with minimal increases in performance as the number of nodes increased. The classification
time, however, increased linearly for both of these functions as the number of nodes was increased.
The logistic function is more consistent, with the highest performance observed at 400 nodes. While
the high number of nodes indicates a higher classification time, the classification time at 400 nodes is
still significantly lower than when compared to other algorithms analysed in this section. The optimal
parameters are subsequently chosen as: activation: logistic and num nodes: 400.

5.2.4 Logistic Regression
The hyperparameter chosen for Logistic Regression was the method of regularization, which is used to
set the internal weighting of features. Figure 5.7 shows that L1 regularization achieves a marginally
higher score than L2 regularization, with very minimal differences in classification time.
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Figure 5.7: The process of selecting the optimal classification algorithm and parameters.
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5.2.5 XGBoost
The hyperparameters chosen for tuning for XGBoost are the number of trees (num trees, 50-450) and
the maxmimum tree depth (max depth 2-10). Increased tree depth leads to a more complex model,
though is prone to overfitting.
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Figure 5.8 shows that the F1-score increases as both max depth and num trees are increased,
however the gains begin to diminish from around 250 trees and a max depth of 6. Figure 5.9 indicates
that the number of trees is the biggest factor for increasing computation time, as the pattern is more
of a horizontal gradient than a vertical one. It is therefore desirable to have a lower number of trees
but a larger value for max depth. The optimal parameters are decided to be 250 trees and a max
depth of 9, as this ensures the classification time is low but F1-score is in the region where any further
increases are insignificant. The fact that the F1-score only increases as the parameters are increased
indicates that overfitting is not an issue with these parameter values.

5.3 Inter-algorithm Comparison

Each algorithm with optimal hyperparameters (as identified in Section 5.2) was trained and tested on
the full SBSP data set using 10-fold cross validation. The Accuracy, Precision, Recall, F1-score, and
ROC AUC was recorded.

5.3.1 Results
Algorithm Hyperparameters Accuracy Precision Recall F1-

score
AUC

Random Forest num trees: 150
max features: sqrt

0.914865 0.905003 0.927040 0.915889 0.9701

AdaBoost num trees: 1600 0.878935 0.876708 0.88189 0.879292 0.9490
MLP num nodes: 400

activation: logistic
0.89541 0.89547 0.89533 0.8954 0.9582

Logistic Regression regularization: L1 0.83877 0.86403 0.80408 0.83298 0.9167

XGBoost num trees: 250
max depth: 9

0.913435 0.906864 0.92151 0.914128 0.9708

Table 5.1: The results of the inter-algorithm comparison. Related confusion matrices
can be found in Appendix B.
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5.3.2 Discussion
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Figure 5.10: The performance obtained when testing all algorithms on the SBSP data
set using 10-fold cross validation.

The results show that Random Forest and XGBoost perform the best in terms of the evaluation metrics
used, with Random Forest outperforming XGBoost marginally on Accuracy (91.49% vs 91.34%),
Recall (92.70% vs 92.15%) and F1-Score (91.59% vs 91.41%). The differences in performance are very
minimal, in the order of 10−3, and therefore this indicates that either algorithm would be suitable for
building a classification system. Logistic Regression, however, performed the worst in all metrics, with
a significantly lower value than other algorithms for Recall and Accuracy.

It is important to note that Logistic Regression assumes that the classes are “linearly separable” (Ng
and Jordan, 2002), whereas tree-based classifiers do not. The poor performance of the Logistic
Regression model may indicate that the the benign and phishing URLs with features used in this study
are not linearly separable, hence the disparity in performance with the other models.
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Figure 5.11: ROC curves for the selected algorithms. It is important that the curve for
RF lies underneath XGBOOST.

A similar observation can be found when analysing the ROC curves for each of the algorithms (shown
in Figure 5.11), with Random Forest and XGBoost achieving the greatest AUC (0.9701 and 0.9708
respectively). Logistic Regression performed the worst, again, for this metric with an AUC of 0.9167.
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The high values for Random Forest and XGBoost indicate that using these algorithms involves the least
trade-off between True Positives and False Positives when adjusting the decision threshold. Varying
the decision threshold will yield different ratios of True Positives to False Positives, though for these
two algorithms it is evident that obtaining a high True Positive Rate (e.g. 90%) can be done so while
maintaining a low False Positive Rate (7%).

5.4 Comparison Against Existing Studies

As the Random Forest model was shown to perform marginally better than the XGBoost model, a
comparison against existing studies was performed. The methodology for this comparison involved
creating data sets that best matched the data sets used in each study. Efforts were made to collect the
URLs from the same source, and the training and testing process was matched in terms of number of
URLs used in each phase and the number of folds used during k-fold cross-validation.

In each comparison, the same evaluation metrics that were used in the study were collected, and the
nature of the features used was also noted (full vs lexical). Each study was also given a ”Dataset
Weight”, which indicates the total number of URLs used to train the classification model. Details and
raw results of comparisons can be found in Appendix C. If the training-test split was unknown, then
10-fold cross validation was used.

5.4.1 Accuracy
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Figure 5.12: A comparison against the accuracies observed in existing studies, ordered
by Dataset Weight. Classifiers that use full features are denoted by F, whereas lexical
classifiers are denoted by an L.

While accuracy can often be misleading (Batista et al., 2004), it was the most widely reported statistic,
being reported by 16 studies. Figure 5.12 shows that the Random Forest model performed better than
7 studies, where 4 of these studies used full features. This supports the notion that lexical classification
is competitive with full-feature classification, as reported by Le et al. (2011).
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3 out of 4 lexical classifiers were outperformed, which shows that the feature vector used in this study
is in fact effective. A possible explanation for the lower accuracy when compared with Huang et al.
(2012) is that Huang et al. (2012) focused on using brand-specific features, which made up a large
portion of their feature vector (43%). 10 most targeted brands were identified in their analysis of their
phishing set obtained from PhishTank, and these were used when constructing their feature vector.
While a very high accuracy was achieved (99%), the heavy dependence on the top 10 brands (which
are prominent in this feed) may lead to a much worse performance when tested against another feed
where such brands are not so prominent. The advantage of using the classifier in this study is that it
is not so tightly-coupled with a specific set of brands, and therefore its generic nature is favourable
when classifying other feeds.

Other instances where the Random Forest model was outperformed by other studies and substaintial
training data1 was involved are in the comparisons against Garera et al. (2007) (-1%), Lee et al. (2015)
(-2.7%), Feroz and Mengel (2015) (-1.2%) and Whittaker et al. (2010) (-1.6%). It is important to
note that these classifiers are full-featured classifiers, and that the differences in accuracy are in fact
minimal. When the benefits of lexical classification are taken into account (low-latency, low-memory
and less susceptibility to methods of evasion), certain use-cases may find lexical classification much
more desirable despite the trade-off in accuracy.

It can therefore be concluded that in terms of accuracy, this study is able to outperform state-of-the-art
lexical classifiers and some full-featured classifiers, indicating that the novel features are a useful
contribution to the field of phishing classification.

5.4.2 F1-score
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Figure 5.13: A comparison against the F1-scores observed in existing studies. Classifiers
that use full features are denoted by F, whereas lexical classifiers are denoted by an L.

The F1-score, as explained in Section 2.6.1, is a balanced mean of precision and recall. From Figure 5.13,
it is evident that this study outperforms 4 out of 8 classifiers for which F1-score was reported or could
be calculated. When restricted to training data of size > 1000 URLs, it is only outperformed by two
studies, by Lee et al. (2015) (2.6%) and Whittaker et al. (2010) (4.8%), both of which use full-features.

1> 1000 URLs
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5.4.3 ROC AUC
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Figure 5.14: A comparison against the ROC AUC observed in existing studies. Classifiers
that use full features are denoted by F, whereas lexical classifiers are denoted by an L.

The ROC AUC comparison revealed that this study was able to outperform all other studies but one,
Huang et al. (2012), which achieved a greater AUC by 0.01. While Huang et al. (2012) is indeed a
lexical classifier, the increased performance may again be due to the overfitting with the 10 particular
brands that Huang et al. (2012) focused on, and therefore the 0.01 trade-off in AUC may be acceptable
for increased ability to apply the classifier to a bigger variety of URLs.

5.4.4 Recall
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Figure 5.15: A comparison against the recall observed in existing studies. Classifiers
that use full features are denoted by F, whereas lexical classifiers are denoted by an L.
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Of the 10 classifiers for which recall was reported, 6 were outperformed which included the lexical
classifiers built by James et al. (2013) and Gyawali et al. (2011). Other lexical classifiers did not report
recall and therefore a comparison could not be performed. Recall is an important metric as it can
indicate the portion of phishing URLs that are misclassified as benign and therefore remain undetected.
Instances this study achieved a lower recall are explored below:

• Zhang et al. (2007) and Xiang et al. (2011): Both of these studies used low amounts of training
data (100 and 990 samples respectively). On a lexical level, this number of samples is too low to
exhibit the variation present in URLs.

• Lee et al. (2015): A minimal difference of 0.9% was observed, possibly due to the extra information
available when using a full-featured classifier.

• Whittaker et al. (2010): The difference in recall may be attributed to a lack of data to match
the data set used by Whittaker et al. (2010). While the class imbalance was preserved, the data
set used in this comparison was 70 times smaller.

5.4.5 Precision
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Figure 5.16: A comparison against the precision observed in existing studies. Classifiers
that use full features are denoted by F, whereas lexical classifiers are denoted by an L.

This study outperformed the the lexical classifier built by James et al. (2013), which was the only
lexical classifier for which precision was reported. From the remaining classifiers for which precision
was reported, only 1 out of 4 was outperformed. The reduced performance in precision indicates
that the benefits of lexical classification come at a cost of increased misclassifications of benign URLs
as phishing. In particular workflows such as a multi-stage classifier, this may not be significantly
detrimental as further classification processes may be able to better identify false positives.
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5.5 Resistance to Evolution

The evolution of phishing attacks raises a concern regarding the use of a static model for classification.
Random Forest is a batch-learning algorithm, where the same model is used to classify samples each
time. Online-learning algorithms, however, are suitable for tackling this problem as they support
continuous retraining, enabling the model to be incrementally modified. Each new sample can be
used to alter the classification model, without having to rebuild it. Ma, Saul, Savage and Voelker
(2009b) state that continuous retraining is critical to being able to keep up with evolving phishing attacks.

Existing studies that address the issue of retraining currently identify a training regimen whereby a
batch-learning classification model is retrained daily with new data. Xiang et al. (2011) use a two-week
sliding window for retraining their batch-learning model, i.e. retraining on day T will use training data
from day T − 14 to T . A similar approach was also taken by Ma, Saul, Savage and Voelker (2009b),
whereby the classification model was retrained daily based on samples from the previous 14-17 days.
When no retraining was performed, Ma, Saul, Savage and Voelker (2009b) identified a progressively
worse classification rate every next day.

An experiment was undertaken to identify the susceptibility of the model built in this study to evolution.
Phishing URLs were collected for a period of 50 days, from 15-01-2017 (t) to 06-03-2017 (t′), and were
separated into individual daily sets. An initial training set of 16,750 phishing URLs (from PhishTank
(2017)) and 16,750 benign URLs (from the set spam benign) was also constructed, whereby the
phishing URLs range from attacks observed during 2016 through to the 14-01-2017 inclusive. Benign
data was kept static based on the findings of Darling et al. (2015) that benign URLs change at a much
slower rate than phishing URLs.

The daily data sets were tested by using two distinct training schemes - Train-once and Train-daily.
In the Train-once scheme, the model was trained with the original training data, and the error rates of
classifying each daily set were recorded. In the Train-daily scheme, before classifying the set for day T,
the classifier was retrained with a composite data set of the initial training data and all the URLs
collected on the days that fall into the interval t > x < T .
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Figure 5.17: Cumulative error rates for Train-once and Train-daily over a period of 50
days.
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Figure 5.17 shows the difference obtained when using Train-once and Train-daily over a period of 50
days. The mean difference in error rate between the Train-once and Train-daily was 1.48% (σ = 1.50),
and the final difference in CER was 1.53% - i.e. the cost of not performing daily retraining over a
period of 50 days is that 1.53% of phishing URLs are misclassified as benign.

Given the low-memory nature of working with lexical features, retraining frequently is more feasible
than when using full-features, allowing the model to stay up-to-date with the evolving trends in URL
features.

5.6 Summary

The experiments undertaken to find the optimal classification identified two algorithms (Random
Forest and XGBoost) that had the highest performance, when evaluated using appropriate measures
(Accuracy, Precision, Recall, F1-score and ROC AUC). The optimal hyperparameters which maxi-
mized the evaluation metrics were also identified, and can be found in Section 5.3. Random Forest
outperforms XGBoost marginally, and a comparison against 21 existing studies identifies that this
study outperforms the state-of-the-art lexical classifiers, as well as many classifiers that use full-features.

Instances where the classifier performs worse than existing studies show that the differences in per-
formance are minimal, and could be an acceptable trade-off given the benefits that are present when
using lexical classification over full-feature classification.

Finally, using a daily retraining scheme, similar to that proposed by (Ma, Saul, Savage and Voelker,
2009b, Whittaker et al., 2010, Xiang et al., 2011), can reduce the cumulative error rate of phishing
URLs by 1.51% over a period of 50 days.
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6 Proof of Concept: Poseidon
With the optimal feature vector and classification algorithm identified, a distributed system (Poseidon)
was built to filter a high-volume stream of URLs in order to reduce the load on a more expensive
classification process (Stage 2) operated by Netcraft (Netcraft, 2017b). The results of classification
are subsequently fed to a large range of organisations, from companies behind major web-browsers,
anti-virus products and firewalls to ISPs and domain registries.

Poseidon
Spam URLs

Stage 2
...

Suspected
phishing

Verified
phishing

Browser 
blacklists

Firewalls

Domain 
Registries

Figure 6.1: The role of Poseidon in identifying suspicious URLs.

Figure 6.1 shows the pipeline in which Poseidon sits. The incoming stream of URLs has an average
volume of 26 URLs/s, though can reach up to 1000 URLs/s at peak times. Similar to the observations
of Gyawali et al. (2011), a large class imbalance exists between phishing and non-phishing URLs within
the feed, and therefore the volume of the feed from Poseidon to Netcraft is expected to be magnitudes
smaller than the volume of the input stream. Please note that Poseidon’s codebase is only included in
the electronic submission of this project, and has not been included in this document due to its size
(85 files, approximately 8700 lines).

6.1 Workflow

Figure 6.2 describes a workflow that is suitable for the requirements of Poseidon. The feed from
Netcraft is exposed through files that are written to the file system every 5 minutes. Each rectangle
depicts an independent process that works asynchronously, descriptions of which are as follows:

• Feed Forager: Retrieves the available batches of URLs from the file-system and performs
any initial filtering, such as restricting the number of submissions in a given time-period for a
particular hostname (an organisational requirement). The filtered population is distributed to all
available classification nodes.

• Classifier i: Classifies the URL as phishing or benign, and sends the URL along with the class
and likelihood to the Persistor. Multiple classifiers are required to enable high throughput.

• Persistor: Each classification result is stored in the database, and subsequently forwarded to
any further eligible downstream processes.

• Netcraft Reporter: This process is considered “eligible” for receiving classification results that
indicate that a URL belongs to the phishing class. Each received URL is subsequently reported
to Netcraft.

• Submission Processor: Netcraft reports the results of submission as Tab Separated Values
(TSV) files, every hour. This node processes the results, and amends the records created by the
Persistor to include the verified class of the URL.

• Head: This node allows a user to perform administrative tasks, such as creating/training/testing
classifiers and monitoring the status of other process.
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Figure 6.2: The devised workflow for processing the feed from Netcraft. The ‘Head’
node is not shown as it is not a part of the classification workflow.

6.2 Implementation

Python 2.7 (Python Software Foundation, 2017a) was used primarily to implement the solution, due
to being cross-platform, its suitability to rapid prototyping (Adams et al., 2002), and a variety of
extensions which enable high-performance data processing (Oliphant, 2007). These extensions include
NumPy (NumPy Developers, 2017), Sci-Py (SciPy Developers, 2017) and scikit-learn (scikit-learn,
2017a).

6.2.1 Nodes and Inter-node Communication
Each process depicted in Figure 6.2, referred to as a ‘node’, was implemented as an individual process.
Communication between nodes was performed using the MQTT protocol, due to being “extremely-
lightweight” (mqtt.org, 2014) and event driven. MQTT uses the publish-subscribe pattern (Eugster
et al., 2003) where communication is performed through a “broker” process. Each node connects
to the broker and subscribes to a particular topic, denoted by a topic string, e.g. /foo. If a node
needs to publish a message on a particular topic, it sends the message and the topic to the broker,
which subsequently relays the message to all nodes subscribed to the topic. An event is raised when a
message arrives, allowing the subscriber to perform any required tasks.

This pattern is advantageous as it allows publishers and subscribers to act asynchronously (Eugster
et al., 2003), and is therefore suitable for the proposed architecture. A request-response layer was
built on top of MQTT, to allow nodes to request data from other nodes (either synchronously or
asynchronously) if required. MQTT also offers varying levels of Quality of Service that describes the
delivery of data, from ‘at most once’ to ‘exactly once’. Please see src/nodes/basenode.py for the
implementation of a base node, which is inherited by all nodes in the workflow.
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Figure 6.3: The structure and functionality of a general node.

Figure 6.3 shows the basic functionality of a node. Each node also connects to a MySQL server,
and has access to the local file-system. A user can interact with each node through a command-line
interface. It is important to note that each node comprises of two initial threads - a thread for the
user interaction and a thread that handles communication with the broker. Extra threads are spawned
as required, based on the functionality of the node.

6.2.1.1 Parallelism and Load Balancing
The problem of phishing classification lends itself well to data-parallelism. As there is no inter-
dependency between URLs to be classified, the URLs can be distributed amongst n classifiers,
increasing n as required, and obtaining linear speedup, while n <= p where p is the number of
processors. A generic method of load balancing was created (src/nodes/nodeutils.py) which allows
invoking the same functionality across multiple nodes with different data (SIMD).

6.2.2 Database
The main purpose of the database was to store data that could be accessed/modified by multiple nodes.
This includes training data, classification results, error logs and classifier configurations. As this form
of data was suitable for storage in a relational database, MySQL (version 5.7.17) (Oracle, 2017) was
chosen for its ease of use and deployment, as well as the ability to support concurrent access (Sun et al.,
2016). However, the database back-end is not tightly-coupled with the nodes, a different back-end
could be swapped into the system provided the required interface is implemented.

The following data is stored in the database:

• Training data
• Results of classification
• A list of prominent target organisations of phishing attacks (obtained from Netcraft)
• Exceptions/Errors encountered
• Classifier configurations
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6.2.3 File-system
The primary use for interacting with the file-system is to access the feed of spam URLs, and analyse
the results of submission to Netcraft. The file-system is also used to store the classification models,
which are serialized Python objects that are loaded into memory when a classification node starts.
Finally, configuration files for the nodes themselves are also stored in the file-system.

6.2.4 Detailed Implementation
The following sections describe the implementation of each nodes functions in detail.

6.2.4.1 Feed Forager
The feed forager operates using two extra threads, displayed in Figure 6.4. One of these retrieves the
feed files uploaded by Netcraft, and filters the population to a list which is subsequently balanced evenly
amongst the available classification nodes. The current filtering system supports hostname caching,
where each next URL encountered is first checked against the hostname cache. If the hostname of the
URL exists in the cache then the URL is ignored. Each entry in the cache contains a configurable
expiry time, and the second thread prunes the cache periodically to remove expired entries. As
explained previously, this is an organisational requirement to prevent large submissions of URLs under
the same hostname within a small period of time. The implementation of this node can be found in
src/nodes/baserpnode.py.

Thread 1 Start

Get all available 
URLs to classify

Select next URL

Host 
name in 
cache?

Add to toSend list

Add hostname to 
HNAME_CACHE

Yes

No

len(toSend) >= 
BATCH_SIZE ?

Distribute toSend 
amongst 

classification nodes

Yes
No

No

Yes

Thread 2 Start

Get next entry in 
HNAME_CACHE

Entry 
expired?

Remove Entry

Yes

No

Sleep DELAY

No

Yes

URLs 
remaining?

Finished 
iteration?

Figure 6.4: The workflow of the Feed Forager node.
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6.2.5 Classifier i
When a classification node starts, the required classification service is loaded into memory, and
initialized. A classification service consists of several parts:

• Classification model: The underlying model which can be used to make predictions, given a
feature vector.

• Feature Extractor: An object used to extract features from a URL.
• Utility Functions: Allows management of the classifier either programmatically or through a

CLI, including the ability to evaluate the classification model using various evaluation metrics,
and visualize classification performance.

The node then accepts and buffers an incoming stream of URLs in a queue. Another thread retrieves a
batch of URLs from the classification queue, and uses the classification service to obtain the most likely
class (and respective probability) for each URL in the batch. The results of classification are then
added to a results queue. A final thread monitors the results queue, and sends the results in batches
to the Persistor node. Please see src/nodes/lexicalclassifiernode.py for this implementation.

Thread 2 Start

Gets N-sized batch 
from 

classification_ 
queue

Retrieves 
classification results 

for batch

Thread 3 Start

Get M-sized batch 
from 

results_queue

Sleep DELAY_2Adds results to 
results_queue

Send batch to 
Persistor

Sleep DELAY_1

Thread 1 Start

processMsg_ 
Classify raised

Add URLs to 
classification_ 

queue

Wait for next batch

Figure 6.5: The workflow of a classification node.

6.2.5.1 Persistor
The Persistor accepts an incoming feed of classification results and stores it in a persist queue. Another
thread periodically retrieves items from the queue, and stores them in the database. For each result,
a check is made to see if any further downstream nodes are eligible for receiving the classification
result. For example, a downstream node may only be eligible if the result indicates that a URL
has been classified as phishing and the probability of this is over 60%. If a node is eligible, then
the results of classification is forwarded to this node. The implementation of this can be found in
src/nodes/classificationpersistornode.py.
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6.2.5.2 Netcraft Reporter
This node operates similarly to the Persistor, however is only forwarded results of classification if the
result is positive, i.e. the sample has been labelled ‘phishing’. Rather than persisting the forwarded
result in a database, the URL is reported to Netcraft via a HTTP request. The implementation of this
can also be found in src/nodes/classificationpersistornode.py.

6.2.5.3 Submission Processor
Netcraft provide the results of submissions as TSV files containing the reported URL and whether it
has been confirmed as phishing or not. This node parses the files, and modifies the records created by
the Persistor to include the “validated” class of a URL. This allows subsequent gathering of analytics
and retraining of the model with new data. Please see src/nodes/toolbarresultsnode.py for this
implementation.

6.2.5.4 Head
The head node (src/nodes/headnode.py) allows the user to manage the network of nodes, as well as
administrate classification services and test the performance of various features. The features are as
follows:

• Classification Service Manager

– Create classification services by specifying the classification algorithm, feature extractor
and data set to use.

– Generate confusion matrices, and various evaluation metrics (Precision, Recall, Accuracy
and ROC Curves).

– Compare classification services by evaluation metrics.

• Feature Extractor Manager

– Generate features for a single sample and samples in bulk using the various feature extractors
available.

– Generate ranking of features using χ2 (See Section 2.7.6) and generate visualizations of
distributions of values for each features.

– Perform Recursive Feature Elimination (scikit-learn, 2017b) to identify feature performance.
– Profile the feature extractor using Python’s cProfile module (Python Software Foundation,

2017b) to identify bottlenecks in this process.

• Classification Results Manager

– Manually update classification results with “validated” labels.
– Prune classification results for which validated classes have not been received in a particular

time-frame.

• Exception Log: View the exception log, which shows when and on which node exceptions have
occurred.

• Node Status: View the statuses (Alive, Timeout) of all nodes.

6.2.5.5 Content-Fetcher
The Content-Fetcher is a currently inactive node (and not shown on Figure 6.2), though it could be
used in the future as a mechanism of tunneling external communication through a particular node.
This node allows external content to be fetched both synchronously and asynchronously, and supports
caching of web-requests, as well as programmatic access to specific services. For example, if a node
required the search-engine rank of a particular URL, then the content-fetcher node could be requested
to fetch and parse the required content, and respond with the rank.
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6.2.6 Libraries
To aid with implementation, the following libraries were used:

• paho-mqtt (Roger Light, 2017): Python MQTT Client.
• scikit-learn (scikit-learn, 2017a): Machine learning library for Python.
• NumPy (NumPy Developers, 2017) and SciPy (SciPy Developers, 2017): Extensions for Python

that support scientific computation (data analysis, linear algebra, etc.), with operations executed
by native code.

• matplotlib (Matplotlib development team, 2017): Graphing library.
• requests (Kenneth Reitz, 2017) and requests-cache (Roman Haritonov, 2017): Performing

http-requests with an optional transparent cache.
• xgboost (DMLC, 2017).
• mysql-python (Andy Dustman., 2014): Python interface to a MySQL server.
• google-api-python-client (Google Inc., 2017): Used to connect to Google services to use the

cloud-hosted Predict API (Google, 2017) instead of scikit-learn.
• stemming (Matt Chaput, 2010): Optional requirement during tokenization process, though did

not prove to be useful.

In addition to the above, the following software was used:

• mosquitto (Eclipse Turner Foundation, 2017): A MQTT Broker.
• MySQL Server (Oracle, 2017).
• Apache HTTP Server (The Apache Software Foundation, 2017) and phpMyAdmin (php-

MyAdmin contributors, 2017): Allows management of a MySQL database through a web-interface.
• tmux (tmux, 2017): Allows multiple persistent sessions in a single terminal session.
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6.3 Evaluation

Poseidon was deployed as per Figure 6.1, using a Random Forest model trained on the entire SBSP
data set, with 150 trees. Two classification nodes were found to be sufficient for processing each batch
of URLs from Netcraft without the build-up of a backlog. The machine chosen was a cloud server
from DigitalOcean (DigitalOcean Inc., 2017), with the following specifications:

• CentOS 7 (The CentOS Project, 2017)
• 8-Core Processor (Intel Xeon E5-2650L v3 @ 1.80GHz)
• 16GB RAM

While the system did not need the full 8-cores to function at the required performance, this ensured
that each node could use a full core, with surplus resources available for related services such as the
MySQL server, and MQTT Broker.

The following data was collected hourly for a period of 14 days from 2017-03-17 to 2017-03-31:

• num processed: The number of URLs from Netcraft that were classified by Poseidon. This
population excludes URLs filtered out by the feed forager, and solely represents those that were
sent to the classification nodes.

• num reported: The number of URLs classified as phishing and reported to Netcraft.
• num tp: The number of reported URLs that were confirmed as being truly phishing.
• num fp: The number of reported URLs that were confirmed as being benign.

As mentioned by Canali et al. (2011), obtaining other metrics such as false negatives and true negatives
are difficult, as the input data is unlabelled. Identifying the true classes manually of a data set of this
size was not feasible.

6.3.1 Results
The following results were collected during the experiment:

Time interval num processed num reported num tp num fp
Overall 31,639,143 186,517 2803 183714
Per day 2,259,939 13,323 200 13,122
Per hour 94,164 555 8 547
Per minute 1569 9.25 0.14 9.11
Per second 26.16 0.154 0.002 0.152

Table 6.1: The total volume processed by Poseidon, and statistics of submissions,
averaged over various time intervals.

System Samples
per day

Load
Reduction %

False
Positive % 1

Classification
Time2

Poseidon 2,259,939 99 0.58 0.004s/URL3

Prophiler (Canali et al., 2011) 320,000 85.7 13.7 3.58s/URL
Gyawali et al. (2011) 479,470 90% N/A N/A

Table 6.2: Data collected for Poseidon over the 14-day period, as well as data available
for similar systems.

1Percentage of submissions that are benign.
2This includes both feature-extraction time and time taken to evaluate using the classification model.
3Single-core performance.
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6.3.2 Performance Analysis
The primary purpose of Poseidon is to reduce the number of URLs that require classification by a
more expensive classification process. Table 6.2 shows data for other similar systems - Prophiler, a
full-feature classifier built by Canali et al. (2011), and a lexical classifier built by Gyawali et al. (2011).
It is evident that Poseidon is able to achieve the greatest load reduction (99% compared to 85.7% and
90% respectively).
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Figure 6.6: The full volume of URLs processed by Poseidon during the evaluation
period are shown in gray, with the number of false positives (blue) and true positives
(red) overlaid. It is important to note that the y-axis scale is log10. Averaged values can
be found in Table 6.1.

Posiedon also maintains a significantly lower percentage of false positives - 0.58% compared to
Prophiler’s 13.7%. This means that Poseidon only submitted 0.58% of the total population incorrectly
as phishing, whereas Prophiler submits 13.7% (24-fold times higher).

On the other hand, when observing the true positives in Prophiler’s submissions, 4%4 of submissions
were in fact phishing, while only 1.6% of Poseidon’s submissions were phishing. This 2.5-fold decrease
in True Positives does however come at the advantage of a 24-fold decrease in false positives.

The environment in which Gyawali et al. (2011) evaluated their classifier is interesting as it is also
an imbalanced feed of spam URLs. Gyawali et al. (2011) report two metrics when evaluating their
classifier, Cumulative Error Rate (CER) and Balanced Success Rate (BSR). The CER is calculated
as F N

F N+T P , and indicates the percentage of the total phishing population that was misclassified as
benign. While the large-scale evaluation of Poseidon does not facilitate the calculation of this metric
due to processing unlabelled data, the results from Section 5.4 indicate a lower CER of 6% 5 compared
to 7.5% as reported by Gyawali et al. (2011). The data for this was generated by creating a training
set containing a 1:2 ratio of phishing to benign URLs, and a testing set containing a 1:652 ratio - the
same conditions as the feed processed by Gyawali et al. (2011).

414.3% submitted in total, with 13.7% false positives, so 0.6% true positives. 0.6
14.3 = 4% (Canali et al., 2011).

5TP = 94, FN = 6
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The BSR obtained during this experiment was 93.4%, which is similar to the BSR reported by Gyawali
et al. (2011) (The explicit values for BSR per day are not reported by Gyawali et al. (2011), though
their visualization indicates a BSR of mid-90s). However, it is important to note that this performance
is maintained with a 10% greater load reduction.

6.3.3 Cost of Deployment
The machine on which Poseidon was deployed uses a 8-core processor6, each core running at 1.8GHz.
A single classification node is able to classify 250 URLs/s on a single core. If only a single-core is
dedicated to classification, this allows the processing of a feed consisting of a maximum volume of
21,600,00 URLs per day, with the entire classification workflow (including required software such as
the MQTT broker and MySQL server) taking up no more than 3 cores during peak times.

With this data, it is possible to estimate the monthly cost of running the classification system.
DigitalOcean (DigitalOcean Inc., 2017) and Amazon EC2 (Amazon Web Services, Inc., 2017) are
two providers of large-scale cloud-computing, offering hosts that have up to 32 and 64 cores respectively.

Provider Cores Memory
(GB)

Hourly
Cost ($)

Daily
Cost ($)

Monthly
Cost ($) 7

Max Throughput
(URLs/day).

Digital Ocean 4 8 0.119 2.856 85.68 43,200,000
Amazon EC2 (t2.xlarge) 4 16 0.188 4.512 135.36 43,200,000

Table 6.3: Running costs for a 4-core cloud-based virtual machine from DigitalO-
cean (DigitalOcean Inc., 2017) and Amazon EC2 (Amazon Web Services, Inc., 2017) 8.

Table 6.3 indicates that Poseidon costs $85.68 per month to process a feed of up to 43,200,000 URLs per
day using the solution from DigitalOcean. Pricing was retrieved for 4-core systems as configurations
for 3-core systems were not available, hence allowing an extra classification node to run on the fourth
core. When applied to the feed from Netcraft (which has a smaller average volume of 2,259,939 URLs
per day), Poseidon was able to identify 200.2 true positives per day, which equates to $0.0143/phishing
URL. If a feed of the maximum volume was used, extrapolating the current classification performance
indicates that true positives would cost $0.0007 each.

When measuring the general classification cost, Poseidon can perform 50,420 classifications per dollar
using the same 4-core system. To contrast with this, Google’s Machine Learning Engine (a cloud-based
machine-learning service) only offers 10,000 classifications per dollar, along with a flat hourly fee of
$0.40. In order to estimate the cost for producing a validated phishing feed that uses Poseidon as an
initial filter, one would need to also factor in the cost of the input stream of URLs, as well as the cost
of running the secondary classifier.

6.3.4 Evaluation Summary
The evaluation indicates that Poseidon is able to outperform the state-of-the-art when considering
previously-reported evaluation metrics, while being able to simultaneously achieve the greatest load
reduction, pruning the input feed to 1% of its size. These evaluation metrics include Balanced Success
Rate (which equally weights Recall and the True Negative Rate), Cumulative Error Rate, False
Positives and False Negatives.

When applied to the Netcraft feed of spam URLs, Poseidon is able to mine 200 phishing URLs/day on
average, costing $0.0143 per true positive when deployed on a 4-core cloud server.

6Intel Xeon E5-2650L v3 @ 1.80GHz
7Based on a 30-day month.
8Prices taken from the US East Region (as shown by default) on 03-04-2017
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7 Conclusion
This study investigated the application of machine learning for purposes of lexical phishing classification,
through three main stages - identifying the optimal feature vector, identifying the optimal classification
algorithm and subsequently building and evaluating a large-scale classification system that could be
used in the industry.

7.1 Traditional and Novel Features

Existing literature in this domain mostly focuses on the classification of phishing websites by using
features extracted from more than just the URL, i.e. the web-page itself (Ma, Saul, Savage and
Voelker, 2009a, Whittaker et al., 2010, Xiang et al., 2011) as well as information requested from
third-party services, such as search-engine ranking. The limitations that arise as a result of using these
methods (e.g. cloaking, latency, high-memory usage) are prevalent (Garera et al., 2007, Le et al., 2011),
however these can be avoided by restricting the feature collection process to features from the URL only.

By leveraging the research available for lexical classification, as well as identifying novel features, an
optimal feature vector was identified, using the χ2 test to measure feature performance. This feature
vector only retrieves data from the URL itself, and therefore has no external dependencies, overcoming
the problems identified in Section 2.7. The results indicated that 85% of novel features are able to
distinguish between benign and phishing URLs with statistical significance (p <= 0.001), with 50%
of novel features ranking in the top 50% of features in the optimal feature vector. This process also
identified features that were not effective, despite having shown effectiveness in past studies, which
could be attributed to evolution of methods used in phishing attacks in an attempt to evade detection.

7.2 Optimal Classification Algorithm

The process of finding the optimal classification algorithm identified that tree-based algorithms perform
well for this domain, in particular Random Forest and XGBoost (DMLC, 2017). Greatest performance
was achieved with the Random Forest algorithm with 150 trees and using

√
n features1 when splitting

at nodes during tree-generation (91.5% Accuracy, 91.6% F1-score and 0.97 ROC AUC).

It is important to note that a noisy data set was used for training and testing models, where the
benign and phishing URLs are structurally similar and contain various URL elements, and are also
sourced from a location where phishing attacks are prominent (email) (Almomani et al., 2013). This
contrasts with a large amount of existing literature, where benign URLs are sourced from directories
such as Alexa (Alexa, 2017) or DMOZ (DMOZ, 2016), and do not often contain URL elements such as
a path, filename and arguments. Attackers use various online communication channels to distribute
phishing URLs, and therefore being able to distinguish between benign and phishing URLs within
these channels is advantageous and is more representative of real-life application.

It was shown that the classification model built in this study is able to outperform the state-of-the-art
when performing lexical phishing classification, in terms of the various evaluation metrics identified in
Section 2.6.1. When compared with full-featured classifiers, this model is often able to achieve greater
performance too, indicating its suitability as a potential replacement for particular uses. These findings
are consistent with the findings of Le et al. (2011), where only a small degradation in performance was
observed when using lexical features only.

1Where n is the total number of features.
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The effects of evolution of phishing attacks were also investigated over a period of 50 days, where only
an increase of 1.53% in cumulative error rate was observed when using a model that was trained once
at the start of the 50 day period over a model that was trained daily.

7.3 Real-life Application

Very few studies have attempted to evaluate phishing classification methods in a real-life settings. In
this study, a large-scale classification system (Poseidon) was created, and applied to a high-volume feed
of URLs2 sourced from spam email. The purpose of the system was to act as a method of reliable load-
reduction, to reduce the number of URLs that are subsequently sent to a more expensive classification
process. Poseidon was found to also outperform existing systems of a similar nature (Canali et al.,
2011, Gyawali et al., 2011), when observing metrics such as load-reduction, false-positive rate, and recall.

An analysis of Poseidon’s computational requirements indicated that a maximum throughput of 43
million URLs/day can be achieved on a 4-core system. When applied to the URL feed that was used
during evaluation (which is 5% of the maximum throughput), each correctly identified phishing URL
came at the cost of $0.01433.

The system also offers various tools that can be used to create and evaluate classification models, eval-
uate various forms of feature extraction and manage the classification network. The workflow is easily
scalable, and nodes can be added/removed with ease. Existing libraries were leveraged where possi-
ble to aid with both the machine-learning aspect of the system, and the distributed nature of the system.

Poseidon has been deployed at Netcraft since February 2017, and is currently identifying 7500 unique
phishing attacks per month.

7.4 Limitations & Future Work

Several limitations can be identified in this study, which offer opportunities for extension of this
research in the future.

7.4.1 Classification Algorithms & Technology
The classification algorithms that were evaluated were mainly limited to those that were found to
perform well in literature. While a recently developed algorithm, XGBoost (DMLC, 2017), was
introduced and evaluated in this domain, a more extensive effort may have found more well-suited
algorithms that may outperform those that are traditionally used.

Furthermore, the implementations of the algorithms used do not leverage a GPU if present, either for
model-generation or making predictions. It has been shown that Neural Networks are faster and more
efficient when using a GPU for computation (Luo et al., 2005). The performance gains from using a
GPU may make more complex models be viable, as making predictions will take less time and so the
computational cost of a using more complex model will be lower.

Some studies have used online-learning algorithms (Blum et al., 2010, Le et al., 2011, Whittaker et al.,
2010) to tackle phishing classification, unlike the batch-based learning algorithms explored in this study.
Online-learning is performed by updating the classification sequentially with each next sample (Ma,
Saul, Savage and Voelker, 2009b), allowing the model to change the way various features influence the

22,259,939 URLs/day.
3Using DigitalOcean’s 4-core cloud server, and only accounting for costs of running Poseidon.
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prediction. A comparison of online-learning and batch-learning algorithms performed by Ma, Saul,
Savage and Voelker (2009b) identified that online-learning algorithms are able to keep up to date with
“changing trends in URL features”, thus adapting to the evolution of phishing attacks. Ma, Saul, Savage
and Voelker (2009b) also identified that the online-learning algorithms outperformed batch-learning
algorithms.

7.4.2 Retraining Poseidon
While online-learning algorithms lend themselves to continuous retraining by design (Ma, Saul, Savage
and Voelker, 2009b), batch-based algorithms can also be retrained at specific intervals to keep up
to date with changing URL trends, as shown in Section 5.5. Poseidon offers the ability to specify
“dynamic data sets”, which select the most recently classified URLs that have been labelled with their
true class. An automated retraining system could be created that would leverage this dynamic data
set, and retrain the underlying model at user-defined intervals. Research would need to be performed
to find the optimal interval - this study identified that a daily retraining scheme leads to a reduction
in cumulative error rate of 1.5%.

Furthermore, ways to sample the new training data would need to also be investigated, so that
particular trends do not overfit the model if they are significantly more prominent than other types of
attacks within a short period of time. Whittaker et al. (2010) address this by limiting the maximum
number of URLs from a particular domain to 150 per week, in order to reduce “concentrated phishing
attacks from dominating” the training data.

7.4.3 Improved Large Scale Evaluation
A limitation of the large-scale evaluation arises due to the issue of having unlabelled data. Without an
estimate of the ratio of phishing and benign URLs, it is impossible to identify the number of phishing
URLs that were missed by Poseidon. While the other metrics were indeed useful, having a labelled data
set would facilitate a more interesting evaluation which could also offer opportunities to understand
the nature of URLs that Poseidon fails to detect. Canali et al. (2011) were able to address this problem
by verifying the true classes of 1% of URLs that their classifier deemed to be benign, thus being able
to obtain an estimate of false-negatives in the total population. A similar approach could be taken to
do the same for Poseidon.

7.4.4 Feature Analysis
It could be interesting to analyse if joint influences exist from various subsets of features. While
some features may not significantly influence the outcome of classification, some features may have
a significant impact on the predicted class when they take on particular combinations of values.
Quantative Input Influence (QII) is a set of measures developed by Datta et al. (2016), which can
help identify joint influences from input features. QII can also provide another perspective on the
individual influence of features, which can be useful when analysing the effectiveness of particular
features. Another useful application of QII would be to identify deficiencies in the underlying training
data. As QII can provide information to explain decisions regarding particular outcomes, one would
be able to identify if a model is overfitted to particular trends in the training data that would not be
observed in the real life scenario.

7.4.5 URL Shorteners
URL shorteners can be used by attackers to evade detection by lexical classification, since none of
the true URL’s lexical features are exposed. This is a crucial weakness of Poseidon, as it is unable to
meaningfully classify URLs that use URL-shortening. In order to combat this, the system could be
extended to use a URL-resolver to retrieve the true URL if URL-shortening is detected. While this
does indeed involve fetching external content, and is subsequently susceptible to the issues identified in
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Section 2.7, performing this would be better than nothing at all. Poseidon’s network has a content-
fetcher node (currently unused) which can act as a middle-man between all external requests. By
strategically placing the node on networks that are not known to fetch phishing content for the purposes
of detection, the effects of “cloaking” could be mitigated, allowing more reliable retrieval of external
content.

7.4.6 Exploring Methods of Evasion
Detecting phishing is a cat-and-mouse game, with attackers constantly trying to evade detection. As
pointed out by Darling et al. (2015), attackers have access to the vast amounts of literature available
on phishing detection, and are therefore able to formulate their attacks in ways that can overcome
some detection techniques. While attackers are indeed able to modify the structure of a URL to
evade some of the features identified in this study, other features play a vital role in the process of
deceiving a victim. Including a the target organisation’s brand name in the URL, for example, can
convince an individual that the link is legitimate - though this is also a very effective indicator that
the link points to a phishing page if the domain at which it is hosted does not belong to the target
organisation. It is therefore evident that a trade-off exists when deploying a phishing attack - a URL
could be transformed to be as less phishing-like as possible, though this may come at a cost of its
ability to mislead individuals, and may incur a significant economic cost too (Pan and Ding, 2006).
An investigation could be undertaken to find features which are most resistant to evasion, as well as
features which are most easily evaded with the least cost to the attacker.
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http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://www.scipy.org/
https://crypto.stanford.edu/SpoofGuard/
https://crypto.stanford.edu/SpoofGuard/
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Appendix A

Features

A.1 Sample of Features in Literature

Feature Example/Notes Study
Lexical Features

Target organisation’s domain paypal-verify.com Khonji et al. (2011)
Target organisation in path myfreeweb.com/paypal.com Garera et al. (2007)
No. of characters from end of or-
ganisation’s name to end of host-
name.

paypal.account.verify-secure.com Garera et al. (2007)

Use of IP address as the host http://93.4.3.27/verify.php Abdelhamid et al. (2014)
Suspicious TLD used .tk, .hu, .info Ma, Saul, Savage and

Voelker (2009a)
Number of dots in URL Abunadi et al. (2013)
Number of slashes in domain n > 5 slashes → Phishing Lakshmi and Vijaya (2012)
Presence of hexadecimal encoding ...secure.php?id=%6A%4E Lakshmi and Vijaya (2012)
URL Length Abunadi et al. (2013)
Number of domain tokens A URL can be split into tokens using a

set of delimiters (?, , ., =, &)
Le et al. (2011)

Longest domain token length
Average domain token length
Number of path tokens The path of a URL can be split into

tokens using a set of delimiters (?, , .,
=, &)

Le et al. (2011)

Longest path token
Average path token
Number of subdirectories phisher.com/dir1/dir2/dir3 Le et al. (2011)
Length of longest subdirectory Le et al. (2011)
Number of special characters in
file name

Le et al. (2011)

Length of argument list index.php?arg1=s&arg2=sda Le et al. (2011)
Adding a prefix/suffix to a target
organisation name

account-paypal.com Abdelhamid et al. (2014)

Special characters in path James et al. (2013)
Number of subdomains Determined by number of dots in host Mohammad et al. (2014)
Replacing characters with visu-
ally similar characters

www.pavpal.com Aburrous et al. (2010)

Presence of @ symbol http://www.paypal.com@abc.com Aburrous et al. (2010)
Use of URL shortening tinyurl, bitly Mohammad et al. (2015)
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Feature Example/Notes Study
Host & Domain

Abonormal DNS Record Empty/Incomplete or does not match
the WHOIS identity

Pan and Ding (2006)

Age of domain n ≤ 60 days old → Phishing Fette et al. (2006)
Rank by traffic Used Alexa (Alexa, 2017) Rank Mohammad et al. (2014)
PageRank (Brin and Page, 2016)
value

PageRank of n ≤ 0.2 → Suspicious, No
PageRank → Phishing

Xiang et al. (2011)

Legitimacy of WHOIS informa-
tion (ICANN, 2016)

No WHOIS data → Phishing Lakshmi and Vijaya (2012)

Suspicious geolocation Whittaker et al. (2010)
Security

Lack of SSL/HTTPS Aburrous et al. (2010)
Untrusted Certificate Untrusted authority or Certificate age

< 2 years → Suspicious, No certificate
→ Phishing

Mohammad et al. (2014)

Cookie holds foreign domain Lakshmi and Vijaya (2012)
Script Analysis

Using onMouseOver to hide links onMouseOver AND changes status bar
text → Phishing, just onMouseOver →
Suspicious

Mohammad et al. (2014)

Changing link destinations
Form Handler <form action=’x’> where x is one of

(about:blank, ’return:void’, an ex-
ternal resource) → Phishing

Alkhozae and Batarfi
(2011)

Right click disabled Mohammad et al. (2014)
Page Content

Non-matching URLs <a href=‘paypal-secure-account.com’>
paypal.com </a>

Ramanathan and Wechsler
(2012)

External Objects/Scripts 22 < n ≤ 61% of objects/scripts are for-
eign → Suspicious, > 60%→ Phishing

Mohammad et al. (2014)

External images Ludl et al. (2007)
External favicon Mohammad et al. (2015)
External links I.e. links that take the user to foreign

domain
Ludl et al. (2007)

Nil anchor <a href=‘about:blank’>... Lakshmi and Vijaya (2012)
Using Pop-up windows Mohammad et al. (2014)
Contains an iframe Abunadi et al. (2013)
Contains a suspicious entry fields HTML text fields input,textarea that

have labels such as ‘password’ and
‘credit card’

Zhang et al. (2007)

Redirection Contains code that redirects the user Abunadi et al. (2013)

Table A.1: An aggregation of features used by various studies.
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A.2 All Lexical Features

Feature Type Notes Study
URL

length url int Abunadi et al. (2013)
num dots url int Abunadi et al. (2013)
contains at bool Contains the @ symbol Abunadi et al. (2013)
contains hex bool Contains hexadecimal codes Abunadi et al. (2013)
contains ip bool Contains an IP address Abunadi et al. (2013)
trigram url bool Sum of probabilities1 and Bag-of-words2 Darling et al. (2015)
quadgram url bool Sum of probabilities and Bag-of-words Darling et al. (2015)
longest token url int Darling et al. (2015)
avg token len url float Average URL token length Darling et al. (2015)
num non alpha url int Number of non-alphabet characters Darling et al. (2015)
target brand garera bool Target brand in path but not in host Garera et al. (2007)
sensitive term url bool webscr, secure, banking,

ebayisapi, account, confirm,
login, signin, paypal, free,
lucky, bonus index, includes,
content, images, admin,
file doc, account, update,
confirm, verify, secur, notif,
log, click, inconvenien, urgent,
alert

Bergholz et al. (2008),
Garera et al. (2007), Le
et al. (2011), Lee et al.
(2015), Ma, Ofoghi,
Watters and Brown
(2009)

hyphen url bool URL contains a hyphen Mohammad et al.
(2014)

num slashes url int Lakshmi and Vijaya
(2012)

slash redir bool Contains a double slash redirection
method

Mohammad et al.
(2015)

contains port bool Contains a port number Le et al. (2011)
out of pos tld bool A TLD present in non-TLD position Xiang et al. (2011)

Hostname
subdomain presence bool Contains a subdomain Canali et al. (2011)
unigram hostname bool Sum of probabilities and Bag-of-words Darling et al. (2015)
bigram hostname bool Sum of probabilities and Bag-of-words Darling et al. (2015)
trigram hostname bool Sum of probabilities and Bag-of-words Darling et al. (2015)
quadgram hostname bool Sum of probabilities and Bag-of-words Darling et al. (2015)
vowel cons ratio float Darling et al. (2015)
longest token hostname int Darling et al. (2015)
avg token len hostname float Darling et al. (2015)
length hostname int Darling et al. (2015)

1As explained in paragraph 2.7.1
2Bag-of-words: A binary feature is generated for each instance of the ‘word’ or ‘token’
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Feature Type Notes Study
num chars after target int Number of characters after the position

of a target’s brand name
Garera et al. (2007)

embedded domain bool Contains a target’s domain Xiang et al. (2011)
Domain

token count domain int Chu et al. (2013)
avg token len domain float Chu et al. (2013)
longest token domain int Chu et al. (2013)
domain brand distance int Levenshtein Distance Chu et al. (2013)
bigram domain bool Sum of probabilities and Bag-of-words Blum et al. (2010)
white domain bool Uses a whitelisted domain Garera et al. (2007)
mispelled domain bool Mispelled in relation to a target’s do-

main
Le et al. (2011)

num hyphens int Le et al. (2011)
tld bool Bag-of-words representation Ma, Saul, Savage and

Voelker (2009a)
similar char repl bool Visually similar characters replaced Aburrous et al. (2010)

Path
last path token bool Bag-of-words representation Blum et al. (2010)
token count path int Chu et al. (2013)
avg token len path float Chu et al. (2013)
longest token path int Chu et al. (2013)
unigram path bool Sum of probabilities and Bag-of-words Darling et al. (2015)
bigram path bool Sum of probabilities and Bag-of-words Darling et al. (2015)
trigram path bool Sum of probabilities and Bag-of-words Darling et al. (2015)
quadgram path bool Sum of probabilities and Bag-of-words Darling et al. (2015)
digit letter ratio float Darling et al. (2015)
length filename int Le et al. (2011)
num delim filename int Le et al. (2011)
organisation in path int Garera et al. (2007)

Query String/Parameters
trigram params bool Sum of probabilities and Bag-of-words Darling et al. (2015)
quadgram params bool Sum of probabilities and Bag-of-words Darling et al. (2015)
length querystr int Le et al. (2011)
num params int Le et al. (2011)
longest query value int Le et al. (2011)
max num delim value int Maximum number of delimiters in query

values
Le et al. (2011)

Table A.2: Aggregation of lexical features
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A.3 URL Decomposition

url = [ protocolComposite ], urlSansProtocol ;

protocolComposite = protocol,"://" ;
protocol = "http" | "https" ;

urlSansProtocol = hostname, [ portComposite ], [ path ], [ query ] ;
hostname = [ hostnameSansDomain, "." ], domain;
hostnameSansDomain = str | hostnameSansDomain, ".", str;

domain = domainSansTLD, ".", SLDTLD ;
domainSansTLD = str ;
SLDTLD = [SLD, "."], [TLD];

portComposite = ":", number;

path = directory, ["/", filename] | directory, [ "/" ] ;
directory = str[ "/", directory ] ;
filename = str, [ ".", extension ] ;
extension = strSansDot

query = ?, [ argsList ] ;
argsList = keyValPair, [ "&", argsList ] ;
keyValPair = str, [ "=", str ] ;

Figure A.1: The decomposition of a URL used in the process of feature extraction,
shown using extended Backus-Naur form. str refers to any allowed character in a URL,
and strSansDot is str without the dot.

A.4 Sensitive Terms

index, includes, content, admin, paypal, notif, secure,
account, webscr, login, logon, ebayisapi, signin, banking,
confirm, update, verif, secur, click, inconvenien,
authentica, recover

Figure A.2: The list of sensitive terms extracted from the works of Bergholz et al.
(2008), Lee et al. (2015), Ma, Saul, Savage and Voelker (2009a), Zhang et al. (2007)
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Appendix B

Inter-algorithm Comparison Results
Phishing Benign

Phishing 92704 7296
Benign 90269 9731

Table B.1: Confusion Matrix for Random Forest Model
.

Phishing Benign
Phishing 80408 19592
Benign 12654 87346

Table B.2: Confusion Matrix for Logistic Regression Model
.

Phishing Benign
Phishing 89533 10467
Benign 10451 89549

Table B.3: Confusion Matrix for Multi-layer Perceptron Model
.

Phishing Benign
Phishing 92151 7849
Benign 9464 90536

Table B.4: Confusion Matrix for XGBoost Model
.

Phishing Benign
Phishing 88189 11811
Benign 12402 87598

Table B.5: Confusion Matrix for AdaBoost Model
.
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Appendix C

Comparison Against Existing Studies

Study
Type Datasets Dataset

Weight
Algorithm Acc. Acc. Prec Prec Recall Recall F1 F1 AUC AUC

Pan and Ding
(2006)

Full Phishing: 50/25
(Millersmiles)
Benign: 50/25
(Millersmiles)

100 SVM 0.952 0.867

Sanglerdsinlapachai
and Rungsawang
(2010)

Full Phishing: 75/25
(clean mx)
Benign: 75/25
(google)

150 Random
Forest

0.915 0.945 0.914 0.942 0.971 0.988

Sanglerdsinlapachai
and Rungsawang
(2010)

Full Phishing: 75/25
(clean mx)
Benign: 75/25
(google)

150 Neural
Network

0.925 0.945 0.925 0.942 0.956 0.988

Zhang et al. (2007) Full Phishing: ?/? (Phish-
tank)
Benign: ?/? (Alex,
Proprietry)

100 CANTINA 0.955 0.905 0.970 0.900

Mohammad et al.
(2014)

Full Phishing: 450/?
(Phishtank)
Benign: 450/? (Ya-
hoo, startingpoint)

900 CBA 0.953 0.961

Xiang et al. (2011) Full Phishing: 222/1997
(Phishtank)
Benign: 768/1793
(Alexa, Yahoo)

990 Bayesian
Network

0.964 0.872 0.994 0.977 0.935 0.775 0.960 0.864

Ma, Saul, Sav-
age and Voelker
(2009a)

Full Phishing: 550/550
(Phishtank)
Benign: 750/750
(DMOZ)

1025 Logistic
Regression

0.970 0.956
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Garera et al.
(2007)

Full Phishing: 822/423
(Proprietry)
Benign: 833/429 (Pro-
prietry)

1655 Logistic
Regression

0.973 0.963 0.958 0.981 0.990 0.993

Miyamoto et al.
(2008)

Full Phishing: 1125/375
(Phishtank)
Benign: 1142/381
(Alexa, Yahoo, 3Sharp)

2267 Random
Forest

0.856 0.972 0.861 0.959 0.855 0.985 0.855 0.972 0.930 0.995

Miyamoto et al.
(2008)

Full Phishing: 1125/375
(Phishtank)
Benign: 1142/381
(Alexa, Yahoo, 3Sharp)

2267 Neural
Network

0.858 0.972 0.863 0.959 0.851 0.985 0.857 0.972 0.931 0.995

Miyamoto et al.
(2008)

Full Phishing: 1125/375
(Phishtank)
Benign: 1142/381
(Alexa, Yahoo, 3Sharp)

2267 AdaBoost 0.859 0.972 0.861 0.959 0.855 0.985 0.858 0.972 0.940 0.995

Huang et al.
(2012)

Lexical Phishing: ?/? (Phish-
tank)
Benign: ?/? (DMOZ,
Yahoo)

3695 SVM 0.991 0.962 0.997 0.987

Ludl et al. (2007) Full Phishing: 612/68
(Phishtank)
Benign: 3734/415
(google)

4346 C4.5 0.972 0.976 0.969 0.946 0.831 0.881 0.895 0.912

Le et al. (2011) Lexical Phishing: 2200/1800
(Phishtank)
Benign: 2200/1800
(Yahoo)

4400 Confidence
Weighted

0.968 0.969

Le et al. (2011) Lexical Phishing: 2200/1800
(Phishtank)
Benign: 2200/1800
(Yahoo)

4400 SVM 0.900 0.970

Lee et al. (2015) Full Phishing: 2700/300
(Phishtank)
Benign: 2700/300
(DMOZ)

5400 Random
Forest

0.982 0.955 0.981 0.938 0.983 0.974 0.982 0.956

75



C
C

om
parison

A
gainst

Existing
Studies

76

James et al. (2013) Lexical Phishing: 5344/8016
(Phishtank)
Benign: 2803/4205
(DMOZ)

8147 J48 0.932 0.960 0.946 0.958 0.949 0.982 0.947 0.970

Darling et al.
(2015)

Lexical Phishing: ?/? (Phish-
tank)
Benign: ?/? (DMOZ)

10800 Logistic
Regression

0.963 0.970 0.968 0.971

Feroz and Mengel
(2015)

Full Phishing: ?/? (Phish-
tank)
Benign: ?/? (DMOZ)

14400 Novel 0.985 0.973

Gyawali et al.
(2011)

Lexical Phishing: ?/? (Phish-
tank)
Benign: ?/? (spam -
benign)

40000 SVM 0.925 0.940

Whittaker et al.
(2010)

Full Phishing:
82947/20737 (Pro-
prietry)
Benign: 7 × 106/2 ×
106 (Proprietry)

7.5 ×
106

Proprietry 0.999 0.983 0.975 0.919 0.950 0.889 0.962 0.904

Table C.1: Data collected from studies where the various evaluation metrics are collected. Data set weight is the number of URLs in the
training set. The data set names correspond to Table 3.1. A ‘?’ symbol indicates that this information was not disclosed. Lexical classifiers are
indicated by green cells.
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