

Citation for published version:
Couch, C 2017, Radio Catchup An interactive Segment-based Radio Listen Again Service. Department of
Computer Science Technical Report Series, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://researchportal.bath.ac.uk/en/publications/radio-catchup-an-interactive-segmentbased-radio-listen-again-service(cff41638-c03d-41e9-b5b9-06a332f2ac36).html

Radio Catchup
An interactive segment-based radio listen again service

Christian Couch
May 2017

This dissertation is submitted for the degree of
Computer Science with Business Management (Hons)

Supervisor: Dr. F. Nemetz

Department of Computer Science
University of Bath

This dissertation may be made available for consultation within the
University Library and may be photocopied or lent to other libraries
for the purposes of consultation.

Signed:

Radio Catchup: An interactive segment-based
radio listen again service

Submitted by: Christian Couch

Copyright
Attention is drawn to the fact that copyright of this dissertation rests with its author.
The Intellectual Property Rights of the products produced as part of the project belong
to the author unless otherwise specified below, in accordance with the University of
Bath’s policy on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).

This copy of the dissertation has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and that no quotation
from the dissertation and no information derived from it may be published without the
prior written consent of the author.

Declaration
This dissertation is submitted to the University of Bath in accordance with the require-
ments of the degree of Bachelor of Science in the Department of Computer Science. No
portion of the work in this dissertation has been submitted in support of an applica-
tion for any other degree or qualification of this or any other university or institution
of learning. Except where specifically acknowledged, it is the work of the author.

Signed:

Abstract

The radio landscape has changed drastically over the past decade.
With the availability of the Internet, broadcasters have introduced
listen again radio services for users to catch up on programmes that
they missed. However, these services often contain limited contextual
information, which makes it difficult for users to locate and navigate
to their desired content.

This dissertation presents a method to automatically segment radio
programmes and deliver the contextual parts of a programme to the
listeners using an interactive segmented web player. The results of
the empirical evaluation suggest users prefer this segmented player
over a traditional web player and that locating content is significantly
faster with this player.

The work presented here has laid the foundations for many exciting
opportunities. Individual content within shows could be searchable,
listener personalisation could be possible, and listen again services
could be vastly more user friendly in the future.

To experience the web player, it is available online: http://radio.chris.io.

http://radio.chris.io

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background . 1

1.2 Motivation and Problem Statement . 2

1.3 Research Questions . 2

1.4 Aims . 2

1.5 Objectives . 3

1.6 Dissertation Structure . 3

2 Literature and Technology Review 5

2.1 Introduction . 5

2.1.1 Listen Again Services . 5

2.1.2 Listener Experience . 6

2.2 Audio Content Analysis . 7

2.2.1 Feature Extraction . 8

2.2.2 Audio Element Discovery . 9

2.2.3 Studio Element Discovery . 10

2.2.4 Segmentation Methods . 10

2.2.5 Segmentation Classification . 13

2.2.6 Metadata Structuring . 13

2.3 Audio Content Retrieval . 14

2.3.1 Search Techniques . 14

2.3.2 Audio Players . 15

2.4 Summary . 16

3 Requirements Elicitation and Analysis 17

Contents

3.1 Establishing Requirements . 17

3.1.1 Existing Solutions . 17

3.1.2 User Research . 21

3.1.3 Use Case . 24

3.2 Requirements Specification . 24

3.2.1 Back-End: Detecting show segments and associated metadata . . 25

3.2.2 Front-End: Interactive HTML-based listen again web player with
segment-based metadata . 26

4 Design 27

4.1 Development Methodology . 27

4.1.1 Iterations . 27

4.1.2 Risk Management . 28

4.2 System Architecture . 28

4.3 Development Tools . 30

4.3.1 Development Workflow . 30

4.3.2 Software Libraries . 30

4.4 User Interface Design . 32

4.5 Data and Schemas . 33

4.5.1 Event Collection Database . 34

4.5.2 JSON Schema . 34

4.6 Summary . 36

5 Implementation 37

5.1 Event Collection . 37

5.1.1 Playout System Audio Collection 37

5.1.2 Mic Live Collection . 39

5.2 Segment Analysis . 41

5.2.1 Station Data Retrieval . 42

5.2.2 Segmentation Engine . 42

5.2.3 Data and Audio Export . 46

5.3 Web Player . 46

5.3.1 Media Player . 46

vi

Contents

5.3.2 Segmented Progress Bar . 48

5.3.3 Segment Timeline . 49

5.3.4 Current Playing Segment Sidebar 49

5.4 Summary . 51

6 Evaluation 52

6.1 Requirements Evaluation . 52

6.1.1 RadioCatchup Management System 52

6.1.2 Segment Ranking & Podcast Generator 53

6.1.3 Summary . 53

6.2 Empirical Evaluation . 53

6.2.1 Introduction . 53

6.2.2 Hypotheses . 54

6.2.3 Method . 54

6.2.4 Results . 58

6.3 Discussion . 62

6.3.1 Segmentation Process . 62

6.3.2 Web Player . 63

6.3.3 Summary . 63

7 Conclusion 64

7.1 Key Contributions . 65

7.1.1 System Contributions . 65

7.1.2 Research Contributions . 66

7.2 Limitations of the Study . 66

7.3 Future Work . 68

7.3.1 Segmentation Process . 68

7.3.2 Web Player . 69

7.4 Concluding Remarks . 70

Appendix A Requirements Research 77

A.1 Research - Questionnaire . 77

A.1.1 Questionnaire . 77

vii

Contents

A.1.2 Responses . 85

A.2 Research - Interviews Consent Form . 90

A.3 Podcast Analysis . 91

Appendix B JSON Data Schema 93

Appendix C Requirements Evaluation 96

Appendix D User Experiment 98

D.1 Consent Form . 98

D.2 Guide . 99

D.3 Task List . 101

D.4 Web Player Questionnaire . 102

D.5 Final Questionnaire . 104

D.6 Questionnaire Responses . 107

D.6.1 Web Player Questionnaire - Web Player Comments 107

D.6.2 Web Player Questionnaire - System Usability Scale (SUS) 108

D.6.3 Final Questionnaire - General . 109

D.6.4 Final Questionnaire - Future Development 110

D.7 Experiment Results . 113

D.7.1 User Tasks - Time Taken . 113

D.7.2 Two-way ANOVA Statistical Analysis 114

D.7.3 Wilcoxon Statistical Analysis . 114

Appendix E Code 115

E.1 Event Collectors - Mic Live Collector . 116

E.2 Segment Processor . 120

E.3 Web Player - HTML . 123

E.4 Web Player - Plugin JS . 126

viii

List of Figures

2.1 Audio Content Analysis Framework [25, 26] 8

3.1 BBC iPlayer Radio . 18

3.2 Capital FM Listen Again . 18

3.3 Audio Progress Design . 18

3.4 Audio Control Design . 19

3.5 Comparison between Scott Mills radio show and podcast. Broadcast
Show: 16th February 2017 . 20

3.6 Comparing speech segments from the Scott Mills Radio Show included
and not included in the Scott Mills Daily Podcast. Broadcast Show: 16th
February 2017 . 21

3.7 System Use Case . 24

4.1 System Architecture . 29

4.2 Development Workflow . 30

4.3 Sketch - Web Player . 32

4.4 Wireframe - Web Player (Desktop) . 33

4.5 Wireframe - Web Player (Mobile) . 33

4.6 Event Collection Database - Entity Relationship Diagram 34

5.1 System Architecture - Event Collection 37

5.2 Myriad Playout - Item Metadata . 38

5.3 Myriad Playout - Play Item . 38

5.4 Myriad Playout - Log . 38

5.5 URB - Studio Mixing Desk . 39

5.6 URB - Studio Mic Live Light . 39

5.7 Mic Live Event Collector - Circuit Diagram 40

5.8 System Architecture - Segmentation Analysis 41

5.9 System Architecture - Web Player . 46

5.10 Web Player - Initial Design . 47

ix

List of Figures

5.11 Web Player - Segment Seekbar . 49

5.12 Web Player - Segment Timeline . 50

5.13 Web Player - Segment Timeline (Segment Disabled) 50

5.14 Web Player - Music Segment . 50

5.15 Web Player - Speech Segment . 50

5.16 Web Player . 51

6.1 Experiment - Web App . 55

6.2 Experiment - Workflow . 57

6.3 Experiment - Workstation Setup . 58

6.4 Time taken to locate a specific speech segment compared with the length
of the audio . 60

x

List of Tables

3.1 Topics and frequency discussed in Scott Mills’ show. Broadcast Show:
16th February 2017 . 21

5.1 Myriad Playout Database - Log Table Excerpt 38

6.1 Requirements Evaluation - Requirements Implemented 52

6.2 Participant 3 - Adjusted Task Result . 59

7.1 Comparison between experiment groups and time taken to complete each
task. 67

A.1 Research Questionnaire: Respondent Gender 85

A.2 Research Questionnaire: Respondent Age 85

A.3 Research Questionnaire: Respondent University Course 85

A.4 Research Questionnaire: Respondent Course Level 86

A.5 Research Questionnaire: Respondent Year of Study 86

A.6 Research Questionnaire: On a typical day how many hours do you listen
to live radio? . 86

A.7 Research Questionnaire: What time(s) are you most likely to listen to
live radio? . 86

A.8 Research Questionnaire: Where are you most likely to listen to live radio? 86

A.9 Research Questionnaire: What device do you use to listen to live radio? 87

A.10 Research Questionnaire: Why do you listen to live radio? 87

A.11 Research Questionnaire: How often do you listen to the following each
week? . 87

A.12 Research Questionnaire: What time(s) are you most likely to listen to
radio listen again services? . 88

A.13 Research Questionnaire: Where are you most likely to listen to radio
listen again services? . 88

A.14 Research Questionnaire: What device do you use to listen to radio listen
again services? . 88

A.15 Research Questionnaire: Why do you listen to radio listen again services? 88

xi

List of Tables

A.16 Research Questionnaire: What colour do you most associate with … . . 89

A.17 Scott Mills Show: Itemised Breakdown - 16/02/2017 91

C.1 Criteria-based Assessment . 96

D.1 System Usability Scale (SUS) - Design A 108

D.2 System Usability Scale (SUS) - Design B 108

D.3 User Experiment - Final Questionnaire: Participant Age 109

D.4 User Experiment - Final Questionnaire: Participant Gender 109

D.5 User Experiment - Final Questionnaire: Which web player would you
rather use? . 109

D.6 User Experiment - Final Questionnaire: How important is the data that
accompanies a segment, such as title or category? 110

D.7 User Experiment - Final Questionnaire: Would you be interested in a
web player that displays current and past segments when listening live
to a radio programme? . 111

D.8 User Experiment - Final Questionnaire: Would you be interested in
a web player that automatically gets segments from a variety of pro-
grammes and creates a personalised radio programme for you? 111

D.9 User Experiment - Final Questionnaire: Would you be interested in a
similar segmented web player for catchup television? 112

D.10 User Experiment: Time taken to complete task. 113

D.11 Empirical Evaluation: Two-way ANOVA (web player design × programme
duration conducted on task completion time) 114

D.12 Empirical Evaluation: Wilcoxon Signed Ranks Test (SUS_DESIGN_B
− SUS_DESIGN_A) . 114

xii

Acknowledgements

Firstly, I would like to thank my supervisor, Fabio Nemetz, whose enthusiasm, advice
and expertise has been so valuable throughout this dissertation. I would also like to
thank my committee at University Radio Bath who tested the system, provided their
shows for the user experiment and importantly kept me sane throughout this project.
I must also thank the various people in the radio industry who I have spoken to and
for their suggestions and recommendations.

Finally, I could not have done this dissertation without the support of my family and
friends, I am extremely grateful. Special mention must be given to my parents, their
partners and Jessica Craig who have given their time generously to proofread and
provide feedback.

1 Introduction

“This is 2LO calling, the London station of the British Broadcasting Company
calling. This is 2LO calling”

The first official broadcast from the BBC by Arthur Burrows on 14th November 1922 [1].

1.1 Background
Radio broadcasting has been around for over a century. Originally called ‘radio-
telephony’, the first broadcast is claimed to have been performed by Reginald Fessenden
in December 1906 in Massachusetts [2, 3]. Starting off small, Fessenden ‘increased his
range from this distance of about twelve miles to... about five hundred miles’ [4]. The
U.K. did not start broadcasting until 1920 when the Post Office licensed a few large
companies. A couple of years later a Parliamentary Committee decided to regulate the
industry, leading to the formation of the British Broadcasting Corporation (BBC) [5].

Since then radio broadcasting has developed immensely, first moving from Amplitude
Modulation (AM) to Frequency Modulation (FM). This transition gave rise to better
sound quality and the ability for digital data to be encoded and transmitted, through
RDS1. In more recent years, Digital Audio Broadcasting (DAB) has developed this
further with increased radio reception, further improved sound quality and even more
supplementary information being provided to the listener [6].

Nowadays the Internet is a big platform for radio. Internet Protocol has allowed for
a much larger transmission stream, consequently stations can benefit from providing
as much supplementary information as they wish. Additionally, not being confined to
a traditional ‘one-to-many’ transmission, the Internet has provided more information
along with personalisation and unique content for each listener. All of these devel-
opments have occurred to improve the whole listening experience. However, although
Internet radio distribution does not suffer from data limitations, the constraints of tra-
ditional broadcasting means that there is often a lack of supplementary information
being provided.

1Radio Data System - system used throughout Europe to send station identification, now playing
and other supplementary information.

1

1.2 Motivation and Problem Statement

1.2 Motivation and Problem Statement
Among the benefits of Internet radio is the ability to deliver on demand content in the
form of listen again services. These services provide users the ability to listen back to
a show that has already been broadcast, however this dissertation will address the lack
of information available in listen again services and specifically how it can affect the
listener experience.

Consider a listener who missed their favourite radio programme. They can use the listen
again service to catch up. However, suppose the show is three hours2 long? The listener
does not have time to catch up on the whole programme, so they are likely to jump
to parts of interest, for example an interview with a guest or a particular discussion
topic. Current listen again services present users with a single audio progress bar that
indicates which part of the programme they are listening to, rather than the content
they are listening to. Listeners wanting to jump to certain content must manually
search, often waiting for the content to buffer before realising that they are not at the
correct point. This is extremely inefficient and degrades the user experience.

1.3 Research Questions
To help analyse this problem and to provide direction for this dissertation, the following
research questions have been considered:

1. Is it possible to automatically segment a radio programme?

2. Is it possible to develop a segmented web player that is easy and intuitive to use?

3. Is it possible to develop a segmented web player that is quick for listeners to
locate content within a radio programme?

1.4 Aims
This dissertation aims to develop an interactive segment-based radio listen again ser-
vice, which provides users with the ability to view and locate specific content within
a radio programme. One potential solution is for radio station production teams to
manually tag content and timestamps as a show is broadcast, however this would be
labour intensive and potentially very costly. For this reason, this dissertation will be
searching for an automated solution.

If this dissertation is successful in segmenting radio programmes and presenting them to
the audience, the potential is enormous. This dissertation aims to lay the foundations
that would allow individual content within shows to be searchable, listener personalisa-
tion to be possible, and listen again services to be vastly more user friendly. Although
not all of these features will be in scope for the dissertation, they are only possible once
a radio programme has been segmented.

2Based on the average weekday daytime BBC Radio 1 show (http://www.bbc.co.uk/radio1/
programmes/schedules)

2

http://www.bbc.co.uk/radio1/programmes/schedules
http://www.bbc.co.uk/radio1/programmes/schedules

1.5 Objectives

1.5 Objectives
This dissertation will be considered a success if the following objects are achieved:

• Research the current academic literature concerning audio content analysis and
audio retrieval.

• Investigate the current technologies available and review similar existing solutions.

• Devise a requirements specification from a wide breadth of sources.

• Design a system that is capable of segmenting a radio programme and displaying
the segments against the audio within a web player.

• Following the design, develop an automated interactive segment-based radio listen
again service.

• Evaluate the success of the developed system by conducting a user study and
gathering user feedback.

1.6 Dissertation Structure
This dissertation is divided into 7 chapters.

Chapter 2 Literature and Technology Review - This chapter explores
the state of the art, focussing on audio content analysis and re-
trieval methods. Initially discussing audio content analysis, the
chapter considers different approaches to segmentation, comparing
analysing audio elements with studio events. The second part of
the chapter concentrates on retrieval methods and explores search
techniques and audio players.

Chapter 3 Requirements Elicitation and Analysis - This chapter elicits
requirements from a wide breadth of sources with existing solu-
tions analysed, user research undertaken and use cases derived.

Chapter 4 Design - This chapter discusses the development methodology,
reviews the design decisions taken at various levels and presents
an appropriate system design. The design is presented through a
system architecture, data schemas and user interface wireframes.

Chapter 5 Implementation - To build upon the previously defined system
architecture, this chapter discusses the implementation of the sys-
tem and presents a working solution.

Chapter 6 Evaluation - This chapter evaluates the solution presented us-
ing two methods: requirements evaluation and user experiment.

3

1.6 Dissertation Structure

These methods are described in detail and hypotheses of expected
outcomes are defined, which later in the chapter are proved sig-
nificant. Full statistical analysis and results from the evaluations
are also outlined.

Chapter 7 Conclusion - This chapter highlights the achievements and con-
tributions this dissertation has made, namely developing an auto-
mated system that segments radio programmes and presents them
to the audience through a web player. Limitations of the study
are also discussed in detail and recommendations are made for
possible future work.

4

2 Literature and Technology Review

This chapter covers the academic research undertaken and what methods and solutions
exist for dissecting a radio programme. The project naturally splits into two sections:
audio content analysis and retrieval methods. Thus the following review will research
the two areas respectively.

Since Fessenden made his first broadcast [3], radio broadcasting has been thoroughly
researched, from early day technical papers on how radio works [7], to modern day
analysis of psychological impact on listeners [8]. The focus of this project is the radio
broadcasting domain, however it is important to recognise that other industries are
developing tools for audio content analysis and retrieval methods. This literature review
will therefore make use of these other domains in order to provide an insight into how
these could be relevant in the field of radio.

2.1 Introduction
Before addressing the challenges of audio content analysis and retrieval, it is important
to understand its relevance in the domain of choice for this project, radio broadcasting.
The BBC, the first radio broadcaster in the United Kingdom, has been broadcasting
radio since 1922 [1]. In the early years radio programmes were not recorded, mostly
because recording equipment was rare, cumbersome and broadcasters had a prejudice
against recording shows, as it was thought reusing the recording, i.e. broadcasting
a pre-recorded show, “was not real” [9]. However, by the 1960s it became common
practice for broadcasts to be recorded [10] which resulted in a vast archive of broadcasts.
Unfortunately, these broadcasts have been largely forgotten, with little thought to
metadata that would aid content searching and retrieval. Raimond and Lowis [11,
pg. 1] found that “creating this metadata is a time- and resource-expensive process; a
detailed analysis of a 30 min program can take a professional archivist 8 to 9 hr”. It
is clear to see that this detailed manual processing could never be applied across the
complete archive. Instead a number of researchers [11, 12, 13, 14, 15] have developed
automatic unsupervised approaches to identifying these semantic tags.

2.1.1 Listen Again Services

Today, the availability of the Internet and the ability to deliver specific content to
different listeners mean broadcasters are able to offer listen again services. The terms
listen on demand, catch up service and listen again service are all interchangeable; they
refer to a service which provides the audience with the ability to listen to a show that
has already been broadcast1. Full show listen again is a listen again service employed
by most large scale radio stations. It gives the listener the ability to replay a previously

1For consistency this project will only refer to this service as a listen again service.

5

2.1 Introduction

broadcast show. In section 3.1.1 two solutions will be discussed: BBC iPlayer Radio2

and Radioplayer3.

Another form of listen again service is the podcast. While podcasts are not exclusive for
content from broadcasted shows, they are commonly used as another catch up service.
Due to licensing restrictions, they cannot contain music and therefore are often used
as a speech ‘best-bits’ reel. Podcasts are currently manually edited and produced with
production teams curating the content. The key difference between full show listen
again and podcasts is that some semantic analysis, mostly human based, has been used
to identify relevant and interesting audio clips for the podcast audience, whereas full
show listen again acts to fully replicate the broadcast. However, it is evident that
podcasts were originally used as a means for listener time-shifting (tuning in it any
time) before full show listen again services were developed.

2.1.2 Listener Experience

Listeners listen to radio or podcasts for a variety of reasons. McClung and Johnson
[16], studied podcasts as they was the only readily available listen again service at the
time. They found that listeners use these services for “entertainment, timeshifting,
library building, and social aspects” [16, pg. 93]. Consequently understanding what
listeners are looking for is vital to building effective analysis and retrieval systems.

A recent study by Nencioni et al. [17] found that users prefer serialised content. This
supports the findings of BBC iPlayer press packs which suggest that the most popular
listen again requests are for serialised content [18]. This indicates that users want to
catch up on content they know is out there, rather than look to discover anything
new. Nencioni et al. also found that users prefer short duration content (<60 minutes),
although this is not the case with entertainment or music based radio programmes
which can be evidenced by the average BBC Radio 1 show being three hours long4.
Nonetheless, this could explain the popularity of podcasts within entertainment and
music based radio programmes for listen again services.

An important listener habit first identified in 1948, that has become increasingly rele-
vant in recent years, is the social aspect of media [19]. Lasswell found that people enjoy
discussing programmes in a social setting, which can often lead listeners who may have
missed the initial broadcast to use listen again services to catchup.

Not only do listeners want to listen back to particular shows, but according to research
carried out by Skov and Lykke [20], 48% of his respondents found it important to
locate a part (or section) of a radio programme. To further analyse this, researchers
[21] investigated how listeners currently locate this content within an audio file and the
results revealed a very manual process (techniques to improve this process are discussed
in section 2.3, as it is an important feature for listeners). In order to identify and retrieve

2BBC iPlayer Radio: Listen to live BBC radio online and on-demand radio catch up for programmes
missed. http://www.bbc.co.uk/radio

3Radioplayer: Non-profit partnership between the BBC and commercial radio which aims to keep
radio listening simple, through providing radio web technologies. http://www.radioplayer.co.uk

4BBC Radio 1 Schedule: (http://www.bbc.co.uk/radio1/programmes/schedules)

6

http://www.bbc.co.uk/radio
http://www.radioplayer.co.uk
http://www.bbc.co.uk/radio1/programmes/schedules

2.2 Audio Content Analysis

parts of a radio programme, it is important to understand how they are structured.
Radio programmes often follow a set format, which is determined by producers and
repeatedly used each week. If these can be defined, then automated processes can
utilise the known formats and structure segments, ultimately resulting in a natural
breakdown of a show for listeners.

Further to this research, the BBC piloted Responsive Radio5, a tool that tailored a
documentary to a user’s desired listening length. Responsive Radio had categorised
and prioritised the segments in the documentary. Depending on the length a user
selected, the tool would customise the show they heard, choosing enough segments
for the desired duration. While this was very innovative and a great feature, it still
required timely manual curation of segments and priorities that meant the pilot was
infeasible for public release. The experiment presented a new listen again experience,
highlighting a different take on providing requested content to the audience.

Overall, it is clear to see that listen again services are important and valued by lis-
teners. Each year RAJAR6, the national body that measures radio audiences, release
a ‘Measurement of Internet Delivered Audio Services’ report that analyses how and
when content is consumed online. Comparison of the Autumn 2015 and Autumn 2016
reports [22, 23], reveals that full show listen again and podcast usage has increased
20% in the past year. These are encouraging results for the medium and emphasise the
importance of these services for listeners.

2.2 Audio Content Analysis
Audio content analysis is not a new research area. Many studies and researchers have
tried to find efficient methods for extracting meaningful and relevant data from an audio
document. Lycke et al. [14], Raimond et al. [15] both studied accurate tagging methods
of archive material within broadcasters and proposed solutions using speech recognition
and semantic keyword extraction. Once audio had been transcribed, Lu and Hanjalic
[13] likened these approaches to the methods used for text document analysis and
categorisation. They proposed that findings from textual semantic extraction research
should be exploited for audio based content too. However, often audio documents
contain more information, such as temporal and structure data, that is not extractable
with these methods. To analyse an audio document sufficiently, Larson and Köhler
[24] argue that structure metadata (segments) is better utilised than content metadata
(transcripts). This section addresses the problem of unsupervised detection of audio
segments and researches current methods and solutions.

Audio segments are parts of an audio track that can be divided naturally. They should
be thought of as scenes in a film, with each one defined by a beginning and end and
having a semantic meaning. It is important to note that audio can be broken down

5BBC Responsive Radio: http://www.bbc.co.uk/taster/projects/responsive-radio
6RAJAR: Radio Join Audience Research is the official body in charge of measuring radio audiences

in the UK. It is jointly owned by the BBC and the Radiocentre on behalf of the commercial sector.
http://www.rajar.co.uk

7

http://www.bbc.co.uk/taster/projects/responsive-radio
http://www.rajar.co.uk

2.2 Audio Content Analysis

further than scene or segment decomposition. For speech content this could be broken
down into sentences, words, or syllables, whereas music content could be into verses or
notes.

Lu and Hanjalic [25], Tzanetakis and Cook [26] have developed a framework, shown in
figure 2.1, that helps represent the process of understanding audio content. A bottom
up approach can be used, first extracting the low-level audio features, followed by
defining mid-level audio elements, grouping them as a semantic segment and finally
classifying the high-level segments.

Fig. 2.1 Audio Content Analysis Framework [25, 26]

2.2.1 Feature Extraction

Pfeiffer et al. [27] recognised that audio can be analysed from two angles; physical and
human cognition. Physical analysis studies quantifiable properties, such as amplitude or
waveform, whereas human cognition is qualitative and varies per person (for example,
how loudness or harmony is perceived). While physical properties of sound waves
influence our perception of psychological features of sound (loudness, pitch and timbre),
it is difficult to quantify human cognition.

Cooke [28] modelled the human auditory system to understand how it classifies cer-
tain groups of sounds, however our current understanding of the auditory system is
insufficient to derive semantic meanings from physical features. Instead, a number
of researchers [27, 29, 30] explored the proposal that if the input is known (physical
properties of sound) and the output is known (classification of audio) then through the
use of a training set, a black box process can be learnt and developed. To discuss this
further it is important to understand the basics of sound.

Sound is defined as a change in air pressure generated by vibrating molecules, often
modelled through a waveform composed of sinusoidal waves of different amplitude, fre-
quency and phase. Experiments with different sounds show that phase is a perceptually

8

2.2 Audio Content Analysis

insignificant (inaudible) component in complex sound, but it is evident that amplitude
affects our perception of loudness and frequency affects our perception of pitch [31].
However, in order for us to analyse audio, analogue audio signals must be converted
into a digital data form. This is known as sampling. Each sample takes a snapshot of
an audio signal at a particular point and coverts it into an 8 or 16 bit data point. The
digital representation is never as accurate as the analogue data, as it is merely sampling
the signal at one point, however the greater the number of samples the higher the audio
quality and the less likely human senses will be able to distinguish between the two.
CD quality audio uses a sample rate of 44.1 kHz, or 44,100 samples per second.

Once the audio is in a digital form, it can then be converted into the sinusoidal waves,
enabling us to identify the range of frequencies present. While human ears use the
cochlea to convert time-dependent signals, such as those on a sound waveform, into
signals corresponding to a frequency spectrum, computers must use a mathematical
technique known as the Fourier Transform [32]. This process details what frequencies
are present in the signal and in what proportion. Once this information is identified,
the different sounds can be distinguished. These are described as audio features, but
could be thought of as phonemes in language [33].

2.2.2 Audio Element Discovery

Once audio has been sampled and the Fourier Transform process has converted time-
based signals into a frequency-based spectrum, it is then possible to derive the psy-
chological features of sound, audio elements. Referring back to the previous analogy,
as audio features can be viewed as phonemes, audio elements can be viewed as mor-
phemes. Understanding a sequence of phonemes, helps to understand a morphemes
and with that brings higher-level semantic understanding.

Element discovery does not just refer to audio, it has previously been used to identify
scenes in sport videos. Huang and Tung [34] analysed baseball videos, looking at the
visual features in each clip. Huang defined thresholds that if certain video features
met, could confidently mark a clip as a particular scene. For example, analysing a shot
for skin colour (number of skin regions and size of dominant skin region) would help
classify it as a close-up player scene or audience scene.

Returning back to audio, researchers such as Pfeiffer et al. [27], Lu et al. [35], Barbosa
et al. [36], recognise that these audio elements should be first classified into speech or
non-speech content, although some researchers break non-speech elements down further
into music, sound effects, noise or silence [25]. To achieve this, there are a number of
techniques available. However, often to reduce the computational complexity of signal
processing, audio features are first combined into frames. An audio frame can be
considered a sample of the audio for the given timeframe, complete with time and
frequency based data. The timerange can vary from 372 second frames [37], to 10
millisecond frames [38] depending on the use for the data. If we were analysing 44.1
kHz audio, then using 20ms frames would cut the number of samples to be processed

9

2.2 Audio Content Analysis

down by 99.9%. Even with this sort of compression, the data given is still extremely
rich with sufficient information to classify and segment audio further.

When attempting to classify audio elements there are two main methods to describe
the audio from the previously extracted audio features: Mel-frequency Cepstral Co-
efficients (MFCC) and Zero Crossing Rate (ZCR) [35]. ZCR estimates the frequency
content in an audio signal and can detect speech content by excitation of vocal tract
that exhibits a low zero crossing rate, compared to non-speech content that exhibits
a high zero crossing rate [39]. MFCC mimics the human auditory system measuring
perception of loudness and pitch, but excluding speaker dependent characteristics such
as fundamental frequency and harmonics [40].

Using these descriptors it is then possible to discriminate content types. “Silence and
breathing noise is made from a simple energy-based detector (VAD) and the detection
of music and noise is achieved using Guassian Mixture Models (GMMs)” [38, pg. 1].

2.2.3 Studio Element Discovery

While audio elements map directly on to the audio, it is important to note that audio
elements should not be exclusively analysed to determine the segments. Often when
content is produced the audio structure and metadata of each audio clip is available,
however when it is stored this information is lost, as it is composed down into one audio
file. An example of this is when a pre-recorded news story is edited down ready for
broadcast. The audio could contain an intro, sound effects, a couple of interviews and
a conclusion. In an audio editor this would appear as distinct tracks, positioned in a
timeline. When this is exported the audio is mixed down into a new file, however the
individual tracks and their relative position are all lost.

Object-Based Broadcasting

Object-based broadcasting (OBB), a new research area driven by the BBC [41] and a
number of other European partners [42], is attempting to preserve this information
within the audio files metadata. An European research group, ORPHEUS7, have been
formed by broadcasters across Europe looking generically across all forms of audio
production, from live studio broadcasts to pre-recorded multi-track edits.

The Object Based Broadcasting term has only recently been used and recognises that
segmentation information does not need to come from analysing audio, but can be
collected from the production of the audio. This is very encouraging for segmenting
audio as capturing data at the source is likely to be a lot more accurate, rather than
reengineering it after it has been compiled down.

2.2.4 Segmentation Methods

Methods vary for detecting audio segments, with most using the detected audio ele-
ments to make an informed decision about a segment start and end. While we have

7ORPHEUS: https://orpheus-audio.eu

10

https://orpheus-audio.eu

2.2 Audio Content Analysis

discussed two types of element discovery methods, audio and studio, it is worth men-
tioning that very little research mentions and explores using studio data to inform
segmentation decisions. One possible reason for the lack of research is that this in-
formation is not publicly available, and often a lot of research is conducted separately
away from the radio stations that are producing it. Although it could also be argued
that radio stations might be cautious about letting new technology/techniques near
studios for the fear it could cause problems. However, the hypothesis of this project is
that studio elements could significantly reduce computational complexity required to
accurately segment a radio show. This project has the advantage that the author is the
station manager of a university radio station and therefore able to test solutions in a live
environment. Due to the lack of research available about studio based segmentation,
this literature review will focus on audio element based segmentation methods.

Theodorou et al. [38] defined two different approaches to segmentation; distance-based
segmentation and model-based segmentation. The former can be referred to as top-down
(context based) and the later as bottom-up (sensory analysis) [43].

• Distance-based segmentation analyses audio for the presence of a certain char-
acteristic (described through methods such as MFCC and ZCR) and plots it
against adjacent audio feature vectors, resulting in the distance curve. Adjacent
features with the largest distance (characteristic change) will be the peaks to the
curve. These can be considered as the audio segment boundaries. The Bayesian
Information Criterian is a statistical analysis technique that performs this task
[44].

• Model-based segmentation on the other hand classifies all the audio elements as
specific sound objects (music, speech, sound effect). Each element is analysed
individually and determined by a model that analyses its component frames,
comparing them to training data for identification. Machine learning techniques,
such as Hidden Markov Model (HMM) [45, 46] / Guassian Mixture Model (GMM)
[47, 48] and Support Vector Machine (SVM) [49, 36] are the most common algo-
rithms, but these models require a minimum number of example audio elements
to train them properly [50, 51].

These two approaches ultimately come to the same conclusion, with some methods
having better precision and recall than others. One approach breaks down an audio file
into segments, while the other builds the segment from events [35]. However, while each
segmentation approach has its benefits, Theodorou et al. [38] found that a hybrid of the
above approaches were preferred in complex segmentation tasks. Three segmentation
methods are now discussed:

1. Volume analysis - A distance-based segmentation method theorising boundary
segments can be noticed by sudden volume changes [52, 53]. For example, a
song fading out and a jingle suddenly starting before a presenter starts talking.
The experiments found that some semantic content is attainable through volume

11

2.2 Audio Content Analysis

analysis, however this method alone is not enough to accurately segment. Other
methods should be used in conjunction with volume analysis [53].

2. Semantic Affinity Measure - Another distance-based segmentation method [13],
also known by its inverse Audio Novelty [54]. These methods find natural segment
boundaries by analysing a range of different audio features, such as the ones
extracted using MFCC. Analysing them on a distance-based graph indicates peaks
where the concurrent audio features are most different or ‘novel’.

3. Pattern Recognition - A technique following the model-based technique that can
be used to detect parts of audio, often known as audio fingerprinting . Through
a reproducible mathematical process, hash tokens are extracted from an audio
element giving it a unique identifying signature known as a fingerprint. The
same mathematical process is then applied to another audio file and if the unique
fingerprint matches an item in the library of known fingerprints, then it can be
deemed present in the audio. A very well known application using this is Shazam8.
Starting in 2000, Shazam developed an algorithm that could recognise music even
under unsuitable conditions, such as heavy ambient noise or subject to reverb [55].

Focusing on the pattern recognition segmentation method, an important factor is the
reference database. Any item that has not been processed, and therefore its fingerprints
are not listed in the database, will not be recognised. This method requires complete
access to any audio you would like to recognise. For certain audio elements this might
not be a problem, for example music and sound effects are stored within the station
and could be processed if a system was put in place. Speech content on the other hand
would not work. Presenters are unlikely to speak in the exact same tone even when
repeating a sentence or phrase. Therefore, each time would result in unique fingerprints
and no match would be detected.

Audio pattern recognition is an extensively researched area with numerous papers cov-
ering the advances in the technology across many domains [56, 57]. Oliveira et al. [58]
developed a solution for the commercial advertising industry that could monitor tv
and radio streams for given adverts. The results were impressive with Oliveira et al.
achieving a 95.4% recognition rate with less than 1% of false-positives.

However, implementing this approach in a broadcasting environment requires finger-
printing all the content within a radio station’s playout system, which are often very
large, containing thousands of audio tracks. For fingerprinting to work, all these tracks
would need to be analysed and compared against each processed entry. Burges et al. [37]
developed the RARE (Robust Audio Recognition Engine) focussing on two key problems
with previous solutions: detection of distorted audio and lookup speed within large au-
dio fingerprint databases. Unfortunately Burges et al. did not provide any experiments
between standard recognition techniques and RARE, so no quantifiable comparison can
be made.

8Shazam: https://www.shazam.com

12

https://www.shazam.com

2.2 Audio Content Analysis

A slightly different take to pattern recognition is audio recurrence which identifies
segments in programmes composed of recurrent segments that act as anchor points
[59]. Rather than comparing extracted fingerprints with an existing detailed library,
it compares it with itself. Unlike traditional pattern recognition, where the matched
fingerprint will contain metadata describing itself, audio recurrence cannot semantically
classify itself. An example of this would be a news program that uses the same sound
effect between news stories. If a system detects each time it is played then it could split
the programme accordingly.

2.2.5 Segmentation Classification

While it is important to detect segments, it is arguably as important to identify what
the segment is. There are two reasons for this. Firstly, without it being identifiable
a listener is none-the-wiser what the audio timeline contains, and secondly it would
not be indexable so therefore cannot be searched and retrieved. Often the methods to
classify a segment are very closely aligned to the methods used to segment the audio in
the first place. This section will look at speech recognition with semantic tagging and
audio fingerprinting.

Speech recognition is an extremely useful tool that can transcribe audio into a textual
form and with further semantic analysis into keywords [14, 60, 15]. Once in a text
form traditional semantic analysis can be performed. Dowman et al. [60] developed
a prototype system that can annotate TV and radio news broadcasts using speech
recognition and relevant articles on the Internet to provide semantic annotations. The
system analysed the transcription and used mathematical key-phrase extractors to de-
termine keywords from the audio. Using the keywords written articles could be found
on the Internet to provide further information. Combining the temporally precise
speech recognition with the conceptually accurate written articles had helped reduce
the impact of speech recognition errors.

Since Dowman et al.’s research was published, there have been vast technological im-
provements. The solution was not a perfect one and had considerable flaws particularly
around the speech recognition. Arguably only using one speech recognition technique
means that transcripts cannot be compared and errors detected; this study was re-
leased in 2005 and since then technical developments have led to a myriad of speech
recognition systems available.

Audio fingerprinting, on the other hand, uses an existing database to provide classi-
fication. As discussed previously in the segmentation method section, it is important
that fingerprints are organised and tagged properly to help identification. The tags
associated with a fingerprint can then be combined with other fingerprint tags in the
same segment to derive an overall semantic description.

2.2.6 Metadata Structuring

Segmenting and classifying audio structure information is very important for it to
be used further, however it must be stored in a suitable storage format. Currently

13

2.3 Audio Content Retrieval

popular audio file formats use metadata containers that wrap around the audio, which
is encoded according to the file format. ID3 is an example of a metadata container and
is commonly used in conjunction with the mp3 audio format. ID3 metadata describes
the audio file with properties such as title, artist and genre. The tag refers to the audio
file as a whole, so if the audio contains different content then a common name and
shared details must be agreed. MPEG-7 on the other hand is a multimedia content
description standard that provides the ability to describe content rather than files. The
specification uses XML to store the metadata and requires timecodes to correspond
descriptions to the precise media content.

Metadata Production Framework (MPF) is another specification “designed as an ef-
ficient environment for generating metadata for TV programs from the viewpoint of
the broadcaster” [61, 62, pg 1017.]. The framework is designed to describe portions
of a video for a given time. Although this model simply adopts a subset of MPEG-7,
it is modified slightly to allow relevant URL pointers for segments, something that is
omitted in the MPEG-7 format which Sano et al. identifies as very useful.

2.3 Audio Content Retrieval
Once the audio segments have been detected and classified, it can lead to a myriad of
uses. Audio retrieval is an important aspect to keep in mind through this project despite
it not being a main focus. This project will focus on utilising existing retrieval methods,
namely a web audio player, and enriching it with visualised segment information.

A further extension to this would be enabling the listener to search for specific content
across a station, rather than retrieving segments through the specific broadcasted show.
This would enable users to find relevant content and not be restricted by a single show
or a show series. This section will briefly reflect on some existing research and solutions.

2.3.1 Search Techniques

Searching audio is another key topic benefiting from a range of research dating back to
1996 when Kubozono et al. [63] proposed an audio key-information search system. This
project does not intend to develop or utilise a search technique, nonetheless it is impor-
tant that metadata is stored in a suitable way. As a result, search techniques remain
a popular area for future research. This section will briefly outline two approaches:
textual search and content-based search [64].

1. Textual search uses textual indices that can be extracted from an audio file by
using speech-recognition and keyword analysis. Subsequently they can be applied
to traditional information retrieval techniques, such as the Document Ranking
Optimisation algorithm (DROPT) [65]. Raimond and Lowis [11] used this process
to tag programmes within the BBC Archive for text-based search retrieval.

2. Content-based search on the other hand gives the user the ability to search by
physical and psychological audio elements, such as searching for a particular
singer. It works using query-by-example where a fragment of the singer’s voice is

14

2.3 Audio Content Retrieval

submitted and compared for similarity against items in the database, as demon-
strated by Tsai and Wang [66] and used by Shazam [55].

2.3.2 Audio Players

Once an audio file has been located and the file retrieved, the next step is to play it.
Audio players vary from hardware players, such as tape machines or CD players, to
software based players such as Windows Media Player9 or Apple Quicktime10. With
the rise of the internet, web based audio players have become increasingly popular. A
web player gives listeners the ability to go to a website and stream the content directly,
without the need to download it or use proprietary software to listen to it. Most
basic media players consist of a play/pause button and an audio progress bar with a
slider to indicate the current position. Understanding how users navigate content is an
important detail that Hürst et al. [67], Lauer and Hürst [21], Lee [68], Carlier et al.
[69] have thoroughly researched. Their findings are detailed below.

Without bookmarks or segmentation indicators a user is required to manually navigate
an audio file to identify areas of interest. Hürst et al. [67] researched how users can
interactively navigate multimedia files based on audio feedback. Whereas video is made
up of individual pictures (visual frames), audio is made up of individual sounds (audio
frames). Visual frames can be understood independently of other frames, however
independent audio frames do not provide the same semantic meaning. Multiple audio
frames must be played together to provide any interpretation, but this is inconsistent
with the quick and uneven movement of a slider. To overcome this issue, Hürst et
al. designed two different approaches: elastic audio slider and position based slider.
The first approach limited the slider movement and instead introduced a new UI tool
that would not allow the user to move the slider directly but influence the speed of
its movement. The second approach reduced the strict synchronisation of thumb and
acoustic feedback. In the educational multimedia domain, Lauer and Hürst [21] also
took the same approach to analysing multimedia documents, but unfortunately neither
Hürst et al. or Lauer and Hürst presented any user testing or analysis in their papers
so it is difficult to examine the success of this method. Nonetheless it is an interesting
approach to the problem of locating specific audio content within a file.

However, as we have been able to extract audio segments from the audio track, an
interface allowing the user to view and navigate to these segments is required. Many
papers address improving media players to facilitate searching and seeking, however
these are primarily directed towards video browsing. Carlier et al. [69] developed a
video player with bookmark navigation and automated prefetch of predicted content.
The study compared two video players, one with the bookmarks and prefetched content,
and one designed as a control player has no new features. The results were promising
and identified that the new user interface “can lead to up to 4x more seeks to book-
marked segments and reduce seek latency by 40%, compared to a video player interface

9https://support.microsoft.com/en-us/help/17615/windows-media-player-12
10https://support.apple.com/en-gb/HT201175

15

https://support.microsoft.com/en-us/help/17615/windows-media-player-12
https://support.apple.com/en-gb/HT201175

2.4 Summary

commonly used today” [69, pg. 967]. However, it is important not to infer that the
inclusion of segmentation bookmarks alone increased seek rate to these sections. By
prefetching content the player could have biased users by offering significantly reduced
seek latency, meaning that users will not have to wait for the video to buffer.

Amalia.js is an open-source HTML5 multimedia player that Hervé et al. [70] developed
to edit, view and play audio with temporal and spatial metadata. The solution is a
lot more advanced than what Carlier et al. presented, offering a full object oriented
broadcasting view of an audio file. The player is promising with a number of useful
features. There are also a number of lessons that can be learnt from the development of
this solution. For example, Hervé et al. [70] developed the media player using HTML5
as it was well supported and available across most internet capable devices, but this
brought its own challenges as the player had to be tested on a large variety of browsers,
including mobile devices.

2.4 Summary
In conclusion, this literature review has critically analysed the state of the art, focussing
on audio content analysis and retrieval methods. A brief introduction outlined the
importance of the listener experience and why listeners value a listen again service.
These findings should be taken into account to ensure any system developed will meet
listener expectations.

It was evident that a large amount of research has been conducted on audio content
analysis, with the majority attempting to extract data, that was once available during
composition, by analysing the linear audio. Instead of reverse engineering the audio,
another less researched approach is to collect the data during composition. This disser-
tation aims to follow the latter approach and apply it to segmenting a radio programme.
Specifically, collecting studio events during a radio broadcast and analysing them to
detect segments in a radio programme.

One possible reason for the lack of research is that this studio event information is not
publicly available, and often a lot of research is conducted separately away from radio
stations that are producing it. Although it could also be argued that radio stations
might be cautious about letting new technology/techniques near studios for the fear it
could cause problems. However, this project is able to take advantage of the university
radio station and test solutions in a live environment.

16

3 Requirements Elicitation and
Analysis

Chapter 2 explored a number of segmentation methods, however at the end of the
chapter it was decided that this dissertation will use studio events to segment a radio
programme. This chapter discusses how requirements were collected from a number of
different sources, including analysis of similar existing solutions and conducting user
research. A full requirements specification is presented at the end of the chapter

3.1 Establishing Requirements
This project is experimental in nature, therefore stakeholders have not been used to
define requirements. Instead, requirements for this project have been gathered from a
wide breadth of sources. Existing solutions have been analysed, user research has been
undertaken and use cases have been derived.

3.1.1 Existing Solutions

To establish requirements for this project, it was important to understand the pitfalls
and advantages of existing solutions to ensure the project learns from them. Although
no automated segmented listen again service has been implemented, based on research
of radio stations, there remains variations that are available to be analysed. For this
section two types of existing solutions will be analysed; catchup radio players and
podcasts.

Catchup Radio Players

A number of broadcasters have utilised catchup on-demand services for years. These
services give users the ability to replay shows that have already been broadcasted, but
unfortunately they are difficult to navigate to specific content. The BBC’s iPlayer (Fig.
3.1) is considered by many the most advanced catchup player, but other broadcasters
have followed suit.

Originally Radioplayer1 (Fig. 3.2) was designed as a simple and consistent web player
for online UK radio listening. It was formed by the BBC and commercial stations and
became widely used by many, including student/community stations. Radioplayer’s
primary focus is to deliver live radio streams to listeners, however recently audio on-
demand has been integrated into the web players. Unfortunately, the audio on-demand
functionality is limited and can only handle an Rich Site Summary (RSS) feed that
provides a title, description and links to the audio location. Many stations, such as

1Radioplayer, http://www.radioplayer.co.uk

17

http://www.radioplayer.co.uk

3.1 Establishing Requirements

Global Radio’s stations2, use the limited functionality on-demand tools Radioplayer
provides. Contrastingly, the BBC have integrated audio on-demand into iPlayer, an
existing in-house on-demand application. Despite the BBC’s use of a separate catchup
service, the user interface is very similar to Radioplayer.

Fig. 3.1 BBC iPlayer Radio Fig. 3.2 Capital FM Listen Again

Comparing BBC iPlayer and Captial FM’s web player (which uses Radioplayer) reveals
a number of notable features:

• Audio Progress Bar - Each web player uses an audio progress bar (Fig. 3.3) to
indicate the duration and relative position of the playing audio. A horizontal
line usually represents the audio duration, while a cursor on the line indicates
the current position. Hovering over the progress bar at any given point displays
a popup with the time of that audio. Clicking on the progress bar begins audio
from that point, this allows users to jump to content if given a specific time.
Alternatively, a user can seek through audio by jumping to ‘random’ points until
desired content is found. The time popup, that is displayed when you hover over
the progress bar, can be used to navigate to an exact moment if the movement
of the cursor along the progress bar is not clear enough. However, seeking along
the progress bar can be more problematic on smaller devices where movement of
the cursor over a short distance is difficult, such as a smartphone.

Fig. 3.3 Audio Progress Design

• Audio Controls - Users control the audio through a number of buttons (Fig. 3.4).
Each web player analysed had a play/pause button and volume controls, which
gives the user the ability to increase/decrease volume or mute the audio entirely.
Notable controls missing are rewind and fast-forward buttons, however this could
be to simplify the controls as the audio progress bar can easily be used to seek

2Global is a British media company which owns a number of large radio stations in the UK, such
as Capital FM, Heart, Classical FM and LBC. www.global.com

18

www.global.com

3.1 Establishing Requirements

through content, as described above. Another important observation are the
standard icons used for controls, such as , which creates intuitive players.

Fig. 3.4 Audio Control Design

• Programme Information - To give context to the user, each player displays the
title and description of the content being played. Although there is no relation
between the text and the audio on the player, it gives users a brief summary
of what the audio is. For example, it might say ‘Greg plays Pun Pong’, but
it does not give any indication what time the game was played and therefore a
user must manually seek through the audio to find it. The BBC’s catchup player
displays more information, such as listing the music played, yet the player makes
no attempt to correspond this information to the audio progress bar.

• Mobile Optimised - According to RAJAR3 27% of adults listen to the radio via
smartphone or tablet. Therefore web players have been designed to be responsive
to smartphone and tablet users, such that each device receives an appropriate
interface. Although, as previously mentioned, the audio progress bar is a vital
component which does not scale down well for smaller devices.

Podcasts

A podcast is an episodic series of audio files that users can subscribe to, made available
via the Internet. Once subscribed, the user will then receive any new episodes published
for a given podcast. The content of podcasts vary, yet primarily contains speech, as
due to licensing reasons they cannot contain music. Podcasts can be split into three
categories:

1. Original Content - The podcast uses content that was recorded specifically for
the podcast.

2. Republished Content - The podcast has no new content and simply recycles con-
tent that was recorded for another purpose, such as a radio show.

3. Hybrid Content - The podcast mixes original content and republished content.

Podcasts have long been used by broadcasters as a radio catchup service, before full
show listen again services were technically feasible. By removing the songs and leaving
the ‘best bits’ the podcast is a manageable amount of audio for a listener to catchup
on and for stations to offer. Similarly to full show catchup, podcasts are produced as
linear audio and therefore currently face the same problems. Nonetheless, podcasts
tend to be shorter and therefore seeking for specific content is not as time intensive.

3Radio Joint Audience Research: Official body in charge of measuring radio audiences in the UK.
http://www.rajar.co.uk/index.php

19

http://www.rajar.co.uk/index.php

3.1 Establishing Requirements

Republished content and hybrid content podcasts may reuse parts of a broadcasted
show. However, these parts have no link between the main show and a podcast. A
listener to the TED Radio Hour4 might hear part of a TED talk and be interested
to listen to the rest, but this can sometimes be time consuming to find. Even though
the audio has been sourced and condensed from the original talk, the linear form of a
podcast removes a clip’s individual metadata, making any link between a segment in
one audio file and a segment in another audio file extremely difficult.

For example, BBC Radio 1’s Scott Mills Daily5 is a podcast produced after every Scott
Mills show, which is broadcast weekday afternoons between 1pm-4pm on BBC Radio
1. The podcast describes itself as ‘all of Scott’s show, without the music’. It provides
listeners with a quick and easy way to catchup if they miss the show.

Fig. 3.5 Comparison between Scott Mills radio show and podcast.
Broadcast Show: 16th February 2017

Scott’s daily podcast is unique. Having a single episode mapped to a single podcast can
help identify the ‘best bits’ at a granular level. However, most other radio shows with a
podcast release an episode weekly, taking content from a number of different days and
combining them into one ‘best bits‘ podcast. Figure 3.5 illustrates the direct one show
to one podcast mapping, used in Scott’s daily podcast. It is possible to further analyse
this relationship and focus on speech segments. Figure 3.6 displays the likelihood of
a speech segment being included within a podcast, based on the duration of segment.
Arguably, this analysis is limited as only one show and corresponding podcast has
been studied. Nonetheless, analysis clearly shows a trend that the longer the segment
the more likely it would be included in a curated ‘best bits’ podcast. If a ‘best bits’
segment pattern can be identified then perhaps an automated process could deliver this
to listeners, without any manual interaction.

Another interesting observation are the topics discussed in Scott’s show. 71% of speech
segments could be classified into one or more of the four show topics; Innuendo Bingo,
Bangers, Chris in Japan, and Real or No Real. The topics and the frequency a topic

4The TED Radio Hour is hosted by Guy Raz, and is a co-production of NPR & TED. http:
//www.npr.org/programs/ted-radio-hour/

5BBC’s Scott Mills Daily Podcast http://www.bbc.co.uk/programmes/p02nrv1j

20

http://www.npr.org/programs/ted-radio-hour/
http://www.npr.org/programs/ted-radio-hour/
http://www.bbc.co.uk/programmes/p02nrv1j

3.1 Establishing Requirements

Fig. 3.6 Comparing speech segments from the Scott Mills Radio Show
included and not included in the Scott Mills Daily Podcast.
Broadcast Show: 16th February 2017

was discussed are displayed in Table 3.1. This observation highlights that segments
should not be treated independently and instead could have a ordered nature.

For example, looking at appendix A.3, which is an itemised list of segments from a
Scott Mills show and podcast, it is clear to see that item 52 and 54 are linked, despite
the game ‘Real or No Real’ being split by music. If a listener missed the game and
wanted to listen back, it is clear that item 52 must be played before 54. Highlighting
this relation and the required listening order is important for user experience.

Table 3.1 Topics and frequency discussed in Scott Mills’ show.
Broadcast Show: 16th February 2017

Topic Description Frequency
Innuendo Bingo A popular visualised game between a BBC presenter

and a celebrity.
4

Bangers Each presenter chooses a song and a listener decides
between them.

3

Chris in Japan Co-presenter Chris is in Japan and phones the show. 8
Real or No Real A quiz asking true or false questions to guests. 2
Other All other speech segments not discussing above topics. 7

3.1.2 User Research

Listener Focused Research

Another research technique utilised, to elicit requirements by this project, was a ques-
tionnaire. It was designed to gauge listener habits, reasons for listening and colour
association with certain show elements (e.g. music, news or speech). The questionnaire
and full results are available in appendix A.1.1. The main findings can be summarised
as:

21

3.1 Establishing Requirements

• Respondents - The questionnaire received 45 responses made up of 52% male,
44% female and 4% other gender respondents. The ages of respondents ranged
from 19 to 74 (𝑀 = 24.4, 𝑆𝐷 = 10.6), however the majority of the responses came
from 21 and 22 year olds in their final year studying a undergraduate degree. The
questionnaire was widely distributed online, however the majority of responses
were friends and peers, causing the demographics to be very similar to the Uni-
versity population6. Therefore we can theorise that the results are indicative of
students and can not be directly extrapolated to the wider U.K. population.

• Listening Preferences - Live radio is popular, with 85% of respondents listening to
radio on a typical weekday and 77% on a typical weekend. When comparing these
figures with listen again services the results are very different with only 33% and
23% using BBC or a commercial radio station listen again service, respectively.
Instead, music seems to be favoured with a huge 33% listening to 13 hours or more
a week and only 11% not listening to streaming music services or downloaded
music at all. A key consideration of this dissertation is to understand why live
radio appeals to listeners far more than catchup radio. By using segmentation,
this dissertation theorises that making catchup content more accessible will appeal
to a wider audience.

• Listening Times - Similar to the U.K. RAJAR figures [23], respondents are most
likely to listen to live radio weekday primetime (morning and drivetime) and
weekend daytime. Listeners of catchup radio on the otherhand prefer a weekday
evening slot, which could be explained by locations that the users listen to catchup
radio as discussed below.

• Listening Locations and Devices Used - Listening locations differ depending on
listening to live radio or catchup radio. Listening at home is favoured by both
options, but far fewer listeners commuting will listen to catchup radio compared
with live radio. Although, this could simply be due to data network restrictions
and poor signal while travelling. The most popular device used for catchup radio
is a smartphone, compared to live radio listeners who use AM/FM and DAB
radios.

• Listening Reasons - People listen to radio for various reasons, but the question-
naire results indicate that presenters and music choice were the two main reasons.
Interestingly these were the most popular options across both live radio and lis-
ten again radio. A reason for this could be that listening to presenters or music
content live or on catchup does not affect the individuals listening experience as
the content does not vary, whereas with news programmes content quickly be-
comes outdated. This is supported by the number of listeners for news coverage
dropping from 24.4% on live radio to 7.7% on catchup radio. Another notable
reason for listening included using live radio as a daily alarm clock.

6University of Bath Student Population Stats: http://bath.ac.uk/about/organisation/
facts-figures

22

http://bath.ac.uk/about/organisation/facts-figures
http://bath.ac.uk/about/organisation/facts-figures

3.1 Establishing Requirements

• Design Research - To aid with the design stage, a quick fire round of questions
were devised. Respondents were given a number of categories, such as music and
news, and asked to note the first colour they would associate with it. The results
would then be used to design the user interface. However on analysis respondents
could not agree on category colours, with the exception of news, where 69%
preferred the colour red. It cannot be ascertained as to if the diverse results are
due to individuals having no significant colour preferences or if respondents did
indeed feel strongly about the colour they chose. As a result, the design stage
will not use these findings as initially intended.

Expert Research

To further understand the current problems facing listen again services, it was im-
portant to speak to an industry expert. A senior technologist at the BBC discussed
a number of considerations that should be made, highlighting some of the challenges
they currently face:

• Programme Information - The BBC stores a vast amount of data about pro-
grammes that are never published. Whenever a radio programme is commis-
sioned, a show plan must be submitted detailing the parts of the programme.
A challenge for them is identifying how this data can be extracted and checked
against a live show to ensure it was broadcast and at what time. Unfortunately as
the accuracy of the information cannot be guaranteed, this additional information
cannot be published. Data quality is extremely important for the BBC.

• Programme Start Time - Identifying the start of a radio programme may appear
trivial, however it is extremely different. This is often because radio programmes
have songs between shows and do not start exactly on the their scheduled time
slot. It is a challenge for iPlayer as a listener may replay a show and find the
audio does not start at the beginning. This can be confusing and annoying for
the user.

• Archival - One of the biggest challenges for the BBC is archiving the immense
quantity of content produced by the broadcaster and maintaining an efficient
search index. As discussed in the literature review, chapter 2, it takes a significant
amount of time for an archivist to describe and tag every programme so that it is
easily searchable. Providing a mechanism to automatically segment and describe
programmes would be extremely useful and provide huge efficiency savings.

• Rights Management - Another issue is tracking the legal rights of a programme.
Often legal contracts are drawn up indicating the allowed use of a clip, programme
or series. This becomes problematic when contracts may only apply to certain
parts of the programme or for a specified amount of time. Every time content
is reused an individual must search through the original contracts and check the
conditions. This is extremely inefficient and leads to a lot of manual overhead.

23

3.2 Requirements Specification

In a radio programme this does not just apply to speech content, music is li-
censed through the company PPL7 who enforce strict rules, such as requiring an
additional license to play music online in listen again services and restricting the
duration this content can be available for.

The BBC are working with ORPHEUS: Object-Based Broadcasting, an European re-
search group tasked at improving the management of audio content [71], to remediate
a number of these issues and revolutionise the way data and audio is stored. This
research group aims to develop future technologies and standards that will eventually
become common place to describe and present media content.

3.1.3 Use Case

To assist in developing the requirements specification, some analysis has been performed
on the various system use cases, and expanded into user stories pertaining to the system
usage. Figure 3.7 illustrates a use case for the system being developed. It highlights
the need for manual interaction, should the segment extractor need corrections, and
the need for show segments to be generated before a listener can listen back to a radio
show.

Fig. 3.7 System Use Case

3.2 Requirements Specification
Consolidating the analysis performed in the previous two sections, it is possible to
derive a suitable requirements specification for this project. The requirements are split
into two functional areas:

• Back-End: Detecting show segments and associated metadata

• Front-End: Interactive HTML-based listen again web player with segment-based
metadata

7PPL - Phonographic Performance Limited: http://www.ppluk.com

24

http://www.ppluk.com

3.2 Requirements Specification

3.2.1 Back-End: Detecting show segments and associated metadata

Functional Requirements

D.1 Log Show Elements (Priority: High): The system must identify and log
the start and end time of show elements.

D.1.1 Music (Priority: High): Identify and log songs being played during a
show.

D.1.2 Speech (Priority: Medium): Identify and log presenters talking on air.
D.1.3 Adverts (Priority: Low): Identify and log an advert being played during

a show.
D.1.4 News (Priority: Low): Identify and log presenters talking on air.

D.2 Analyse Show Elements (Priority: Medium The system should analyse
logged show elements and extract relevant information that’ll describe and
enhance the original element.

D.2.1 Speech Topic Detection (Priority: Low): Perform speech recognition
and frequency analysis on a presenter’s link to attempt to identify key-
words and topic tags.

D.2.2 Music Metadata (Priority: Medium): Retrieve artist, song and other
relevant information.

D.2.3 Segment Information (Priority: Low): Retrieve information about
segments based on data stored internally within the radio station’s database,
including segment legal rights and allowed usage.

D.2.4 Segment Ranking (Priority: Low): Analyse a segment and calculate
its perceived popularity. This may be based on preset rules or a learning
algorithm that identifies popular content.

D.3 Automatic Podcast Generator (Priority: Low The system should auto-
matically generate a ’best bits’ podcast based on segment ranking or preset
rules. Dependencies: D.2.4

D.4 Management System (Priority: Low) The system should have the ability to
manually correct any automated processing error, such as an incorrect segment
tag, or add additional information that could not be automatically generated,
such as a show description.

Non-functional Requirements

D.5 System Modularisation (Priority: Low): The system should be built to
enable additional detection techniques and segment analysis tools to be added
in future.

25

3.2 Requirements Specification

D.6 Performance (Priority: Medium): The system should process and tag seg-
ments of a show within 1.5x it’s duration. Podcasts should be generated within
2x the show’s duration.

D.7 Data Integrity (Priority: Medium): The system should identify 90% of
segments of the type music and speech.

3.2.2 Front-End: Interactive HTML-based listen again web player
with segment-based metadata

Functional Requirements

P.1 Visualise Show Segments (Priority: High): The front-end player should
visualise the different segments of a show with each segment type a pre-
determined colour.

P.2 Audio Progress Bar (Priority: Medium): The front-end player should have
an audio progress bar which can be used to seek through a show.

P.3 Audio Controls (Priority: Medium): The front-end player should have sim-
ple and intuitive controls.

P.3.1 Play/Pause Button (Priority: Medium): A button that pauses the
audio if it is playing, or plays it if it is paused.

P.3.2 Volume Controls (Priority: Low): A set of controls to give the user
the ability to customise the audio of the player, including mute/un-mute
button.

P.3.3 Skip Button (Priority: Low): A button to allow the listener to skip the
current segment.

P.4 Listen Back to a Show (Priority: High): The front-end player must be able
to operate as a listen again service and playback a specific show on request,
within licensing agreements.

P.5 Mobile Optimised (Priority: High): The front-end player should be re-
sponsive to device screen sizes, resulting in a positive experience for mobile
users.

Non-functional Requirements

P.6 Performance (Priority: Medium): The front-end player should load within
10 seconds and start playing a show within 30 seconds, based on an average
U.K. internet connection8.

P.7 Usability (Priority: Medium): The front-end player should be easy and in-
tuitive to use, based on a design feedback focus group.

8Ofcom 2016 Report: 28.9Mbps

26

4 Design

Chapter 3 elicitated requirements from a breadth of sources with existing solutions
analysed, user research undertaken and use cases derived. The full requirements spec-
ification was presented at the end of the chapter.

This next chapter will cover how the system was designed. In line with the development
methodology, the following discussion begins with the high level system architecture
and then moves down the layers to examine the granular system components.

4.1 Development Methodology
Development methodologies are regularly used in the development of software. They
provide a structured approach focussed around the delivery of solutions and a lifecycle
to aid project management. Agile methodology was chosen for this project as it allows
more flexibility to respond to changes and less process overhead, meaning the focus is
on solutions rather than process. As the client and the developer are the same person
in this project, this methodology is well suited.

4.1.1 Iterations

Following the agile methodology, the system was developed in iterations. Each iteration
(I.1 - I.3) added some functionality, yet maintained a ‘shippable product’ after each
iteration.

I.1 Firstly a manual event collection system is developed, which logs events to a
database. A process, with limited rules, then converts the events into a format
for the web player. This web player is then built as an event-driven player that
displays the segmentation and plays the show audio.

I.2 Next, using automatically detected studio events, a more thorough analysis is
performed to generate the segments. Following this, connecting with the radio
station’s database allows access to programme data which can then dynamically
display programme information on the player’s web page.

I.3 Finally, additional event collector processes will be implemented, such as record-
ing the microphones on cue. Next, connecting to a number of third-party ser-
vices, it is possible to get more information and provide further analysis of the
contents of a segment, including rating and ranking them. Using this, an au-
tomated podcast generator can be developed to provide a ‘best bits’ catchup
service. Additionally the web player will be enhanced to provide the ability to
skip segments.

27

4.2 System Architecture

4.1.2 Risk Management

A simple preventative risk management strategy was applied to identify potential risks
of the project. The potential risks, outlined below, have been assessed and given an
impact and probability rating. Due care and attention has been taken throughout each
stage of this project and the three risks below have been assigned remediation guidance.

R.1 Data Loss | Prob: Low | Imp: High
Remediation Guidance: Regularly backup reports and code on two different third-
party cloud hosting providers.

R.2 Serious Illness | Prob: Low | Imp: High
Remediation Guidance: Project plan has accounted for contingency time.

R.3 Project too Ambitious/Has Technical Problems | Prob: Medium | Imp: Medium
Remediation Guidance: Each iteration will be developed to a ‘ready to ship’
state meaning should complications arise, the project can revert to the previous
iteration.

4.2 System Architecture
This section discusses a high level abstraction of the system. A system architecture
manifests the earliest design decisions which then become the foundations of develop-
ment. The design decisions made here are the hardest to change and therefore are the
most critical.

Firstly, a high level architecture was defined in order to create an intellectually graspable
model (Fig 4.1). It is illustrative of the various processes and interactions required
between the different databases, servers and third party services. The architecture is
divided into three stages:

Stage 1 Event Collection - Live collection of events in the radio studio and storing
them to a database.

Stage 2 Segmentation Analysis - Interpreting studio events to form segments; pulling
in supplementary data from various third-party services. Two examples of
available supplementary data are album artwork and speech recognition
with keyword analysis.

Stage 3 Web Player - Interactive listen again web player, displaying a programme
split into segments.

Splitting the architecture into three stages follows a modular approach which aids
maintainability and reliability. For example, if new equipment was installed in the
studio, the event collection process may have to be adjusted/redeveloped, however
this would not impact the next process. To guarantee this, consideration must be

28

4.2 System Architecture

made on the inputs and outputs of each stage, which are illustrated in figure 4.1. Each
component is shown bordering either the back-end server, front-end server or both. The
specific data and schemas stored and passed between components will be discussed in
section 4.5. It is important to note that the servers act as the borders between stages.

Fig. 4.1 System Architecture

The expected interactions and operability between each stage and the key components
are outlined below.

• Event Collection - Event collectors are tasked with collecting studio data, usually
in the form of events, and logging them to a database. Figure 4.1 lists three
collectors: mic going live, music being played and news going out. This is by no
means a definitive list of events, however they have been chosen as they form the
most common show segments. If an event can be detected and a collector defined,
then it can be added with minimal effort. The methods of collecting these events
may differ, although the events will all feed into a single event database which
will be analysed by the next process, segmentation analysis. Event collectors may
run additional tasks, such as recording the microphones for further analysis in
future stages. The priority is logging events to the database, so if the additional
tasks are time intensive, a separate process can be spawned and run in parallel.

• Segmentation Analysis - This stage has a number of components. Firstly, seg-
ments are determined using logic rules and the previously detected events. This
component is referred to as the segmentation engine stage, it retrieves additional
information, from the information supplier, and incorporates it into the segment
metadata. For example the segmentation engine stage would retrieve music meta-
data, such as album artwork. Arguably this component could be contained within
the event collection stage, yet it is not as event collection revolves around live
data capture, whereas segmentation analysis is run post-broadcast. Should an-
other information supplier be added, a simple re-run of the segmentation analysis
stage would incorporate the new information, without having to re-produce the
show. The final component, Radio Catchup Export, is responsible for export-
ing the segments, combining show metadata (not to be confused with segment
metadata from the information supplier) and packaging it into a suitable format.

29

4.3 Development Tools

• Show Web Player - The show web player stage has limited architecture defined as
it is at the end of the process and provides a simple view. The focus of this stage
revolves around delivering audio and segment data from the front-end server to a
listeners device. Embedded on a single page and run on an existing radio station’s
website means a site page hierarchy or detailed web server architecture are not
required.

4.3 Development Tools

4.3.1 Development Workflow

The development workflow, illustrated in figure 4.2, was defined to ensure that risks
were mitigated and good practice was followed. Remediation guidance for risk R.1
required that data is stored with two different cloud hosting providers, chosen to be
Github and Google Drive. A project repository was setup on Github1 with changes
committed following development and Google Drive constantly backing up files after
every change. Pycharm2 was choosen as the IDE as it provided a powerful editor that
could handle Python and shell scripts for the back-end systems and HTML, CSS and
JS for the front-end web player.

Fig. 4.2 Development Workflow

4.3.2 Software Libraries

This project does not aim to reinvent the wheel, instead it will reuse a number of
existing third party software libraries. This should reduce the development workload,
while also increasing performance and reliability of the developed solution. Larger and
more experienced teams have spent far longer studying and developing open-source
tools, thus it is sensible to use these as a basis for this project. This should also avoid
the complexity cost which Gale [72] states you accrue by implementing complicating
features or technology internally. While sometimes this is not avoidable, it must be
managed. A good solution is to delegate functionality to tried and tested third-party
systems, instead of attempting to increase the project scope and keep it all in-house.

One such case where the complexity cost is not required, is the web player. Requirement
P.4 states that a show must be able to be listened back online through a web browser.

1Github: https://github.com
2Pycharm by Jetbrains: https://www.jetbrains.com/pycharm/

30

https://github.com
https://www.jetbrains.com/pycharm/

4.3 Development Tools

There are a vast number of web players available online, including HTML5’s built in
media player and the player discussed previously in section 2.3.2, Amalia.js. Although
Amalia.js provided an object orientated player, on closer analysis it was too complex
for the project and other players were found to be more suitable. This project heavily
used two front-end JavaScript libraries for the web player:

• jPlayer - Developed as an open source media library for JavaScript by Happy-
worm3, jPlayer4 is a light weight, customisable web player. Having been built
over the past 8 years, jPlayer has an active and growing community. The player
is well used, well supported and consequently very reliable. The player can be
easily skinned and is very simple to setup. For these reasons jPlayer is the web
player of choice for this project.

• Popcorn.js - The audio player must be interactive and have the capability to
add bookmarks or segments. While jPlayer provides a seekbar so listeners can
jump to content within the audio file, it does not provide a mechanism to tag the
content. Popcorn.js5, a Mozzila6 project, is a media library providing an event
system for audio players. The architecture is built around a core library that
provides low level implementation of an event-driven system connected to the
web player. Plugins can be used to further extend the capability and allow the
development custom functions, which would all run based on events within the
web player.

jPlayer and Popcorn.js have been used together frequently in the past, with Happyworm
providing a detailed technical guide with a working demo. Utilising both of these well
documented and supported libraries should lead to a reliable and seamless web player,
which is a vital requirement of this project P.6.

Complexity cost can further be shed in the back-end development. The event collectors
log to a database and the segment processors will retrieve this data, further analyse it
using a number of third party services. The following stable Python libraries will be
used to reduce the development overhead:

• mySQLdb - MySQL database connection library

• pyodbc - MSSQL database connection library

• pyaudio & wave - Audio recording and processing libraries

• spotipy - Spotify API connector library

• speech_recognition - Speech recognition library integrating with various API’s
3Happyworm: http://www.happyworm.com
4jPlayer: http://jplayer.org
5Popcorn.js: http://popcornjs.org
6Mozilla Foundation: https://www.mozilla.org

31

http://www.happyworm.com
http://jplayer.org
http://popcornjs.org
https://www.mozilla.org

4.4 User Interface Design

• nltk & textblob - Natural language text processing libraries

The implementation and use of these software libraries will be discussed in greater
detail later in this chapter.

4.4 User Interface Design
The interface is an important part of the project. Although event collection and segmen-
tation analysis are automated processes with limited user interaction, the segmentation
extraction process is taking the form of a web player and consequently will require a
user front end.

Using the analysis from section 3.1.1, high-level sketches and wireframes were produced.
The designs took inspiration from existing catchup players as these have already been
studied, evaluated and revised in terms of user experience. The key challenge was to
seamlessly integrate the standard web player design with segmentation.

Fig. 4.3 Sketch - Web Player

The first approach, shown in figure 4.3, illustrates the initial design for the desktop
webpage. A simple analysis of the design identified that the location of the web player
may be inefficient and therefore improvements could be made. Having a large body of
text above could require users to scroll down the page to start the player. This is not
effective as the primary function of the web page is the web player, so this should be
more prominent and available without scrolling or clicking. However, the log, sketched

32

4.5 Data and Schemas

at the bottom of figure 4.3, illustrated a simple yet intuitive vertical timeline with
segment elements listed.

Fig. 4.4 Wireframe - Web Player (Desktop) Fig. 4.5 Wireframe - Web Player (Mobile)

The second design, shown in figures 4.4 and 4.5, addressed the feedback from the initial
design. The second design also focused on a mobile-friendly design as per requirement
P.5. A responsive design was envisioned, with each component on the page rendering
for the specific device. The page components identified were:

• Programme Information

• Audio Player

• Currently Playing Information

• Programme Timeline

The wireframes show how, although the display may differ when viewed on a desktop
or a mobile phone, the content remains the same. This graphical view of the proposed
system and its responsive nature will be invaluable when developing the web player
further. The implementation of this design and the challenges faced will be discussed
in section 5.3.

4.5 Data and Schemas
As previously mentioned, it is important to define the data that is expected at each
stage of the architecture. Figure 4.1 illustrates two boundaries between stages; the
back-end server with an event database, and the front-end server with an audio and

33

4.5 Data and Schemas

JSON filestore. This section will define the schemas that each stage will follow, whether
that is inserting, editing or reading data.

4.5.1 Event Collection Database

The event collection database is a MySQL7 database which is responsible for storing
studio events that have been detected. Defining the database structure now will help
ensure both components in stage 1 and stage 2 can be built to effectively interface with
the database and prevent any reprogramming, which would be required if the design
changed later. Figure 4.6 is an entity relationship diagram for this database.

Each event is stored within the catchup_event table and is given an event type from
the catchup_event_type table. Device names and network locations are stored to pro-
vide a record of the event collector which logged the event. Some events, such as
mic live detection, may provide more data than simply event and timestamp. The
speech_keywords table is an example of such an occasion. Keywords are extracted,
given a score by a parallel process and stored within the database for retrieval during
the Segment Analysis stage.

Fig. 4.6 Event Collection Database - Entity Relationship Diagram

4.5.2 JSON Schema

JSON, JavaScript Object Notation, is a light-weight data interchange consisting of
objects, arrays and values. This project uses JSON as it is extremely fast and simple to
parse. Stage 2, Segment Analysis, retrieves a programme’s audio logging and generates a
list of segments. These segments are then exported to a JSON file, with the programme
information and audio location listed.

Although a database could have been used to store this information, it became apparent
this would be inefficient as once the segment analysis stage has finished, the data
becomes static and unlikely to change. Simply this means that the data should be
‘hard-coded’ to the specific audio file, with segment start and end times referring to

7MySQL: https://www.mysql.com

34

https://www.mysql.com

4.5 Data and Schemas

their location within the audio file. Should a programme and its segments wish to be
shared, both audio and data files would have to be passed on. As discussed in 2.2.6,
a more suitable storage mechanism would be using a single file that holds the audio
and segment metadata, however currently format does not exist. For this reason two
separate files are used and data integrity between the two files must be maintained. An
mp3 audio file will be used for the show recording and a JSON data file for programme
and segment metadata.

A full schema has been defined to ensure stage 2’s segment export and stage 3’s web
player can interface. Using an example from the show ‘The Hangover Cure’, illustrated
in listings 4.1, 4.2 and 4.3, the JSON schema will be outlined below. A full JSON
schema can be found in appendix B.

Media Properties (Listing 4.1) The media properties object refers to the audio
file of the programme recording. The mp3 field stores the audio file location, where as
the poster field stores the image location for the holding graphic, displayed in the web
player.

Listing 4.1 Catchup Audio JSON File - Media Properties
1 "media": {
2 "mp3": "data/shows/brookes.mp3",
3 "poster": "img/default -poster.png"
4 },

Programme Properties (Listing 4.2) Similar to the metadata stored within an
mp3 file, the programme object holds the metadata of the programme as a whole.
It includes broadcast start and end date and time, series information and episode
information, which is populated from the station’s scheduling system.

Listing 4.2 Catchup Audio JSON File - Programme Properties
1 "programme": {
2 "broadcastStart": 1490881500.0 ,
3 "broadcastEnd": 1490883300.0 ,
4 "seriesName": "Reverb",
5 "presenters": "Dean Breed",
6 "episodeName": "Fall Out Boy Special",
7 "description": "Dean goes back through the years with his

favourite band, Fall Out Boy."
8 }

Plugins (Listing 4.3) Segments are stored as an array within the plugins object.
This structure and format follows Popcorn.js. A simple built-in function takes JSON
data and loads it into the event-driven audio player. Following the same schema means
little to no conversion is necessary by the web player.

35

4.6 Summary

Listing 4.3 Catchup Audio JSON File - Segment Properties
1 "plugins": [
2 {
3 "pluginName": "segment",
4 "options": {
5 "body": "",
6 "displayKeywords": "Pop punk",
7 "displayPicture": "https://i.scdn.co/image/

e0cff5...",
8 "displayEnd": "15:16:09",
9 "end": 1869,

10 "displayStart": "15:13:16",
11 "title": "Fall Out Boy",
12 "disabled": false ,
13 "start": 1696,
14 "skipItem": false ,
15 "subtitle": "Dance Dance",
16 "type": "music"
17 }
18 },
19 ...
20]

4.6 Summary
This chapter began by discussing a development methodology and went on to defining
the system architecture and data schema. Relevant software libraries were also found
and a suitable web player interface has been designed. In the chapter that follows we
present the developed system, which has been built using these resources.

36

5 Implementation

So far this dissertation has researched and designed a system to segment and display
a segmented radio programme. This chapter will now take a detailed look at the im-
plementation of said system. Although development followed an iterative approach,
details of each iteration will not be discussed, allowing the focus to be on the final so-
lution and challenges faced during implementation. The chapter will follow the system
architecture, defined in section 4.2, starting at the Event Collection stage and moving
towards the Show Web Player stage.

5.1 Event Collection
The event collection stage (Fig. 5.1) is made up a number of components, each collecting
different types of studio events. Each collector must be specific to the studio and setup
to interface with the existing equipment. This project is using the University Radio
Bath (URB) studios and focussing on two main collection processes; playout system
audio and mic live detection.

Fig. 5.1 System Architecture - Event Collection

5.1.1 Playout System Audio Collection

Technology has come along way since Vinyls and CDs were used to play audio on-air.
Today the playout system is the core of a radio station and is usually made up of a
number of computers, databases and fileservers. The system stores the station’s music,
adverts, jingles and any other pre-produced audio. In effect the system is responsible
for all content broadcast, except live speech. A playout computer is fitted in each studio
and gives the presenter access and control of this content, allowing them to cue and play
audio at the touch of a button. URB uses a leading industry playout system - Myriad

37

5.1 Event Collection

Playout1. In order to understand how this content can be detected, it is important to
understand how a presenter would operate the playout system.

Fig. 5.2 Myriad Playout - Item Metadata Fig. 5.3 Myriad Playout - Play Item

Firstly, audio must be added to the playout system. Although audio will be added by
different teams, such as music by the music team and adverts by the marketing team,
it is pooled into one repository and tagged (Fig. 5.2) accordingly to its content and
purpose. This information is stored within a database and used when searching or
playing content. Once audio has been added, a log is built (Fig. 5.4) which contains
all the audio that will be played out during the show. Each log item’s metadata, added
when the audio is first imported into the playout system, is then displayed within the
log to give the presenter context. During the show, the presenter simply presses the
play button (Fig. 5.3) on the computer and the audio will start playing.

Fig. 5.4 Myriad Playout - Log

Table 5.1 Myriad Playout Database - Log Table Excerpt

Played
Date

Played
Time

Played
Length

Item
Type

Artist Name Item Title

...
42775 47851.508 256.59766 7 Ed Sheeran Castle On The Hill
42775 48108.105 2.3554688 3 Sweeper Sweep - Spring King You’re

Listening
42775 48110.46 222.94922 7 Bruno Mars 24K Magic
42775 48333.41 3.8867188 3 Stabs Stab - You’re Listening to

UniRadioBath.mp3
42775 48337.297 213.27344 7 David Bowie Life On Mars?
...

1Myriad Playout: http://www.psquared.net/software/myriad-playout

38

http://www.psquared.net/software/myriad-playout

5.1 Event Collection

Myriad Playout is intelligent and offers a number of useful features, such as generating
now/next information to an online stream. The event collector must capture when
certain audio content is played, such as songs, and log the start and end time. After
careful analysis of the playout software, it was discovered that show logs are stored
within a database to enable the software to record when and how much of the content
was played (Table 5.1). The log table has a large number of columns, however most
of them are not relevant as they contain empty fields. The item type field is used as
a filter, ensuring only music (7) and advert (4) items are processed. The other items,
such as a stab (3), do not constitute as a segment so are ignored.

5.1.2 Mic Live Collection

Whenever a presenter goes live on air, from the radio studio, they must turn the
microphone on. A fader on the mixing desk in the studio (Fig. 5.5) operates each
microphone. When the fader is faded up, the mixing desk puts the microphone on
air and emits a signal which in turn activates the mic live light (Fig. 5.6). This light
is traditionally used to warn presenters and guests when the microphone is live and
consequently is only turned on when a presenter intends to talk on air. Therefore, if we
capture and log the signal being detected, we have a record of the microphones going
live and hence can reasonably detect a speech segment.

Fig. 5.5 URB - Studio Mixing Desk Fig. 5.6 URB - Studio Mic Live Light

To capture the signal, a Raspberry Pi 2 Model B was used for this project. The
Raspberry Pi is suitable as it is a low power, reliable and inexpensive micro-computer
designed for simple tasks. The Pi runs Raspbian (Debian based OS), has network
connectivity (using an Ethernet port) and is capable of interfacing with physical inputs
through the bi-directional I/O pins. Using a simple electrical circuit and a voltage
regulator (Fig. 5.7) the mic live signal emitted from the mixer (12V) is converted into
a signal supported by the Raspberry Pi (3.3V). A Python script (Listing. 5.1), running

39

5.1 Event Collection

on the Pi, assigns an event handler to the GPIO port which fires every time a change
in signal is detected, i.e. when the microphone is turned on or off. The event function
assigned then logs the timestamp and event type (mic on or off) to the database.

Listing 5.1 Raspberry Pi - Mic Live Signal Handler
1 GPIO. setmode (GPIO.BCM)
2 GPIO. setup (event_pin , GPIO. IN , pull_up_down=GPIO.PUD_DOWN)
3 GPIO. add_event_detect (event_pin , GPIO.BOTH, ca l lback=event_detected ,

bouncetime=event_wait)
4

5 def event_detected (channel) :
6 s t a t e = GPIO. input (channel)
7 timestamp = int (time . time ())
8

9 i f s t a t e and channel i s event_pin :
10 mic_live_active (timestamp)
11 e l i f not s ta t e and channel i s event_pin :
12 mic_live_not_active (timestamp)
13 e l s e :
14 pass

Fig. 5.7 Mic Live Event Collector - Circuit Diagram

While capturing the mic live event is crucial in order to detect a speech segment, it does
not provide the full picture. This method, unlike the playout system audio collection,
does not provide any segment metadata as only a segment start and end can be given.
Instead the contents of a speech segment must be determined through other means, such
as using speech recognition and keyword extraction. However these are not without
challenges, during speech segments presenters often speak over songs and beds2 leading
to difficulties with speech recognition when analysing the combined station output. To
overcome this, the microphone audio channel had to be analysed separately.

2A production element, usually instrumental music, played in the background for a presenter to talk
over.

40

5.2 Segment Analysis

On splitting the microphone channel an audio feed could be run directly to the Rasp-
berry Pi’s 3.5mm audio input without affecting the existing studio infrastructure. Using
this input the microphones could then be recorded on the Pi in isolation. Unfortu-
nately due to the nature of the studio architecture, the three microphones could not
be recorded individually but only collectively. While recognition did improve by re-
moving songs and beds, with multiple presenters talking at once it remains difficult to
transcribe. Furthermore, modifying the Python GPIO event handler enabled the start
and stop recording to be automated every time the microphone was turned on or off.
To ensure performance is not compromised logging the mic live events, further pro-
cessing is passed off to another server. The Pi’s final task after logging and recording
the microphones, is to move the recording to the back-end server where it is stored for
analysis. The audio file is then removed from the Pi to ensure there is space for future
recordings.

Stage 1, Event Collection, leaves studio events logged in the database and microphone
recordings stored ready for recognition on the back-end server. To capture these events
the collectors must be running constantly. Therefore, much care and attention has been
taken to ensure reliability and improve error handling. Should an error occur, log files
are generated for manual inspection and cron jobs (ie. scheduled tasks) monitoring the
event collectors will restart the process.

5.2 Segment Analysis

Fig. 5.8 System Architecture - Segmentation Analysis

Stage 2 (Fig. 5.8) performs logic on the events, which are detected in stage 1, and
generates segments with relevant metadata. Whereas stage 1 must be running con-
stantly to detect studio events, stage 2 has a different process. The nature of collating
events and analysing them together to form segments, means it makes sense to batch
process at the end of a show. Requirement D.6 states that segments should be pro-
cessed and available within 1.5x the programme’s duration. Consideration must be
made for performance and speed to ensure the process is completed within the required
timeframe.

41

5.2 Segment Analysis

The original architecture defined the segmentation engine component, to process events
and output segments to another database. Whereas the RadioCatchup export compo-
nent would extract the data and pass it on in a suitable form alongside the programme
metadata and audio recording. However, during implementation this approach seemed
unnecessarily complex. Instead for this project, the segmentation engine takes the
events, analyses them and is responsible for exportation to the front-end server for
the web player. This simplifies the process and results in a Python script responsible
for the whole stage. Any modification, such as on-boarding a new event collector or
third-party information supplier, the script can be re-run and consequently update the
audio and JSON files, without having to edit the segment information in the database
or call a separate component to export.

The Python script (Appendix E.2) requires three arguments: programme start, pro-
gramme end and filename. Using these arguments the script will build a segmented
show JSON file and retrieve the audio for the given start and end times, following the
steps below:

1. Programme information is retrieved from the URB database

2. Show audio recording is downloaded from URB system

3. Programme data is generated

4. Media data is generated

5. Segment data is generated

6. Data is exported and saved to a JSON file

5.2.1 Station Data Retrieval

Steps 1 and 2 interface with the station’s scheduling and audio logging systems, respec-
tively. Using the start and end time the scheduling database is queried for programmes
scheduled on-air. If more than one result is returned then it is possible the timings may
cross multiple shows, or there is a scheduling error. In either case a warning is flagged,
but the first programme is used. A more thorough implementation might handle the
case of multiple shows, however as this script is run automatically after a programme
using its schedule start and end time, this case should never happen. Retrieving the
show recording is relatively simple using a HTTP request to the logging server.

Once the audio and programme information has been retrieved, steps 3 and 4 store it
in an array with a similar structure to the JSON schema defined in section 4.5. The
array is later passed onto step 6 for the JSON file.

5.2.2 Segmentation Engine

Step 5, segment generation, is the crux of this project. Each segment type, with the
exception of music and adverts, will be generated differently and based on different
events. Therefore, as demonstrated in listing 5.2, separate functions are called.

42

5.2 Segment Analysis

Listing 5.2 Segment Data Generation - Python Function
1 def generate_segment_data (start_date , end_date) :
2 segments = []
3

4 speech_segments = mic_l ive_retr iever . retr ieve_segments (start_date ,
end_date)

5 segments . extend (speech_segments)
6 # playout_audio_segments inc ludes music and advert segments
7 playout_audio_segments = play_log_retr iever . retr ieve_segments (start_date

, end_date)
8 segments . extend (playout_audio_segments)
9

10 # Sorts the segments based on th e i r s t a r t time
11 segments = sorted (segments , key=lambda x : x [’ opt ions ’] [’ s t a r t ’] , r eve r s e

=False)
12

13 return segments

Playout Audio Segment

The play_log_retriever module accesses the playout system and gets the audio type,
start time and played length, as described in section 5.1.1. These results are parsed and
depending on the audio type, are passed to a specific function to construct the segment.
Listing 5.3 gives an abridged view of the music segment function. It was observed that
the segment start and end did not match the audio, thus it was necessary to introduce
an offset variable. After some testing it was found that using a seven second delay, i.e.
adding seven seconds to the play log start time, re-aligned the segments with the audio.
The delay is likely caused by unsynchronised clocks and the station’s transmission chain.
As per the schema specification, the music segment metadata is added to the JavaScript
options object and is later returned through the segment object.

Listing 5.3 Play Log Retriever - generate_music_segment(...)
1 def __generate_music_segment (s tar t , length , end , intro_end , a r t i s t , song ,

genre , notes , start_programme_datetime , end_programme_datetime) :
2

3 s t a r t = s t a r t + timedelta (seconds=log_time_offset)
4 end = end + timedelta (seconds=log_time_offset)
5

6 # JSON DATA SCHEMA FORMAT
7 opt ions = d i c t ()
8 opt ions [” t i t l e ”] = a r t i s t
9 opt ions [” s ub t i t l e ”] = song

10 . . .
11 opt ions [” s t a r t ”] = (s t a r t − start_programme_datetime) . seconds
12 opt ions [”end”] = (end − start_programme_datetime) . seconds
13 opt ions [” type”] = ”music”
14 opt ions [’ d i sp layPic ture ’] = spot i fy_informat ion . get_album_artwork (a r t i s t

, song)
15 . . .
16 return segment

43

5.2 Segment Analysis

Mic Live Segment

The mic_live_retriever module is similar to the previously described play log function,
except that it must associate two events together, mic on and mic off, to produce a
segment. The mic live events are read chronologically with a mic on event and mic
off event setting the speech segments start and end time, respectively. Although this
segment now describes the period of the microphone being on, it does not necessarily
refer to when a presenter is speaking. Often to prepare for their live broadcast, pre-
senters turn on the microphone several seconds before talking. Further development
could determine this by analysing the microphone levels in the recordings from stage
1 (Section 5.1.2), however pinpoint accuracy of segments was not a priority for this
project. Once a start and end time is attributed to a segment, additional metadata is
added (Listing 5.4). Interestingly, unlike the music segments, the speech segments did
not require any timing delay between show recording and event timestamp.

Listing 5.4 Mic Live Retriever - generate_speech_segment(...)
1 def __generate_speech_segment (s tar t , end , start_programme_datetime , keywords

) :
2 opt ions = d i c t ()
3 opt ions [” t i t l e ”] = ”Presenter Link”
4 opt ions [” s ub t i t l e ”] = ””
5 . . .
6 opt ions [”displayKeywords ”] = __get_speech_keywords (time .mktime(s t a r t .

t imetuple ()) , keywords)
7 opt ions [” s t a r t ”] = (s t a r t − start_programme_datetime) . seconds
8 opt ions [”end”] = (end − start_programme_datetime) . seconds
9 opt ions [” type”] = ” speech ”

10 . . .
11

12 return segment

Information Suppliers

Segmentation alone is not enough to provide semantic understanding, often supple-
mentary information is needed. Take a filesystem for example, locating a pdf or image
file is useful, but unless you open the file or remember what is stored at that location
you cannot not know what the file contains. Although artist and song information
could be extracted from the playout software for music segments, other information
could not, as a result information suppliers were introduced. The suppliers connect
to third-party services and provide additional information about the segments, such as
album artwork for songs or associated news articles for news segments. As previously
discussed (section 4.3.2), using third-party services reduces our complexity cost and
likely leads to better results than implementing it ourselves.

Spotify3 is a popular music streaming service with a large music catalog that is search-
able through a simple REST web API. Using the artist and song title to search the cata-

3Spotify: http://www.spotify.com

44

http://www.spotify.com

5.2 Segment Analysis

log, Spotify returns a number of matching songs ordered by search relevance. Therefore,
selecting the first result is usually appropriate. The vast amount of information about
individual songs that Spotify holds is accessible through the API. Currently only al-
bum artwork url is extracted, yet further development could extract information such
as artist profiles or release dates, which could be interesting for listeners using the web
player.

On the other hand, context for speech segments are difficult to provide. There is no title
or artist information to collect, only a start and end timestamp. In stage 1 (Section
5.1.2) the microphones were recorded and the audio sent to the back-end server for
analysis. Next, using speech recognition services, such as Google Speech Recognition4,
it was possible to transcribe the speech within a segment. Further to this, natural
language processing was applied to extract keywords in order to provide some context
to the speech segment. Listing 5.5 highlights the keyword extraction function. Simply
put, a term frequency-inverse document frequency (TF-IDF) strategy was applied, using
previous transcripts as a corpus. This strategy resulted in each keyword being scored;
the higher the score the higher the relevance of the keyword. The Python libraries
TextBlob and NLTK were used to perform natural language processing on the speech
segment transcripts.

Listing 5.5 Text to keywords function
1 def __text_to_keywords (t r an s c r i p t_ f i l e , t ransc r ip t_l ib rary , l i b ra ry_s i z e) :
2 pr int (”TextToKeywords . py : Extract ing keywords from − ” +

t r an s c r i p t_ f i l e)
3 r ecent_transc r ip t s = __generate_recent_transcript_library (

t r an s c r i p t_ f i l e , t ransc r ip t_l ib rary , l i b ra ry_s i z e)
4 t ranscr ipt_text = tb (__get_text (t r a n s c r i p t_ f i l e))
5

6 pr int (”TextToKeywords . py : Scor ing words − ” + t r an s c r i p t_ f i l e)
7 s co r e s = {word : __tfidf (word , transcr ipt_text , r ecent_transc r ip t s) f o r

word in transcr ipt_text . noun_phrases i f word not in stopwords . words (’
eng l i sh ’) }

8 sorted_words = sorted (s co r e s . items () , key=lambda x : x [1] , r eve r s e=True)
9

10 f o r word , score in sorted_words [: 5] :
11 pr int (”Word : {} , TF−IDF : {}” . format (word , round (score , 5)))
12

13 return sorted_words

As an information supplier, the architecture positions the speech-keyword extraction
process during the segment analysis stage. However it was found that this process had a
significant runtime overhead. As a result, the speech-keyword extraction process begins
immediately after the microphone recording has been moved to the server. At the end
of the process, the keywords are exported to a database where they are retrieved during
the generate_speech_segment function (listing 5.4). Only the top 5 keywords, based
on the TF-IDF score, are included and stored within the ‘displayKeywords’ variable.

4Google Speech Recognition: https://cloud.google.com/speech/

45

https://cloud.google.com/speech/

5.3 Web Player

5.2.3 Data and Audio Export

Finally, the segments are sorted into ascending order of start times. This ensures
when the segments are exported into JSON and read by the web player they will be
displayed in chronological order. The segments array object is returned to the main
function which passes the object along with the program and media data, from steps 3
and 4, to the JSON dump function. This function then writes the data to a JSON file
in a given directory. The JSON file stores the location to the downloaded audio, thus
there is no requirement for the JSON and audio to be located in the same directory.
Nonetheless the web player reads both files, therefore they must be stored in a publicly
accessible filestore.

5.3 Web Player

Fig. 5.9 System Architecture - Web Player

The last stage (Fig 5.3) is a web player which plays the audio and visualises the segments
which were extracted in the previous stage. The web player is built using the latest
web technologies: HTML5, JavaScript and CSS. Although Adobe Flash was previously
popular for media players, now. A number of mobile devices do not support flash
and the ones that do suffer from performance issues. As a result, this project will use
HTML5 and JavaScript instead. There exists a plethora of media players available,
however as discussed in section 4.3.2 this project uses jPlayer and Popcorn.js.

5.3.1 Media Player

The most important functionality of the web player (Fig. 5.10) is the ability to listen to
programmes. HTML5 provides built-in support to play audio, however the functionality
is relatively basic and any advanced functionality requires interfacing directly with the
browsers. jPlayer removes this complexity and instead provides a simple API to load
and play media content. One of the main advantages this library offers is the ability
to skin and customise the player interface.

The first challenge was implementing the design, discussed in section 4.4, using the
jPlayer media library and integrating University Radio Bath’s branding. Although the

46

5.3 Web Player

wireframes had shown volume and full screen controls, these were not implemented.
Alternatively, audio rewind/skip buttons were introduced as research found that it
was difficult to precisely navigate using the seek bar for long duration media. This
problem would have been exacerbated on mobile devices where the seek bar is smaller
and therefore harder to move. The new audio controls, a simple ±15 seconds option
shown in the bottom right of figure 5.10, mitigate this.

Fig. 5.10 Web Player - Initial Design

Utilising Popcorn.js events were added to the jPlayer media. Originally this library
was designed to display subtitles or particular content at a given point in the media.
However its rich plugin architecture allows for developers to build their own function-
ality into it. This project takes advantage of this by developing a custom ‘segment’
plugin for the purpose of displaying segments interactively. This is achieved using three
different UI components on the player: progress bar, current segment, and timeline.
The plugin runs on page load for setup, but also on the segment start and end, which
allows the interface to the current playing segment to be dynamically updated.

Listing 5.6 Web Player - Setup Player (JavaScript)
1 $ (document) . ready (funct ion () {
2 player = setupCatchupPlayer (”#jquery_jplayer_1” , ” t imel ine −conta iner ” , ”

seekbar−conta iner ” , ”data/shows/grace . j son ” , {}) ;
3 }) ;

On page load, the setupCatchupPlayer(...) function is called from a script within
the main HTML web page (Listing 5.6). The function takes a number of arguments,
including the HTML id for the player and the JSON file containing audio and segment
information. The web page contains the basic HTML elements, whereas the content
is customised using the JSON file. The programme metadata populates the webpage
header, while the media metadata that loads the audio and poster image into jPlayer.
The segments are then passed to Popcorn.js which generates the segment UI elements
and sets up an event handler for when a segment is played (Listing 5.7). The segment

47

5.3 Web Player

data, generated in section 5.2, is stored within Popcorn.js event objects so they can
be retrieved for use within other functions. For example, Listing 5.7 is called every
time a segment is played and decides whether it can be played or not. The function
retrieves the disabled & skipItem attribute, which were defined in the JSON file and
passed through to the options object.

Listing 5.7 Web Player - Segment Start Function (JavaScript)
1 s t a r t : function (event , opt ions) {
2 // 1. Check item can be played
3 i f (opt ions . d i sab led == true | | opt ions . skipItem == true) {
4 this . currentTime (nextSegmentTime (this)) ;
5 } else {
6 $ (timelineElement) . addClass ('segment -playing') ;
7 }
8

9 // 2. Update segment sidebar UI
10 refreshSegmentSidebar (segmentPlayingContainer , opt ions) ;
11

12 // 3. Update segment timeline UI
13 centreCurrentSegmentTimeline (timelineElement , t imel ineContainer , opt ions) ;
14 } ,

5.3.2 Segmented Progress Bar

The progress bar (Fig. 5.11) is an integral part of the player. It displays the current
position of the media and is used to navigate through the content. Previous analysis
of existing systems (Section 3.1.1) found these to be commonly used and beneficial
to listeners. As the progress bar represents the duration of audio, it is possible using
HTML divs to overlay the segments using their start and end timings. On page load
each segment is added to a container segment-container div as a child div element
and given a width and left position according to the segments location within the
programme. The segment divs can be personalised further, such as setting the segment
type as a class to give it specific styling or using Bootstraps tooltip to display the
segment title on mouse hover over. Most importantly, the segment overlay does not
interfere with the ability to seek using the progress bar. Listing 5.8 is an excerpt of
the segmented progress bar HTML generated on page load, while Figure 5.11 is how it
looks to a user.

Listing 5.8 Web Player - Progress Bar Elements (HTML)
1 <div id=” seekbar−conta iner ” c l a s s=” jp−seek−elements ”>
2 . . .
3 <div id=”SB−segment1491753815487” c l a s s=” jp−seek−element segment−speech ”

data−togg l e=” too l top ” s t y l e=”width : 4.304%; l e f t : 41.711%; ” data−
o r i g i na l − t i t l e=”Presenter Link”></div>

4 <div id=”SB−segment1491753815489” c l a s s=” jp−seek−element segment−music”
data−togg l e=” too l top ” s t y l e=”width : 8.192%; l e f t : 45.794%; ” data−
o r i g i na l − t i t l e=”Prince − Sign O The Times”></div>

5 . . .
6 </div>

48

5.3 Web Player

Fig. 5.11 Web Player - Segment Seekbar

5.3.3 Segment Timeline

The timeline (Fig. 5.12) displays all the segments for a given show vertically in chrono-
logical order. As a result it can be used to view the contents of a programme and to
navigate quickly to a chosen segment. Similar to the progress bar, the timeline is setup
on page load by adding each segment as an a element to a parent container. However,
the timeline displays more information than the progress bar, which has start time, key-
words and displays a play symbol next to the current playing segment. A JavaScript
onclick() function also allows a user to click a segment to set the audio player to that
position. Listing 5.9 is an excerpt of the timeline HTML generated on page load, while
Figure 5.12 is how it looks to a user.

Listing 5.9 Web Player - Timeline Elements (HTML)
1 <div id=” t imel ine −conta iner ” c l a s s=” t imel ine −conta iner ”>
2 . . .
3 <a id=”TL−segment1491757608630” c l a s s=” l i s t −group−item timel ine −segment

skipped t imel ine −speech ”>
4 18 :25 :02
5 Presenter Link
6 Record Sleeves , Important Year ,

Pro f e s s i on Perceptions , Pops , Br i t s
7 <i c l a s s=” t imel ine −play−i con fa fa−fw”></ i>
8
9 <a id=”TL−segment1491753815489” c l a s s=” l i s t −group−item timel ine −segment

t imel ine −music”>
10 18 :27 :29
11 Prince
12 Sign O The Times
13 <i c l a s s=” t imel ine −play−i con fa fa−fw”></ i>
14
15 . . .
16 </div>

5.3.4 Current Playing Segment Sidebar

The current playing segment sidebar is there to display what audio is currently playing
in the web player. Unlike the timeline and progress bar items which are generated
on page load, the sidebar information is generated by the Popcorn.js ‘segment’ plugin,
using the event objects, every time a segment is played. This happens regardless of when

49

5.3 Web Player

Fig. 5.12 Web Player - Segment Timeline

Fig. 5.13 Web Player - Segment Timeline (Segment Disabled)

the segment starts playing, whether that is at the beginning or mid way through. The
information displayed will depend on the metadata available for the given segment. For
example, if album artwork has been given, then the URB station logo and background
will be replaced with the artwork. Figure 5.14 displays the sidebar for a given music
segment, whereas Figure 5.15 shows the sidebar for a speech segment.

Fig. 5.14 Web Player - Music Segment Fig. 5.15 Web Player - Speech Segment

UI elements work together to visualise a programme’s segments and provide interac-
tive controls, in order to create an easy to use web player in which content is readily
accessible. Another notable implemented feature is segment rights management; the
web player can disable certain segments if legally they are not allowed to be played.
The segment will appear disabled (Figure 5.13), and any attempt to play it will result

50

5.4 Summary

in the audio skipping to the next ’allowed’ segment. This feature ensures stations can
operate a radio listen again service within the legal boundaries.

Fig. 5.16 Web Player

The web player is presented in full in figure 5.16. The player’s HTML web page is
included in appendix E.3 and the Popcorn.js ‘segment’ plugin is included in appendix
E.4.

5.4 Summary
This chapter has given an overview of the final developed system and discussed the
features implemented. Following the system architecture, defined in section 4.2, the
chapter started by describing the Event Collection stage, highlighting the hardware
to capture studio events and the software to record and store them. Subsequently
the Segmentation Analysis stage was discussed, focussing on the methods to analyse
the previously detected events and generate segments. The section also explained how
data was extracted from the station database and third party information suppliers
to produce segment metadata. Finally, the chapter concluded presenting the Web
Player. The chapter concluded by discussing each component of the web player before
presenting the Web Player in full in in figure 5.16.

To experience the web player, it is available online: http://radio.chris.io.

51

http://radio.chris.io

6 Evaluation

Having discussed the implementation, the next chapter evaluates the system which
was produced. Although some formative evaluation has been carried out throughout
the design and implementation stage, many of the recommendations were not able to
be made due to insufficient resources at the time. Instead, two different summative
methods proposed by Baxter et al. [73] will be evaluated. One will follow a criteria
based assessment, where the system produced will be compared against the system
requirements written in Section 3.1. The second method is a tutorial-based approach
and involves conducting a user experiment to compare and contrast user behaviour
between an existing web player and the newly developed web player.

6.1 Requirements Evaluation
Following a criteria based assessment, the system was analysed using requirements
as the criteria. This was felt appropriate given the short nature of this project and
the lack of resources to follow the full assessment criteria. The requirements were
originally devised through numerous methods, with the aim to build an interactive
radio listen again service that would provide listeners with the ability to locate and
listen to specific content. Arguably this means if the requirements are satisfied, then
the developed system should achieve its aim. Each requirement was asked “Was it
implemented? Provide supporting comments if warranted.” Appendix C contains the
full analysis, but the following section will summarise the findings.

Table 6.1 lists the number of high, medium and low requirements and how many of
them were successfully implemented. 80% of requirements were implemented, all high
and medium priority requirements were met. Three requirements that were not met
have been briefly outlined and the consequent impact on the solution discussed below.

Requirement
Priority

Number of
Requirements

% Implemented

High 5 100%
Medium 11 100%
Low 9 50%
All 25 80%

Table 6.1 Requirements Evaluation - Requirements Implemented

6.1.1 RadioCatchup Management System

The station management system was included as a requirement to fix and improve the
output of the automated segmentation process (D.4). During initial testing, it was
found that segment recognition was very accurate and satisfied the 90% data integrity

52

6.2 Empirical Evaluation

requirement (Req. D.7). However, it was soon apparent that some of the segment
metadata produced was not always accurate, especially the speech topic detection. At
times, when the system was tested in situ in the radio studio, the metadata had to
be manually edited. As there was no management system implemented, this required
editing the raw data within the database and JSON files.

The lack of a suitable management system does raise concerns. Stations are less likely to
implement and use this segmented system if they do not have control over the segments
and metadata that is displayed in the player. This evaluation has identified that the
initial requirement (D.4) should have been given a higher priority, which would have
ensured resources were allocated to implementing this management system.

6.1.2 Segment Ranking & Podcast Generator

Although these were two separate requirements (Req. D.2.4 & D.3), the podcast gen-
erator was dependent on segment ranking. The podcast generator had been planned to
export the top n segments and combine them into a single audio file, but unfortunately
segment ranking was found to be more challenging than expected. Analysis in Section
3.1.1 identified a simple trend for speech segments, the longer the duration the more
likely it would be a ‘best bit’ and included in highlights or podcasts. However, this
alone was not enough to develop an accurate ranking system. This feature was there-
fore halted, but it still has potential and could be implemented in a future product
cycle. The omission of these features was not detriment to the developed system.

6.1.3 Summary

Overall the system produced has satisfied the majority of the requirements and impor-
tantly met all the high and medium requirements. The pitfall of this project is the
lack of a management system, to enable stations to have control over the segments and
metadata produced and displayed within the web player. Although this had not been
implemented due to constraints and the requirement’s priority, this has highlighted
that potentially a stronger requirements analysis could have been employed during the
requirements stage of the project.

6.2 Empirical Evaluation
Evaluating how successful the solution is based on requirements implemented can only
reveal so much. Already we have found the initial requirements were not faultless, thus
a second evaluation method follows. Using a tutorial-based assessment [73] a pragmatic
evaluation of the usability of the system was possible. As the majority of the system
is automated and has little user interaction, this evaluation concentrated on the web
player.

6.2.1 Introduction

A user study was conducted to evaluate the performance of the web player, inspired by
Carlier et al. [69] and Schoeffmann and Boeszoermenyi [74]. In this study the newly

53

6.2 Empirical Evaluation

developed web player’s performance was compared to a standard web player. To ensure
a fair test was conducted, the standard player used the same interface as the new player,
however several UI elements that displayed segments were disabled (segmented seekbar,
timeline and current segment). This made the standard player look and work similar to
the industry web players which were analysed in section 3.1.1. Participants were given
a number of tasks, to locate content within a radio programme and they were timed
on how long it took them. Each participant was given the opportunity to use both the
segmented web player and the non-segmented player. The full experiment is detailed
below, however first it is important to state our expectations and what this project’s
hypotheses were.

6.2.2 Hypotheses

Following on from the research questions, derived in section 1.3, a hypothesis-driven
experiment was defined. The aim was to prove or disprove the following hypotheses:

HT.1 The segmented web player will be quicker to locate specific content than the
non-segmented web player.

HT.2 The longer the programme duration, the longer it will take to locate specific
content within it.

HT.3 Users prefer using the segmented web player rather than the non-segmented
web player.

The hypotheses will be tested by collecting relevant and reliable data during a user
experiment with feedback through questionnaires. The first two hypotheses will be
measured based on time taken to complete a task, whereas the third hypothesis will be
measured by a system usability scale (SUS) [75]. Feedback received in the question-
naires and observations made during the experiments will be used when discussing the
hypotheses.

6.2.3 Method

Participants

Ten undergraduates (7 males and 3 females) studying various degrees at the University
of Bath were recruited through adverts in the Computer Science and University Radio
Bath members Facebook group. The participants mean age was 21.7 years and ranged
from 21 to 23. Participation in this study was on a voluntary basis and no compensation
was offered. All participants were naive to the purpose of the experiment.

Apparatus

An experiment web app was developed to guide participants through the experiment,
reducing the need for interrupting the participant with verbal instructions. The web
app was setup for a given participant and took them through the experiment task by

54

6.2 Empirical Evaluation

task, pausing for questionnaires between players. During each task the app displayed
the relevant web player and collected usage information while recording the time taken
to complete the task (Figure 6.1). This information was then uploaded and stored
confidentially in a Google Form. The app had no impact on web player user interaction
or performance. The web app was run on a computer that each participant was provided
with and a pair of headphones was offered to listen to the audio content.

Fig. 6.1 Experiment - Web App

Materials

Consent Forms and Experiment Guide - Informed consent forms (Appendix D.1) were
used containing information about the experiment and how it would be run. There was
also a section for participants to state any requests they have for the experiment and
reminded them they may withdraw from the study at any point. Furthermore a how-to
guide was provided (Appendix D.2), to give participants exact instructions on how to
use the evaluation web app and complete each task, however it did not give details on
how to use the web player or where the content may be located.

Web Player Design - Two web players were used: the project’s segmented player, and
a control player with the segmentation function disabled to emulate a standard player.
The reason for using the same player, just with the segmentation functionality disabled,
was that it ensured any findings could be attributed to segmentation, rather than a
change of design.

Radio Programmes and Content to Locate - The tasks (Appendix D.3) required partic-
ipants to locate content within a number of radio programmes. The experiment used
content from specialist music and entertainment programmes broadcast on University
Radio Bath. The shows chosen for the tasks were decided based on station scheduling;
only shows that had been broadcast after the segmentation system had been deployed

55

6.2 Empirical Evaluation

were able to be used. Six shows from this list were used and permission was specifically
sought from the production teams of these shows. All shows agreed the recordings may
be used for the experiments. The content that each task asked participants to locate
was determined so that there would be an even split across the programme, some con-
tent in the first half and others in the second half. The content was also picked to be
unambiguous, so that it is clear to participants listening which part of the programme
the task is referring to.

Web Player Questionnaire - The web player response questionnaire, hosted on a Google
Form, (Appendix D.4) consisted of a system usability scale (SUS), a simple ten-item
scale giving a quantititive view of subjective assessments of usability. Derived from
Brooke et al. [75], eight out of the original ten of questions were included and asked
on the questionnaire, with two additional questions (Q9 & Q10) used to evaluate the
specific segmented nature of the web player. A free-text box was given at the end of
the questionnaire to capture comments about the player.

Final Questionnaire - Another Google Form questionnaire was given to participants
(Appendix D.5) which they responded to regarding their web player preferences, re-
liance on segment metadata and thoughts on future development possibilities.

Design

A within groups design was used to evaluate the web players. There were two indepen-
dent variables (the web player used and the programme duration) and two dependent
measures (the time taken by the participant to locate a specific piece of content and
the SUS usability scale). However, it is important to note the dependent usability scale
measure is only recorded against one independent variable. The SUS scale is measured
within a questionnaire that is only given once per design, not after each task. As
there were two different web player designs and we were conducting a within groups
experiment, counterbalancing was required. Each participant was randomly allocated
to either group one or group two. Group one used the non-segmented design for the
first three tasks and the segmented design for the last three tasks, whereas group two
used the segmented design for the first three tasks and the non-segmented design for
the last three tasks. The experiment workflow is illustrated in Figure 6.2. The task
order was not changed.

Two statistical tests were used: a two-way analysis of variance (ANOVA) and a Wilcoxon
signed rank test. The two-way ANOVA examines the influence of the two independent
variables on the continuous dependent variable, time taken to locate content. As men-
tioned, it would not be suitable to include the SUS usability scale in this statistical
analysis as it was not influenced by the task’s programme duration. Therefore, the non-
parametric Wilcoxon signed rank test was used. We compared the two usability scores
between participants and assessed whether their mean ranks differed. The rejection
level for both statistical tests was set at p = .05.

Finally qualitative data was collected through the free-text fields on the questionnaires,
the evaluator’s observations, and the verbal debrief at the end of the experiment with

56

6.2 Empirical Evaluation

Fig. 6.2 Experiment - Workflow

the participant. Thematic analysis, devised by Braun and Clarke [76], was utilised to
highlight patterns and identify “themes” from the qualitative data. For this analysis a
‘bottom up’ approach was followed, meaning that rather than looking for evidence of
themes determined at the start, related points were sought out in order to make these
the themes found.

Procedure

The experiment took place under lab conditions within a room that was reasonably
distraction-free. Participants were first briefed on the nature of the experiment, high-
lighting there will be six tasks to complete and 3 questionnaires to fill in; one after each
design and one at the end. After the brief, participants were given a consent form and
asked to read and sign it. The participants were then given a computer and headphones
to use. The computer had a desktop screen recorder recording and the evaluation web
app ready to go with the relevant task and web player open, depending on the par-
ticipant’s experiment group. Figure 6.3 illustrates the experiment workstation setup,
showing a participant, computer, headphones and materials needed to complete the
experiment.

The evaluator then took a step back and left the participant to read the full task brief.
Once they had read it, they were ready to proceed and the participant clicked the
‘Start Task’ button. During each task the evaluator made a note of the search strategy
employed by each participant and any other interesting observations. The participant
had 5 minutes to complete each task. Each task was completed by the participant
clicking ‘Finish: Content Located’ and the evaluation app then led the participant to

57

6.2 Empirical Evaluation

Fig. 6.3 Experiment - Workstation Setup

the next task brief. If participants went over 5 minutes, the evaluator was required to
step in and manually move the participant to the next task. The same process was
followed again in the next task, with the evaluator overseeing and taking notes, but
most importantly not interrupting or distracting the participant. After the third task
the participant was required to complete the ‘Web Player Questionnaire’. There was
no action for the evaluator during the questionnaire.

After the questionnaire, another three tasks were completed by the participant with
the other design. The process was identical to the first three tasks, with the evalua-
tor app leading the participant through and the evaluator noting down observations.
Finally after the second set of three tasks, the ‘Web Player Questionnaire’ and ‘Final
Questionnaire’ were completed by the participant. Again, no action was required by
the evaluator during the questionnaires. After completing the tasks and questionnaires,
the participants were debriefed and asked for verbal feedback on the web players they
used and the tasks they had just completed. They were also given given a chance to
ask any final questions.

6.2.4 Results

The user study revealed a number of interesting findings. The raw task results and
questionnaire responses can be found in Appendix D.7, however this section will briefly
highlight the findings and results from the tasks, statistical analysis and qualitative
data. The statistical analysis aims to prove or disprove our hypotheses, defined in
section 6.2.2.

Results Adjustment

All 10 participants attempted six tasks and three surveys, however five tasks were not
completed within the allotted five minutes and 1 task was done incorrectly. All surveys

58

6.2 Empirical Evaluation

were correctly filled in. It was decided that participants who did not complete the task
within 5 minutes, would have their time capped at 5 minutes. Although arguably this
may make the task seem easier, as the results appear that a participant can complete
it within 5 minutes, it was felt that the maximum score would already penalise the
task enough. Whereas, had the results been invalidated, then the mean score would
be lower and that would be indicative that the task was easier, even though many
participants could not complete it. In the case of this experiment, all five overrun tasks
were on Design A with a sixty minute programme (task three or task six, depending
on experiment group).

Table 6.2 Participant 3 - Adjusted Task Result

Task Participant Score Mean Difference
Player A - 10 Mins 64 73 0.88
Player A - 60 Mins 132 238 0.55

Average Difference 0.71

Correcting for the incorrect task was more complicated. The task was incorrectly done,
using Design A with the 60 minute programme, by Participant 3. With a counterbal-
anced sample, excluding the incorrect task score would result in the exclusion of the
participant and this in turn would require a counterbalancing participant’s data re-
moved as well. Following this action would result in 20% of the collected data being
removed for a single datapoint (1.6% of the task completion time data) being incorrect.
It would also require a process to decide which counterbalancing participant would be
removed and this was thought to be more problematic than the erroneous result. To
overcome this issue it was decided to analyse the participant’s other task results. Table
6.2 shows the participants average difference from the mean during both successfully
completed tasks using design A (non-segmented player). The average difference of 0.71
can be applied to design A 60 minute programme task: to give the participants adjusted
task completion time = 102 × 0.71 = 73.

Hypothesis 1 and Hypothesis 2

HT.1 The segmented web player will be quicker to locate specific content than the
non-segmented web player.

HT.2 The longer the programme duration, the longer it will take to locate specific
content within it.

With the adjusted participant score, Figure 6.4 illustrates the mean time, taken by
each experiment group and overall group, to complete the tasks. Trend lines have been
added to interpolate between the set of known task completion time values. The graph
shows that the segmented player was faster to locate content than the non-segmented
player. In addition it illustrates the seemingly exponential trend between time to locate
content and length of the audio with the non-segmented player, compared to the flat
lined segmented-player.

59

6.2 Empirical Evaluation

A two way 2 (web player design: segmented or non-segmented) × 3 (programme dura-
tion: 10 mins vs. 30 mins vs. 60 mins) repeated measures ANOVA was conducted on
the task completion time. This revealed a significant main effect of web player design,
𝐹1,9 = 125.0, 𝑝 < .001, indicating that the task completion time was significantly higher
when using the non-segmented player (𝑀 = 136.9, 𝑆𝐷 = 9.70) over the segmented
player (𝑀 = 40.33, 𝑆𝐷 = 3.49).

There was also a significant main effect of programme duration, 𝐹1,9 = 26.60, 𝑝 < .001,
indicating that task competition time was statistically higher the longer the programme
duration, 60 minute programme (𝑀 = 137.9, 𝑆𝐷 = 14.5) vs. 10 minute programme
(𝑀 = 58.15, 𝑆𝐷 = 4.61).

The web player design × programme duration interaction was also statistically signifi-
cant, 𝐹1,9 = 30.43, 𝑝 < .001, indicating that the difference in task completion time due
to programme duration was present in the non-segmented design but not the segmented
design.

All three effects were statistically significant at the .05 significance level and Figure
6.4 supports these findings. Therefore it is sufficient to say that Hypothesis HT.1 and
HT.2 have been supported. The full statistical analysis can be found in appendix D.7.2

Fig. 6.4 Time taken to locate a specific speech segment compared with
the length of the audio

60

6.2 Empirical Evaluation

Hypothesis 3

HT.3 Users prefer using the segmented web player rather than the non-segmented
web player.

At the end of the three tasks for each design, participants were asked to fill out a
questionnaire with some standardised questions, following the System Usability Score
(SUS) [75]. A Wilcoxon signed-rank test showed that using a segmented web player
(𝑀 = 90.8, 𝑆𝐷 = 4.02) elicited a statistically significant improvement in usability
scores, 𝑍 = −2.807, 𝑝 = 0.005, over the non-segmented web player (𝑀 = 63.2, 𝑆𝐷 =
13.5). This is sufficient to say that Hypothesis HT.3 has been proved. Full results can
be found in appendix D.6.2 & D.7.3.

Questionnaires & Thematic Analysis

Participants responded to a total of three questionnaires, based on segmented player,
non-segmented player and final thoughts. The responses can be found in Appendix
D.6. All participants indicated that they preferred the segmented player, when asked
“Which web player would you rather use?” A follow on qualitative question asked why
they had made that choice, using these results with thematic analysis the trends were
identified. The themes identified were ‘easy to use’, ‘breakdown of show content’ and
‘new listening potentials’.

Easy to Use - An overwhelming number of responses described the player as being “easy
to learn and understand functionality”. The specific functionality mode participants
were referring to was the ability to find and skip specific segments. Participant 1
stated that it was “so much easier to know where talk segments started/ended without
skipping through the songs”.

Breakdown of Show Content - Many participants found the web player’s breakdown of
show content to be extremely valuable. Participant 4 “prefered design B [segmented web
player] because it meant that [they] could see what [they were] looking for and where
it came in the programme relative to other segments”. Other participants valued the
breakdown as made the searching for content extremely quick, removing the guesswork.

New Listening Potential - This theme encapsulates a number of the participants’ re-
sponses where they indicated they would be able to listen to radio programmes in new
ways, with this web player. Participant 7 was excited by the potential that this could be
a music discovery tool, whereas participant 8 would use it to test the show by “flick[ing]
through a show to see if it is worth listening to the whole thing or not”. A common
point made though was the ability to jump and skip irrelevant or uninteresting parts.

These results and the findings from the requirements evaluation will be discussed in
the following section. The ‘Future Development’ questions and responses, put to par-
ticipants in the final questionnaire, will be discussed later in section 7.3.

61

6.3 Discussion

Participant’s Search Strategies

During the experiments, evaluators monitored participants, watching how they used
the player and noting search strategies employed to locate the content. Participants
generally fitted into one of two categories; a slow methodical user, and a fast impatient
user. The former tended to go through the programme in chronological order until
the segment was located, while the latter would skip randomly until the segment is
detected. No correlation was found between the search strategy used and the time
taken to locate content.

6.3 Discussion
The requirements evaluation and user experiment have analysed the system developed
and led to numerous findings which will be discussed in this section. The findings have
been split into two categories: segmentation process and web player.

6.3.1 Segmentation Process

Segment Detection

The requirements evaluation identified that automatic programme segmentation had
been implemented, however the user study did not specifically evaluate the process and
results. Nonetheless, the produced segments were analysed indirectly as the web player,
which uses the generated segments, was analysed in the user study.

In the user experiment, the automated segment processor was used to extract segments
from each of the radio programmes for the 6 user tasks. The segments for each task
were manually checked to ensure they were accurate for the experiment and as a result
no changes were made. Each segment had been correctly detected and the segment
metadata was sufficient. Unfortunately, apart from this manual check, no conclusive
analysis had been conducted. As a result the accuracy of the segments produced by
the system cannot be validated.

Segment Metadata

During the study participants were asked the importance of the metadata that accom-
panies a segment. The user study found all participants thought segment metadata
was important or very important, indicating that identifying segments is not enough as
classification and segment metadata are also vital. Consider an individual wanting to
listen back to an interview in a programme, without segment metadata they would be
required to manually seek each segment. Although the segments may be listed and a
start and end time displayed, the listener would still be expected to search each segment
and they would struggle to gain a high-level understanding of the programme quickly.

The solution developed incorporated metadata from music segments and speech seg-
ments using various information suppliers. For speech segments it was particularly
beneficial taking advantage of the various improvements to speech recognition and nat-

62

6.3 Discussion

ural language processing. Many users found this particularly useful and even credited
the keywords extracted as the reason for finding the content in the user study so quickly.

6.3.2 Web Player

Locating Content

The hypotheses (HT.1 & HT.2) were confirmed through statistical analysis and showed
that the speed to locate content within a programme was dependent on the web player
design and the programme duration. It was interesting to note that when using the
segmented player the programme duration had little effect on the time taken to locate
content. Instead, the mean task duration marginally decreased when searching longer
programmes, which may be due to the ‘practice effect’. Unlike the non-segmented
player, which is an industry standard web player that many participants would have
previously used, the segmented player had numerous unfamiliar features. As the tasks
were ordered by programme duration, starting with 10 minutes and ending with 60
minutes, users may have learnt how to use the segmented player by the later tasks and
therefore became quicker at locating content despite the increased duration.

Player Usability

Studies found that the segmented player was more usable, according to the SUS us-
ability scale, and that participants preferred it over the non-segmented design, proving
hypothesis HT.3. Unsurprisingly, as the non-segmented players are standard practice
and participants would have been familiar using them, the non-segmented player still
received a positive SUS score. Interesting, when analysing the individual SUS ques-
tions, it was found that the segmented player scored much higher on usability questions
regarding finding content, confidence using the player and appeal of player. Contrast-
ingly, the scores on questions regarding ease of use and need for technical support were
similar across the segmented and non-segmented player. Considering the SUS scores
indicate the segmented player adds functionality while not reducing operability, this is
extremely promising for the success of the player. For the web player to be commer-
cially viable it must be intuitive and easy to use, otherwise users may struggle, loose
interest and leave the service, all which reflect badly on the radio station or catchup
service provider.

6.3.3 Summary

Within this chapter the developed solution has been evaluated using a requirements
evaluation and a user study. Based upon the research questions in section 1.3, three
hypotheses were defined and later proved significant using statistical analysis on the
user experiment. Conclusive results indicate that the segmented player was quicker to
navigate to specific content, more user friendly and preferred by participants. Thus the
developed system can be deemed successful.

63

7 Conclusion

This final chapter discusses the contributions this dissertation has made, analyses the
limitations of the study and suggests possible improvements. Areas for future research
are also proposed, illustrating a number of interesting topics that could be investigated.

In chapter 1, a number of objectives were devised which would be used to determine
the success of the project. The objectives have been reproduced below and evidence is
given illustrating how they have been met.

• Research the current academic literature concerning audio content analysis and
audio retrieval - Chapter 2 explored the state of the art and discussed the large
amount of literature that has been published on the subject of audio content
analysis and retrieval.

• Investigate the current technologies available and review similar existing solutions
- Current technologies are discussed within the literature and technology review
in chapter 2 and a number of existing solutions, such as BBC iPlayer Radio and
Radioplayer are analysed in chapter 3.

• Devise a requirements specification from a wide breadth of sources - Chapter 3
discusses requirements gathered from a wide breadth of sources with existing
solutions analysed, user research undertaken and use cases derived. The chapter
concludes with the full requirements specification.

• Design a system that is capable of segmenting a radio programme and displaying
the segments against the audio within a web player - Chapter 4 reviewed the
design decisions taken and presented the system designed, illustrated through a
system architecture, data schemas and user interface wireframes.

• Following the design, develop an automated interactive segment-based radio lis-
ten again service - Chapter 5 discussed the implementation of the system and
presented a working prototype of the automated interactive segment-based listen
again service.

• Evaluate the success of the developed system by conducting a user study and
gathering user feedback - The developed system was evaluated using two methods,
including a user study, in chapter 6. The developed system was proved to be a
success.

64

7.1 Key Contributions

Chapter 1 also considered 3 research questions, which were used to provide direction
to the dissertation. They have been reproduced below and their findings summarised:

1. Is it possible to automatically segment a radio programme? - Yes, this dissertation
has developed a system to automatically segment a radio programme based on
studio events. (Chapter 5)

2. Is it possible to develop a segmented web player that is easy and intuitive to use?
- Yes, a web player was developed in chapter 5 and it was demonstrated to be
easy and intuitive in the user study in chapter 6.

3. Is it possible to develop a segmented web player that is quick for listeners to locate
content within a radio programme? - Yes, the empirical evaluation in chapter
6 found the segmented web player to be far quicker to locate content, than a
non-segmented player.

7.1 Key Contributions
This dissertation has made a number of key contributions, both in terms of systems
produced and research conducted.

7.1.1 System Contributions

A number of key system contributions have been made to the field. To the best of our
knowledge, this is the first complete implementation of an automated segment-based
radio listen again service. The scale of this contribution can be recognised by listing
the individual contributions that have been made:

• Proposed a system architecture that automatically detects studio events, analyses
the events to generate segments and exports the segments to a radio catchup web
player.

• Proposed a segmented web player user interface that utilises existing web player
design standards to reduce the learning complexity to users.

• Developed hardware to capture studio events and software to record and store
them.

• Developed a method to analyse the studio detected events and generate segments,
using data extracted from the station database and third party information sup-
pliers to produce segment metadata.

• Developed an interactive segment-based web player that provides the user the
ability to listen, navigate and interpret the content within a radio programme.

65

7.2 Limitations of the Study

7.1.2 Research Contributions

Research contribution to community

This dissertation has also made many research contributions to the field:

• Provided a thorough literature and technology review summarising the field and
technologies available. To date, a considerable body of research has sought to
analyse audio based on the physical audio properties, however this dissertation
has investigated analysing audio based on studio events, an area struggling from
limited research. For this reason it can be concluded that this dissertation pro-
vides a major contribution to the field and supports the initial research of OR-
PHEUS, the European research group dedicated to improving the management
of audio content to create new user experiences [71].

• Existing listen again solutions were analysed and designs reviewed. Common
design traits were identified and recommended for future web players, to reduce
the learning required by users of a new segment-based player.

• User research was conducted to gauge listening habits between live and catchup
radio. The findings were similar to the U.K. RAJAR research [23], suggesting
their validity, however the research conducted in this dissertation went into more
detail, collecting reasons for listening to live and catchup radio.

• Designed and conducted a user study to evaluate the usability of a segmented web
player and the affect on locating content. Our study indicated that users prefer
a segmented player and that it brought significant improvements, both in terms
of speed to locate content and providing users with more functionality, such as
identifying now playing segments.

This methods can be used for future research The research conducted has been ex-
tremely promising and provides a significant contribution to the field.

7.2 Limitations of the Study
The user study and requirements evaluation provided an insight into the success of
the project, however some limitations were identified. The project had two challenges;
automatically segmenting a radio programme and building a web player to view them.
Although the web player was evaluated thoroughly through the user study, less consid-
eration was given to analysing the segmentation process. The web player will only be
as good as the data it is provided, meaning that if the segments generated are not cor-
rect, then the player would be redundant. A simple requirements evaluation concluded
segments were successfully generated, however it would have been insightful to run a
study comparing the segments generated automatically and manually by a member of
the radio station.

Additionally, no study has been conducted on the appeal and usefulness of the devel-
oped system to radio stations. Nonetheless both the requirements evaluation and user

66

7.2 Limitations of the Study

study revealed limitations. The requirements evaluation highlighted a key potential
problem: a segment metadata management system has not been developed. It was
hypothesised that this omission may restrict the appeal to stations, as they would have
no manual override to correct or add segment metadata. As the segmented catchup
system requires installation within a radio station, it needs station participation. En-
suring that the system would be suitable and appealing to stations would produce an
important analysis.

Furthermore, focusing on the user study, three further limitations were revealed:

Participants

The study could have benefited from more participants and from a wider demographic.
The ten participants involved in the study were all young adults studying at the Uni-
versity of Bath. There is a possibility, although unlikely, that the segmented system
favoured young university educated individuals. The small participant size could make
the results inconclusive, thus further testing should be conducted with a larger group.
However, considering the high probability significance of the results, a larger group
would not be expected to affect the conclusions.

Programmes Assessed

The experiment tasks required participants to locate specific content within a radio
programme. The programmes used were chosen based on station scheduling and the
content to locate was decided to ensure an even split across the programme and that
it was unambiguous. Table 7.1 lists the mean task completion times between groups.
The groups swapped player designs, but the audio order was not changed. Therefore, if
the programmes and difficulty to locate the content was similar, the difference between
task completion means for each group would be expected to be similar. While every
effort was made to ensure task difficulty was similar, the results show that it was not
achieved perfectly, as analysis of table 7.1 reveals the difficultly of the two 30 minute
programmes may have differed.

Player A Player B
Participant Group Task -

10 Min
Task -
30 Min

Task -
60 Min

Task -
10 Min

Task -
30 Min

Task -
60 Min

Average 1 78 75 249 34 50 55
Average 2 68 124 227 52 30 21

Table 7.1 Comparison between experiment groups and time taken to
complete each task.

Task Permutations

The tasks were structured and carried out so that each participant located content
in a 10 minute, then 30 minute and finally 60 minute programme using one of the
web player designs. The process was then repeated with the other web player design.

67

7.3 Future Work

While counterbalancing was applied, so that two different groups used the players in
different orders, the task order remained the same. It is unclear from the results whether
finding content within a shorter programme first helped the participants to learn the
web player, which the experience was then used on the longer programme tasks. Had
another group performed the tasks in reverse order, this could have been analysed.

7.3 Future Work
The solution presented in this dissertation leads to many interesting and exciting oppor-
tunities, which in turn suggests specific directions for future research. This project has
laid the foundations that now allows content within shows to be searchable, programme
personalisation to be possible and listen again services to be vastly more interactive.

It is recommended that further research be undertaken to take advantage of these new
areas. As with the rest of the dissertation, the recommendations are naturally grouped
into two sections: segmentation process and web player.

7.3.1 Segmentation Process

The research and solutions in this paper presented a basic approach to segmentation,
however more research is needed to better understand whether the segments being
produced are accurate, how they could be more accurate and how additional segments
could be identified.

Segmentation Methods

The literature review researched a number of different segmentation methods, using
both audio element discovery and studio element discovery. This project focussed on
using studio elements to detect segments, however many of the audio element segmen-
tation methods also proved popular. Further work could establish whether this is the
most accurate segmentation method for the radio studio environment, and possibly
discover if other methods would be complementary or supplementary.

Further to this, some audio element segmentation methods use machine learning to
analyse what certain content may be, based on training data and similarities between
audio features. This approach could be extended to studio elements, where a large num-
ber of event collectors could be analysed to identify trends, such as detecting segments
or even studio interaction behaviour. Additionally, new event collectors could be inves-
tigated via analysis of studio equipment to ascertain whether useful event information
could be extracted.

Information Suppliers

The user study identified the importance of segment metadata to users, however the
requirements specification prioritised the segment information provided as low (Req.
D.2.1 & D.2.3) and music as medium priority (Req. D.2.2). Further studies should
research segment classification and means to retrieve metadata. In this project, infor-

68

7.3 Future Work

mation suppliers were used to provide additional information about segments, such as
album artwork or speech topic detection. Utilising other third party services could pro-
vide users with more information to describe or further inform them about segments.
Simple extensions could include providing news segments with associated news articles
on the web for further reading or listening.

Segment Management System

A segment management system was listed within the requirements specification, how-
ever due to various reasons this was not implemented. While further work should
implement this functionality, it would be interesting to assess the popularity and use
of it. Theoretically, the better the segmentation and classification processes, the less
likely manual interaction should be needed. Determining if this hypothesis is correct
and by extrapolation whether manual interaction will always be required during the
segmentation and information collection stage, would be an interesting future research
area.

7.3.2 Web Player

The web player was used as a content retrieval method to play and display the seg-
ments extracted during the segmentation process. As discussed in the literature review
(section 2.3), other retrieval methods exist and these could be explored with segmented
content, however focussing on the web player there already exists a large number of
research recommendations, so only these will be discussed below.

Development Opportunities

During the user study in section 6.2, a number of questions were asked to participants
regarding what future features they would be interested in. The responses are sum-
marised below and could be used to guide future development. The full responses can
be found in appendix D.5.

• Live Segmentation (100% participants interested) - Providing a web player that
displays current and past segments when listening live to a radio programme. This
feature was extremely popular with many participants highlighting the benefit if
joining during the middle of a programme. A listener could catchup on missed
segments and then return back to the live show.

• Personalised Programming (80% participants interested) - Providing a web player
that automatically gets segments from a variety of programmes and creates a per-
sonalised radio programme for you. Interest was still high for this development
opportunity. Many participants expressed concern over the accuracy of recom-
mending content to users, however there is a large amount of research available in
this field, which would help to develop a suitable recommendation system. Par-
ticipants valued the mix of speech and music segments from various shows, and
some participants suggested this could rival their listenership to music streaming

69

7.4 Concluding Remarks

services. Considering the research conducted in section 1.3, which concluded that
music streaming services are far more popular than radio catchup services, this
could lead to a number of new listeners.

• Catchup TV (60% participants interested) - Providing a similar segmented web
player for catchup television. Participants did not feel as passionate about this
development prospect. Some worried the segments would reveal spoilers, while
others thought it would not work with a lot of programming. It could be applied
to news and sports programming which inherently has highlights and distinct
content, however for chronological programmes, such as drams, there would be
little benefit.

User Behaviour

The user study’s focus was analysing how participants locate content within a pro-
gramme and the time taken, however this did not cover user behaviour when listening to
a programme. Further investigation and experimentation into general user behaviour,
when listening to programmes, is strongly recommended. The findings should in turn
feedback into the design process and be used to improve the player and the associated
user experience.

New Listening Potential

Another recommendation involves studying the new listening potential, available with
a segmented radio programme. The original user study investigated interest in per-
sonalised programming and received some positive responses, however this could be
explored in more detail. It would be interesting to explore how segments can be shared,
especially through social media, while retaining integrity between the segment and its
parent programme to allow listeners to follow clips back to their source.

7.4 Concluding Remarks
This dissertation has developed Radio Catchup, an automated solution to segment
radio programmes and provide an interactive radio listen again service. To the best
of our knowledge, this is the first complete implementation of such a system, which
makes the positive results from user experiments even more promising. The solution
presented significantly extends the capabilities of current listen again services and could
be commercialised in the future. Additionally a number of key contributions have
been made, both in terms of systems developed and research conducted. Notably the
contribution to the European research group ORPHEUS and the interest received by
broadcasters, such as the BBC, during presentations of Radio Catchup.
To experience the web player, it is available online: http://radio.chris.io.

70

http://radio.chris.io

Bibliography

[1] L. Symones. “’2LO calling’”. In: IEE Review 44.4 (July 1, 1998), pp. 178–182.
issn: 0953-5683. doi: 10.1049/ir:19980413.

[2] George Gascoigne G. Blake and Repr. History of radio telegraphy and telephony.
New York: Ayer Co Pub, Aug. 1976. isbn: 9780405060342.

[3] J.E. Brittain. “Reginald A. Fessenden and the origins of radio [Scanning the
Past]”. In: Proceedings of the IEEE 84.12 (Dec. 1996), p. 1852. issn: 0018-9219.
doi: 10.1109/jproc.1996.546441.

[4] John V. L. Hogan. The Outline of Radio. Boston : Little, Brown, and Co., 1923.
url: https://archive.org/details/outlineofradio01hoga (visited on 10/27/2016).

[5] Keith Geddes. Broadcasting in Britain, 1922-1972: A brief account of its engi-
neering aspects. H.M. Stationery Off., 1972. url: https://books.google.co.uk/
books?id=bL8MAQAAIAAJ (visited on 10/27/2016).

[6] J. Stott. “Digital radio Mondiale: Key technical features”. In: Electronics & Com-
munication Engineering Journal 14.1 (Feb. 1, 2002), pp. 4–14. issn: 0954-0695.
doi: 10.1049/ecej:20020101.

[7] F. Conrad. “Short-wave radio broadcasting”. In: Proceedings of the IRE 12.6 (Dec.
1924), pp. 723–738. issn: 0096-8390. doi: 10.1109/jrproc.1924.220005.

[8] A. Pinkerton and K. Dodds. “Radio geopolitics: Broadcasting, listening and the
struggle for acoustic spaces”. In: Progress in Human Geography 33.1 (Feb. 1,
2009), pp. 10–27. issn: 0309-1325. doi: 10.1177/0309132508090978.

[9] BBC. BBC archive - the BBC sound archive. Aug. 28, 2009. url: http : / /
www . bbc . co . uk / archive / sound % 5C _ archive . shtml ? chapter = 2 (visited on
11/23/2016).

[10] British Library - Sound Collection. Radio broadcast recordings. The British Li-
brary. Jan. 21, 2015. url: http://www.bl.uk/collection-guides/radio-broadcast-
recordings (visited on 11/23/2016).

[11] Yves Raimond and Chris Lowis. “Automated interlinking of speech radio archives”.
In: (). url: http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-
11.pdf (visited on 10/31/2016).

[12] Rui Cai, Lie Lu, and Alan Hanjalic. “Unsupervised content discovery in compos-
ite audio”. In: Proceedings of the 13th annual ACM international conference on
Multimedia - MULTIMEDIA ’05 (2005). doi: 10.1145/1101149.1101292. url:
https://www.microsoft.com/en-us/research/wp- content/uploads/2016/02/
unsupervisedaudiodiscovery%5C_mm05.pdf (visited on 11/22/2016).

[13] Lie Lu and A. Hanjalic. “Text-like segmentation of general audio for content-based
retrieval”. In: IEEE Transactions on Multimedia 11.4 (June 2009), pp. 658–669.
issn: 1520-9210. doi: 10.1109/tmm.2009.2017607.

[14] M. Lycke, M. Matton, and L. Overmeire. “An automated tagging approach to
improve search and retrieval in a radio archive”. In: SMPTE Motion Imaging
Journal 124.8 (Nov. 2015), pp. 25–32. issn: 1545-0279. doi: 10.5594/j18635.

[15] Y. Raimond, C. Lowis, R. Hodgson, and D. Tinley. “Automated Metadata en-
richment of large speech radio archives”. In: SMPTE Motion Imaging Journal
123.1 (Jan. 2014), pp. 35–41. issn: 1545-0279. doi: 10.5594/j18370xy.

71

http://dx.doi.org/10.1049/ir:19980413
http://dx.doi.org/10.1109/jproc.1996.546441
https://archive.org/details/outlineofradio01hoga
https://books.google.co.uk/books?id=bL8MAQAAIAAJ
https://books.google.co.uk/books?id=bL8MAQAAIAAJ
http://dx.doi.org/10.1049/ecej:20020101
http://dx.doi.org/10.1109/jrproc.1924.220005
http://dx.doi.org/10.1177/0309132508090978
http://www.bbc.co.uk/archive/sound%5C_archive.shtml?chapter=2
http://www.bbc.co.uk/archive/sound%5C_archive.shtml?chapter=2
http://www.bl.uk/collection-guides/radio-broadcast-recordings
http://www.bl.uk/collection-guides/radio-broadcast-recordings
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-11.pdf
http://events.linkeddata.org/ldow2012/papers/ldow2012-paper-11.pdf
http://dx.doi.org/10.1145/1101149.1101292
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/unsupervisedaudiodiscovery%5C_mm05.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/unsupervisedaudiodiscovery%5C_mm05.pdf
http://dx.doi.org/10.1109/tmm.2009.2017607
http://dx.doi.org/10.5594/j18635
http://dx.doi.org/10.5594/j18370xy

Bibliography

[16] Steven McClung and Kristine Johnson. “Examining the motives of Podcast users”.
In: Journal of Radio & Audio Media 17.1 (May 6, 2010), pp. 82–95. issn: 1937-
6529. doi: 10.1080/19376521003719391.

[17] Gianfranco Nencioni, Nishanth Sastry, Gareth Tyson, Vijay Badrinarayanan,
Dmytro Karamshuk, Jigna Chandaria, and Jon Crowcroft. “SCORE: Exploit-
ing global broadcasts to create Offline personal channels for on-demand access”.
In: IEEE/ACM Transactions on Networking 24.4 (Aug. 2016), pp. 2429–2442.
issn: 1063-6692. doi: 10.1109/tnet.2015.2456186.

[18] Mimmi Andersson. Monthly Performance Pack - April, May & June 2016. Tech.
rep. July 26, 2016. url: http://downloads.bbc.co.uk/aboutthebbc/insidethebbc/
mediacentre/iplayer/performancepackaprmayjun2016.pdf (visited on 11/23/2016).

[19] Harold D Lasswell. “The structure and function of communication in society”. In:
The communication of ideas 37 (1948), pp. 215–228.

[20] Mette Skov and Marianne Lykke. “Unlocking radio broadcasts”. In: (Aug. 21,
2012), pp. 298–301. doi: 10.1145/2362724.2362779. url: http://dl.acm.org/
citation.cfm?id=2362779%5C&CFID=859577222%5C&CFTOKEN=95035629
(visited on 10/31/2016).

[21] Tobias Lauer and Wolfgang Hürst. “Audio-based methods for navigating and
browsing educational multimedia documents”. In: (Sept. 28, 2007), pp. 123–124.
doi: 10 . 1145 / 1290144 . 1290166. url: http : / / dl . acm . org / citation . cfm ? id =
1290166%5C&CFID=859577222%5C&CFTOKEN=95035629 (visited on 10/31/2016).

[22] RAJAR. MIDAS Measurement of Internet Delivered Audio Services. Tech. rep.
Oct. 2015. url: http://www.rajar.co.uk/docs/news/MIDASAutumn2015LFFinal.
pdf (visited on 11/23/2016).

[23] RAJAR. MIDAS Measurement of Internet Delivered Audio Services. Tech. rep.
Oct. 2016. url: http://www.rajar.co.uk/docs/news/MIDAS%5C_Autumn%
5C_2016.pdf (visited on 11/23/2016).

[24] Martha Larson and Joachim Köhler. “Structured audio player”. In: (May 30,
2007), pp. 268–273. url: http : / / dl . acm . org / citation . cfm ? id = 1931416 %
5C&CFID=859577222%5C&CFTOKEN=95035629 (visited on 10/31/2016).

[25] Lie Lu and Alan Hanjalic. “Audio Keywords discovery for text-like audio content
analysis and retrieval”. In: IEEE Transactions on Multimedia 10.1 (Jan. 2008),
pp. 74–85. issn: 1520-9210. doi: 10.1109/tmm.2007.911304.

[26] G. Tzanetakis and F. Cook. “A framework for audio analysis based on classi-
fication and temporal segmentation”. In: Proceedings 25th EUROMICRO Con-
ference. Informatics: Theory and Practice for the New Millennium (1999). doi:
10.1109/eurmic.1999.794763.

[27] Silvia Pfeiffer, Stephan Fischer, and Wolfgang Effelsberg. “Automatic audio con-
tent analysis”. In: (Jan. 2, 1997), pp. 21–30. doi: 10 . 1145 / 244130 . 244139.
url: http ://dl . acm.org/citation . cfm? id=244139%5C&CFID=859577222%
5C&CFTOKEN=95035629 (visited on 10/31/2016).

[28] Martin Cooke. Modelling Auditory processing and Organisation. Cambridge Uni-
versity Press, Feb. 17, 2005. url: https : / / books . google . co . uk / books ? id =
nP4WEcEByVcC (visited on 11/20/2016).

[29] D. Howard and J. Angus. Acoustics and Psychoacoustics. Taylor & Francis,
2013. isbn: 9781136121586. url: https : / / books . google . co . uk / books ? id =
e8cqBgAAQBAJ.

[30] Richard Parncutt. Harmony: A Psychoacoustical Approach. 1st ed. Springer-
Verlag Berlin An, 2012.

72

http://dx.doi.org/10.1080/19376521003719391
http://dx.doi.org/10.1109/tnet.2015.2456186
http://downloads.bbc.co.uk/aboutthebbc/insidethebbc/mediacentre/iplayer/performancepackaprmayjun2016.pdf
http://downloads.bbc.co.uk/aboutthebbc/insidethebbc/mediacentre/iplayer/performancepackaprmayjun2016.pdf
http://dx.doi.org/10.1145/2362724.2362779
http://dl.acm.org/citation.cfm?id=2362779%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=2362779%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1145/1290144.1290166
http://dl.acm.org/citation.cfm?id=1290166%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1290166%5C&CFID=859577222%5C&CFTOKEN=95035629
http://www.rajar.co.uk/docs/news/MIDASAutumn2015LFFinal.pdf
http://www.rajar.co.uk/docs/news/MIDASAutumn2015LFFinal.pdf
http://www.rajar.co.uk/docs/news/MIDAS%5C_Autumn%5C_2016.pdf
http://www.rajar.co.uk/docs/news/MIDAS%5C_Autumn%5C_2016.pdf
http://dl.acm.org/citation.cfm?id=1931416%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1931416%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1109/tmm.2007.911304
http://dx.doi.org/10.1109/eurmic.1999.794763
http://dx.doi.org/10.1145/244130.244139
http://dl.acm.org/citation.cfm?id=244139%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=244139%5C&CFID=859577222%5C&CFTOKEN=95035629
https://books.google.co.uk/books?id=nP4WEcEByVcC
https://books.google.co.uk/books?id=nP4WEcEByVcC
https://books.google.co.uk/books?id=e8cqBgAAQBAJ
https://books.google.co.uk/books?id=e8cqBgAAQBAJ

Bibliography

[31] Juan G Roederer. Introduction to the physics and psychophysics of music. 2nd ed.
New York: Springer-Verlag, 1975. 2d ed, May 17, 1978. isbn: 9780387901169.

[32] Randall J. LeVeque, Charles S. Peskin, and Peter D. Lax. “Solution of a two-
dimensional cochlea model using transform techniques.” In: SIAM Journal on
Applied Mathematics 45.3 (June 1985), pp. 450–464. issn: 0036-1399.

[33] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng. “Unsupervised fea-
ture learning for audio classification using convolutional deep belief networks”.
In: Advances in Neural Information Processing Systems 22. Ed. by Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta. Curran As-
sociates, Inc., 2009, pp. 1096–1104. url: http://papers .nips .cc/paper/3674-
unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-
belief-networks.pdf.

[34] Yin-Fu Huang and Lien-Hung Tung. “Semantic scene detection system for base-
ball videos based on the MPEG-7 specification”. In: (Mar. 22, 2010), pp. 941–
947. doi: 10 .1145/1774088 .1774285. url: http ://dl . acm.org/citation . cfm?
id = 1774285 % 5C&CFID = 859577222 % 5C&CFTOKEN = 95035629 (visited on
10/31/2016).

[35] Lie Lu, Rui Cai, and A. Hanjalic. “Towards A unified framework for content-based
audio analysis”. In: Proceedings. (ICASSP ’05). IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2005. (2005). doi: 10.1109/icassp.
2005.1415593.

[36] V. Barbosa, T. Pellegrini, M. Bugalho, and I. Trancoso. “Browsing videos by
automatically detected audio events”. In: 2011 IEEE EUROCON - International
Conference on Computer as a Tool (Apr. 2011). doi: 10 .1109/eurocon.2011.
5929358.

[37] Chris J C Burges, John C Platt, and Jonathan Goldstein. “Identifying audio
clips with RARE”. In: (Feb. 11, 2003), pp. 444–445. doi: 10.1145/957013.957104.
url: http ://dl . acm.org/citation . cfm? id=957104%5C&CFID=859577222%
5C&CFTOKEN=95035629 (visited on 10/31/2016).

[38] Theodoros Theodorou, Iosif Mporas, and Nikos Fakotakis. “An overview of au-
tomatic audio segmentation”. In: International Journal of Information Technol-
ogy and Computer Science 6.11 (Oct. 8, 2014), pp. 1–9. issn: 2074-9007. doi:
10.5815/ijitcs.2014.11.01.

[39] RG Bachu, S Kopparthi, B Adapa, and BD Barkana. “Separation of voiced and
unvoiced using zero crossing rate and energy of the speech signal”. In: American
Society for Engineering Education (ASEE) Zone Conference Proceedings (2008),
pp. 1–7.

[40] Michael Lutter. “Mel-Frequency Cepstral coefficients”. In: (Nov. 25, 2014). url:
http://recognize-speech.com/feature-extraction/mfcc (visited on 11/24/2016).

[41] BBC. Future Content Experiences: The First Steps For Object-Based Broadcast-
ing. Mar. 13, 2015. url: http ://www.bbc . co .uk/rd/blog/2015 - 03 - future -
content- experiences- the- first- steps- for- object- based- broadcasting (visited on
10/22/2016).

[42] Michael Weitnauer. Object-based broadcasting – for European leadership in next
generation audio experiences D2.1: Initial reference architecture specification re-
port. Tech. rep. 2016. url: https ://orpheus - audio .eu/wp- content/uploads/
2016 / 09 / Orpheus - D2 . 1 % 5C _ Initial - Reference - Architecture - Specification -
Report%5C_v1.0.pdf (visited on 11/25/2016).

73

http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf
http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf
http://papers.nips.cc/paper/3674-unsupervised-feature-learning-for-audio-classification-using-convolutional-deep-belief-networks.pdf
http://dx.doi.org/10.1145/1774088.1774285
http://dl.acm.org/citation.cfm?id=1774285%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1774285%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1109/icassp.2005.1415593
http://dx.doi.org/10.1109/icassp.2005.1415593
http://dx.doi.org/10.1109/eurocon.2011.5929358
http://dx.doi.org/10.1109/eurocon.2011.5929358
http://dx.doi.org/10.1145/957013.957104
http://dl.acm.org/citation.cfm?id=957104%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=957104%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.5815/ijitcs.2014.11.01
http://recognize-speech.com/feature-extraction/mfcc
http://www.bbc.co.uk/rd/blog/2015-03-future-content-experiences-the-first-steps-for-object-based-broadcasting
http://www.bbc.co.uk/rd/blog/2015-03-future-content-experiences-the-first-steps-for-object-based-broadcasting
https://orpheus-audio.eu/wp-content/uploads/2016/09/Orpheus-D2.1%5C_Initial-Reference-Architecture-Specification-Report%5C_v1.0.pdf
https://orpheus-audio.eu/wp-content/uploads/2016/09/Orpheus-D2.1%5C_Initial-Reference-Architecture-Specification-Report%5C_v1.0.pdf
https://orpheus-audio.eu/wp-content/uploads/2016/09/Orpheus-D2.1%5C_Initial-Reference-Architecture-Specification-Report%5C_v1.0.pdf

Bibliography

[43] Hynek Hermansky. “Multistream recognition of speech: Dealing with unknown
unknowns”. In: Proceedings of the IEEE 101.5 (May 2013), pp. 1076–1088. issn:
0018-9219. doi: 10.1109/jproc.2012.2236871.

[44] Bowen Zhou and John HL Hansen. “Unsupervised audio stream segmentation
and clustering via the Bayesian information criterion.” In: INTERSPEECH. 2000,
pp. 714–717.

[45] Wen-Huang Cheng, Wei-Ta Chu, and Ja-Ling Wu. “Semantic context detection
based on hierarchical audio models”. In: Proceedings of the 5th ACM SIGMM
international workshop on Multimedia information retrieval - MIR ’03 (2003).
doi: 10.1145/973264.973282.

[46] Rui Cai, Lie Lu, Hong-Jiang Zhang, and Lian-Hong Cai. “Highlight sound effects
detection in audio stream”. In: (June 7, 2003), pp. 37–40. url: http://dl.acm.
org/citation.cfm?id=1171723 (visited on 11/24/2016).

[47] Jun Huang, Yuan Dong, Jiqing Liu, Chengyu Dong, and Haila Wang. “Sports
audio segmentation and classification”. In: 2009 IEEE International Conference
on Network Infrastructure and Digital Content (2009). doi: 10.1109/icnidc.2009.
5360872. url: https://www.lrde.epita.fr/%5Ctextasciitidlereda/cours/speech/
speakerDiarization/5360872.pdf (visited on 11/24/2016).

[48] Rongqing Huang and J.H.L. Hansen. “Advances in unsupervised audio classifi-
cation and segmentation for the broadcast news and NGSW corpora”. In: IEEE
Transactions on Audio, Speech and Language Processing 14.3 (2006), pp. 907–
919. doi: 10.1109/tsa.2005.858057. url: http://crss.utdallas.edu/Publications/
Huang2006.pdf (visited on 11/24/2016).

[49] Zhouyu Fu. “Improving feature aggregation for semantic music retrieval”. In:
Proceedings of the 23rd ACM international conference on Multimedia - MM ’15
(2015). doi: 10.1145/2733373.2806391.

[50] Wei-Ta Chu, Wen-Huang Cheng, Ja-Ling Wu, and J. Yung-jen Hsu. “A study
of semantic context detection by using SVM and GMM approaches”. In: 2004
IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat.
No.04TH8763) (2004). doi: 10.1109/icme.2004.1394553.

[51] Guodong Guo and S.Z. Li. “Content-based audio classification and retrieval by
support vector machines”. In: IEEE Transactions on Neural Networks 14.1 (2003),
pp. 209–215. doi: 10.1109/tnn.2002.806626. url: http://www.ee.columbia.
edu/%5Ctextasciitidlesfchang/course/spr-F05/papers/guo-li-svm-audio00.pdf
(visited on 11/24/2016).

[52] Zhu Liu, Yao Wang, and Tsuhan Chen. In: The Journal of VLSI Signal Processing
20.1/2 (1998), pp. 61–79. issn: 0922-5773. doi: 10.1023/a:1008066223044.

[53] Silvia Pfeiffer. “Pause concepts for audio segmentation at different semantic lev-
els”. In: Proceedings of the ninth ACM international conference on Multimedia -
MULTIMEDIA ’01 (2001). doi: 10.1145/500141.500171.

[54] J. Foote. “Automatic audio segmentation using a measure of audio novelty”.
In: 2000 IEEE International Conference on Multimedia and Expo. ICME2000.
Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat.
No.00TH8532) (2000). doi: 10.1109/icme.2000.869637.

[55] Avery Li-chun Wang. “An industrial-strength audio search algorithm”. In: Pro-
ceedings of the 4 th International Conference on Music Information Retrieval
(2003). url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.8882
(visited on 11/21/2016).

74

http://dx.doi.org/10.1109/jproc.2012.2236871
http://dx.doi.org/10.1145/973264.973282
http://dl.acm.org/citation.cfm?id=1171723
http://dl.acm.org/citation.cfm?id=1171723
http://dx.doi.org/10.1109/icnidc.2009.5360872
http://dx.doi.org/10.1109/icnidc.2009.5360872
https://www.lrde.epita.fr/%5Ctextasciitidlereda/cours/speech/speakerDiarization/5360872.pdf
https://www.lrde.epita.fr/%5Ctextasciitidlereda/cours/speech/speakerDiarization/5360872.pdf
http://dx.doi.org/10.1109/tsa.2005.858057
http://crss.utdallas.edu/Publications/Huang2006.pdf
http://crss.utdallas.edu/Publications/Huang2006.pdf
http://dx.doi.org/10.1145/2733373.2806391
http://dx.doi.org/10.1109/icme.2004.1394553
http://dx.doi.org/10.1109/tnn.2002.806626
http://www.ee.columbia.edu/%5Ctextasciitidlesfchang/course/spr-F05/papers/guo-li-svm-audio00.pdf
http://www.ee.columbia.edu/%5Ctextasciitidlesfchang/course/spr-F05/papers/guo-li-svm-audio00.pdf
http://dx.doi.org/10.1023/a:1008066223044
http://dx.doi.org/10.1145/500141.500171
http://dx.doi.org/10.1109/icme.2000.869637
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.8882

Bibliography

[56] Pedro Cano, Eloi Batlle, Ton Kalker, and Jaap Haitsma. “A review of audio
fingerprinting”. In: Journal of VLSI signal processing systems for signal, image
and video technology 41.3 (2005), pp. 271–284.

[57] Jaap Haitsma and Ton Kalker. “A highly robust audio fingerprinting system.” In:
Ismir. Vol. 2002. 2002, pp. 107–115.

[58] Bruno Oliveira, Alexandre Crivellaro, César, and Roberto M. “Audio-based ra-
dio and TV broadcast monitoring”. In: (May 12, 2005), pp. 1–3. doi: 10.1145/
1114223.1114238. url: http://dl.acm.org/citation.cfm?id=1114238%5C&CFID=
859577222%5C&CFTOKEN=95035629 (visited on 10/31/2016).

[59] Alina Elma Abduraman, Sid-Ahmed Berrani, Jean-Bernard Rault, and Olivier Le
Blouch. “From audio recurrences to TV program structuring”. In: Proceedings of
the 2011 ACM international workshop on Automated media analysis and produc-
tion for novel TV services - AIEMPro ’11 (2011). doi: 10.1145/2072552.2072556.

[60] Mike Dowman, Valentin Tablan, Hamish Cunningham, and Borislav Popov. “Web-
assisted annotation, semantic indexing and search of television and radio news”.
In: (Oct. 5, 2005), pp. 225–234. doi: 10.1145/1060745.1060781. url: http://dl.
acm.org/citation.cfm?id=1060781%5C&CFID=859577222%5C&CFTOKEN=
95035629 (visited on 10/31/2016).

[61] Masanori Sano, Yoshihiko Kawai, Hideki Sumiyoshi, and Nobuyuki Yagi. “Meta-
data production framework and metadata editor”. In: Proceedings of the 14th an-
nual ACM international conference on Multimedia - MULTIMEDIA ’06 (2006).
doi: 10.1145/1180639.1180810. url: https://www.nhk.or.jp/strl/mpf/english/
pdf/MPFandME.pdf (visited on 10/31/2016).

[62] Masanori Sano, Hideki Sumiyoshi, Masahiro Shibata, and Nobuyuki Yagi. “Meta-
data production framework (MPF) version 2.0”. In: (Oct. 23, 2009), pp. 1017–
1018. doi: 10.1145/1631272.1631497. url: http://dl .acm.org/citation.cfm?
id = 1631497 % 5C&CFID = 859577222 % 5C&CFTOKEN = 95035629 (visited on
10/31/2016).

[63] R. Kubozono, K. Gomi, S. Kinohara, M. Inagaki, and Y. Matsuura. “Browse
search using audio key-information for multimedia on-demand systems”. In: IEEE
Transactions on Consumer Electronics 42.4 (1996), pp. 900–906. issn: 0098-3063.
doi: 10.1109/30.555770.

[64] G. Tzanetakis and P. Cook. “Multifeature audio segmentation for browsing and
annotation”. In: Proceedings of the 1999 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. WASPAA’99 (Cat. No.99TH8452) (). doi:
10.1109/aspaa.1999.810860.

[65] K. K. Agbele, E. F. Ayetiran, K. D. Aruleba, and D. O. Ekong. “Algorithm
for Information Retrieval optimization”. In: 2016 IEEE 7th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON) (Oct.
2016), pp. 1–8. doi: 10.1109/IEMCON.2016.7746242.

[66] Wei-Ho Tsai and Hsin-Min Wang. “A query-by-example framework to retrieve
music documents by singer”. In: 2004 IEEE International Conference on Multi-
media and Expo (ICME) (IEEE Cat. No.04TH8763) (2004). doi: 10.1109/icme.
2004.1394621.

[67] Wolfgang Hürst, Tobias Lauer, and Robert Kaschuba. “Interfaces for interac-
tive audio-visual media browsing”. In: (Oct. 23, 2006), pp. 807–808. doi: 10 .
1145/1180639.1180819. url: http://dl .acm.org/citation.cfm?id=1180819%
5C&CFID=859577222%5C&CFTOKEN=95035629 (visited on 10/31/2016).

75

http://dx.doi.org/10.1145/1114223.1114238
http://dx.doi.org/10.1145/1114223.1114238
http://dl.acm.org/citation.cfm?id=1114238%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1114238%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1145/2072552.2072556
http://dx.doi.org/10.1145/1060745.1060781
http://dl.acm.org/citation.cfm?id=1060781%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1060781%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1060781%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1145/1180639.1180810
https://www.nhk.or.jp/strl/mpf/english/pdf/MPFandME.pdf
https://www.nhk.or.jp/strl/mpf/english/pdf/MPFandME.pdf
http://dx.doi.org/10.1145/1631272.1631497
http://dl.acm.org/citation.cfm?id=1631497%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1631497%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1109/30.555770
http://dx.doi.org/10.1109/aspaa.1999.810860
http://dx.doi.org/10.1109/IEMCON.2016.7746242
http://dx.doi.org/10.1109/icme.2004.1394621
http://dx.doi.org/10.1109/icme.2004.1394621
http://dx.doi.org/10.1145/1180639.1180819
http://dx.doi.org/10.1145/1180639.1180819
http://dl.acm.org/citation.cfm?id=1180819%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1180819%5C&CFID=859577222%5C&CFTOKEN=95035629

Bibliography

[68] Eric Lee. “Towards a quantitative analysis of audio scrolling interfaces”. In:
(Apr. 28, 2007), pp. 2213–2218. doi: 10.1145/1240866.1240982. url: http://dl.
acm.org/citation.cfm?id=1240982%5C&CFID=859577222%5C&CFTOKEN=
95035629 (visited on 10/31/2016).

[69] Axel Carlier, Vincent Charvillat, and Wei Tsang. “A video Timeline with Book-
marks and Prefetch state for faster video browsing”. In: (Oct. 13, 2015), pp. 967–
970. doi: 10 .1145/2733373 .2806376. url: http ://dl . acm.org/citation . cfm?
id = 2806376 % 5C&CFID = 859577222 % 5C&CFTOKEN = 95035629 (visited on
10/31/2016).

[70] Nicolas Hervé, Pierre Letessier, Mathieu Derval, and Hakim Nabi. “Amalia.js”.
In: Proceedings of the 23rd ACM international conference on Multimedia - MM
’15 (2015). doi: 10.1145/2733373.2807406.

[71] Project summary. Aug. 2, 2016. url: http://orpheus-audio.eu/project-summary/
(visited on 10/27/2016).

[72] Kris Gale. The One Cost Engineers and Product Managers Don’t Consider. url:
http://firstround.com/review/The-one-cost-engineers-and-product-managers-
dont-consider/.

[73] Rob Baxter, Mike Jackson, and Steve Crouch. “Software Evaluation: Criteria-
based Assessment”. In: (2011). url: https://software.ac.uk/sites/default/files/
SSI-SoftwareEvaluationCriteria.pdf.

[74] K. Schoeffmann and L. Boeszoermenyi. “Video Browsing Using Interactive Nav-
igation Summaries”. In: 2009 Seventh International Workshop on Content-Based
Multimedia Indexing. June 2009, pp. 243–248. doi: 10.1109/CBMI.2009.40.

[75] John Brooke et al. “SUS-A quick and dirty usability scale”. In: Usability evaluation
in industry 189.194 (1996), pp. 4–7.

[76] Virginia Braun and Victoria Clarke. “Using thematic analysis in psychology”.
In: Qualitative Research in Psychology 3.2 (2006), pp. 77–101. doi: 10 .1191/
1478088706qp063oa. url: http : / / www . tandfonline . com / doi / abs / 10 . 1191 /
1478088706qp063oa.

76

http://dx.doi.org/10.1145/1240866.1240982
http://dl.acm.org/citation.cfm?id=1240982%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1240982%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=1240982%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1145/2733373.2806376
http://dl.acm.org/citation.cfm?id=2806376%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dl.acm.org/citation.cfm?id=2806376%5C&CFID=859577222%5C&CFTOKEN=95035629
http://dx.doi.org/10.1145/2733373.2807406
http://orpheus-audio.eu/project-summary/
http://firstround.com/review/The-one-cost-engineers-and-product-managers-dont-consider/
http://firstround.com/review/The-one-cost-engineers-and-product-managers-dont-consider/
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
https://software.ac.uk/sites/default/files/SSI-SoftwareEvaluationCriteria.pdf
http://dx.doi.org/10.1109/CBMI.2009.40
http://dx.doi.org/10.1191/1478088706qp063oa
http://dx.doi.org/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
http://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa

A Requirements Research
A.1 Research - Questionnaire

A.1.1 Questionnaire
10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 1 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

Radio Listening Habits Questionnaire
This questionnaire will take around 5-10 minutes and will ask you to consider your radio listening
habits.

Any questions or queries feel free to contact me at cgtc20@bath.ac.uk.

I look forward to your responses.

Thanks,
Chris

*Required

About You
This section will collect a couple of details about yourself.

1. Gender *
Mark only one oval.

 Male

 Female

 Prefer not to say

 Other:

2. Age *

If you are currently at university, please provide the
following:

3. University Course
Mark only one oval.

 Accounting & Finance

 Aeronautical & Manufacturing Engineering

 Agriculture & Forestry

 American Studies

 Anatomy & Physiology

 Anthropology

 Archaeology

 Architecture

77

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 4 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

4. Course Level
Mark only one oval.

 BSc/BA/MComp

 MSc/MA

 PhD

 Other

5. Year of Study
Mark only one oval.

 Year 1

 Year 2

 Placement Year

 Final Year

 Masters Year

 Other

Live Radio Listening
This section will ask you questions based on your listening habits to live radio.

6. On a typical day how many hours do you listen to live radio? *
Mark only one oval per row.

None Less than
one hour

About
1-2

hours

About
3-4

hours

About
5-8

hours

About 9-
12 hours

13 hours
or more

Weekday
Weekend

7. What time(s) are you most likely to listen to live radio?
Tick all that apply.

 Weekday Morning (6am - 10am)

 Weekday Daytime (10am - 4pm)

 Weekday Drivetime (4pm - 7pm)

 Weekday Evening (7pm - 11pm)

 Weekday Night (11pm - 6am)

 Weekend Day (6am - 7pm)

 Weekend Night (7pm - 6am)

78

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 5 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

8. Where are you most likely to listen to live radio?
Tick all that apply.

 At home

 At work/university

 Travelling/Commuting

 Other:

9. What device do you use to listen to live radio?
Tick all that apply.

 AM/FM Radio

 DAB Radio

 Internet Radio

 TV

 Desktop/Laptop

 Smartphone/Tablet

 Other:

10. Why do you listen to live radio?
Tick all that apply.

 Presenters/radio personalities

 Music

 Station relevance

 News coverage

 Sports coverage

 Competitions and prizes

 Other:

Catchup Radio Listening
Listen again radio services give users the ability to listen back to already broadcast shows.

Listen again services often come in two forms; a full show catch up service (such as BBC iPlayer
Radio) and curated podcasts containing selected content from broadcast shows (such as BBC
Radio 1's Scott Mills Daily podcast).

79

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 6 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

11. How often do you listen to the following each week? *
Mark only one oval per row.

Never
Less

than one
hour

About
1-2

hours

About
3-4

hours

About
5-8

hours

About
9-12
hours

13
hours or

more

BBC iPlayer Radio
(Listen again, not
live)
Commercial radio
station listen again
service (e.g.
Capital
Radioplayer)
Podcast: Content
from broadcast
shows (e.g. Friday
Night Comedy
from BBC Radio 4)
Podcast: Content
is original for the
podcast (e.g. Stuff
You Should Know)
Music streaming
service (e.g.
Spotify)
Downloaded Music
(e.g. iTunes)

12. What time(s) are you most likely to listen to radio listen again services?
Tick all that apply.

 Weekday Morning (6am - 10am)

 Weekday Daytime (10am - 4pm)

 Weekday Drivetime (4pm - 7pm)

 Weekday Evening (7pm - 11pm)

 Weekday Night (11pm - 6am)

 Weekend Day (6am - 7pm)

 Weekend Night (7pm - 6am)

13. Where are you most likely to listen to radio listen again services?
Tick all that apply.

 At home

 At work/university

 Travelling/Commuting

 Other:

80

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 7 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

14. What device do you use to listen to radio listen again services?
Tick all that apply.

 Internet Radio

 TV

 Desktop/Laptop

 Smartphone

 Other:

15. Why do you listen to radio listen again services?
Tick all that apply.

 Presenters/Radio personalities

 Music choice

 Station relevance

 News coverage

 Sports coverage

 Competitions and prizes

 Other:

Design Research
The following questions are designed to be quick fire. Please select the first response that comes
into your head. Do not worry if some colours are used twice.

16. What colour do you most associate with music? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

81

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 8 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

17. What colour do you most associate with news? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

18. What colour do you most associate with sport? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

19. What colour do you most associate with drama? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

82

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 9 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

20. What colour do you most associate with entertainment? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

21. What colour do you most associate with comedy? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

22. What colour do you most associate with speech? *
Mark only one oval.

 Red

 Orange

 Purple

 Blue

 Green

 Yellow

 White

 Grey

 Black

Next Steps
Thank you for your answers. These will help form requirements for a new interactive radio listen
again service I am developing.

83

A.1 Research - Questionnaire

10/04/2017, 14)58Radio Listening Habits Questionnaire

Page 10 of 10https://docs.google.com/forms/d/1mKRmp7Jbru-o5MIfMs-uG8HAgzjuKxo0J8XdO-kBY2Y/printform

Powered by

I will be looking for participants to join a user study to evaluate the service I develop.

23. Would you be willing to participate in a
follow up user study?
If so, please leave your email address.
Otherwise, leave blank.

84

A.1 Research - Questionnaire

A.1.2 Responses

Table A.1 Research Questionnaire: Respondent Gender

Gender Count
Male 26
Female 22
Prefer not to say 0
Other 2

Table A.2 Research Questionnaire: Respondent Age

Age Count
19 1
20 4
21 16
22 13
23 7
24 2
28 1
29 1
30 1
35 1
49 1
64 1
74 1

Table A.3 Research Questionnaire: Respondent University Course

University Course Count
Computer Science 7
Iberian Languages/Hispanic Studies 4
Biological Sciences 3
Mechanical Engineering 3
Physics and Astronomy 3
Mathematics 2
Politics 2
Business & Management Studies 1
Chemical Engineering 1
Economics 1
Education 1
Law 1
Medicine 1
Pharmacology & Pharmacy 1
Sports Science 1

85

A.1 Research - Questionnaire

Table A.4 Research Questionnaire: Respondent Course Level

Course Level Count
BSc/BA/MComp 26
MSc/MA 5
PhD 0
Other 1

Table A.5 Research Questionnaire: Respondent Year of Study

Year of Study Count
Year 1 0
Year 2 4
Placement Year 1
Final Year 25
Masters Year 1
Other 1

Table A.6 Research Questionnaire: On a typical day how many hours
do you listen to live radio?

None Less than
one hour

About
1-2
hours

About
3-4
hours

About
5-8
hours

About
9-12
hours

13
hours
or more

Weekday 7 15 19 7 2 0 0
Weekend 11 18 9 10 2 0 0

Table A.7 Research Questionnaire: What time(s) are you most likely
to listen to live radio?

Time Count
Weekday Morning (6am - 10am) 32
Weekday Daytime (10am - 4pm) 13
Weekday Drivetime (4pm - 7pm) 20
Weekday Evening (7pm - 11pm) 12
Weekday Night (11pm - 6am) 2
Weekend Day (6am - 7pm) 22
Weekend Night (7pm - 6am) 6

Table A.8 Research Questionnaire: Where are you most likely to lis-
ten to live radio?

Location Count
At home 28
At work/university 8
Travelling/Commuting 28
Other 0

86

A.1 Research - Questionnaire

Table A.9 Research Questionnaire: What device do you use to listen
to live radio?

Device Count
AM/FM Radio 19
DAB Radio 18
Internet Radio 3
TV 1
Desktop/Laptop 11
Smartphone/Tablet 13
Other 10

Table A.10 Research Questionnaire: Why do you listen to live radio?

Reason Count
Presenters/radio personalities 26
Music 40
Station relevance 6
News coverage 11
Sports coverage 4
Competitions and prizes 2
Other 3

Table A.11 Research Questionnaire: How often do you listen to the
following each week?

Time spent listening

N
ev

er

Le
ss

th
an

on
e

ho
ur

A
bo

ut
1-

2
ho

ur
s

A
bo

ut
3-

4
ho

ur
s

A
bo

ut
5-

8
ho

ur
s

A
bo

ut
9-

12
ho

ur
s

13
ho

ur
s

or
m

or
e

BBC iPlayer Radio (Listen again, not live) 32 13 4 1 0 0 0
Commercial radio station listen again service
(e.g. Capital Radioplayer)

38 8 2 1 1 0 0

Podcast: Content from broadcast shows (e.g.
Friday Night Comedy from BBC Radio 4)

31 8 9 2 0 0 0

Podcast: Content is original for the podcast
(e.g. Stuff You Should Know)

32 5 6 5 2 0 0

Music streaming service (e.g. Spotify) 10 3 4 4 5 9 15
Downloaded Music (e.g. iTunes) 17 11 4 4 4 8 2

87

A.1 Research - Questionnaire

Table A.12 Research Questionnaire: What time(s) are you most likely
to listen to radio listen again services?

Time Count
Weekday Morning (6am - 10am) 9
Weekday Daytime (10am - 4pm) 12
Weekday Drivetime (4pm - 7pm) 6
Weekday Evening (7pm - 11pm) 21
Weekday Night (11pm - 6am) 5
Weekend Day (6am - 7pm) 12
Weekend Night (7pm - 6am) 11

Table A.13 Research Questionnaire: Where are you most likely to
listen to radio listen again services?

Device Count
Internet Radio 7
TV 1
Desktop/Laptop 15
Smartphone 20
Other 16

Table A.14 Research Questionnaire: What device do you use to listen
to radio listen again services?

Location Count
At home 29
At work/university 17
Travelling/Commuting 15
Other 0

Table A.15 Research Questionnaire: Why do you listen to radio listen
again services?

Reason Count
Presenters/Radio personalities 23
Music choice 23
Station relevance 7
News coverage 3
Sports coverage 1
Competitions and prizes 1
Other 5

88

A.1 Research - Questionnaire

Table A.16 Research Questionnaire: What colour do you most asso-
ciate with …

Colours

R
ed

O
ra

ng
e

P
ur

pl
e

B
lu

e

G
re

en

Y
el

lo
w

W
hi

te

G
re

y

B
la

ck

Music 4 3 13 20 4 2 1 1 2
News 34 0 0 4 1 0 1 4 6
Sport 4 1 1 15 15 12 1 0 1
Drama 13 2 17 5 2 3 0 2 6
Entertainment 9 6 16 4 5 8 1 0 1
Comedy 4 13 4 7 3 17 1 1 0
Speech 4 2 2 14 1 2 11 5 8

89

A.2 Research - Interviews Consent Form

A.2 Research - Interviews Consent Form

Consent Form
Dissertation by Christian Couch (cgtc20@bath.ac.uk)
Supervised by Fabio Nemetz (F.Nemetz@bath.ac.uk)

Thank you very much for giving up your time to be interviewed for my dissertation. This
dissertation will be submitted to the University of Bath for the degree Computer Science with
Business Management.

This interview and your responses will be anonymised and confidential. If at any point you don’t
want certain information included, please let me know. In the dissertation you will be referred to
as:

I would like to record this interview to ensure I don’t miss any information. The recording may be
transcribed, but any identifying features will be removed. Do you agree to the interview being
recored?

Yes No

This interview may form part of my dissertation. Would you like to review any part related to this
interview before submission?

Yes No

Do you have any other requests for this interview?

Name:

Position:

Signed:

Dated:

R A D I O C AT C H U P
A N I N T E R A C T I V E O B J E C T- B A S E D
R A D I O L I S T E N A G A I N S E R V I C E

90

A.3 Podcast Analysis

A.3 Podcast Analysis

Table A.17 Scott Mills Show: Itemised Breakdown - 16/02/2017

Item Show Time
(hh:mm:ss)

Duration
(mm:ss)

Type Title Included in
Podcast

1 00:00:00 07:46 Music No
2 00:07:46 00:24 Speech Show Intro No
3 00:08:10 06:12 Music No
4 00:14:22 02:07 Speech Tom Hardy, CBBC Bed

Time Stories
Yes

5 00:16:29 03:29 Music No
6 00:19:58 00:06 Speech Music Segue No
7 00:20:04 00:24 Advert Advert: Dance Anthems No
8 00:20:28 03:09 Music No
9 00:23:37 00:46 Speech Chris Stark in Japan and In-

nuendo Bingo Tease
Yes

10 00:24:23 05:27 Music No
11 00:29:50 01:19 News No
12 00:31:09 06:29 Music No
13 00:37:38 00:20 Speech Chris Stark in Japan Tease No
14 00:37:58 02:41 Music No
15 00:40:39 05:59 Speech Innuendo Bingo: Joey Essex

Interview
Yes

16 00:46:38 03:07 Music No
17 00:49:45 09:52 Speech Innuendo Bingo: Game Yes
18 00:59:37 07:08 Music No
19 01:06:45 00:21 Speech Innuendo Bingo: Recap Yes
20 01:07:06 06:19 Music No
21 01:13:25 00:24 Speech Chris Stark in Japan Tease

and Song Introduction
No

22 01:13:49 02:54 Music No
23 01:16:43 00:10 Speech Music Segue No
24 01:16:53 03:26 Music No
25 01:20:19 00:35 Speech Lettuce Crisis Yes
26 01:20:54 01:43 Speech Brit Awards Competition

Promo
No

27 01:22:37 03:45 Music No
28 01:26:22 00:32 Speech Chris Stark in Japan &

Bangers Tease
No

29 01:26:54 02:56 Music No
30 01:29:50 02:20 News No
31 01:32:10 05:23 Music No
32 01:37:33 00:27 Advert Advert: Radio 1 Breakfast

Show
No

33 01:38:00 03:14 Music No
34 01:41:14 00:23 Speech Bangers Tease No
35 01:41:37 03:24 Music No

91

A.3 Podcast Analysis

36 01:45:01 02:37 Speech Bangers: Game Yes
37 01:47:38 03:32 Music No
38 01:51:10 00:23 Speech Bangers: Recap Yes
39 01:51:33 03:11 Music No
40 01:54:44 00:50 Speech Track of the Day No
41 01:55:34 12:37 Music No
42 02:08:11 00:21 Speech Chris Stark in Japan: Tease No
43 02:08:32 06:04 Music No
44 02:14:36 02:08 Speech Chris Stark in Japan: Intro Yes
45 02:16:44 00:24 Advert Advert: BBC Radio 1 New

Music
No

46 02:17:08 03:52 Music No
47 02:21:00 04:04 Speech Chris Stark in Japan: Ko-

rean Billy & Chris Phone
Call

Yes

48 02:25:04 04:16 Music No
49 02:29:20 00:30 Speech Chris Stark in Japan: Recap No
50 02:29:50 03:10 News No
51 02:33:00 06:17 Music No
52 02:39:17 03:28 Speech Real or No Real: Game

(Part 1)
Yes

53 02:42:45 03:20 Music No
54 02:46:05 05:30 Speech Real or No Real: Game

(Part 2)
Yes

55 02:51:35 03:16 Music No
56 02:54:51 01:42 Speech Show Recap No
57 02:56:33 03:27 Music No

92

B JSON Data Schema

1 {
2 ”$schema” : ” h t tp :// json−schema . org/ dra f t −04/schema#”

,
3 ” add i t i ona lPrope r t i e s ” : false ,
4 ” d e f i n i t i o n s ” : {} ,
5 ” id ” : ” h t tp :// catchup . radio /schema . json ” ,
6 ” prope r t i e s ” : {
7 ”media” : {
8 ” add i t i ona lPrope r t i e s ” : false ,
9 ” id ” : ” h t tp :// catchup . radio /schema . json/

prope r t i e s /media” ,
10 ” prope r t i e s ” : {
11 ”mp3” : {
12 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /media/ prope r t i e s /mp3” ,
13 ” type ” : ” s t r i n g ”
14 } ,
15 ” pos ter ” : {
16 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /media/ prope r t i e s / pos ter ” ,
17 ” type ” : ” s t r i n g ”
18 }
19 } ,
20 ” type ” : ” ob j e c t ”
21 } ,
22 ”programme” : {
23 ” add i t i ona lPrope r t i e s ” : false ,

24 ” id ” : ” h t tp :// catchup . radio /schema . json/
prope r t i e s /programme” ,

25 ” prope r t i e s ” : {
26 ”broadcastEnd” : {
27 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s /broadcastEnd” ,
28 ” type ” : ” in t e g e r ”
29 } ,
30 ” broadcas tS tar t ” : {
31 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s / broadcas tS tar t ” ,
32 ” type ” : ” in t e g e r ”
33 } ,
34 ” de s c r i p t i on ” : {
35 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s / de s c r i p t i on ” ,
36 ” type ” : ” s t r i n g ”
37 } ,
38 ”episodeName” : {
39 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s /episodeName” ,
40 ” type ” : ” s t r i n g ”
41 } ,
42 ” presen ter s ” : {
43 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s / presen ter s ” ,
44 ” type ” : ” s t r i n g ”

93

45 } ,
46 ”seriesName” : {
47 ” id ” : ” h t tp :// catchup . radio /schema .

json/ prope r t i e s /programme/ prope r t i e s /seriesName” ,
48 ” type ” : ” s t r i n g ”
49 }
50 } ,
51 ” type ” : ” ob j e c t ”
52 } ,
53 ” p lug ins ” : {
54 ” add i t i ona l I t ems ” : false ,
55 ” id ” : ” h t tp :// catchup . radio /schema . json/

prope r t i e s / p lug ins ” ,
56 ” items” : {
57 ” add i t i ona lPrope r t i e s ” : false ,
58 ” id ” : ” h t tp :// catchup . radio /schema . json/

prope r t i e s / p lug ins / items” ,
59 ” prope r t i e s ” : {
60 ” opt ions ” : {
61 ” add i t i ona lPrope r t i e s ” : false ,
62 ” id ” : ” h t tp :// catchup . radio /

schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s /
opt ions ” ,

63 ” prope r t i e s ” : {
64 ”body” : {
65 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s /body” ,

66 ” type ” : ” s t r i n g ”
67 } ,
68 ” d i s a b l e d ” : {
69 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / d i s a b l e d ” ,

70 ” type ” : ” boolean ”
71 } ,
72 ”displayEnd” : {
73 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s /displayEnd” ,

74 ” type ” : ” s t r i n g ”
75 } ,
76 ”displayKeywords ” : {
77 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s /displayKeywords ” ,

78 ” type ” : ” s t r i n g ”
79 } ,
80 ” d i sp l ayP ic tu re ” : {
81 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / d i sp l ayP ic tu re ” ,

82 ” type ” : ” s t r i n g ”
83 } ,
84 ” d i s p l a yS t a r t ” : {
85 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / d i s p l a yS t a r t ” ,

86 ” type ” : ” s t r i n g ”
87 } ,
88 ”end” : {
89 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s /end” ,

90 ” type ” : ” in t e ge r ”
91 } ,
92 ” skipItem” : {

94

93 ” id ” : ” h t tp :// catchup .
radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / skipItem” ,

94 ” type ” : ” boolean ”
95 } ,
96 ” s t a r t ” : {
97 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / s t a r t ” ,

98 ” type ” : ” in t e ge r ”
99 } ,

100 ” s u b t i t l e ” : {
101 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / s u b t i t l e ” ,

102 ” type ” : ” s t r i n g ”
103 } ,
104 ” t i t l e ” : {
105 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / t i t l e ” ,

106 ” type ” : ” s t r i n g ”
107 } ,

108 ” type ” : {
109 ” id ” : ” h t tp :// catchup .

radio /schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s
/ opt ions / prope r t i e s / type ” ,

110 ” type ” : ” s t r i n g ”
111 }
112 } ,
113 ” type ” : ” ob j e c t ”
114 } ,
115 ”pluginName” : {
116 ” id ” : ” h t tp :// catchup . radio /

schema . json/ prope r t i e s / p lug ins / items/ prope r t i e s /
pluginName” ,

117 ” type ” : ” s t r i n g ”
118 }
119 } ,
120 ” type ” : ” ob j e c t ”
121 } ,
122 ” type ” : ”array”
123 }
124 } ,
125 ” type ” : ” ob j e c t ”
126 }

95

C Requirements Evaluation

Table C.1 Criteria-based Assessment

ID Requirement Priority Met? Supporting comments.
D.1 Log Show Elements High Yes Although not all segments could be

logged, the important ones were.
D.1.1 Music High Yes See section 5.1.1
D.1.2 Speech Medium Yes See section 5.1.2
D.1.3 Adverts Low Yes See section 5.1.1
D.1.4 News Low No URB’s news service was not working

at time of implementation, so no log-
ging method could be devised.

D.2 Analyse Show Ele-
ments

Medium Yes Although not all sub-requirements
were implemented, without segment
ranking the segment analysis is still
sufficient.

D.2.1 — Speech Topic De-
tection

Low Yes See section 5.2.2

D.2.2 Music Metadata Medium Yes See section 5.2.2
D.2.3 Segment Informa-

tion
Low Yes See section 5.2.2.

D.2.4 Segment Ranking Low No An accurate ranking system ended up
being technically too complex

D.3 Automatic Podcast
Generator

Low No Dependent on Req. D.2.4 which was
not implemented.

D.4 Management System Low No Big workload for a low priority re-
quirement, however it has been no-
ticed that this requirement has a far
greater impact to the usefulness of
the system to stations. The priority
should have been higher to reflect this.

D.5 System Modularisa-
tion

Low Yes Evidence of this can be seen within the
system architecture.

D.6 Performance Medium Yes Segmentation happens within allowed
timeframes.

D.7 Data Integrity Medium Yes Initial testing showed a high level of
segment accuracy, far greater than re-
quirement.

P.1 Visualise Show Seg-
ments

High Yes See section 5.3

P.2 Audio Progress Bar Medium Yes See section 5.3.1
P.3 Audio Controls Medium Yes The majority of audio controls were

implemented and the ones that were
not don’t have a significant impact on
this requirement.

96

P.3.1 Play/Pause Button Medium Yes See section 5.3.1
P.3.2 Volume Controls Low No Insufficient resources.
P.3.3 Skip Button Low Yes See section 5.3.1
P.4 Listen Back to a

Show
High Yes See section 5.3.1

P.5 Mobile Optimised High Yes See section 5.3
P.6 Performance Medium Yes Initial testing showed the player load-

ing and playing within the allowed
timeframes.

P.7 Usability Medium Yes A user experiment concluded that the
segmented web player was easy and in-
tuitive to use. See section 6.2

97

D User Experiment
D.1 Consent Form

Experiment Consent Form
Dissertation by Christian Couch (cgtc20@bath.ac.uk)
Supervised by Fabio Nemetz (F.Nemetz@bath.ac.uk)

Thank you very much for giving up your time to take part in my dissertation evaluation. This
dissertation will be submitted to the University of Bath for the degree Computer Science with
Business Management.

I will ask you to read a short brief and afterwards complete a number of tasks. This experiment will
be conducted within groups and under lab conditions. The experiment should take no longer than
30 minutes. The results will be anonymised and participants will not be referred to by name,
instead you will be given a participant number. You may withdraw from the study at any point.

Experiment Overview:
- Experiment Brief
- Experiment 1 (3x tasks)
- Web Player Questionnaire
- Evaluation 2 (3x tasks)
- Web Player Questionnaire
- Final Questionnaire

During the experiment, I would like to take photos and videos. These will be used to aid the
evaluation and some may be included within the dissertation to provide illustrative examples of
the experiment. Do you give permission for photos and videos to be taken and to be used for the
reasons given above?

Yes No

Do you have any other requests for this experiment?

Name:

Signed:

Dated:

R A D I O C AT C H U P
A N I N T E R A C T I V E O B J E C T- B A S E D
R A D I O L I S T E N A G A I N S E R V I C E

98

D.2 Guide

D.2 Guide

Experiment Guide
Dissertation by Christian Couch (cgtc20@bath.ac.uk)
Supervised by Fabio Nemetz (F.Nemetz@bath.ac.uk)

You will be given 3 tasks, per web player. Each one will ask you to navigate to a specific piece of
content within a radio programme. Although you will be timed, there is no need to rush. The
experiment is trying to measure use under normal conditions.

HOW WILL THE TASKS WORK?

1. Go to task’s web address and confirm the task ID match.
2. Read the brief and when ready click ‘Start Task’.

3. A prompt will ask for your participant number, please enter it.

4. The audio player will then show.
5. Navigate to the start of the content you have been asked to find. The seekbar will indicate the

players current position.

R A D I O C AT C H U P
A N I N T E R A C T I V E O B J E C T- B A S E D
R A D I O L I S T E N A G A I N S E R V I C E

99

D.2 Guide

6. Once you’re satisfied the audio player is at the requested location, click ‘FINISH: Content
Located’ in the bottom right hand corner.

7. A confirmation window will appear. Click ‘ok’ to finish the task.

8. A warning message will appear, reminding you to check the results have been successfully
submitted. Click ‘close’.

9. If the results have been successfully submitted, you will be directed to a confirmation page. If
nothing happens, PLEASE MANUALLY SEND THE RESULTS, displayed in the console log of
the web browser.

TASK COMPLETE!

R A D I O C AT C H U P
A N I N T E R A C T I V E O B J E C T- B A S E D
R A D I O L I S T E N A G A I N S E R V I C E

Finish ButtonGoal

100

D.3 Task List

D.3 Task List

Task List
Dissertation by Christian Couch (cgtc20@bath.ac.uk)
Supervised by Fabio Nemetz (F.Nemetz@bath.ac.uk)

TASK 1

Alex discusses the song Formidable by The Big Moon and talks about the
bands formation and upcoming album. Your task is to navigate to the start of
the speech segment where he discusses this.

TASK 2

Claire reads out a letter from a listener and talks about the problem they've
raised. Your task is to navigate to the start of this feature, called "Miss
Mallett".

TASK 3

During the programme, Harry discusses is album of the week. Your task is
to navigate to the start of this feature "Harry's Album of the Week".

TASK 4

Dean discusses the song Into the Fire, Into the Sun by AVATARIUM and talks
about the songs release. Your task is to navigate to the start of the speech
segment where this is discussed.

TASK 5

Your task is to navigate to the start of the story about a friendship breakup
that ended with photos being defaced, using Microsoft Paint.

TASK 6

During the show, Grace plays and reviews, with the help of her Dad,
Prince's song Sign O the Times. Your task is to navigate to the start of this
speech segment.

R A D I O C AT C H U P
A N I N T E R A C T I V E O B J E C T- B A S E D
R A D I O L I S T E N A G A I N S E R V I C E

101

D.4 Web Player Questionnaire

D.4 Web Player Questionnaire

10/04/2017, 14)56Evaluation - Web Player Questionnaire

Page 1 of 2https://docs.google.com/forms/d/1pXel1KXRd84SBD2IxOVCcVSD-YrirK70nodAmsOTGxI/printform

Evaluation - Web Player Questionnaire
You have now completed the tasks for one of the web players. Please answer the following
questions on your experience.

*Required

1. Participant ID *

2. Player Evaluated *

3. Usability Study *
Please choose how you feel against each statement.
Mark only one oval per row.

Strongly
Disagree Disagree Neutral Agree Strongly

Agree

I think that I would like to use
this web player frequently.
I found the web player
unnecessarily complex.
I thought the web player was
easy to use.
I think that I would need the
support of a technical person
to be able to use this web
player.
I would imagine that most
people would learn to use this
web player very quickly.
I found the web player very
cumbersome to use.
I felt very confident using the
web player.
I needed to learn a lot of things
before I could get going with
this web player.
I found it quick to navigate and
play specific content within a
programme.
I thought it was difficult to
understand what content was
within a programme.

102

D.4 Web Player Questionnaire

10/04/2017, 14)56Evaluation - Web Player Questionnaire

Page 2 of 2https://docs.google.com/forms/d/1pXel1KXRd84SBD2IxOVCcVSD-YrirK70nodAmsOTGxI/printform

Powered by

4. Do you have any other comments about your experience and the web player you have
just used?

103

D.5 Final Questionnaire

D.5 Final Questionnaire

10/04/2017, 14)54Evaluation - Final Questionnaire

Page 1 of 3https://docs.google.com/forms/d/13UGPTlNv36ikfz_pGG4ZGlevixmmcK5xcAb2T-k8Wow/printform

Evaluation - Final Questionnaire
You have now completed both sets of tasks for each web player. Please answer the following
questions on your experience.

*Required

1. Participant ID *

2. Gender *
Mark only one oval.

 Male

 Female

 Other

3. Age *

4. Which web player would you rather use? *
Mark only one oval.

 Design A (No segmentation)

 Design B (With segmentation)

5. Please explain why you preferred that web player?

104

D.5 Final Questionnaire

10/04/2017, 14)54Evaluation - Final Questionnaire

Page 2 of 3https://docs.google.com/forms/d/13UGPTlNv36ikfz_pGG4ZGlevixmmcK5xcAb2T-k8Wow/printform

Future Development
This project has built a new innovative web player, aimed at improving a listener's listening
experience by providing context and structure to a programme. The segments are automatically
generated, based on events in the radio studio. Once these segments have been detected, there
are a number of opportunities available. The following questions are open-ended and ask your
opinions on the usefulness of this solution. The questionnaire will cover some future work
opportunities, and ask for your thoughts.

This questionnaire will now only refer to the web player with segment breakdown.

6. How important is the data that accompanies a segment, such as title or category?
Mark only one oval.

 Very Important

 Important

 No Opinion

 Not important

7. If you feel more information could be provided, please list what you'd expect.

Live Segmentation

8. Would you be interested in a web player that displays current and past segments when
listening live to a radio programme?
Mark only one oval.

 Very Interested

 Interested

 No Opinion

 Not Interested

9. Please explain why you would or wouldn't be interested in live segmentation.

105

D.5 Final Questionnaire

10/04/2017, 14)54Evaluation - Final Questionnaire

Page 3 of 3https://docs.google.com/forms/d/13UGPTlNv36ikfz_pGG4ZGlevixmmcK5xcAb2T-k8Wow/printform

Powered by

Personalised Show

10. Would you be interested in a web player that automatically gets segments from a
variety of programmes and creates a personalised radio programme for you?
Mark only one oval.

 Very Interested

 Interested

 No Opinion

 Not Interested

11. Please explain why you would or wouldn't be interested in a personalised show.

Segmented TV Player

12. Would you be interested in a similar segmented web player for catchup television?
Mark only one oval.

 Very Interested

 Interested

 No Opinion

 Not Interested

13. Please explain why you would or wouldn't be interested in a segmented player for
catchup TV.

106

D.6 Questionnaire Responses

D.6 Questionnaire Responses

D.6.1 Web Player Questionnaire - Web Player Comments

Design A (non-segmented player)

• Participant 1 - Found myself listening to large ’talk’ segments within the shows to see
if they were what I was looking for when ultimately not. Lots of skipping through tracks
trying to find the end points

• Participant 4 - First two tasks were fine as you were only searching for specific sections
of a programme in a reduced amount of time. Last task was difficult for 2 reasons:
increased length of the programme, and increased amount of radio hosts talking on the
programme (compared to the previous two tasks where it at least seemed like there was
less talking).

• Participant 6 - It was difficult to know if you were close to what you were looking for
which made it quite frustrating in the longer segments

• Participant 7 - Difficult to skip small units of time eg. to find the end of a song /
transitions between speaking and music

Design B (segmented player)

• Participant 1 - Recognition on segments made it very easy to read through and click
to skip straight to the segment being searched for

• Participant 4 - Having key words of the talking segments was really useful to quickly
identify the specific parts of the programme. Might have been useful to make the scrolling
pane of all the different parts of the programme a bit bigger so you have a bigger overview
of all the parts on the screen at once rather than having to scroll through it.

• Participant 6 - The first time using the web player it took bit of time to work out how
it works but from the second task it was very natural to use

• Participant 7 - Found it very easy to navigate to different songs and speech content,
and have an idea of what is going to be said in the speech sections of a show. Saves a lot
of time trying to find the start and end of songs as it navigates quickly to the transition
point.

• Participant 8 - It was awesome

107

D.6 Questionnaire Responses

D.6.2 Web Player Questionnaire - System Usability Scale (SUS)

Table D.1 System Usability Scale (SUS) - Design A

St
ro

ng
ly

D
is

ag
re

e

D
is

ag
re

e

N
eu

tr
al

A
gr

ee

St
ro

ng
ly

A
gr

ee

I think that I would like to use this web player frequently. 0 6 2 2 0
I found the web player unnecessarily complex. 3 6 0 1 0
I thought the web player was easy to use. 0 1 3 5 1
I think that I would need the support of a technical person
to be able to use this web player.

5 5 0 0 0

I would imagine that most people would learn to use this web
player very quickly.

0 0 2 6 2

I found the web player very cumbersome to use. 2 1 0 3 4
I felt very confident using the web player. 0 2 2 5 1
I needed to learn a lot of things before I could get going with
this web player.

4 3 3 0 0

I found it quick to navigate and play specific content within
a programme.

8 1 1 0 0

I thought it was difficult to understand what content was
within a programme.

0 0 1 3 6

Table D.2 System Usability Scale (SUS) - Design B

I think that I would like to use this web player frequently. 0 0 1 5 4
I found the web player unnecessarily complex. 5 5 0 0 0
I thought the web player was easy to use. 0 0 0 4 6
I think that I would need the support of a technical person
to be able to use this web player.

8 2 0 0 0

I would imagine that most people would learn to use this web
player very quickly.

0 0 0 7 3

I found the web player very cumbersome to use. 5 5 0 0 0
I felt very confident using the web player. 0 0 0 6 4
I needed to learn a lot of things before I could get going with
this web player.

7 2 1 0 0

I found it quick to navigate and play specific content within
a programme.

0 0 0 2 8

I thought it was difficult to understand what content was
within a programme.

6 4 0 0 0

108

D.6 Questionnaire Responses

Table D.3 User Experiment - Final Questionnaire: Participant Age

Age Count
20 1
21 3
22 4
23 1

Table D.4 User Experiment - Final Questionnaire: Participant Gen-
der

Gender Count
Male 7
Female 2
Other 0

Table D.5 User Experiment - Final Questionnaire: Which web player
would you rather use?

Web Player Count
Design A (No segmentation) 0
Design B (With segmentation) 10

D.6.3 Final Questionnaire - General

Please explain why you preferred that web player?

Design A No participants preferred Design A.

Design B

• Participant 1 - So much easier to know where talk segments started/ended without
skipping through the songs, and the titles of each meant I wasn’t listening to lots of the
segment to figure out if it was the bit I was searching for.

• Participant 2 - It gave you a breakdown of what to expect in the show, so if you were
looking for a particular song or type of content it removed the guesswork.

• Participant 3 - Easier to navigate to content

• Participant 4 - Quicker to identify the parts, I really liked that you could see the
breakdown of what is in the show as you can see the tracks played, what the hosts talked
about, and perhaps skip over irrelevant parts (or skip to relevant parts) depending on
what you are looking for. It made searching very easy.

• Participant 5 - It was, approximately, a thousand times easier to find things - also much
easier to be confident that you’d found the correct segment.

• Participant 6 - I preferred design B because it meant I could see what I was looking for
and where it came in the programme relative to other segments. I was more confident
using design B as with design a I didn’t trust myself to not have skipped it so went really
slowly and backtracked sometimes whereas with design B I had confidence that the text
had brought me to the right segment

109

D.6 Questionnaire Responses

• Participant 7 - It gives you far superior control over navigating through the content.
It opens up the option of listening to specific parts of a show (e.g. speech links or
particular songs), which on a non-segmented player is so cumbersome to achieve that you
probably wouldn’t bother. It also gives you an indication of what is about to be said
in speech links, and the option to skip to different tracks if you’d prefer, which could be
a convenient form of music discovery (eg. you like Radio 1s playlist & speech links, but
want to hear songs you haven’t heard before, you can skip to different parts of the show
for that purpose).

• Participant 8 - It was a lot easier to find specific segments within a show that I would
want to listen to (highlights, special moments etc.), plus, I could flick through a show to
see if it is worth listening to the whole thing or not.

• Participant 9 - Saves time when trying to locate audio quickly

• Participant 10 - Very easy to find specific section of show. Easy to learn and understand
functionality.

D.6.4 Final Questionnaire - Future Development

Table D.6 User Experiment - Final Questionnaire: How important
is the data that accompanies a segment, such as title or
category?

Importance Count
Very Important 5
Important 5
Not important 0
No Opinion 0

If you feel more information could be provided, please list what you’d expect.

• Participant 1 - Really helped in this test environment - in real life use I could mostly
only imagine myself using it to skip to the end of speech segments to get to the next song
without really caring what each segment was

• Participant 4 - (It was just the right amount of information, key words rather than
long sentences)

• Participant 5 - Genre colours?

• Participant 7 - Titles of features (I can imagine this form of segmentation being used
for finding popular speech features in a listeners favourite show for instance).

Live Segmentation

Please explain why you would or wouldn’t be interested in live segmentation.

• Participant 1 (Very Interested) - Very quick and simple to see if recent segments of
particular interest and skip directly to them

• Participant 2 (Very Interested) - I don’t always listen live, and I like being able to skip
songs if it’s specific show content I want to listen to.

• Participant 3 (Interested) - No response.

110

D.6 Questionnaire Responses

Table D.7 User Experiment - Final Questionnaire: Would you be in-
terested in a web player that displays current and past seg-
ments when listening live to a radio programme?

Importance Count
Very Interested 4
Interested 6
Not Interested 0
No Opinion 0

• Participant 4 (Interested) - Searching for specific parts of the entire programme would
become a great deal easier if you didn’t want to painstakingly go through the whole thing
to identify what you wanted.

• Participant 5 (Interested) - Generally listen to spotify, but also enjoy radio content,
proper segmentation would make it much easier to work the content around own music
preferences.

• Participant 6 (Interested) - Important because some segments make more sense in the
grand scheme of a programme / it would be useful if you had just missed the beginning
of a programme and wanted to catch up there and then

• Participant 7 (Very Interested) - If you are mainly listening for a speech element to a
show, then it can be frustrating to wait for long periods of music if it isn’t what you are
looking for. It could also provide a snapshot to the listener of whether the music and
format of the show suits their listening tastes at that time.

• Participant 8 (Very Interested) - Especially for long shows, it helps the presenters when
deciding what to say next on air, to space plugs / adverts out throughout the duration
of a show, for example.

• Participant 9 (Interested) - No response.

• Participant 10 (Interested) - Would be able to quickly jump to a section of the show
that I would want to replay.

Personalised Show

Table D.8 User Experiment - Final Questionnaire: Would you be in-
terested in a web player that automatically gets segments
from a variety of programmes and creates a personalised
radio programme for you?

Importance Count
Very Interested 1
Interested 7
Not Interested 0
No Opinion 2

Please explain why you would or wouldn’t be interested in a personalised show.

• Participant 1 (Interested) - Very quick and simple to see if recent segments of particular
interest and skip directly to them

111

D.6 Questionnaire Responses

• Participant 2 (Interested) - I don’t always listen live, and I like being able to skip songs
if it’s specific show content I want to listen to.

• Participant 3 (No Opinion) - No response.

• Participant 4 (Interested) - Searching for specific parts of the entire programme would
become a great deal easier if you didn’t want to painstakingly go through the whole thing
to identify what you wanted.

• Participant 5 (Interested) - Generally listen to spotify, but also enjoy radio content,
proper segmentation would make it much easier to work the content around own music
preferences.

• Participant 6 (Interested) - Important because some segments make more sense in the
grand scheme of a programme / it would be useful if you had just missed the beginning
of a programme and wanted to catch up there and then

• Participant 7 (Interested) - If you are mainly listening for a speech element to a show,
then it can be frustrating to wait for long periods of music if it isn’t what you are looking
for. It could also provide a snapshot to the listener of whether the music and format of
the show suits their listening tastes at that time.

• Participant 8 (Interested) - Especially for long shows, it helps the presenters when
deciding what to say next on air, to space plugs / adverts out throughout the duration
of a show, for example.

• Participant 9 (Very Interested) - No response.

• Participant 10 (No Opinion) - Would be able to quickly jump to a section of the show
that I would want to replay.

Segmented TV Player

Table D.9 User Experiment - Final Questionnaire: Would you be in-
terested in a similar segmented web player for catchup tele-
vision?

Importance Count
Very Interested 2
Interested 4
Not Interested 3
No Opinion 1

Please explain why you would or wouldn’t be interested in a segmented player for catchup TV.

• Participant 1 (No Opinion) - Very quick and simple to see if recent segments of partic-
ular interest and skip directly to them

• Participant 2 (Not Interested) - I don’t always listen live, and I like being able to skip
songs if it’s specific show content I want to listen to.

• Participant 3 (Very Interested) - No response.

• Participant 4 (Not Interested) - Searching for specific parts of the entire programme
would become a great deal easier if you didn’t want to painstakingly go through the
whole thing to identify what you wanted.

112

D.7 Experiment Results

• Participant 5 (Interested) - Generally listen to spotify, but also enjoy radio content,
proper segmentation would make it much easier to work the content around own music
preferences.

• Participant 6 (Interested) - Important because some segments make more sense in the
grand scheme of a programme / it would be useful if you had just missed the beginning
of a programme and wanted to catch up there and then

• Participant 7 (Interested) - If you are mainly listening for a speech element to a show,
then it can be frustrating to wait for long periods of music if it isn’t what you are looking
for. It could also provide a snapshot to the listener of whether the music and format of
the show suits their listening tastes at that time.

• Participant 8 (Interested) - Especially for long shows, it helps the presenters when
deciding what to say next on air, to space plugs / adverts out throughout the duration
of a show, for example.

• Participant 9 (Very Interested) - No response.

• Participant 10 (Not Interested) - Would be able to quickly jump to a section of the
show that I would want to replay.

D.7 Experiment Results

D.7.1 User Tasks - Time Taken

Table D.10 User Experiment: Time taken to complete task.

Player A Player B
Participant Group Task -

10 Min
Task -
30 Min

Task -
60 Min

Task -
10 Min

Task -
30 Min

Task -
60 Min

1 2 76 153 102 49 32 24
2 1 59 54 300 32 28 82
3 2 64 73 132 29 20 8
4 1 80 80 300 20 44 40
5 2 31 64 300 39 25 17
6 2 87 143 300 80 29 22
7 1 86 80 191 51 57 48
8 2 81 187 300 65 46 32
9 1 107 81 156 17 69 51
10 1 60 80 300 50 51 53
Average 1 78 75 249 34 50 55
Average 2 68 124 227 52 30 21
Average 73 100 238 43 40 38

113

D.7 Experiment Results

D.7.2 Two-way ANOVA Statistical Analysis

Table D.11 Empirical Evaluation: Two-way ANOVA (web player de-
sign × programme duration conducted on task completion
time)

Source design audio_
duration

df Mean Square F Sig.

design Linear 1 139876.817 125.047 0.000
Error(design) Linear 9 1118.594
audio_duration Linear 1 63600.625 26.605 0.001

Quadratic 1 10622.008 8.321 0.018
Error (audio_
duration)

Linear 9 2390.569

Quadratic 9 1276.545
design * audio_
duration

Linear Linear 1 72675.625 30.428 0.000

Quadratic 1 10360.208 8.999 0.015
Error (de-
sign* au-
dio_duration)

Linear Linear 9 2388.458

Quadratic 9 1151.264

D.7.3 Wilcoxon Statistical Analysis

Table D.12 Empirical Evaluation: Wilcoxon Signed Ranks Test
(SUS_DESIGN_B − SUS_DESIGN_A)

N Mean Rank Sum of Ranks
Negative Ranks 0𝑎 .00 .00
Positive Ranks 10𝑏 5.50 55.00
Ties 0𝑐

Total 10

a SUS_DESIGN_B < SUS_DESIGN_A

b SUS_DESIGN_B > SUS_DESIGN_A

c SUS_DESIGN_B = SUS_DESIGN_A

114

E Code

Due to space limitations, not all the code could be included in the appendix, however the full
code is available in the electronic submission. The following code has been included:

1. server/eventCollection/mic_event_collector.py - The script which is run on a Raspberry
Pi to detect and record when the microphone is live. The script also records the micro-
phone, while it is live, and sends the output to a server for speech to text and text to
keyword analysis.

2. server/segmentProcessor/main.py - This is the main script which segments a radio pro-
gramme, using the events stored in various databases. The script analyses the events,
determines segments, receives metadata about the segments and finally exports the seg-
ments into a JSON file for the webplayer.

3. player/player.html - This is the main web player HTML file which displays the segmented
listen again player to the audience. Various other files, including CSS and JS, are used
to ensure the page displays and functions correctly.

4. player/src/js/add-on/popcorn.segment.js - This is one of the main JavaScript files for
the web player. It is a custom plugin which interfaces with the Popcorn.js library and
controls the web player.

115

E
.1

E
vent

C
ollectors

-
M

ic
Live

C
ollector

E.1 Event Collectors - Mic Live Collector

Listing E.1 server/eventCollection/mic_event_collector.py

1 import sys
2 import time
3 import l ogg ing
4 import socket
5

6 import RPi .GPIO as GPIO
7 import MySQLdb
8

9 from addons . mic_recorder import MicRecorder
10

11 device_name = ”URB_S1_MicLive_Collector”
12 network_name = ”undefined ”
13 event_pin = 4
14 event_wait = 1000
15

16 # Database Conf igurat ion
17 log_enabled = True
18 db = None
19 cursor = None
20 host_address = ” 138.38 .* .* ”
21 port_number = 3306
22 username = ” radio ”
23 password = ”***”
24 database_name = ”RadioCatchup”
25

26 event_table = ”CATCHUP_EVENT”
27 message_table = ”CATCHUP_LOG”
28

29 # Event Co l l e c t i on − Add ons

30 recorder = None
31 recorder_device = 2
32 recorder_rate = 44100
33 recorder_channel = 1
34 recorder_chunk = 4096
35 recorder_min_seconds = 5
36 recorder_max_seconds = 180
37 record ing_locat ion = ”/home/pi /RadioCatchup/ server /

even tCo l l e c t i on / recorded ”
38 recording_end_script = ”/home/pi /RadioCatchup/ server /

even tCo l l e c t i on /addons/upload_to_server . sh”
39

40 l ogg ing . bas icConf ig (l e v e l=logg ing .DEBUG, f i l ename=’ /home
/pi /RadioCatchup/ server / even tCo l l e c t i on /
even tCo l l e c t i on . l og ’)

41

42

43 def log_event (type , timestamp , act ive , text) :
44 global device_name , network_name
45

46 i f not log_enabled : return False
47

48 add_event = (”INSERT INTO ” + event_table +
49 ” (device , network , type , timestamp ,

ac t ive , t e x t) ”
50 ”VALUES (%(dev ice) s , %(network) s , %(

type) s , %(timestamp) s , %(ac t i v e) s , %(t e x t) s) ”)
51

52 data_event = {
53 ’ dev ice ’ : device_name ,
54 ’ network ’ : network_name ,

116

E
.1

E
vent

C
ollectors

-
M

ic
Live

C
ollector

55 ’ type ’ : type ,
56 ’ timestamp ’ : timestamp ,
57 ’ a c t i v e ’ : act ive ,
58 ’ t e x t ’ : text ,
59 }
60

61 cursor . execute (add_event , data_event)
62 db . commit ()
63 row_id = cursor . l a s t rowid
64 print (”EventCol l ec t ion : Event added (id−” + st r (

row_id) + ”) : ” , data_event)
65

66 return row_id
67

68

69 def log_message (type , timestamp , msg) :
70 global device_name
71

72 i f not log_enabled : return False
73

74 add_message = (”INSERT INTO ” + message_table +
75 ” (device , network , type , timestamp ,

msg) ”
76 ”VALUES (%(dev ice) s , %(network) s , %(

type) s , %(timestamp) s , %(msg) s) ”)
77

78 data_message = {
79 ’ dev ice ’ : device_name ,
80 ’ network ’ : network_name ,
81 ’ type ’ : type ,
82 ’ timestamp ’ : timestamp ,
83 ’msg ’ : msg ,
84 }
85

86 cursor . execute (add_message , data_message)
87 db . commit ()
88 row_id = cursor . l a s t rowid
89 print (”EventCol l ec t ion : Message logged (id−” + st r (

row_id) + ”) : ” , data_message)
90

91 return row_id
92

93

94 def mic_live_active (timestamp) :
95 mic_start_record (timestamp)
96 log_event (eventTypes [”mic_live_active ”] , timestamp ,

eventActiveStatus [”mic_live_active ”] , ””)
97

98

99 def mic_live_not_active (timestamp) :
100 mic_end_recording (timestamp)
101 log_event (eventTypes [”mic_live_not_active ”] ,

timestamp , eventActiveStatus [”mic_live_not_active ”] ,
””)

102

103

104 def mic_start_record (timestamp) :
105 global recorder , record ing_locat ion
106

107 recording_id = s t r (timestamp)
108 log_message (eventTypes [”mic_live_active ”] , timestamp

, ” S tar t ing recording ”)
109

110 i f recorder i s not None :
111 recorder . end_recording ()
112 recording_id += ”−DUP”
113 # LOG RECORDER STARTED WHILE RECORDING
114 log_message (timestamp)

117

E
.1

E
vent

C
ollectors

-
M

ic
Live

C
ollector

115

116 recorder = MicRecorder (recording_id ,
recording_locat ion , recording_end_script , dev ice=
recorder_device ,

117 rate=recorder_rate , channels=
recorder_channel , chunk=recorder_chunk ,

118 max_seconds=
recorder_max_seconds , min_seconds=
recorder_min_seconds)

119 recorder . s t a r t ()
120

121

122 def mic_end_recording (timestamp) :
123 global recorder
124

125 i f recorder i s not None :
126 log_message (eventTypes [”mic_live_not_active ”] ,

timestamp , ”Ending recording ”)
127 recorder . end_recording ()
128 recorder = None
129

130

131 def event_detected (channel) :
132 s t a t e = GPIO. input (channel)
133 timestamp = int (time . time ())
134

135 i f s ta t e and channel i s event_pin :
136 mic_live_active (timestamp)
137 e l i f not s ta t e and channel i s event_pin :
138 mic_live_not_active (timestamp)
139 else :
140 pass
141

142 eventTypes = {

143 ” s t a t u s ” : 0 ,
144 ”mic_live_active ” : 1 ,
145 ”mic_live_not_active ” : 1
146 }
147

148 eventActiveStatus = {
149 ”mic_live_active ” : 1 ,
150 ”mic_live_not_active ” : 0
151 }
152

153 command = {
154 0 : mic_live_active ,
155 1 : mic_live_not_active
156 }
157

158

159 def main(argv) :
160 global db , cursor , device_name , network_name
161

162 network_name = socket . gethostname ()
163

164 try :
165 print (”EventCol l ec t ion : Attempting to connect to

DB: ” + host_address + ”/” + database_name)
166 db = MySQLdb. connect (host=host_address , port=

port_number , user=username , passwd=password ,
167 db=database_name ,

connect_timeout=5)
168 cursor = db . cursor ()
169

170 except MySQLdb. Error as e r r :
171 print (”EventCol l ec t ion : Error connecting to DB:

” + host_address + ” ” + database_name)
172 print (e r r)

118

E
.1

E
vent

C
ollectors

-
M

ic
Live

C
ollector

173

174 else :
175 log_message (eventTypes [” s t a t u s ”] , i n t (time . time

()) , ”Event c o l l e c t o r s t a r t i n g ”)
176

177 GPIO. setmode (GPIO.BCM)
178 GPIO. setup (event_pin , GPIO. IN , pull_up_down=GPIO

.PUD_DOWN)
179 GPIO. add_event_detect (event_pin , GPIO.BOTH,

ca l lback=event_detected , bouncetime=event_wait)
180

181 while True :
182 pass
183

184 log_message (eventTypes [” s t a t u s ”] , i n t (time . time
()) , ”Event c o l l e c t o r c l o s i n g ”)

185

186 cursor . c l o s e ()
187 db . c l o s e ()
188

189

190 i f __name__ == ”__main__” :
191 try :
192 main(sys . argv)
193 except :
194 print (”EventCol l ec t ion : Error (see l og f i l e for

more d e t a i l s) ”)
195 l ogg ing . except ion (s t r (in t (time . time ())) + ”−

EventCo l l ec t ion ”)

119

E
.2

Segm
ent

P
rocessor

E.2 Segment Processor

Listing E.2 server/segmentProcessor/main.py

1 import datetime
2 import j son
3 import l ogg ing
4 import sys
5 import time
6 import reques t s
7

8 from s e rve r . segmentProcessor . in format ionSuppl i e r import
mic_l ive_retr iever , play_log_retr iever ,
programme_data_retriever

9

10 l ogg ing . bas icConf ig (l e v e l=logg ing .DEBUG, f i l ename=’
segmentProcessor . l o g ’)

11

12

13 def generate_programme_data (s e r i e s , episode , start_date ,
end_date , presenters , d e s c r i p t i on) :

14 programme_data = d i c t ()
15 programme_data [’ seriesName ’] = s e r i e s
16 programme_data [’ episodeName ’] = episode
17 programme_data [’ b roadcas tS tar t ’] = time .mktime(

start_date . t imetuple ())
18 programme_data [’ broadcastEnd ’] = time .mktime(

end_date . t imetuple ())
19 programme_data [’ p re sen ter s ’] = pre sente r s
20 programme_data [’ d e s c r i p t i on ’] = de s c r i p t i on
21

22 return programme_data
23

24

25 def generate_media_data (a r t i s t , t i t l e , poster , mp3) :
26 media_data = d i c t ()
27 media_data [’ a r t i s t ’] = a r t i s t
28 media_data [’ t i t l e ’] = t i t l e
29 media_data [’ pos ter ’] = poster
30 media_data [’mp3 ’] = mp3
31

32 return media_data
33

34

35 def generate_segment_data (start_date , end_date) :
36 segments = []
37

38 speech_segments = mic_l ive_retr iever .
retr ieve_segments (start_date , end_date)

39 segments . extend (speech_segments)
40 # playout_audio_segments inc ludes music and advert

segments
41 playout_audio_segments = play_log_retr iever .

retr ieve_segments (start_date , end_date)
42 segments . extend (playout_audio_segments)
43 # news_segments = NOT IMPLEMENTED
44

45 # Sorts the segments based on th e i r s t a r t time
46 segments = sorted (segments , key=lambda x : x [’ opt ions

’] [’ s t a r t ’] , r eve r s e=False)
47

48 return segments
49

50

120

E
.2

Segm
ent

P
rocessor

51 def download_show_logging (dest inat ion , start_date ,
end_date) :

52 s t a r t = start_date . s t r f t ime (”%Y%m%d%H%M%S”)
53 end = end_date . s t r f t ime (”%Y%m%d%H%M%S”)
54

55 # Download logg ing URL
56 ur l = ” h t tp ://138 .38 .* .*/ cg i /get_media . cg i ? format=

mpeg128_joint_stereo ; channel_id=142” \
57 ” ; start_timestamp=” + sta r t + ” ; ” \
58 ”end_timestamp=” + end + ” ; ”
59

60 d = start_date . s t r f t ime (”%d”)
61 m = start_date . s t r f t ime (”%m”)
62 Y = start_date . s t r f t ime (”%Y”)
63 H = start_date . s t r f t ime (”%H”)
64 i = start_date . s t r f t ime (”%M”)
65 s = start_date . s t r f t ime (”%S”)
66 dur = s t r (((end_date − start_date) . seconds / 60))
67

68 # channel = ”142” # URB Output
69 channel = ”22728” # S1 Output
70

71 print (”SegmentProcessor : Requesting l o gg ing from
nonstop . ”)

72 nonstop_url = ” h t tp :// nonstop . urb . bath . ac . uk :8000/ns
/ l ogg ing / reques t . php?d=”+d+”&m=”+m+”&Y=”+Y+”&H=”+H+”&
i=”+i+”&s=”+s+”&dur=”+dur+”&channel=”+channel

73 r = reques t s . get (nonstop_url)
74 nonstop_f i le = r . text [1 9 : −3] . r ep lace (”\\” , ””) .

r ep lace (” ” , ”%20”)
75 print (”SegmentProcessor : Logging s u c c e s s f u l l y

downloaded to nonstop − ” + nonstop_f i l e)
76

77 print (”SegmentProcessor : Downloading l ogg ing from
nonstop . ”)

78 r = reques t s . get (nonstop_fi le , stream=True)
79 with open (dest inat ion , ’wb ’) as f :
80 for chunk in r . i ter_content (chunk_size=1024) :
81 i f chunk :
82 f . wr i te (chunk)
83 print (”SegmentProcessor : Logging s u c c e s s f u l l y

downloaded l o c a l l y − ” + des t ina t i on)
84

85 return des t ina t i on
86

87

88 def main(args) :
89 i f l en (args) == 4:
90 # EXAMPLE: python main . py ”21/11/06 15:00”

”21/11/06 16:00” ”breakfast_show”
91 start_date = datetime . datetime . strpt ime (args [1] ,

”%d/%m/%y %H:%M”)
92 end_date = datetime . datetime . strpt ime (args [2] , ”

%d/%m/%y %H:%M”)
93 f i l ename = args [3]
94 else :
95 # TEST (s c r i p t c a l l e d without parameters)
96 start_date = datetime . datetime (2017 , 3 , 30 , 20 ,

59 , 00)
97 end_date = datetime . datetime (2017 , 3 , 30 , 21 , 9 ,

00)
98 f i l ename = ” t e s t ”
99

100 print ”SegmentProcessor : Processing date range ” +
start_date . s t r f t ime (”%d/%m/%y %H:%M”) + ” − ” +
end_date . s t r f t ime (”%d/%m/%y %H:%M”)

101

121

E
.2

Segm
ent

P
rocessor

102 show_id = programme_data_retriever .
retrieve_programme_scheduled (start_date , end_date)

103 prog_info = programme_data_retriever .
retrieve_programme_information (show_id)

104 print (”SegmentProcessor : Retr ieved show ” + st r (
show_id) + ” programme information − ” + st r (
prog_info))

105

106 s e r i e s = prog_info [” s e r i e s ”]
107 episode = prog_info [” episode ”]
108 de s c r i p t i on = prog_info [” de s c r i p t i on ”]
109 pre sente r s = programme_data_retriever .

retrieve_programme_presenters (show_id)
110

111 poster = ”img/ de fau l t −pos ter . png”
112 mp3 = ”data/shows/” + fi lename + ” .mp3”
113

114 l ength = (start_date − end_date) . seconds
115 mp3_destination = ”/Users/Chris/Programmes/Workspace

/RadioCatchup/ p layer /” + mp3
116 j son_dest inat ion = ”/Users/Chris/Programmes/

Workspace/RadioCatchup/ p layer /data/shows/” + fi lename
+ ” . json ”

117

118 download_show_logging (mp3_destination , start_date ,
end_date)

119

120 data = d i c t ()

121 data [’ programme ’] = generate_programme_data (s e r i e s ,
episode , start_date , end_date , presenters ,
d e s c r i p t i on)

122 data [’media ’] = generate_media_data (s e r i e s , episode ,
poster , mp3)

123 data [’ p l ug ins ’] = generate_segment_data (start_date ,
end_date)

124

125 with open (json_dest inat ion , ’w ’) as o u t f i l e :
126 j son .dump(data , o u t f i l e)
127

128 print (”SegmentProcessor : Show su c c e s s f u l l y
processed . ”)

129 print (”SegmentProcessor : AUDIO − ” + st r (
mp3_destination))

130 print (”SegmentProcessor : JSON − ” + st r (
j son_dest inat ion))

131

132

133 i f __name__ == ”__main__” :
134 try :
135 main(sys . argv)
136 except :
137 print (”SegmentProcessor : Error (see l og f i l e for

more d e t a i l s) ”)
138 l ogg ing . except ion (s t r (time . time ()) + ”−

SegmentProcessor”)

122

E
.3

W
eb

P
layer

-
H

T
M

L

E.3 Web Player - HTML

Listing E.3 player/player.html

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset=” ut f −8” />
5 <meta name=” viewport ” content=”width=device−width ,

i n i t i a l −s ca l e=1”>
6 <meta http−equiv=”Content−Type” content=”text/html ;

charset=iso −8859−1” />
7

8 <t i t l e>URB Radio Catchup − The Hangover Cure</ t i t l e>
9

10 <!−− CSS Imports −−>
11 <link href=” d i s t / css / sk in . urb .min . css ”>
12 <link href=” l i b / css / boo t s t rap .min . css ”>
13 <link href=” l i b / css /font−awesome .min . css ”>
14 <link href=” l i b / css /font−awesome−animation .min . css ”>
15

16 <!−− JS Imports −−>
17 <script src=” l i b / j s / boo t s t rap .min . j s ”></script>
18 <script src=” l i b / j s / jquery . j p l a y e r .min . j s ”></script>
19 <script src=” l i b / j s / jquery . j p l a y e r .min . j s ”></script>
20 <script src=” l i b / j s /popcorn . ie8 . j s ”></script>
21 <script src=” l i b / j s /popcorn . j s ”></script>
22 <script src=” l i b / j s /popcorn . p layer . j s ”></script>
23 <script src=” l i b / j s /popcorn . j p l a y e r . j s ”></script>
24 <script src=” d i s t /radioCatchup .min . j s ”></script>
25 <script type=”text/ j a v a s c r i p t ”>
26 var player ;
27

28 $ (document) . ready (funct ion () {
29 var player = setupCatchupPlayer (”#player_1” , ” t ime l ine

−container ” , ” seekbar−container ” ,
30 ”data/shows/hangover−cure −2017−02−24. json ” ,

{}) ;
31 }) ;
32 </script>
33

34 </head>
35 <body>
36 <div class=” jp−container ”>
37 <div class=”programme−header col−xs−12”>
38 <div class=”brand− l ogo hidden−xs ”>
39
40 </div>
41 <div class=”programme−information ” style=” d i s p l ay

: in l ine −b lock ”>
42 <div class=”programme−information−t i t l e ” id=”

programme−t i t l e ”>The Hangover Cure</div>
43 <div class=”programme−information− s u b t i t l e ” id=”

programme− s u b t i t l e ”>with O l l i e Brookes</div>
44 <div class=”programme−information−date−time”>
45 <i class=” fa fa−c lock−o” ar ia−hidden=” true ”></

i>
46 16:00 −

18:00
47 <i class=” fa fa−calendar−o” ar ia−hidden=” true ”

></ i>
48 Tuesday

24th February 2017
49 </div>

123

E
.3

W
eb

P
layer

-
H

T
M

L

50 </div>
51 </div>
52 <div id=” jp_container_1” class=” jp−player−container ”

>
53 <div class=” jp−p layer col−xs−12 col−sm−8 col−equal

−width”>
54 <div class=” jp−player−video ”>
55 <div id=”player_1” class=” jp− j p l a y e r ”></div>
56 <div class=” jp−gui ”>
57 <div class=” jp− i n t e r f a c e ”>
58 <div class=” jp−progress ”>
59 <div class=” jp−seek−bar”>
60 <div id=” seekbar−container ” class=” jp−

seek−elements ”></div>
61 <div class=” jp−play−bar” style=”width :

27.53%;”>
62 <div class=” jp−play−bar−cursor ”></

div>
63 </div>
64 </div>
65 </div>
66 <div class=” jp−con t ro l s ”>
67 <button class=” fa fa−play fa−fw fa−2x

align− l e f t jp−play ” ar ia−hidden=” true ” r o l e=”button”
68 tabindex=”0”></button>
69 <button class=” fa fa−pause fa−fw fa−2x

align− l e f t jp−pause” ar ia−hidden=” true ” r o l e=”button”
70 tabindex=”0”></button>
71 <button class=” fa fa−step−forward fa−fw

fa−2x align− l e f t jp−step−forward” ar ia−hidden=” true ”
r o l e=”button”

72 tabindex=”2”></button>
73

74 <span style=”color : white ; f l o a t : r i g h t ;
padding : 0 3%;”>

75
76 /
77
78
79 </div>
80 </div>
81 </div>
82 </div>
83 </div>
84 <div class=” jp−s idebar col−xs−12 col−sm−4 col−

equal−width”>
85 <div class=” sidebar−container ” id=” sidebar−

container ”>
86 <div id=”img−s idebar ” class=” sidebar−

background”></div>
87 <div class=” sidebar−header”>Welcome to Radio

Recap !</div>
88 <div class=” sidebar−body”>
89 <div class=” sidebar−image−container col−xs−4

col−sm−12”>
90 <img class=” sidebar−image img−respons ive ”

src=”img/URBIcon . png”>
91 </div>
92 <div class=” sidebar−in fo col−xs−6 col−sm−12”

>
93 <div class=” sidebar−info−t i t l e ”>Press play

to s t a r t .</div>
94 <div class=” sidebar−info− s u b t i t l e ”></div>
95 <div class=” sidebar−info−text”></div>
96 <div class=” sidebar−info− l i n k s col−xs−6

col−sm−12”></div>
97 </div>

124

E
.3

W
eb

P
layer

-
H

T
M

L

98 </div>
99 </div>

100 </div>
101 </div>
102 <div class=”col−xs−12 jp−t ime l ine ”>
103 <div class=” t ime l ine −header”>
104 <div style=” d i sp l a y : in l ine −b lock ”>Programme

Timeline</div>

105 </div>
106 <div id=” t imel ine −container ” class=” t ime l ine −

container ” style=”max−height : 1000px ; ”></div>
107 </div>
108 </div>
109 </body>
110

111 </html>

125

E
.4

W
eb

P
layer

-
P

lugin
JS

E.4 Web Player - Plugin JS

Listing E.4 player/src/js/add-on/popcorn.segment.js

1 // Popcorn . j s plugin : Segment
2 (function (Popcorn) {
3 var
4 defaultImageURL = ”img/URBIcon . png” ,
5 defaultSeekbarContainerID = ” seekbar−container ” ,
6 defaultTimel ineContainerID = ” t imel ine −container ” ,
7 defaultSidebarContainerID = ” sidebar−container ” ,
8 seekbarClassesToAdd = ” jp−seek−element ” ,
9 timelineClassesToAdd = ” l i s t −group−item t imel ine −

segment” ,
10 t imel ineTit leClassesToAdd = ” t imel ine − t i t l e ” ,
11 t imel ineSubtit leClassesToAdd = ” t imel ine − s u b t i t l e ” ,
12 timelineDisplayTimeClassesToAdd = ” t imel ine −disp lay −

time” ,
13 timelinePlayIconClassesToAdd = ” t imel ine −play−icon

fa fa−fw” ,
14 sidebarBackgroundClass = ” . s idebar−background” ,
15 s idebarHeaderClass = ” . s idebar−header” ,
16 s idebarImageClass = ” . s idebar−image” ,
17 s i deba rT i t l eC la s s = ” . s idebar−info− t i t l e ” ,
18 s i d eba rSubt i t l eC la s s = ” . s idebar−info− s u b t i t l e ” ,
19 s idebarTextClass = ” . s idebar−info− t e x t ” ,
20 s idebarLinksClass = ” . s idebar−info− l i n k s ” ;
21

22 var refreshSegmentSeekbar = function (element ,
segmentOptions , mediaDuration) {

23 var elementClassName = seekbarClassesToAdd ,
24

25 segmentDuration = segmentOptions . end −
segmentOptions . s tar t ,

26 segmentSize= (segmentDuration) / mediaDuration *
100 ,

27 segmentPosit ion = (segmentOptions . s t a r t /
mediaDuration) * 100;

28

29 // Set c l a s s e s f o r c e r t a in content
30 i f (segmentOptions . skipItem == true) {
31 elementClassName += ” sk ipped ” ;
32 }
33 i f (segmentOptions . d i sab led == true) {
34 elementClassName += ” d i s a b l e d ” ;
35 }
36 element . className = elementClassName + ” segment−” +

segmentOptions . type ;
37

38 // Update segment GUI − Recalcu late and se t width and
l e f t po s i t i on

39 element . s t y l e . width = segmentSize + ”%” ;
40 element . s t y l e . l e f t = segmentPosit ion + ”%” ;
41

42 //Set t o o l t i p
43 i f (segmentOptions . t i t l e != ””) {
44 var t o o l t i p = segmentOptions . t i t l e ;
45 i f (segmentOptions . s u b t i t l e != ””) {
46 t o o l t i p += ” − ” + segmentOptions . s u b t i t l e ;
47 }
48 element . s e tAtt r ibute (’ t i t l e ’ , t o o l t i p) ;
49 element . s e tAtt r ibute (’ data− t o g g l e ’ , ’ t o o l t op ’) ;
50 $ (element) . t o o l t i p () ;

126

E
.4

W
eb

P
layer

-
P

lugin
JS

51 }
52

53 } ;
54

55 var refreshSegmentTimeline = function (element ,
e lementTit le , e lementSubt it le ,

56 elementDisplayTime
, elementPlayIcon ,

57 segmentOptions ,
context) {

58

59 var elementClassName = timelineClassesToAdd ;
60 var elementTitleClassName = timel ineTit leClassesToAdd ;
61 var elementSubitleClassName =

timel ineSubtit leClassesToAdd ;
62 var elementDisplayTimeClassName =

timelineDisplayTimeClassesToAdd ;
63 var elementPlayIconClassName =

timelinePlayIconClassesToAdd ;
64

65 // Set c l a s s e s f o r c e r t a in content
66 i f (segmentOptions . skipItem == true) {
67 elementClassName += ” sk ipped ” ;
68 }
69 i f (segmentOptions . d i sab led == true) {
70 elementClassName += ” d i s a b l e d ” ;
71 }
72

73 element . className = elementClassName + ” t imel ine −” +
segmentOptions . type ;

74 elementPlayIcon . className = elementPlayIconClassName ;
75

76 // Set event l i s t e n e r
77 element . onc l i ck = function () {

78 i f (! segmentOptions . d i sab led) {
79 context . currentTime (segmentOptions . s t a r t) ;
80 }
81 } ;
82

83 i f (segmentOptions . d i sp laySta r t != ””) {
84 elementDisplayTime . className =

elementDisplayTimeClassName ;
85 elementDisplayTime . innerHTML = segmentOptions .

d i sp laySta r t ;
86 }
87

88 i f (segmentOptions . t i t l e != ””) {
89 e lementTit le . innerHTML = segmentOptions . t i t l e ;
90 e lementTit le . className = elementTitleClassName ;
91 }
92

93 i f (segmentOptions . s u b t i t l e != ””) {
94 e lementSubt i t l e . className = elementSubitleClassName ;
95 e lementSubt i t l e . innerHTML = segmentOptions . s u b t i t l e ;
96 } else i f (segmentOptions . displayKeywords != ””) {
97 e lementSubt i t l e . className = elementSubitleClassName ;
98 keywords = segmentOptions . displayKeywords ;
99 conso le . log (keywords . length) ;

100 i f (keywords . length > 10) {
101 keywords = keywords . subst r ing (0 , 15) + ” . . . ” ;
102 }
103 e lementSubt i t l e . innerHTML = segmentOptions .

displayKeywords ;
104 }
105 } ;
106

107 var refreshSegmentSidebar = function (element ,
segmentOptions) {

127

E
.4

W
eb

P
layer

-
P

lugin
JS

108 var sidebarBackgroundElement = $(element) . f ind (
sidebarBackgroundClass) ,

109 sidebarHeaderElement = $(element) . f ind (
s idebarHeaderClass) ,

110 sidebarImageElement = $(element) . f ind (
sidebarImageClass) ,

111 s idebarTit leElement = $(element) . f ind (
s idebarT i t l eC la s s) ,

112 s idebarSubt i t leElement = $(element) . f ind (
s ideba rSubt i t l eC la s s) ,

113 sidebarTextElement = $(element) . f ind (
s idebarTextClass) ,

114 sidebarLinksElement = $(element) . f ind (
s idebarLinksClass) ;

115

116 i f (sidebarBackgroundElement . length){
117 var imageURL = ”” ;
118 i f (’ d i sp l ayP ic tu re ’ in segmentOptions &&

segmentOptions . d i sp layPic ture != ””) {
119 imageURL = segmentOptions . d i sp layPic ture ;
120 }
121 $ (sidebarBackgroundElement) . c s s (’ background−image ’

, ’ l inear −grad ient (rgba (255 , 255 , 255 , 0 .4) , ’ +
122 ’ rgba (255 , 255 , 255 , 0 .5)) , u r l (” ’ + imageURL

+ ’ ”) ’)
123 }
124

125 i f (sidebarHeaderElement . length){
126 var headerText = ””
127 switch (segmentOptions . type) {
128 case ”music” :
129 headerText = ”Now p lay ing . . . ” ;
130 break ;
131 case ”news” :

132 headerText = ”URB News” ;
133 break ;
134 case ” speech ” :
135 i f (typeof radioCatchupShowTitle !== ’

undefined ’) {
136 headerText = radioCatchupShowTitle
137 }
138 break ;
139 case ” advert ” :
140 headerText = ”Advert ” ;
141 break ;
142 de fau l t :
143 headerText = ”URB Catchup” ;
144 break ;
145 }
146 $ (sidebarHeaderElement) . html (headerText) ;
147 }
148

149 i f (sidebarImageElement . length) {
150 var imageURL = ”” ;
151 i f (’ d i sp l ayP ic tu re ’ in segmentOptions &&

segmentOptions . d i sp layPic ture != ””) {
152 imageURL = segmentOptions . d i sp layPic ture ;
153 } else {
154 imageURL = defaultImageURL ;
155 }
156 $ (sidebarImageElement) . a t t r (’ src ’ , imageURL) ;
157 }
158

159 i f (s idebarTit leElement . length) {
160 var t i t l e = ”” ;
161 i f (’ t i t l e ’ in segmentOptions && segmentOptions .

t i t l e != ””) {
162 t i t l e = segmentOptions . t i t l e ;

128

E
.4

W
eb

P
layer

-
P

lugin
JS

163 } else i f (typeof radioCatchupShowTitle !== ’
undefined ’) {

164 t i t l e = radioCatchupShowTitle
165 }
166 $ (s idebarTit leElement) . html (t i t l e) ;
167 }
168

169 i f (s idebarSubt i t leElement . length) {
170 var s ub t i t l e = ”” ;
171 i f (’ s u b t i t l e ’ in segmentOptions && segmentOptions

. s u b t i t l e != ””) {
172 s ub t i t l e = segmentOptions . s u b t i t l e ;
173 } else i f (typeof radioCatchupShowSubtitle !== ’

undefined ’) {
174 s ub t i t l e = radioCatchupShowSubtitle
175 }
176 $ (s idebarSubt i t leElement) . html (s ub t i t l e) ;
177 }
178

179 i f (sidebarTextElement . length) {
180 var displayKeywords = ”” ;
181 i f (’ displayKeywords ’ in segmentOptions &&

segmentOptions . displayKeywords != ””) {
182 displayKeywords = segmentOptions . displayKeywords

;
183 }
184 $ (sidebarTextElement) . html (displayKeywords) ;
185 }
186

187 i f (sidebarLinksElement . length) {
188 var urlLink = ”” ;
189 i f (’ ur lLink ’ in segmentOptions && segmentOptions .

ur lLink != ””) {
190 urlLink = segmentOptions . ur lLink ;

191 }
192 }
193 } ;
194

195 var centreCurrentSegmentTimeline = function (element ,
container , segmentOptions) {

196 conta iner . scro l lTop = element . o f f setTop − 50 ;
197 } ;
198

199 var nextSegmentTime = function (context) {
200 var segments = context . data . trackRefs ;
201 var currentTime = context . currentTime () ;
202 var newTime = context . duration () ;
203

204 f o r (var segment in segments) {
205 var segmentStartTime = segments [segment] . s t a r t ;
206

207 i f (segmentStartTime >= currentTime &&
segmentStartTime < newTime) {

208 newTime = segmentStartTime ;
209 }
210 }
211

212 return newTime ;
213 }
214

215 Popcorn . plugin (”segment” , function (opt ions) {
216 // DECLARE VARIABLES
217 var seekbarContainerID = (opt ions . seekbarContainer) ?
218 (opt ions . seekbarContainer) :

defaultSeekbarContainerID ,
219 seekbarContainer = document . getElementById (

seekbarContainerID) ,
220 seekbarElement ,

129

E
.4

W
eb

P
layer

-
P

lugin
JS

221

222 t imel ineContainerID = (opt ions . seekbarContainer) ?
223 (opt ions . t imel ineConta iner) :

defaultTimelineContainerID ,
224 t imel ineConta iner = document . getElementById (

t imel ineContainerID) ,
225 timelineElement ,
226 t imel ineElementTit le ,
227 t imel ineElementSubt i t le ,
228 timelineElementDisplayTime ,
229 timelineElementPlayIcon ,
230

231 segmentPlayingContainerID = (opt ions .
segmentPlayingContainer) ?

232 (opt ions . segmentPlayingContainer) :
defaultSidebarContainerID ,

233 segmentPlayingContainer = document . getElementById (
segmentPlayingContainerID) ,

234 segmentPlayingElement ;
235

236 return {
237

238 _setup : function (track) {
239 // Convert re l evant parameters to f l o a t s
240 opt ions . s t a r t = parseFloat (opt ions . s t a r t) ;
241 opt ions . end = parseFloat (opt ions . end) ;
242

243 // Ensure conta iner s ex i s t , otherwise can ’ t add
any elements .

244 i f (seekbarContainer) {
245 // SEEKBAR ELEMENT
246 seekbarElement = document . createElement (” div ”)

;
247 seekbarElement . id = ”SB−” + options . _id ;

248 seekbarContainer . appendChild (seekbarElement) ;
249 }
250 i f (t imel ineConta iner) {
251 // TIMELINE ELEMENT
252 t imel ineElement = document . createElement (”a”) ;
253 t imel ineElement . id = ”TL−” + options . _id ;
254 t imel ineConta iner . appendChild (timel ineElement) ;
255

256 // ELEMENT PARTS
257 t imel ineElementTit le = document . createElement (”

span”) ;
258 t imel ineElementSubt i t l e = document . createElement

(”span”) ;
259 timelineElementDisplayTime = document .

createElement (”span”) ;
260 t imel ineElementPlayIcon = document . createElement

(” i ”) ;
261 t imel ineElement . appendChild (

timelineElementDisplayTime) ;
262 t imel ineElement . appendChild (t imel ineElementTit le

) ;
263 t imel ineElement . appendChild (

t imel ineElementSubt i t l e) ;
264 t imel ineElement . appendChild (

timel ineElementPlayIcon) ;
265 }
266 i f (segmentPlayingContainer) {
267 // SIDEBAR ELEMENT
268 segmentPlayingElement = document . createElement (

” div ”) ;
269 segmentPlayingElement . id = ”SP−” + options . _id ;
270 segmentPlayingContainer . appendChild (

segmentPlayingElement) ;
271 }

130

E
.4

W
eb

P
layer

-
P

lugin
JS

272 } ,
273

274 _update : function (track , updates) {
275 } ,
276

277 s t a r t : function (event , opt ions) {
278 // 1 . Check item can be played
279 i f (opt ions . d i sab led == true | | opt ions . skipItem

== true) {
280 this . currentTime (nextSegmentTime (this)) ;
281 } else {
282 $ (timelineElement) . addClass (’ segment−p lay ing ’) ;
283 }
284 // 2 . Update segment s idebar UI
285 refreshSegmentSidebar (segmentPlayingContainer ,

opt ions) ;
286 // 3 . Update segment t ime l ine UI
287 centreCurrentSegmentTimeline (timelineElement ,

t imel ineContainer , opt ions) ;
288 } ,
289

290 durationchange : function (event) {
291 refreshSegmentSeekbar (seekbarElement , options ,

this . duration ()) ;
292 refreshSegmentTimel ine (timelineElement ,

t imel ineElementTit le , t imel ineElementSubt it le ,
293 timelineElementDisplayTime ,

timelineElementPlayIcon ,
294 options , this) ;
295 } ,
296

297 end : function (event , opt ions) {

298 $ (timelineElement) . removeClass (’ segment−p lay ing ’) ;
299 refreshSegmentSidebar (segmentPlayingContainer , {})

;
300 } ,
301

302 _teardown : function (opt ions) {
303 }
304 } ;
305 } ,
306 {
307 about : {
308 name : ”Popcorn Segment Plugin ” ,
309 vers ion : ” 0.1 ” ,
310 author : ”Chris Couch” ,
311 website : ” chr i s . io ”
312 } ,
313 opt ions : {
314 t imel ineConta iner : ” t imel ine −container ” ,
315 seekbarContainer : ” seekbar−container ” ,
316 segmentPlayingContainer : ”segment−playing−container ”

,
317

318 t i t l e : {
319 elem : ” input ” ,
320 type : ” t e x t ” ,
321 l a b e l : ” T i t l e ”
322 } ,
323 // . . .
324 }
325 }) ;
326

327 }) (this . Popcorn) ;

131

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation and Problem Statement
	1.3 Research Questions
	1.4 Aims
	1.5 Objectives
	1.6 Dissertation Structure

	2 Literature and Technology Review
	2.1 Introduction
	2.1.1 Listen Again Services
	2.1.2 Listener Experience

	2.2 Audio Content Analysis
	2.2.1 Feature Extraction
	2.2.2 Audio Element Discovery
	2.2.3 Studio Element Discovery
	2.2.4 Segmentation Methods
	2.2.5 Segmentation Classification
	2.2.6 Metadata Structuring

	2.3 Audio Content Retrieval
	2.3.1 Search Techniques
	2.3.2 Audio Players

	2.4 Summary

	3 Requirements Elicitation and Analysis
	3.1 Establishing Requirements
	3.1.1 Existing Solutions
	3.1.2 User Research
	3.1.3 Use Case

	3.2 Requirements Specification
	3.2.1 Back-End: Detecting show segments and associated metadata
	3.2.2 Front-End: Interactive HTML-based listen again web player with segment-based metadata

	4 Design
	4.1 Development Methodology
	4.1.1 Iterations
	4.1.2 Risk Management

	4.2 System Architecture
	4.3 Development Tools
	4.3.1 Development Workflow
	4.3.2 Software Libraries

	4.4 User Interface Design
	4.5 Data and Schemas
	4.5.1 Event Collection Database
	4.5.2 JSON Schema

	4.6 Summary

	5 Implementation
	5.1 Event Collection
	5.1.1 Playout System Audio Collection
	5.1.2 Mic Live Collection

	5.2 Segment Analysis
	5.2.1 Station Data Retrieval
	5.2.2 Segmentation Engine
	5.2.3 Data and Audio Export

	5.3 Web Player
	5.3.1 Media Player
	5.3.2 Segmented Progress Bar
	5.3.3 Segment Timeline
	5.3.4 Current Playing Segment Sidebar

	5.4 Summary

	6 Evaluation
	6.1 Requirements Evaluation
	6.1.1 RadioCatchup Management System
	6.1.2 Segment Ranking & Podcast Generator
	6.1.3 Summary

	6.2 Empirical Evaluation
	6.2.1 Introduction
	6.2.2 Hypotheses
	6.2.3 Method
	6.2.4 Results

	6.3 Discussion
	6.3.1 Segmentation Process
	6.3.2 Web Player
	6.3.3 Summary

	7 Conclusion
	7.1 Key Contributions
	7.1.1 System Contributions
	7.1.2 Research Contributions

	7.2 Limitations of the Study
	7.3 Future Work
	7.3.1 Segmentation Process
	7.3.2 Web Player

	7.4 Concluding Remarks

	Appendix A Requirements Research
	A.1 Research - Questionnaire
	A.1.1 Questionnaire
	A.1.2 Responses

	A.2 Research - Interviews Consent Form
	A.3 Podcast Analysis

	Appendix B JSON Data Schema
	Appendix C Requirements Evaluation
	Appendix D User Experiment
	D.1 Consent Form
	D.2 Guide
	D.3 Task List
	D.4 Web Player Questionnaire
	D.5 Final Questionnaire
	D.6 Questionnaire Responses
	D.6.1 Web Player Questionnaire - Web Player Comments
	D.6.2 Web Player Questionnaire - System Usability Scale (SUS)
	D.6.3 Final Questionnaire - General
	D.6.4 Final Questionnaire - Future Development

	D.7 Experiment Results
	D.7.1 User Tasks - Time Taken
	D.7.2 Two-way ANOVA Statistical Analysis
	D.7.3 Wilcoxon Statistical Analysis

	Appendix E Code
	E.1 Event Collectors - Mic Live Collector
	E.2 Segment Processor
	E.3 Web Player - HTML
	E.4 Web Player - Plugin JS

