

Citation for published version:
Cabot, RB 2017, Re-imagining the Command Line User Experience for Problem Solving. Department of
Computer Science Technical Report Series, Department of Computer Science, University of Bath, Bath, U. K.

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://researchportal.bath.ac.uk/en/publications/reimagining-the-command-line-user-experience-for-problem-solving(80b7f1ac-f2ec-4bad-a3aa-3bedc29a866f).html

Re-imagining the Command Line User Experience

for Problem Solving

Rachel B. Cabot

Bachelor of Science in Computer Science with Honours
The University of Bath

May 2017

This dissertation may be made available for consultation within the
University Library and may be photocopied or lent to other libraries for
the purposes of consultation.

Signed:

Re-imagining the Command Line User Experience

for Problem Solving

Submitted by: Rachel B. Cabot

COPYRIGHT

Attention is drawn to the fact that copyright of this dissertation rests with its author. The
Intellectual Property Rights of the products produced as part of the project belong to the
author unless otherwise specified below, in accordance with the University of Bath’s policy
on intellectual property (see http://www.bath.ac.uk/ordinances/22.pdf).
This copy of the dissertation has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation from
the dissertation and no information derived from it may be published without the prior
written consent of the author.

Declaration

This dissertation is submitted to the University of Bath in accordance with the requirements
of the degree of Bachelor of Science in the Department of Computer Science. No portion of
the work in this dissertation has been submitted in support of an application for any other
degree or qualification of this or any other university or institution of learning. Except
where specifically acknowledged, it is the work of the author.

Signed:

Abstract

Though they appear to be arcane and outdated tools by modern standards, traditional
command line interfaces (CLIs) still find heavy use by sysadmins, software developers
and power users. This is largely due to the fact that for many of these users, graphical
user interfaces (GUIs) are not often designed to scale to the functionality and control
requirements of modern software systems.

While CLIs can support powerful and efficient action, it is clear that they challenge users
in many ways. In examining deficiencies with CLIs, we can observe a principle problem
which affects the extent to which CLI users are able to effectively and efficiently accomplish
their goals, and, in particular perform action specification. This problem is characterised by
a need for users to engage in exploratory activities in order to successfully execute valid
commands.

The question explored within this dissertation is how this problem of exploration may be
addressed, and in doing so, determine how CLIs can better support the solution of novel
problems. This is explored through several studies involving expert CLI users, and deriving,
testing and evaluating a design for a CLI with usability-enhancing features.

Users were found to react well to command suggestion mechanisms, achieving faster task
success and engaging in less documentation checking. However, their inclusion often lead
to a less engaging experience for users, and there are still challenges for the integration of
these in real-world CLI software systems. As a consequence of these findings and others, we
are able to arrive at an informed theoretical model of CLI user action specification, which
might be used to better understand how the experience of CLI users might be improved.

Contents

1 Introduction 20

2 Literature Review 23

2.1 Interaction . 24

2.1.1 Human-Computer Interaction . 24

2.1.2 The Human Action Cycle . 24

2.1.3 Affordances and Signifiers . 25

2.1.4 Referents and Function . 25

2.2 Understanding Interface Types . 25

2.2.1 Direct Manipulation Interfaces . 26

2.2.2 Command Line Interfaces . 27

2.2.3 Distinctions . 29

2.2.4 Types of CLI . 29

2.2.5 Key Interface Concepts for Reconsidering CLI Design 30

2.3 Models of Problem Solving . 31

2.3.1 Rational Problem Solving . 31

2.3.2 Naturalistic Decision Making . 32

2.3.3 Recognition Primed Decision Models 33

2.3.4 Dual Process Theory . 33

2.3.5 Adaptive Toolbox . 34

2.3.6 Collaborative Models . 35

2.3.7 CLIs for Problem Solving . 35

2.4 Command Line Features . 36

2

CONTENTS 3

2.4.1 The Unix Philosophy . 36

2.4.2 Unlimited Aliasing . 37

2.4.3 Natural Language Processing . 38

2.4.4 Domain-Specific Languages . 38

2.4.5 Visual Feedback . 38

2.4.6 End-user programming . 40

2.4.7 Wildcard Expansion . 40

2.4.8 Command History . 41

2.4.9 Contextual Autocompletion . 43

2.4.10 Spelling Autocorrection . 44

2.4.11 Reversal Commands . 44

2.5 Summary . 44

2.5.1 Key Issues for Effective CLI Design 44

3 Exploratory Study 46

3.1 Research Questions . 47

3.2 Design of Study . 48

3.3 Procedure . 48

3.3.1 Participant Recruitment . 48

3.3.2 Interviews . 49

3.3.3 Audio and video transcription . 49

3.3.4 Codification of Data . 50

3.4 Participant Profiles . 50

3.5 Thematic Analysis . 51

3.5.1 Enhancing the Base Experience . 51

3.5.2 Reflexive vs Reflective Action . 53

3.5.3 Efficiency . 56

3.5.4 Learning . 58

3.5.5 Conceptualisation . 59

3.5.6 GUIs in Contrast with CLIs . 61

3.5.7 Security from Error States . 61

CONTENTS 4

3.5.8 Miscellaneous Codes . 62

3.5.9 Summary of Themes . 62

3.6 Participant Review of Findings . 62

3.7 Discussion . 62

3.7.1 In what way do CLI users recognise the utility of CLI tools for solving
problems? . 63

3.7.2 What characteristics of CLI tools make them helpful for solving
problems? . 63

3.7.3 What affects the experience of CLI users when problem solving? . . 63

3.7.4 What are the characterising features of problems which users find
CLIs are helpful in solving? . 63

3.7.5 What do expert users value in their CLI experiences? 64

3.8 Critical Analysis . 64

3.9 Summary . 65

4 Designing and Implementing a CLI 66

4.1 Deriving a Specification . 67

4.1.1 Understanding Basic CLI features 67

4.1.2 Problems to be Solved . 67

4.2 Formal Design Specification . 70

4.3 Generative Discussion . 72

4.3.1 Context Awareness/Classification/Recognition 72

4.3.2 Customisability . 73

4.3.3 Alternative Layouts . 73

4.3.4 Indicators and Visualisers . 73

4.3.5 Undo Schemes . 74

4.3.6 Queried Hints and Documentation 74

4.3.7 Commitment Deferral . 74

4.4 Proposed Designs . 74

4.4.1 Context-aware Suggestions . 75

4.4.2 Enhanced Traditional CLI Prototype (v1.0) 76

4.4.3 Spacial Exploration CLI Prototype (v2.0) 79

CONTENTS 5

4.4.4 AI Conversation CLI Prototype (v3.0) 84

4.5 Final Design . 86

4.5.1 Claims Analysis . 87

4.6 Implementation . 90

4.6.1 Context Aware Suggestions . 90

4.6.2 Help Snippets . 91

4.6.3 Output Model . 91

4.7 Summary . 92

5 Comparative Study 93

5.1 Aims . 94

5.1.1 Understandability . 94

5.1.2 Exploration . 95

5.2 Design of Study Environment . 95

5.2.1 Domain Design . 95

5.2.2 Scenario and Action Design . 96

5.2.3 Syntax Design . 97

5.2.4 Final Design . 98

5.2.5 Implementation . 103

5.3 Experiment Design . 103

5.3.1 Metrics . 105

5.3.2 Observation Classes . 105

5.3.3 Participants . 107

5.4 Hypotheses . 107

5.4.1 Task Success . 107

5.4.2 Efficiency . 107

5.4.3 Discovery . 108

5.4.4 Documentation Checking . 108

5.4.5 Security from Error States . 108

5.4.6 Intent-to-Command Translation . 109

5.5 Procedure . 109

CONTENTS 6

5.5.1 Environment . 109

5.5.2 Consent . 110

5.5.3 Explanation . 110

5.5.4 Practice . 110

5.5.5 Scenarios . 110

5.5.6 Post-Experiment . 110

5.6 Methods . 111

5.7 Results . 111

5.7.1 Task Success Rate . 111

5.7.2 Task Success Time . 112

5.7.3 Keypresses . 112

5.7.4 Number of Commands . 112

5.7.5 Documentation Checks . 112

5.7.6 Number of Invalid Commands . 115

5.7.7 Time Between Each Command . 115

5.7.8 Observations . 115

5.7.9 Preference . 119

5.8 Discussion . 120

5.8.1 Evaluation of Hypotheses . 120

5.8.2 Evaluation of Study Questions . 123

5.9 Critical Analysis . 124

5.9.1 Applicability of the Designed Domain 124

5.9.2 Limitations of the Data . 126

5.10 Conclusions . 126

5.10.1 Effectiveness of Context Aware Suggestions 127

5.10.2 Effectiveness of Help Snippets . 127

5.10.3 Effectiveness of Tree Undo . 127

6 Analysis 129

6.1 Formalising the Exploration Problem . 130

6.1.1 Types of Exploratory Activity . 131

CONTENTS 7

6.1.2 The Learning Factor . 134

6.1.3 Limitations . 135

6.2 Approaches to the Exploration Problem . 135

6.2.1 Peer Support . 136

6.2.2 Documentation Checking . 136

6.2.3 Supporting Trial and Error . 136

6.2.4 Supporting Learning . 137

6.2.5 Conceptualisation Mechanisms . 137

6.2.6 Suggestion Mechanisms . 138

6.3 Summary . 139

7 Conclusions and Future Work 140

7.1 Conclusions . 141

7.2 Critical Analysis . 142

7.3 Future Works . 142

7.3.1 Technology Review for CLI Integration 142

7.3.2 Real-World Integration of Context Aware Suggestions 142

7.3.3 Expanded Study of Suggestion Mechanisms within CLIs 143

7.3.4 Information Visualisation of Command Spaces 143

7.3.5 Harnessing Benefits of CLIs in Mainstream Software Products . . . 144

7.3.6 Relationship of CLI Efficiency and Understandability 144

7.3.7 User Customisation in CLIs . 144

7.3.8 Peer Support through CLI Groupware 144

7.3.9 CLI Learning Processes . 144

7.3.10 CLI Problem Solving Agents . 145

7.3.11 Emotional and Aesthetic Design of CLIs 145

7.3.12 Undo within CLIs . 145

7.3.13 Designing Effective Control Languages 145

7.4 Summary . 146

A Code Listings 153

CONTENTS 8

A.1 Suggestions Model for Experiments . 154

A.2 R Script for Statistical Analysis of Frequency Data 157

A.3 Collation Scripts for Experiment Results . 158

B Statistical Analysis 161

C Study Documents 165

List of Figures

2.1 Miller et al. [2008]’s web CLI, Inky. Incorporates “Sloppy Syntax” and
realtime visual feedback. (Source: Miller et al. [2008]) 37

2.2 Groth and Gil [2009]’s CLI tool for constructing scientific workflows. Inte-
grates NLP and visual function composition. (Source: Groth and Gil [2009])
. 39

2.3 The Bash interactive shell [GNU]. Enables interactive end-user programming. 41

2.4 Example of wildcard expansion in Terminal [Apple, b]. Providing the option
*.tex to ls lists all files with a .tex extension. 42

2.5 Demonstration of zsh-autosuggest [de Arruda, 2013]. 43

4.1 V1.0 introduces a paradigm focused on discovery. 76

4.2 V1.1 introduces paired input-output tuples, multipurpose help region, and
syntax transformation. 78

4.3 V2.0 introduces a paradigm focused on exploration. 80

4.4 V2.1 presents an alternative method of pairing inputs and outputs. 82

4.5 V2.2 presents an attempt to create a more meaningful and structured variant
of the layout than previous iterations. 83

4.6 V3.0 presents an interactive conversation with a hosted artificial intelligence. 85

4.7 A high-fidelity mock-up of the final design, created in HTML5. “git commit”
is a suggestion which appears as a result of the user previously inputting
“git add .”. The second “ls” command is undone, and is thus set aside and
its opacity is reduced. 88

4.8 High-level architecture diagram of the integrated viewmodel, the server, and
how they connect. 90

5.1 Output of the help command. 104

9

LIST OF FIGURES 10

5.2 Bar graph showing average time to complete for each scenario and each
interface (blue shows CAS+HS+TU and red shows TU) 113

5.3 Bar graph showing average number of commands executed for each group
and each interface (blue shows CAS+HS+TU and red shows TU). 114

5.4 Bar graph showing average time between commands for each group and each
interface (blue shows CAS+HS+TU and red shows TU) 116

5.5 Histograms showing the frequency distributions of time (in ms) between each
command for CAS+HS+TU (blue) and TU (red), with bucket size 1000 . . 117

6.1 A model of action specification for CLI users. 132

List of Tables

3.1 Table displaying participant information. 51

4.1 Requirements specification. 72

4.2 Claims analysis structured by Norman’s Human Action Cycle [Norman, 1988]. 89

5.1 The syntax corpus for the experiment. 99

5.2 Detail on the scenarios designed, which will form the essential participant
activities of the experiment. Novel task features are ones which require
not-often used commands, and routine task features are those that require
frequently used commands. 102

5.3 Scenarios split up into ordered task sets. 105

5.4 A mixed-factorial design to control presentation orders of task sets and
interface, and interaction effects between interface and task sets. 105

5.5 The metrics which are automatically measured for each scenario a participant
attempts. 106

5.6 The principle observations that will be reported on during the experiment. . 106

B.1 2x2 Analysis of variance of task time on presentation order (groups AC vs
BD) and interface (CAS+HS+TU vs TU). 162

B.2 Linear model of interface and scenario for keypresses per scenario. 162

B.3 Chi-squared analysis of deviance on models of keypresses with and without
interface as a predictor. 162

B.4 Linear model of commands executed per scenario for interface and scenario. 163

B.5 Chi-squared analysis of deviance on models of number of commands per
scenario with and without interface as a predictor. 163

B.6 Linear model of documentation checks performed for interface and scenario. 163

11

LIST OF TABLES 12

B.7 Chi-squared analysis of deviance on models of documentation checks per
scenario with and without interface as a predictor. 164

B.8 Linear model of invalid commands performed for interface and scenario. . . 164

B.9 Chi-squared analysis of deviance on models of invalid commands per scenario
with and without interface as a predictor. 164

B.10 2x2 Analysis of variance of times between each command on presentation
order (groups AC vs BD) and interface (CAS+HS+TU vs TU). 164

Acknowledgements

I wish to express my sincerest gratitude to my supervisor Dr Leon Watts for his continued
support and interest in my undergraduate dissertation. Besides my supervisor, I would
like to thank other lecturers and research fellows, including Dr Stephen Payne and Ken
Cameron, for their insightful comments and encouragement.

In addition, I would like to thank the participants of my studies for their cooperation,
without whom these findings would not have been possible. My thanks also extend to my
friends and family for helping with the daunting task of proof-reading.

Services such as PopupArchive, the ACM Digital Library and Github were incredibly
valuable resources during my research, and I would not have been as effective without them.
Special thanks to Mikhail Yurasov, for open-source provision of the frontend boilerplate
used for integrating the artefacts in this dissertation.

13

Glossary

accessibility The extent to which something can be useful to people of any background,
ability or expertise. 97, 144

action specification The process a user undergoes when they are determining how to
affect their intentions upon the environment. 10, 98, 130–132, 135, 138, 139, 141

activity theory An umbrella term for a particular line of social science theories and
research. 59

affordance Something that you can do with a particular object. 39, 45, 125, 138

agency The ability to make decisions. 35, 64, 75, 85, 86, 127, 138, 145

aliasing The provisioning of multiple labels for a command or referent. 73

answer service A question answering system; a system which automatically answers
questions posed by humans in a natural language. 21, 30

CLI Command Line Interface; an interface which enables a user to issue commands in the
form of symbolic input; an interaction paradigm based on a control language. 1, 4, 5,
7, 9, 10, 28, 29, 32–34, 36, 37, 39, 40, 44, 47–49, 51, 52, 54–56, 59, 61, 63, 64, 67–70,
72–74, 76, 79, 84, 92, 94–98, 103, 107, 124–127, 131, 132, 135–139, 141–146

cognitive model An approximation of human cognitive processes for the purposes of
comprehension and prediction. 36

command A set of referent labels, structured in some way by the syntax of a control
language, which expresses a particular intention of a user. 9, 10, 12, 21, 27, 28, 30,
37–39, 41–45, 48, 49, 51–62, 65, 70, 73–79, 81–90, 94, 95, 97, 98, 106, 108–110, 115,
117, 118, 121–123, 125, 127, 130, 133, 134, 136–138, 141, 143, 164

conceptualise To form a mental model of some domain. 38, 137

connective syntax Symbols within a control language which allow the structuring of
many labels and domain objects in a single command (eg pipes, flags). 132, 134

14

Glossary 15

control The extent to which an agent is able to affect their environment. 11, 27, 36, 37,
57, 64, 69, 74, 79, 82–86, 104, 105, 120, 127, 130, 134, 138, 141, 146

control language A set of labels for domain referents and a connective syntax. 49, 67–69,
130, 136, 137, 141, 145

customisation Alteration of an artefact in order to better support a user’s aims or
preferences. 52, 64, 73, 144

digraph Directed graph; a set of nodes and directional links between them. 31

direct manipulation Physical, incremental operations upon a continuous representation
of an object of interest. 26

discovery The act of finding some artefact or thing pertinent to the success of an activity.
44, 54, 55, 58, 74, 75, 109, 118, 121, 122, 125, 130–133, 135, 136

DMI An interface which permits direct manipulation. 26

domain A specific sphere of work or activity. 27, 29, 35, 38, 45, 59, 60, 63, 64, 68–75, 90,
95–98, 103, 108, 109, 115, 117, 119, 122, 124, 125, 130, 131, 136–138, 141, 143

domain context pattern recognition The classification of, by machine learning pro-
cesses subject to big data, different areas of use within a domain. 143

domain object A pertinent object of a domain of work (eg file, folder). 130

effective Successful in the context of an activity. 28, 34, 36, 40, 60, 62, 96, 127, 136–138,
141, 143–145

efficient Performed rapidly and with low effort. 41, 54, 64, 68, 78, 89, 97, 130, 135

emergent Unintended in a fashion which was not priorly predicted. 137

end-user programming Refers to activities and tools that allow end-users - people who
are not professional software developers - to program computers. 28, 40

engagement The extent to which a person mentally participates in an activity. 124, 127,
138

error state A state which arises due to some incorrect action, and prohibits or hinders
progress towards a favourable outcome in the context of some activity. 78, 89

expert A person with sufficient knowledge to effectively work with a particular artefact. 4,
38, 48, 51, 53, 59, 63–65, 72, 73, 81, 84, 141, 144, 145

exploration The process of searching an environment with the intent to discover something.
31, 45, 64, 81, 95, 131–134

Glossary 16

Exploration Problem The problem of conducting efficient explorative activities during
CLI action specification. 47, 55, 65, 68–70, 78, 94, 130, 131, 135, 139, 141

exploratory activity Some process that is undertaken with the intention of discovering
something within an environment. 134, 141

flag An option which modifies the behaviour of a command. 58, 131

flow A state in which a user is able to fluently and effortlessly translate their intentions
into action. 40, 53, 68, 73, 77, 79, 82, 84, 89, 127, 135

groupware Software artefacts designed to facilitate collective working by a number of
different users. 136, 144

guessability How easily users are able to propose a correct speculation for something. 28,
59, 69, 125, 136

GUI Graphical User Interface; An interface which permits direct manipulation through
graphical means. 1, 26, 30

Gulf of Execution The gap between a user’s goal for action and the means to execute
that goal. 54

heuristic A rule of thumb; a standard method which is deployed, but not guaranteed to
work. 21, 34, 36

highly interactive Provides a user with a tight feedback loop. 144

innate Natural, or overlearnt as to feel natural. 135

interactive Allowing a two-way flow of information between a computer and a computer-
user; responding to a users input. 9, 21, 30, 34, 39–41, 84, 85, 130

interface An artefact enabling a user to communicate with a computer. 10–12, 21, 29, 33,
43, 68–70, 89, 90, 94, 98, 105, 110, 112–116, 120, 123, 126, 130, 138, 145, 162–164

knowledge-primed Subject to prior knowledge or well-known experiences of a particular
user. 135

label A symbol that is input by a user in order to access a particular referent. 131, 136,
137

look and feel The visual design and dynamic behaviour of elements within a user interface.
145

mainstream product Artefacts that are used by most people and regarded as normal or
conventional. 144

Glossary 17

meaningfulness How well a particular thing fits within a person’s preconceived mental
model of a particular system. 137

memorability The extent to which a thing lends itself to begin remembered by a person.
58, 59, 69, 137

mental model A person’s internal representation of some system, by which they perceive
consequences of their actions within the system. 60, 137, 138

natural language A language that has developed naturally in use (as contrasted with an
artificial language or computer code). 30, 38, 138

NDM Naturalistic decision making; decision making in the context of dynamic and complex
real-world scenarios. 33, 34

needs-driven Not recreational; only on the basis of working activity. 137

operational documentation Documentation which provides a user with information on
how to operate an interface. 71, 89, 91, 94, 99, 108, 117–119, 121, 123, 133

package management system A system which automates the process of installing, up-
grading, configuring, and removing computer programs. 133

parameter A domain object upon which a particular function operates. 58, 59, 69, 132,
137

peer A person working within the same domain of activity as a particular user. 84, 133,
134, 136, 137, 141, 145

power user A computer user who uses advanced features of computer hardware, operating
systems, programs, or web sites which are not used by the average user. 1

powerful Affecting large change with low effort. 1, 21, 28, 41, 56–58, 63, 64, 68

problem solving The process of manipulating an environment into a desirable state in
the context of some activity. 24, 31–36, 38, 40, 44, 47, 52, 60, 68, 70, 75, 79, 96, 127,
145

problem space A set of states that a problem domain can be in, connected by domain
actions which transform the state of the domain. 31, 32, 35, 37, 38, 40, 96

purely functional programming A programming paradigm that does not rely on mu-
table state, and treats all computation as the evaluation of mathematical functions.
146

realtime Relating to a system in which input data is processed within milliseconds so that
it is available virtually immediately as feedback to the process from which it is coming.
9, 33, 37, 38, 138

Glossary 18

recognition-primed Automatically produced on the basis of classification of a specific
situation. 54, 130, 135

recovery The act of returning to a normal state from an erroneous state. 41, 61, 70, 137

referent A unit of functionality specifically referred to by a label. 30, 55, 58, 97, 98, 130,
133, 136, 141

routine task A task which can be solved exclusively on the basis of recognition-primed
decisions. 11, 102, 135

RPD Recognition-primed decision; reacting on the basis of prior experience to a situation.
33, 39, 40, 54

scriptability The extent to which an artefact enables end-user programming. 21

shell A user interface for access to an operating system’s services. 29, 142

signifier Some indication of affordance. 138

suggestion An idea or plan put forward for consideration. 9, 34, 45, 49, 72, 75, 77, 79, 88,
95, 108, 126, 136, 138, 143

symbol Some unit representation of an element of a control language. 27

syntax corpus A representation of the operatonal details of a particular control language.
11, 98, 99, 143

sysadmin Systems administrator; a person who is responsible for the upkeep, configuration,
and reliable operation of computer systems. 1

terminal emulator A program that emulates a video terminal within some other display
architecture. 142

traditional CLI Shells or terminal emulators, in contrast with search engines or answer
services. 33, 92, 119

trial and error The process of experimenting with various methods of doing something
until one finds the most successful. 55, 59, 69, 134, 136

understandable Can be readily assimilated into knowledge. 138

Unix Philosophy A philosophical approach to minimalist, modular software development.
36, 37, 57, 146

usability The ease of use and learnability of an artefact. 21, 24, 28, 29, 36, 63, 67, 68, 85,
94, 141, 142

vanilla Unmodified; not subject to end-user customisation. 51, 65

Glossary 19

viewmodel Component of the MVVM (model-view-viewmodel) software architecture
which links parts of an underlying model to view components. 90

websocket A computer communications protocol, providing full-duplex communication
channels over a single TCP connection. 90

wildcard A character that will match any character or sequence of characters in a search.
9, 40–42, 131

Chapter 1

Introduction

20

CHAPTER 1. INTRODUCTION 21

Graphical user interfaces (GUIs) are often considered the de-facto standard for establishing
an interactive link between a user and a computer system. However, as [Norman, 2007]
points out, command line interface (CLI) paradigms have achieved mainstream ubiquity
in the form of “answer service” search engines. It would appear that this search-oriented
paradigm has been well explored in real world software products and mainstream usage, but
this presents a limited worldview on the possibilities that the CLI paradigm provides. In
particular, the benefits that power users can derive from command lines are often forgotten
in modern software systems. In addition to this, usability of CLIs has received very little
contemporary research attention [Heron, 2015].

As [Norman, 2007] puts it, GUIs fail to scale to the demands of modern software systems.
Indeed, their inflexibility limits the user’s ability to solve novel problems or scale to large
functionality sets [Groth and Gil, 2009]. Aspects of CLIs afford the advantage of more
“efficient” interactions for advanced users [Murillo and Sánchez, 2014], and expose several
powerful utilities. One such feature is the ability to compose unit functionality, whereby
user actions can be chained together into complex control structures via connective syntax
such as pipes. Another is scriptability — this allows for end-user programming, provid-
ing experts with sophisticated tools to automate their work and decrease cognitive and
physical effort. By features such as these, CLIs should allow a user to move rapidly to-
wards the solution to a novel problem, where other interface types may incapable of doing so.

But this comes at a cost; learning command syntax represents a significant overhead, as
well as the increased demand on user memory and chance for human error [Miller et al.,
2008]. It is these disadvantages which are most likely to account for a reluctance to adopt
command line style interactions outside of search and answer service paradigms.

It is the intention of this research project to understand how CLIs can better be harnessed
as tools for composing a wide range of functionalities to arrive at a solution to a problem.
The approach taken will be to investigate what users of CLIs value in their interactions
under circumstances which require them to solve novel problems, and what deficiencies exist
that prevent them from being effective. Through this, it may be possible to discover new
design heuristics and descriptive models of users’ experiences within CLIs. In deriving these,
we may enable usability improvements to existing CLIs, and encourage the integration of
powerful features of CLIs within mainstream software products.

Chapter 2 presents a review of prior work on alternative types of user interface in re-
lation to human problem-solving strategies. In this, we find that exploratory action is
fundamental for all human-computer interactions, and so users of CLIs would benefit from
better support for command discovery and reflection on the effects of prior command actions.

CHAPTER 1. INTRODUCTION 22

Chapter 3 builds on this by grounding these general concepts in the examination of the
experience of a set of expert CLI users. This is done by interviewing a group of expert CLI
users, and analysing transcripts of these via thematic analysis. In this, we discover what
features these users value, what effects their experience, and what kinds of problems CLIs
are particularly suited to. In particular, we find that the effectiveness of CLI use is limited
by the extent to which a user’s intent can be easily and rapidly specified as a command.

Chapter 4 summarises these notions and derives a specification which captures desirable
qualities of an enhanced CLI artefact for problem solving. Several designs are proposed,
which address the design problems outlined by proposing features such as artificial intelli-
gence, suggestion mechanisms and information visualisation. These are evaluated by expert
users, and the best candidate interface is implemented. The selected interface provides
context-sensitive command suggestions, a visualisation method for undo states, and contin-
uous representations of sections from operational documentation.

Chapter 5 proposes an evaluative study to investigate the effectiveness of the enhanced CLI
design which was implemented. This is done by designing an experiment domain and a
set of tasks — constituting a text-adventure game — which attempts to accurately model
real-world use of CLIs and command shells in a controlled fashion. By comparing the use of
the enhanced CLI with that of a CLI without certain enhancing features, we are able to
conclude that intelligent suggestion mechanisms for CLIs are a promising design space that
deserve further investigation.

Chapter 6 aims to bring together these diverse findings into a formalised specification of
the Exploration Problem, and a formal model of action specification of CLI users. We find
we are able to identify several kinds of exploratory activity which occur when CLI users are
determining how to specify an intent to act as a command.

Chapter 7 summarises the findings as presented in chapter 6 and proposes a wide array of
future works suggested by certain aspects explored within the project as a whole.

Chapter 2

Literature Review

23

CHAPTER 2. LITERATURE REVIEW 24

In this investigation, we aim to better understand barriers to CLI usage from a Human-
Computer Interaction perspective, so that novel CLI design ideas can be identified and
tested. In order to investigate how the usability of CLIs might be enhanced for problem
solving activities, a review of the relevant literature must initially be performed.

Therefore, in this chapter, we shall first establish a conceptual foundation by examining
some key concepts relating to the broader field of Human-Computer Interaction. We will
then focus more upon facets of interface types, with the intention of distinguishing CLIs
from other sorts of interfaces. With specific considerations to design issues of CLIs, we
shall then examine conceptual models of methods and strategies for human problem solving.
This will allow us finally to appraise methods which have been priorly used to address the
design issues identified under the specific context of problem solving.

From these examinations, a conceptual basis for further investigations shall be achieved, as
well as a focus for the specific aims of this dissertation.

2.1 Interaction

Before thoroughly engaging in literature related to CLIs and problem solving, it is pertinent
to identify particular fundamental, underpinning theories relating to the nature of human
interaction with software artefacts.

2.1.1 Human-Computer Interaction

Human-Computer Interaction (HCI) is a field of study which is concerned with research
into the design and use of computer technology, focusing on hardware and software inter-
faces. Within this dissertation, we define interaction as the process by which a user of a
computer system conveys and receives information to and from a computational artefact.
This computational artefact might comprise hardware, software, or both.

The degree to which a computational artefact is interactive depends upon how effectively —
or indeed, how easily — a user is able to engage in this two-way flow of information with it.

2.1.2 The Human Action Cycle

Donald Norman, in his seminal works within HCI [Norman, 1988], defines many theoretical
models which assist the description and structuring of reasoning about interactive artefacts.

CHAPTER 2. LITERATURE REVIEW 25

One such theory, the Human Action Cycle [Norman, 1988], details how a human might go
about engaging in an interactive loop with an artefact. First, it asserts that a person goes
through a stage of goal formation, whereby the high-level aims of an overarching activity
are determined with respect to the artefact in question. Then, the person must engage in a
stage of execution, whereby their goals are translated into a set of tasks required to achieve
those goals and specified as a sequence of tasks — this particular process is known as action
specification. Once this occurs, this action sequence is then physically executed by the user.
Finally, the user must engage in a stage of evaluation, whereby the user physically perceives
of their executed actions, interpreting the actual outcomes on the basis of the expected
outcomes and then reflectively comparing actual and expected outcomes to determine if the
desired effect was achieved.

This theory underpins much of the analysis performed within the investigations presented
here.

2.1.3 Affordances and Signifiers

In the context of Norman [1988]’s Human Action Cycle, affordances are defined here as the
possibilities for action that a user perceives that they can perform with an artefact [Norman,
1988]. This necessarily depends upon the context in which the artefact is perceived and
used — a user may perceive a wider or narrower range of affordances for a given object for
different contexts.

Features of an artefact which allow a user to perceive affordances are known as signifiers
[Norman, 1988]. An example of such a feature is a handle on a teapot — the handle signifies
to the user that the teapot affords grasping or tipping.

2.1.4 Referents and Function

For an interactive artefact to be useful, it must perform a number of functions - units of
capability which a user can harness to perform some useful action. Particularly in the case
of software artefacts, computational functions require some means by which a user to access
them — in the context of CLIs, these are known as referents [Furnas et al., 1987]. Referents
are symbolic labels — typically textual — for a piece of unit functionality afforded by a
CLI.

2.2 Understanding Interface Types

Very little contemporary literature exists on the study of CLIs, supporting claims that they
deserve further investigation. Nevertheless, it is still possible to explore the nature of CLIs

CHAPTER 2. LITERATURE REVIEW 26

through traditional literature, with the aim to derive a working definition of this type of
interface. This can be done, in part, by differentiating definitional CLIs from other types of
interfaces, such as direct manipulation interfaces (DMIs). Features that typify CLIs can
then be explored with respect to the field of problem solving.

2.2.1 Direct Manipulation Interfaces

Direct manipulation interfaces (DMIs), described by Hutchins et al. [1985], are interfaces
which enable the direct impression of computation objects by actions of a user in real-time.

That is to say, they enable “direct manipulation”, which Hutchins et al. [1985] defines by a
number of measures. For an object of interest to be directly manipulated, it must afford
“physical actions or labelled button presses”, specifically distinct from descriptions of action.
These actions constitute rapid, incremental and reversible operations, whose impact on the
object of interest is immediately visible via some continuous representation.

It is clear that these types of interfaces are highly interactive, allowing a user to respond
quickly to change, and promote a congruence of physical affordance — that is, controls
within this paradigm often present analogies with physical real-world objects and controls,
which readily suggest possible actions.

Graphical user interfaces (GUIs) are a sort of DMI which manifests interaction through
visual means. The distinction is important when considering DMIs for blind or vision
impaired users, which operate in tactile or sonic mediums. A common implementation of
GUI is the Windows, Icons, Menus, Pointer (WIMP) paradigm, whereby windows define
action areas for particular applications, icons are used to represent computation entities,
and mouse-driven pointers create an impression of physical action on those entities.

Advantages

Shneiderman [1983] describes several virtues of DMIs as a paradigm for establishing an
interactive link with a user. Novices are able to learn basic functionality quickly via demon-
stration, while experts can work rapidly to carry out a wide range of tasks. Operational
concepts can also be retained and transferred to other DMIs.

In addition, error messages are rarely needed, because users can immediately see if their
actions further their goals, allowing them to change the direction of their activities if not.
As a consequence of this, users have “reduced anxiety” as the system is comprehensible and
actions are easily reversible.

CHAPTER 2. LITERATURE REVIEW 27

However, it can be argued that these advantages do not universally apply, especially in
practical implementations.

Disadvantages

Hutchins et al. [1985] explored many disadvantages of DMIs. These included the fact that
“DMIs have difficulty handling variables, or distinguishing the depiction of an individual
element from a representation of a set or class of elements”. Repetition of tasks, in particular,
is poorly supported, because it can be difficult to continuously chain together fine motor
operations for a large set of graphical objects.1

DMIs also have problems with accuracy — responsibilities of accurate action are often
placed on the user, where they might be better handled through the intelligence of a system
or communicated symbolically. As a consequence, DMIs must directly support how users
think about a domain, and this can sometimes be difficult to achieve. Directly supporting a
user domain restricts how it is possible to think about the problem, missing the potential
for new technology to provide new ways to interact with a domain. Hutchins et al. [1985]
particularly emphasises that DMIs “give up” on conversational models, and thus give up
on dealing in descriptions of the domain — this is particularly detrimental for contexts or
domains which require fine control over specification of action.2

2.2.2 Command Line Interfaces

As distinct from DMIs, command line interfaces (CLIs) are interfaces which enable a user
to issue commands in the form of successive lines of text. Thus, they are interfaces which
are transactional in nature, requiring full specification of operation, target and constraints
before initiation.

More broadly, as Norman [2007] puts it, they are “interaction paradigms based on a control
language”, where users enter commands and their respective arguments. This definition is
proposed with the intention to draw together diverse sorts of CLIs, including contemporary
uses of aspects of CLIs within mainstream products.

Where DMIs enable users to explicitly act upon objects in a domain, CLIs allow a user to
be descriptive about their intentions to act within that domain, prior to committing those
intentions to action.

1I.e. clicks, drags and drops.
2For example, system administration or software deployment.

CHAPTER 2. LITERATURE REVIEW 28

Advantages

CLIs have been described by some sources [Kampe] as having several virtues. Typically,
they require few resources, or often work well in minimal environments — that is, fewer
resources to run than graphical interfaces [Kampe]. This contributes to the fact that they
are expert friendly — that is, they present a better user experience to those that are more
experienced. This is because many sysadmins and software developers must often use CLIs
such as terminal emulators to operate server technologies.

Related to this, they are concise and powerful in their function; that is to say, they can
service a huge array of functionality in a minimal fashion. This power is further increased by
permitting automation via scripting and end-user programming. CLIs are often described
as capable of enabling experts to quickly achieve their goals [Murillo and Sánchez, 2014].
This is because CLIs excel in areas where expressive power is required; very little often
needs to be written to do a huge manual task.

In addition, most CLI interactions are keyboard-only — many sources [Omanson et al.,
2010][Lane et al., 2005] stipulate the efficiency of keyboard interactions over mouse interac-
tions. However, it is clear that this heavily depends on the context of use.

Disadvantages

Many disadvantages of command lines have also been described by sources such as Kampe.
A principal disadvantage is that they require intense cognitive effort from a user, requiring
the understanding of highly abstract concepts to enable effective use, as well as memorisation
of some control language.

Their minimal nature brings another disadvantage. CLIs are not typically visually rich,
which can lead to a disengaging experience, and, in particular, a lack of signification of
afforded commands. In particular, Hewett [2005] discusses how long-term memory requires
cues for effective retrieval. The relative minimalism of CLIs is unlikely to permit retrieval
cues — this typically hampers usability in terms of memorability.

They are also cited as having very low learnability because they are often designed with
poor guessability [Wobbrock et al., 2005]. Typically, new users are required to trawl through
tutorials, manual pages, help guides and forum posts in order to perform even the simplest
of tasks.

Taken together, these reasons seem to demonstrate why CLIs are seen as intimidating,
beginner-unfriendly, and having a high barrier to entry for novices.

CHAPTER 2. LITERATURE REVIEW 29

2.2.3 Distinctions

While this section does set out to expose a contrast between DMIs and CLIs, many real
implementations of these paradigms actually exist on a continuum between the two.

The aims of this study constitute a desire to explore interfaces which at least incorporate
some aspects of CLIs in pursuit of their advantages.

Though the interfaces explored may hybridise aspects of DMIs and CLIs, the focus is
nevertheless on the enhancement of the CLI paradigm. Such interfaces should, however,
promote input of symbolic commands as the dominant method of interacting with a problem
environment if they are to be considered within the CLI paradigm.

To provide a core definition for the purposes of this dissertation, a CLI will be treated as
any interface based on the formulation and composition of linguistic statements intended to
result in the manipulation of objects in a problem environment. Manipulation in this sense
simply refers to moving, reading or writing data, rather than notions which are suggested
by direct manipulation.

2.2.4 Types of CLI

It is clear from examinations of definitive descriptions of CLIs that further clarification
must be provided upon the variety of different interface technologies that are classified as
CLIs. Thus, it is pertinent at this juncture to define different sorts of CLI with respect to
the examination of example CLI artefacts that exist.

Traditional CLIs

We define definitionally traditional CLIs here as those by which users solely interact with a
domain on the basis of successive lines of textual input. This definition sets out to encompass
shell environments and terminal emulators such as Bash [GNU], Powershell [Microsoft] and
Terminal [Apple, b].

Enhanced CLIs

We define enhanced CLIs as traditional CLIs which have integrated usability enhancements.
This definition sets out to include shell environments such as Fish [Doras] and Zsh [Falstad],
which provide enhancing features — those intended to enhance support for user action and
comprehension — such as autosuggestions [Doras][de Arruda, 2013].

CHAPTER 2. LITERATURE REVIEW 30

GUI Integrations

We define GUI integrations of CLIs as those whose main methods of interaction are via
graphical direct manipulations, but may, on occasion, permit interaction via descriptive
input. This definition mostly encompasses the use of search prompts within GUI applications
for location of certain referents — a pertinent example of this is the “Spotlight Search”
mechanism within Apple’s MacOS [Apple, a].

Hybrid Interfaces

We define hybrid interfaces as those which readily provide multiple methods of interaction
which, categorically, are of CLIs as well as GUIs. This definition includes interfaces such as
AutoCAD [AutoDesk], which allows operation via a built-in command prompt or through
interactive drawing tools.

Answer Services

We define answer services, or question answering services, as systems which provide an
information retrieval service by performing natural language processing upon natural
language queries. This definition includes the answer service functionalities within search
engines such as Google, and intelligent personal assistant software such as Apple’s Siri.

2.2.5 Key Interface Concepts for Reconsidering CLI Design

It is clear that, from examining the deficits of the CLI paradigm and the way CLI-style
interactions are integrated in real-world software systems, there are a few key interface
concepts which may need to be addressed within the design of a CLI.

One aspect is the fact that CLIs, by their nature, lack signifiers of an afforded space of
commands. It seems that, for one to address this, the often combinatorial space of possible
commands must be narrowed by context and presented to a user by some means, without
compromising desired minimality.

Another is the ability to visualise and harness a history of action. Users are more likely to
be able to effectively recover from states of error, or better understand the consequences
of their actions, if a history of their action is better visualised. In addition, the ability to
in some way exploit or harness action history items to lessen physical or cognitive effort
appears to be a fruitful design avenue.

CHAPTER 2. LITERATURE REVIEW 31

2.3 Models of Problem Solving

The CLI design challenge warrants discussion of general human problem solving, to better
understand what users might do with the information they are furnished within the context of
CLI use. We define problem solving here as the process of manipulating an environment into
a desirable state in the context of some activity. This definition also sets out to encompass
the activities which are necessary for a user to plan or understand how to solve their problem.

We shall first consider rational models, before drawing on naturalistic models to consider
circumstances and environment as a significant factor in CLI interactions.

2.3.1 Rational Problem Solving

The works of Simon and Newell [1971] are set out with the intention to explain and generate
a theory of human problem solving, such that computer programs could be created to help
humans solve problems. The shape of their theory could be captured as such:

• Some characteristics of a human information processing system are “invariant over
task and problem solver”.

• These characteristics permit the representation of the task environment as a “problem
space” in which all problem solving occurs.

• The structure of the task environment determines the possible structures of the
problem space.

• The structure of a problem space determines the possible programs that can be used
for problem solving.

It was their proposition that the act of problem solving was the deliberate process of
searching a proposed “problem space” [Simon and Newell, 1971] to discover a path to a
desirable outcome.

In lieu of this theory of problem solving, a General Problem Solver (GPS) [Newell et al.,
1969] was proposed — the intentions of such were to create a computer program which
could solve any problem. Problem spaces needed to be expressed formally as a set of “Well
Formed Formulae”, which constituted a digraph of axioms and desired outcomes. Any
problem formalised this way could in principle be solved by the GPS.

However, search-based problem solving suffers from a combinatorial explosion of the prob-
lem space for many real-world applications, making deliberative, rational exploration of a
problem space intractable without heuristics or pruning techniques.

CHAPTER 2. LITERATURE REVIEW 32

Simon and Newell [1971] also neglect to examine certain human elements in their the-
ory of problem solving [Klein, 1995]. The following aspects are assumed by Simon and
Newell [1971]’s theory, but are unsuitable when dealing with human actors and real-world
environments:

• Rational action of actors — the consistent performance of precisely optimal action,
without regard for operational situation.3

• Perfect knowledge of the problem space — as a consequence of a completely accurate
systemic mental model.

• Infinite capacity for computation — able to complete arbitrarily large computations
in a trivial amount of time.

• Calculative rationality — assumed stasis of the problem space while calculation occurs.

It is clear that the antithesis or lack of these aspects may have to be accounted for within
CLI problem solving activities. A particular problem here that can be identified is the
lack of perfect knowledge over a combinatorial problem space, particularly for CLIs which
expose large sets of referents.

2.3.2 Naturalistic Decision Making

It is clear that how human beings make decisions underlies the processes by which they
solve problems. Naturalistic Decision Making (NDM) is cited as “an attempt to understand
how humans actually make decisions in complex real-world settings” [Zsambok and Klein,
1996]. Works in this field have explored scenarios exhibiting the following features [Zsambok
and Klein, 1996]:

• Ill-defined goals and ill-structured tasks

• Uncertainty, ambiguity, and missing data

• Shifting and competing goals

• Dynamic and continually changing conditions

• Action-feedback loops (real-time reactions changed conditions)

• Time stress

• High stakes

• Multiple players

• Organisational goals and norms

3Such as fatigue, emotional state, time pressure and social setting.

CHAPTER 2. LITERATURE REVIEW 33

• Experienced decision makers

Classical approaches to problem solving and decision making, which are analytical or sys-
tematic in nature, deteriorate or are unsuitable when these features are present.

It is unclear to what extent that domains operated by CLIs present these sorts of features
in the context of problem solving. Indeed, it seems that many of these aspects perhaps
apply to interface paradigms that are more oriented to realtime interaction through direct
manipulation.

2.3.3 Recognition Primed Decision Models

Klein [1995] defines the Recognition-Primed Decision (RPD) model for rapid decision mak-
ing. The model works on the assumption that humans act and react on the basis of prior
experience — types of “case” are identified and reacted to with plans of action that have
typically worked in the past. The implementation of a plan is monitored, to determine flaws,
or discover what might go wrong. If a problem is foreseen, the chosen plan is modified or
rejected in favour of the next most typically successful plan.

This class of model, in contrast to Simon and Newell [1971]’s works, allows us to understand
that problem solving in the real world is interactive. That is, problems in the real world
are often solved by iteratively taking incremental action based on decisions made via NDM
processes until the problem is solved.

It is unclear to what extent these processes are applicable within the context of CLI
interaction — indeed, it seems that the interactive, real-time nature of this sort of decision
making process is almost entirely prohibited by traditional CLI interaction. However, the
notion of recogition seems to highlight the importance of command output in prompting
forthcoming possibilities as well as the effect of the last action — that is, command output
may remind users of other courses of action that had not initially occurred to them.

2.3.4 Dual Process Theory

In the context of works on rational problem solving and naturalistic decision making,
Zsambok and Klein [1996] proposes that techniques for decision making actually lie on
a “decision continuum”. On one end lies the conscious, deliberated and highly analytical
methods, such as Multi-Attribute Utility Analysis (MAUA) [Albany University, 2003]. At
the other end lies non-optimising and compensatory strategies like RPD.

In fact, later works [Evans, 2008] actually prescribe a dual model of decision, where different
methods of human decision making work in parallel, known as Dual Process Theory. The

CHAPTER 2. LITERATURE REVIEW 34

suggestion is “that there may be two architecturally (and evolutionarily) distinct cognitive
systems underlying these dual-process accounts”[Evans, 2008], one system supporting “slow,
deliberative, and conscious” decisions with explicit rationale, and the other supporting “fast,
automatic, and unconscious” decisions based on heuristics and pattern recognition based
judgements.

It is clear that, in the context of these works, in order to compliment the natural duality
of decision making and planning processes used by human beings, CLIs must provide
both interactive and descriptive interactions to be effective problem solving tools. Indeed,
represented collections of possible commands, as well as of recent command output, could
engage automatic recognition and decision processes, as well as supporting deliberative
reflection on the status of a user’s work.

2.3.5 Adaptive Toolbox

Complementary to these works, Gigerenzer [2003] describes the “Adaptive Toolbox”, as a
way of thinking about ecological or bounded rationality — that is, how they act on the basis
of incomplete knowledge about a problem domain. One’s Adaptive Toolbox is a measure of
one’s ability to make decisions with limited time or knowledge.

The model is constituted thusly:

• A set of rules for using heuristics.

• A set of core mental capacities.

• A set of heuristics for solving a particular problem.

Thus, the Adaptive Toolbox prescribes how humans integrate heuristics into their decision
making and problem solving processes.

It is clear that, given the propensity for CLI domains to expose huge sets of referents, that
human problem solvers may almost always act on the basis of incomplete knowledge when
using CLIs.

Todd and Gigerenzer [2001] also describes how NDM processes can be formally modelled
using the idea of Adaptive Toolboxes, using the example of a prescription of a model for
heuristic search.

CHAPTER 2. LITERATURE REVIEW 35

2.3.6 Collaborative Models

It is possible to think of computation helpers of problem solving as qualified agents which
collaborate with their human counterparts. New facets of a problem solving exercise emerge
when artefacts with agency are considered.

Klein et al. [2004] explores some requirements for collaborative human-agent systems:

• Parties enter into an agreement that they wish to work together (the “Basic Compact”
[Klein et al., 2004]).

• There must be some interpredictability between the actions of parties.

• Parties must be able to direct each other.

• “Common ground” — that is, a shared understanding of information available to all
members — must be maintained between parties.

Various issues that arise when dealing with human-agent systems are also discussed in
light of these requirements. These mainly touch on the difficulties in fulfilling the basic
requirements for collaboration.

One issue in particular is the ability for agents to adequately model the intents and actions
of other participants. This is vital in allowing agents to assist in problem-solving exercises

— understanding when a human participant is struggling to solve a problem or how they are
proceeding down a standard path to a solution.

Understanding must be developed in all parties through successive interactions with one
another. While humans engage in learning by exploring a problem space, intelligent artefacts
can learn about the human actors within a problem space, too. This may be in conjunction
with learning about the problem space itself from a human actor.

These sorts of intelligent artefacts can utilise the information they learn to assist human
actors in problem solving activities. Indeed, in the context of shifting attitudes towards
hybridising graphical interfaces, and the incorporation of intelligent artefacts in these,
such as chatbots [Štolfa, 2016], these issues seem extremely pertinent to contemporary
development of CLIs.

2.3.7 CLIs for Problem Solving

It seems that the role of CLIs within problem solving remains to be discovered. It is possible
to explore CLIs in their roles as windows into a specific domain or problem environment.

CHAPTER 2. LITERATURE REVIEW 36

However, they might also be appraised as a way to expose collection of tools which can be
used to assist problem solving within a domain.

The way in which humans use tools is a topic explored thoroughly from an ecological
standpoint [Gibson and Ingold, 1993], as well as from a cognitive psychological standpoint.
Artefacts are recruited to help solve problems, and in doing this, they become tools for
problem solving. This recruitment of tools, particularly within CLIs, might be understood
as an “exploration” of sorts — gaining an understanding of what referents and objects in
your environment can do, and how they can help achieve some goal.

How human beings make decisions directly affects the design of a CLI tool for the purposes
of problem solving. The question remains as to what nature of decision making CLIs can
support in order to augment the problem solving process. Perhaps they must support both
deliberative and heuristic methods to be effective.

2.4 Command Line Features

By exploring key issues surrounding the CLI paradigm and examining models of human
problem solving, we are able to identify particular design aims which must be addressed.
In order to gain an understanding of how these usability defects can be mitigated, some
enhancing features of CLIs will be explored, and appraised with respect to their ability to
support problem solving processes.

2.4.1 The Unix Philosophy

The Unix Philosophy is presented here as a philosophy which lends some perspectives on
the design of effective control languages for CLIs. Kernighan and Mashey [1979] initially
proposed aspects of this design philosophy, which were later formalised by Bergeron et al.
[2003] as the following three rules:

• Write programs that do one thing and do it well.

• Write programs to work together.

• Write programs to handle text streams, because that is a universal interface.

These rules are proposed as “cultural norms” which Unix developers should abide by, such
that tools can be easily maintained and repurposed.

However, Norman [1981] criticised the initial form of the philosophy detailed by Kernighan
and Mashey [1979], stating that the way engineers comprehend and form a cognitive model

CHAPTER 2. LITERATURE REVIEW 37

of a system should necessarily be different from cognitive models held by end-users.

It seems that some sentiments of the Unix Philosophy can be observed to be beneficial
to users, as they place importance upon the simplicity of referents, but it is pertinent to
bear in mind that it was originally proposed for the benefit of software engineers and not
end-users.

2.4.2 Unlimited Aliasing

Wobbrock et al. [2005] details an approach to designing CLI syntax known as “Unlimited
Aliasing”, where any command word can be typed and interpreted with respect to a referent.
This permits the so-called “Sloppy Syntax”[Miller et al., 2008] paradigm, where users do
not need to learn or memorise the syntax of a control language. In this paradigm, labels
and connectives can be in any order or omitted, parameters are automatically matched and
synonyms for labels can be used.

Figure 2.1: Miller et al. [2008]’s web CLI, Inky. Incorporates “Sloppy Syntax” and realtime
visual feedback. (Source: Miller et al. [2008])

This paradigm makes the CLI significantly more beginner friendly — new users are able to
operate within and explore a problem space almost instantly, with no learning overhead. This
is because Unlimited Aliasing solves the vocabulary problem of CLI interaction. However, it
is also not without it’s disadvantages — users no longer have the safety net of syntax errors
to prevent unwanted action from occurring. Indeed, there is possibility for the artefact’s
interpretation of a user’s request to be wrong in potentially catastrophic ways.

CHAPTER 2. LITERATURE REVIEW 38

2.4.3 Natural Language Processing

Similar to Unlimited Aliasing, the aims of Natural Language Processing (NLP) are to derive
intention or meaning from natural language command phrases issued by a user. Real world
application of this technology is typically seen in intelligent personal assistant applications
such as Apple’s Siri.

NLP, as distinct from Unlimited Aliasing, aims to act on fully formed phrases or pieces of
human language, rather than simple unstructured sets of keywords — structural elements
of language, such as grammar, play an important role.

Groth and Gil [2009] details an approach to the design of a tool which utilises NLP for
specifying scientific workflow — this is an example of a specialised, reflective problem solving
activity. The study concludes that their system must deal with well-known phenomena
related to NLP, including “ambiguities, lack of referents, and unresolved attachments”. It
is suggested that systems based on controlled natural language, with well defined grammar,
might be more feasible, whilst still retaining the benefits of NLP.

Groth and Gil [2009] also seems to suggest that allowing a user to define their intent to
action in their own words might enable them to more effectively conceptualise about the
problem space they operate within.

2.4.4 Domain-Specific Languages

Domain Specific Languages (DSLs) can and have been utilised for symbolic input with CLIs.
Freudenthal [2010] describes DSLs as executable specification languages that offer expressive
power focused on a particular domain. They typically constitute a formal grammar and a
set of command symbols which resonate with their domain expert users.

DSLs allow a different approach to operability of a command syntax than that of NLP and
Unlimited Aliasing. They allow users to define their intent to action in terms of the domain,
but also promote rationalised and uniform structure. This suggests support for decision
making within rational problem solving processes.

2.4.5 Visual Feedback

Miller et al. [2008] details an approach to integrating graphical elements within CLIs. These
graphical elements permit realtime visual feedback as the user types commands, and in
some cases enhances functionality.

CHAPTER 2. LITERATURE REVIEW 39

Figure 2.2: Groth and Gil [2009]’s CLI tool for constructing scientific workflows. Integrates
NLP and visual function composition. (Source: Groth and Gil [2009])

This increases the interactivity and engagement of the CLI user experience. The internal
state of the application is exposed to the user as the interpretations of the user’s command
are continuously revised.

This allows users to incrementally revise their commands in turn, allowing them to see
where errors have been made or parameters have been missed out before the command
is submitted. This solves the poor visibility issues that CLIs typically exhibit, and more
greatly enables users to search the affordance space of the interface.

The real-time interactive aspects of this sort of feature promote reflexive decision making as
prescribed by RPD models [Klein, 1995].

CHAPTER 2. LITERATURE REVIEW 40

Visual Function Composition

As discussed priorly, Groth and Gil [2009] details an approach to a tool for the construction of
scientific workflows. These workflows, when constructed, are shown visually as flow diagrams.

This visually externalises the flow of the user’s data through different application functionality.
It is clear that this may be an effective method of allowing a user to plan, iterate on, and
reason about solutions within a problem space.

2.4.6 End-user programming

End-user programmers are defined as those who create programs which “are not the end in
itself, but rather a means to accomplish their own tasks or hobbies” [Cao et al., 2010]. Many
CLIs support end user programming via scripting. On Unix based systems, for example,
this can be done via Shell scripting, or extensions thereof. End-user programming enables
CLI users to effectively automate complex manual tasks for a massive number of cases.

Shells are cited [Kernighan and Mashey, 1979] as an interactive form of end-user programming
— commands are applied iteratively to a problem space to achieve a goal state. This is
an interesting perspective in the context of problem solving. The combination of rational
problem solving benefits of a programming language with interactive elements permitting
RPD warrants inclusion in a general design approach to CLIs.

Macroinstructions

Macroinstructions (or simply macros), are rules which specify how a set of inputs should
be mapped to a set of outputs according to a defined procedure [Greenwald, 1958]. These
procedures can form part of a user defined functionality within CLIs. Users apply an alias
to a set of commands which execute together to produce an intended output for given
inputs. Features permitting this might enhance planning processes within problem solving
scenarios.

2.4.7 Wildcard Expansion

Wildcard expansion is a feature within many CLIs, particularly in file based systems which
use a specific instance of this, known as file “globbing” [Kerrisk].

A wildcard is a character which is used to represent multiple characters. Therefore strings
with wildcard characters actually represent a set of strings. Wildcard expansion, therefore,
is the process of finding all objects whose names exist in the set of strings represented by

CHAPTER 2. LITERATURE REVIEW 41

Figure 2.3: The Bash interactive shell [GNU]. Enables interactive end-user programming.

the wildcard string.

Wildcard expansion is a powerful form of search which allows an end-user programmer to
obtain and manipulate a set of objects within a problem space. This powerful mechanism
may aid a user in thinking about problems in a set-oriented way — one in which tedious
tasks can be transformed into efficient iterative processes.

2.4.8 Command History

Most CLIs permit the visibility of commands that have been typed previously in some way.

Unix command line tools, for instance, allow a user to press the up and down arrow keys to
scroll through their previously typed commands [TLDP]. These can be edited and executed
in the normal way. This feature actually affords a form of error recovery — when an

CHAPTER 2. LITERATURE REVIEW 42

Figure 2.4: Example of wildcard expansion in Terminal [Apple, b]. Providing the option
*.tex to ls lists all files with a .tex extension.

erroneous command is issued, the user can simply press the up key, correct the command
and then re-run it.

Some Unix shells also provide a history command, which shows a complete list of the
previous commands [TLDP]. There are also certain shorthand commands which allow a
user to re-execute the nth previous command [TLDP].

Helping a user remember what they have done previously may promote an understanding
of their journey towards the solution to a particular problem. It seems that command
history, when presented back to a user, might be conducive to recognition-based reasoning,
as previously discussed (section 2.3.3).

CHAPTER 2. LITERATURE REVIEW 43

2.4.9 Contextual Autocompletion

Shell enhancements such as Fish [Doras] and zsh-autosuggestions [de Arruda, 2013] inte-
grates command suggestions into CLIs. These suggestions appear interactively in a dim
colour as a user types, and are based on the context in which they are typed, and the
user’s command history. Pressing a confirmation key such as tab or left arrow automatically
fills in the suggestion. This essentially affords a more rapid way of accessing command history.

These sorts of autosuggestions offer users the opportunity to more rapidly search for and
re-execute commands they have typed before to CLIs than they would otherwise.

Figure 2.5: Demonstration of zsh-autosuggest [de Arruda, 2013].

Such a feature can be extended to showing a user what is afforded by the interface by
displaying any possible or relevant commands. This may help support decision making
processes the user undertakes when solving a problem, or help users to learn what actions
are possible within a problem domain.

CHAPTER 2. LITERATURE REVIEW 44

2.4.10 Spelling Autocorrection

The goal of spelling correction is to validate typed user input with respect to a given
dictionary. Autocorrectors do this by automatically changing incorrectly spelt words in a
user’s input to “the most likely correct word” [Peterson, 1980].

Durham et al. [1983] touches on the uses of spelling autocorrection within user interfaces.
These sorts of mechanisms can help prevent the entry of erroneous commands within CLIs.

2.4.11 Reversal Commands

Certain applications with CLIs, enhance robustness by providing undo functionality, such as
AutoCAD’s “oops” command [AutoDesk, 2015]. This command reverts destructive changes
to the drawing environment, but not constructive ones — this preserves progress which
might have been achieved since a mistake was made. This is an excellent example of how
CLIs can support robust interactions.

2.5 Summary

In this chapter, a particular understanding of how users approach problem solving with
CLIs has been explored. This has been appraised from many perspectives by exploring
various models, success criteria, definitions and exemplar artefacts.

2.5.1 Key Issues for Effective CLI Design

An aspect which draws much of this research together is that of better enabling users
to explore operational details of CLIs. In the context of this, we may provide a cursory
definition for a so-called “Exploration Problem”, characterised by the following aspects:

• CLIs which expose large functionality sets typically by definition lack signification of
referents.

• A user must somehow browse or explore a set of valid commands in order to discover
a required set of commands pertinent to solving a problem.

The main focus of this body of research is in the discovery of how CLIs can be enhanced to
solve this Exploration Problem, and of characterising facets of this problem.

Avenues for enabling this through design of a CLI artefact for problem solving include the
following:

CHAPTER 2. LITERATURE REVIEW 45

• Syntax design — the goals of which are to make it easier for a user to comprehend an
underlying domain model, and provide meaningful language for description of aspects
of the problem domain.

• Visualisation — interactively presenting the system’s interpretation of a command in
order to enable search of an affordance space and support reflexive decision making as
described by Recognition-Primed Decision models.

• Command chronologies — displaying the history of executed commands to allow users
to explore patterns in their actions, and understand the path of their exploration of a
problem space.

• Command suggestion — showing a user what is possible by providing signifiers of
afforded commands, given a particular scenario or context.

Chapter 3

Exploratory Study

46

CHAPTER 3. EXPLORATORY STUDY 47

An understanding of the nature of human problem solving and CLIs has been explored
through literature. Consequently, it has been concluded that the focus of this body of work
should be upon the Exploration Problem of CLIs. In particular, chapter 2 identified syntax,
command chronologies, and suggestions as areas of potential.

To better inform attempts at the design and implementation of an enhanced CLI, primary
research of expert CLI users was conducted to deepen and expand on findings from the
literature. This chapter reports an assessment on the salient and sensible aspects of the
goals set out in the Literature Review, which will enable the formation of success criteria
for the design of a CLI.

To begin, the research questions we wish to address will be formally defined with respect to
the literature previously examined. Next, the design and procedure of the study undertaken
will be specified. The main themes which emerge from these procedures will then be
identified and discussed. Finally, these results will be discussed with relevance to the study
questions, and we shall detail a critical analysis of the procedure carried out.

3.1 Research Questions

In order to clearly set out the objectives of the study, several research questions are pre-
sented here, which informed the method carried out. These questions are based on the aims
previously discussed, in order to cement the foundation of knowledge previously obtained
and to explore other avenues of interest.

Mirel [2004] highlights the importance of the examination of usefulness when it comes to
designing software artefacts that help solve problems, as well as secondary concerns such
as usability. Complex problem solving applications should, after all, be recognised as a
“distinct class of software with its own usefulness demands” [Mirel, 2004].

Thus, it is important to question whether users find CLIs useful for solving problems at all.
It may be suspected that this only applies to certain sorts of problems, or problems that
are characterised by aspects which CLIs readily address.

Expert users may also have CLI tools of choice for solving day-to-day or specialised problems
— these might be examined to attain an insight into how CLIs can be useful.

Therefore, this study should set out to explore, in principle, the following questions:

• In what way do CLI users recognise the utility of CLI tools for solving problems?

CHAPTER 3. EXPLORATORY STUDY 48

• What characteristics of CLI tools make them helpful for solving problems?

• What affects the experience of CLI users when problem solving?

• What are the characterising features of problems which users find CLIs are helpful in
solving?

• What do expert users value in their CLI experiences?

3.2 Design of Study

This study mainly comprised of interviews with a group of expert users of CLIs. They were
asked to informally demonstrate typical usage of a familiar CLI environment, and then a
series of semi-structured questions were posed relating to the demonstration.

Recordings of interviews were qualitatively analysed through Thematic Analysis [Braun and
Clarke, 2006]. This technique was suitable because it emphasises the examination patterns
or themes within qualitative data, which allows meaningful and salient aspects relating to
the research questions to effectively be discovered. Screen capture recordings were also be
taken to contextualise and supplement this data.

In doing this, we aim to gain the perspectives of expert users of CLIs, which help to answer
the research questions posed.

3.3 Procedure

Here follows a detailed description of the procedure carried out. This procedure was designed
in accordance with the University of Bath Computer Science Ethics checklist (see form in
appendices).

3.3.1 Participant Recruitment

Participants were acquired through personal interaction with members of the University
of Bath Computer Science department. Only those who showed interest in or claimed to
have prior experience of command line technologies were selected. Each participant signed
a consent form — these can be found in the digital appendices, and a copy can be found in
the digital appendices.

CHAPTER 3. EXPLORATORY STUDY 49

3.3.2 Interviews

Participants were each interviewed for 1-3 hours in quiet, undisturbed environments. They
were encouraged to bring laptops which had a CLI that they were particularly familiar with.
If consented to, participants were recorded via audio and screen capture, but notes were
also taken to supplement these.

The interview was conducted in a semi-structured manner, centring around a few key
aspects. Participants were first asked to reflect on the CLI technologies they use, and asked
to demonstrate tasks they typically do or have done recently with a CLI — fabricated tasks
may be introduced to demonstrate more nuanced functionality. There followed a discussion
about their experience and use, with respect to various aspects or themes pertinent to the
research goals, including the following prompts:

• Exploration — how do participants browse for resources required for task success?

• Discovery — what methods of discovering features pertinent to task success do
participants find useful?

• Usability — what makes a CLI more or less usable?

• Efficiency — how do participants engage in CLI interaction with low cognitive or
physical effort?

• Flow — how do participants experience or achieve states of fluent action?

• Syntax design — how does the design of a control language affect a participant’s
experience?

• Information visualisation — how do participants feel about visual elements within
CLIs?

• Command history — do participants find command histories useful, and if so, why?

• Command suggestion — would or do participants find command suggestion mechanisms
useful?

3.3.3 Audio and video transcription

After the data was gathered, PopupArchive’s automatic transcription service was applied to
the audio recordings. The transcription was edited where appropriate in order to improve
the quality.

CHAPTER 3. EXPLORATORY STUDY 50

3.3.4 Codification of Data

The codification of the transcript data was carried out largely on the basis on procedures
outlined by Braun and Clarke [2006]. The transcription was read and re-read along with the
recordings to garner a high-level understanding of the data gathered. “Low level notes” were
taken, whereby the pertinent aspects of every conversation were highlighted and captured.
This text was annotated at the relevant parts of the transcript to achieve proper situation
within the data.

After this process was completed, the notes were collapsed into codes — short two or three
word phrases which successfully captured the overarching sentiment of each conversation
point. Efforts were made in places to transcribe variations in speech, such as emphasis
or inflexion, in order to correctly capture the sentimental content, by again listening to
the recordings in real time. This process produced a document of codes, which effectively
describe how the data addresses the research questions.

These codes were reviewed again, and unified within a set of thematic titles which accurately
represent at least two or more captured codes. The process undertaken was to produce
some initial themes based on a current sense of the data, sort codes into those, or into
a miscellaneous section where no other section was appropriate, and then repeat this re-
cursively on the miscellaneous section until appropriate. References to the person whose
conversation produced the code through colour-coding, as well as the order of appearance of
codes, were maintained. The themes and their “force” were then analysed with respect to
the surrounding literature. Claims that are made about the data were verified via “member
checking”, whereby the original codes were used to trace specific conversation points being
used to support the claim.

In light of this, great efforts were made to achieve necessary submersion in the data; this
process alone took around 40-50 hours.

The documents generated during this process can be found in the digital appendices.

3.4 Participant Profiles

Table 3.1 displays some information about the recruited participants, the technologies they
decided to demonstrate and how many years they had been using the technologies described.
Whether participants consented to audio or screen capture recordings is also indicated.

Participants provided no explicit consent to the use of their name within this report, and
therefore their names have been replaced in the interests of privacy.

CHAPTER 3. EXPLORATORY STUDY 51

Name CLI Technologies of Choice Experience Audio Screen
Capture

Dannielle Bash [GNU], Git [Torvalds] 3 years Yes No

Yvan Fish [Doras] 2 years Yes Yes

Amy Zsh [Falstad], TMux [Marriott], Kon-
sole [Doelle]

6 years Yes No

Rowan Bash [GNU], Curl [Stenberg],
Python [van Rossum] REPL

3 years Yes No

Ellen Linux Shell, Vim [Moolenaar] 10 years Yes No

Table 3.1: Table displaying participant information.

3.5 Thematic Analysis

Here follows a description of the themes produced from encoding and unifying processes.

3.5.1 Enhancing the Base Experience

All participants discussed enhancements of a “base experience” or vanilla distribution
through customisation, and those that opted to not customise their experience were already
using enhanced CLI tools.

It is unclear to what extent a CLI tool will always need to be customised by a user, or if there
is something intrinsically inadequate about the CLI experience that is consistently resolved
by expert users. When questioned in what way they would improve the base experience of
CLIs, participants often alluded to adding intelligence or contextual awareness to the com-
mand line in some form, though they did not always agree on whether this would be effective.

Many participants expressed their annoyance with reconfiguration when moving to different
command line tools, and this might be in part attributed to that fact that users must
re-solve problematic features of the base command line experience.

User Customisation

Participants appeared to customise their CLI tools to varying degrees, ranging from none
at all, to heavily alterations from the base experience. Where users did not customise their
tools, it was typically because they used command line tools which came with optimising
features such as autocomplete — such was the case with Yvan and his usage of Fish [Doras]:

CHAPTER 3. EXPLORATORY STUDY 52

“I haven’t changed much about my setup”, “has nice extra features”.

Some participants discussed their use of “dotfiles”, such as the standard bashrc file within
Unix systems, for specialised startup actions and environment variables, but there is no
evidence to suggest that they are utilised ubiquitously.

Ellen in particular touched upon how customisation can allow a command line user to
streamline their experience by narrowing down their feature sets to only the tools they
understand or know they want to use: “You can customise it easily so... you don’t have
to have a bunch of stuff you don’t want”. This has some interesting implications for
conceptualisation; perhaps smaller feature sets within a CLI are easier to learn?

Many participants made it clear that they appreciated the ability to personalise and
customise visual aspects of the command line, such as colour and font, and some touched
upon the value of certain aesthetic choices such as monospace readability.

Shell Intelligence

All participants offered their perspectives on context aware intelligence resident within a
command line tool, sometimes as a response when questioned how they would improve the
base experience of CLIs. Such an intelligence could provide suggestions or recommendations
based on the tasks being performed by the user.

Participants often stated that there are problems with the CLI paradigm that such intelli-
gence would solve. However counterpoints to this were also offered — intelligent intentions
could disrupt or fault the user’s own intentions, for instance, or incorrect suggestions could
be costly in the context of a critical task.

“Possibly some sort of context aware help mode... recognises what state you’re
in” — Dannielle

“I don’t need something offering suggestions to me” — Amy

Indeed, it seems pertinent at this juncture to refer to the works of Klein et al. [2004], which
details how artificially intelligent agents can play a collaborative role in human problem
solving — it is clear that there are some challenging aspects to overcome, but there is
significant benefit to be achieved from these methods.

CHAPTER 3. EXPLORATORY STUDY 53

3.5.2 Reflexive vs Reflective Action

Several participants referred to certain actions as “innate”, meaning sufficiently overlearned
so that they were produced automatically when certain situations or trigger conditions were
encountered.

User action within a command line appears to lie on a continuum of this sort of “innateness”,
which dictates how rapidly a user can carry out their intent. There is evidence to suggest
that there is a translation step which occurs which transforms a user’s intent into a command
they must type, although in some cases this action might be more nuanced.

Many basic options, such as navigating, gaining visibility and searching have a short or
instant translation step, whereas commands required to solve nuanced problems may require
a longer translation step, sometimes even requiring the aid of documentation.

At this point, we might invoke works from Evans [2008] on Dual Process Theory — it is
clear that some distinction on these lines can be observed in the sorts of actions described by
participants. Other works which increase the force of these notions are aspects of Norman
[2004]’s levels of design.

Basic Operations

Participants described basic operations as being those which have entirely predictable and
deterministic behaviour, and are often similar or consistent across different shells.

Some participants indicated that certain actions were almost habitual, and in some cases
described a negative effect on their experience from habits which were suboptimal or degener-
ate — typing the ls command too often, or clearing the screen and losing vital information,
are amongst those described.

Every participant touched upon the concept of workflows, whereby commands are typed in
a defined sequence consistently to accomplish a recurring task. Yvan in particular indicated
that these workflows habitually emerge and examples cited included compilation or file
management.

Many participants discussed “innateness” of certain actions when working with a command
line. This was often described as being second nature and without reflection, the tool they
used simply “fading into the background”. These sorts of factors suggest ideas of a virtuous
flow experienced by expert users of command lines — Amy in particular alludes to this,
stating that for such action, “... intent is translated fairly fluently into action with no

CHAPTER 3. EXPLORATORY STUDY 54

conscious planning process”.

Indeed, it would seem that parallels may be drawn between these notions and aspects of
RPD models proposed by Klein [1995]. “Innate” actions seem to be those which are taken
on the basis of highly recognition-primed decisions.

Intent-Command Translation

The idea of a translation of intent to a command is brought up by most participants —
that there was a syntax barrier to overcome, or that their plain-english intentions had to
be reformulated into command language. One participant stated, however, that no such
translation step was experienced by them — their intents manifested directly as commands.
It is not unreasonable to assume that this is down to a high level of expertise, and as such
the perceived translation is instant.

Participants described situations where they knew what it was they needed to do, but were
not sure how to perform the action with a command line. This can be attributed to the
discoverability problems of CLIs.

Often, users must defer to trial and error, or seek help from documentation or help from
peers. This hampered act of discovery directly opposes the efficiency goals described by the
participants because it often constitutes a context switch away from the CLI tool.

In some cases, participants reported that they were discouraged from looking for better ways
to solve problems, and often made do with less efficient uses of more well-known commands
in order to solve a nuanced problem.

“Sometimes it’s quite annoying to find out how to do something... you might
know a really easy solution but you don’t know what the [command] is... and
sometimes it takes such a long time to find the correct solution that it would
have been faster to do it in a different way.” — Rowan

It seems that Rowan is describing how the formulation of his intentions is easily done, but
action specification is not always immediately possible. Indeed, we may invoke works such
as Norman [1988]’s Human Action Cycle, which details steps in which a goal is translated
into a sequence of actions, to provide force for these claims. It would seem that the notions
relating to the Gulf of Execution [Norman, 1988] are applicable here too.

CHAPTER 3. EXPLORATORY STUDY 55

Novel Problems

There is evidence to suggest that discoverability problems with CLIs are most pronounced
when users of CLIs are faced with nuanced problems — these are tasks which participants
describe as being outside their habits, atypical or complex. This can likely be attributed to
the fact that these tasks require tools or referents which lie outside of a user’s immediate
expertise.

Participants stated that it is often faster to resort to trial and error when attempting to
discover a required piece of functionality. In this regard, they stated that they enjoyed “did
you mean” command suggestions within error states1, and that their environments were
forgiving of mistakes — commands may be used without prior understanding or assurances
of validity.

Dannielle, in particular, postulates that discovery through trial and error aids in learning
processes and helps one remember a solution to a problem. We may at this juncture invoke
Thorndike [1927]’s foundational theory of Connectionism, which provides force for claims
that CLI users learn through trial and error processes.

Some participants discussed the inadequacies of manual pages, the native documentation
format, often stating they were unsearchable, not well laid out or simply inadequate for
discovery of functionality. Dannielle emphasises this: “I would also google it... -help is
good when you’re asking ‘what can I do’ and bad for ‘how can I do this’”.

Help flags are praised by some participants as allowing them to perform quick documentation
checks on a known command — the minimisation of context switching is often cited as an
important advantage. This highlights an interesting distinction for the Exploration Problem
previously set out — knowing if a piece of functionality exists, versus knowing how to carry
out one’s intent with the command language provided. Does the referent exist, and if so,
what’s the command for it?

The inadequacies of in-application documentation are further highlighted by the fact the
participants state that they often defer to searching online for a solution to a nuanced
problem. As Amy highlights, “If it’s something esoteric... I’d probably google it”.

Though participants tend to state that this can be a good learning mechanism, or useful
for discovering the best solution to a problem, it can be argued that this worsens the
Exploration Problem by increasing overhead of referral. We can invoke works such as
Pashler [1994] that increase the force of claims stating the deficiencies and overheads

1Git workflow errors were often cited by participants as a good example of this.

CHAPTER 3. EXPLORATORY STUDY 56

of context switching. Rowan in particular states that switching to a browser to check
online documentation is distracting, and constitutes a costly context switch. This inade-
quacy obstructs the command line user’s most important goal, speed and efficiency of action.

It is unclear, however, whether in-browser documentation should continue to play a role
in a command line user’s experience. Many participants state they prefer well-formatted
documentation presented online, and that the context switch isn’t a severe problem for
them as long as it is short in duration. Perhaps the solution to this is to provide better
formatted in-application documentation for command-line users.

3.5.3 Efficiency

Across all participants, the goal of all participants was to achieve a fast or streamlined
experience with the command line which required the minimum amount of effort.

Most participants discussed the strengths of command lines in terms of how they provide
them with the ability to complete tasks swiftly, and provided them with an unobstructive,
unobtrusive and undistracted experience. This can be attributed to the fact that CLIs
expose a large amount of functionality structured by languages with powerful syntactic
structures — that is, they allow users to complete huge tasks simply by typing a few short
phrases or symbols. However, many aspects of the CLI experience also stand in the way of
this goal.

“...things that would streamline my usage, help make things go quicker and
make things easier to understand and guess.” — Yvan

Completing Tasks Quickly

Participants describe obstructions, obtrusions and distractions as distinct factors which
prevent them completing tasks quickly.

Obstructions are discussed by the participants as being factors which stand in the way of
useful action. Examples such as unexpected effects, organisational procedures and under-
standing a problem are cited as obstructive factors.

Participants describe obtrusive factors as those which disrupt the formation of their intent in
some way — this is often brought up in discussions surrounding context-aware suggestions
or help mechanisms for the command line.

Distracting factors are those which participants commonly described as “breaking their
flow” — presentation of unwanted information or context switching are strong examples of

CHAPTER 3. EXPLORATORY STUDY 57

these. It is clear that these distractions could occur at a visceral level — due to eye-catching
or rapidly changing visual features — but these may also arise to a reflective need to
self-interruption. The force of this claim is supported by works on multitasking from Payne
et al. [2007].

Some participants discuss the importance of only having to use a keyboard in their inter-
actions with the command line, in the context of rapid use. Amy highlights a particular
benefit: “The mouse is annoying... there’s a lot to be said for not having to move between
keyboard and mouse... I would prefer not to have to use the mouse”. This is amongst
other discussed benefits, such as muscle memory, “home-row” navigation and the speed of
touch-typing as promoting rapid and natural expression of intent.

Power of Expression

Power of expression is a large part of what drives the efficiency of CLIs, and can be attributed
to various features of traditional CLIs — participants often touched upon these in the
context of what made CLIs useful for solving problems.

“It’s way more powerful you save so much time” — Ellen

Composition — the ability to combine pipelines of tools — is the most often cited example
of a powerful method for solving complicated multi-step problems. Amy, in particular,
discussed this feature in the context of the Unix Philosophy — the provision of a large set
of small, composable tools is evidently conducive to deriving solutions to novel problems.
Having a standardised format of input and output appears to be central to the usefulness
of this feature.

Many participants stated that they felt they had unprecedented control over their environ-
ments of operation when using a command line, and that it was important to them to feel in
control. There is evidence to suggest this manifests itself in the ability to acquire complete
information, deterministic action and complete knowledge of a particular set of tools.

Some participants stated that they enjoyed the ability to script complex actions in efforts
to automate the solution to a recurring problem, though not all participants described their
use of scripting.

Most participants touched upon ideas of utilising multiple sessions — in some ways used
to divide up different projects, but also used concurrently for the same task, suggesting a
maintenance of foreground and background processes.

CHAPTER 3. EXPLORATORY STUDY 58

A few participants discussed the usefulness of re-triggering commands they had used in the
past, either by pressing the up arrow, or through a reverse lookup mechanism. This allows
very complex commands to be repeated instantly on demand — a powerful and essential
feature of the command line paradigm.

Many participants also discussed the merits of package management as a tool for being able
to rapidly integrate new and helpful functionalities into their workflow.

3.5.4 Learning

Descriptions from the participants show that the learning experience of command lines is
highly dependent upon memorability of command syntax or names.

Most participants claimed that their initial usage was or felt forced, but continued to use
them due to advice from peers. This may be attributed to the fact that commands are very
often difficult to remember.

In addition to these facets, the learning and discovery of new commands is often described
as “needs-driven” and thus never done ahead of tasks that the participants had to perform.

Memorability

Participant’s responses often highlighted an interesting distinction between the memorability
of commands and remembering that a particular referent exists. This offers some additional
insight to the Exploration Problem.

“There are so many commands that don’t mean anything... [flags] are sometimes
really unhelpful... weird orders... they’re just inconsistent” — Rowan

“Not all of the commands are logically named... completely different operations
can have the same name... ambiguity is really common” — Dannielle

Almost every participant had something to say for what made syntax forgettable, citing
deficiencies such as meaningless names, unlearnable acronyms, parameter orders and in-
consistent flag characters/formats. Particular details of tools and commands which were
ambiguous in their purpose were also noted as oft-forgotten. These factors perhaps indicate
a greater problem with efficiency-optimised syntax and its subsequent detriment to the
command line experience. The force of these claims relating to deficiencies is supported by
notions discussed by Norman [1981].

CHAPTER 3. EXPLORATORY STUDY 59

All participants offered their opinion on what made command syntax memorable — these fac-
tors centred around higher guessability and cues to memory. Guessability factors described
included well labelled commands and flags, similarities and consistency between tools, being
able to safely experiment via trial and error and flexible or predictable parameter order.
Cues to memory described included meaningful command acronyms, command aliases and
helpful errors.

The importance of factors such as memorability and guessability within interaction design
is supported by works such as Wobbrock et al. [2005] and design heuristics proposed by
Preece et al. [2007].

Learning Paths

“There’s so much more to know, I just haven’t had cause to know it... it’s
opportunistic skill improvement, you improve because you need to do something...
my mentor said to use ‘awk’” — Amy

All participants eluded in some way to peers being a driving force behind their learning
efforts, stating that they received helpful suggestions for commands or advice on nuanced
aspects of the command line. In some cases, participants also stated that they liked seeing
how other people approached problems, or discover a more expert user’s approach to find
the most optimal solution to a problem. The force of these notions is supported by works
within the field of activity theory [Kuuti, 1996], which proposes that community plays a
vital role within a domain of activity.

Some participants stated that their learning was often only by necessity or was “opportunis-
tic” — commands are not typically learnt ahead of when they are needed and this learning
is typically driven by means of their use. This introduces a recurring obstruction to the
efficiency goals of command line users.

A common and interesting theme was how peers or a work environment “forced” participants
to initially use command lines in order to convince them of the efficiency benefits they bring.
Participants stated that, as new users, they felt the CLI experience was less friendly, and
that the learning curve was steep.

3.5.5 Conceptualisation

Perspectives offered by the participants demonstrated the value of conceptualisation when
tackling a problem with a CLI. It appears that the participants’ approaches to problems are
typified by splitting up the problems into parts which can be solved by individual commands

— the conversational interaction provides a framework for understanding the solution to a

CHAPTER 3. EXPLORATORY STUDY 60

problem.

The participants also discussed how the composition of commands enabled them to succinctly
phrase the solution to a problem. Dannielle in particular stated that the command paradigm
itself aids in understandability — that typing commands helps one understand their goals,
allows their intents to be clearly specified and thus clarified, in an almost self-questioning
mode of action.

Understandability

All participants in some way alluded to the value of understanding the tools that were at
their disposal within a command line, often pointing out when certain aspects did not help
or hindered their understanding of a particular aspect. The participants often valued an
idea of complete systemic knowledge of their tools of choice. Dannielle highlights this by
stating “[commands] make sense if you understand the underlying model”. The force of
these claims is supported by works into mental models, such as Halasz and Moran [1983],
which demonstrate the positive effect of an effective mental model on problem solving
activities.

Many participants discussed how they conceptualised or visualised certain aspects of CLIs
mentally as an internal model. One such example, provided by Ellen, prescribes navigation
of folder structures as cave exploration, with deep and branching paths.

Participants offered various ways in which command lines could support a better under-
standing of a systemic model, making particular reference to ways in which information is
represented. These included output which is “directly” parsable, syntax highlighting and
use of domain specific language.

Visibility of particular information was also well a covered theme when discussing aids to
understanding — aspects such as processes, side-effects, context, status and static infor-
mation must be shown to a user when convenient. Design heuristics proposed by Preece
et al. [2007] add force to the notion that, for CLIs to be effective, they must provide timely
visibility of system state.

Another part of user understandability is being able to know what one wishes to do next.
Most participants stated that they typically understood what the next action in a sequence of
actions was, but that factors such as ‘did you mean’ error messages or command suggestions
could plausibly assist this process.

CHAPTER 3. EXPLORATORY STUDY 61

Divide, Compose and Conquer

Some participants discussed a clear “divide and conquer” approach to solving problems
with their command line tools, and there is evidence to suggest this is the prevailing
methodology for other participants. Yvan states that the command line “makes it easy to
compartmentalise issues... helps you split down a problem”.

Participants also often discussed composition of commands in a way which supports this
proposed methodology; separate and standard functionalities, which each solve part of the
problem, being combined in a thoughtful and ordered way to achieve a solution.

Most participants stated the usefulness of their action history when attempting to remind
themselves how a particular process worked, or picking off where they left off from a previous
session.

3.5.6 GUIs in Contrast with CLIs

Most participants acknowledged the importance of GUIs as a better paradigm for certain
tasks over CLIs. Reasons given included that they were more intuitive, or worked better for
very complex tasks with visual elements.

A lot of participants also described their rejection of GUIs, claiming that visual elements
were gratuitous, or that they just disliked them.

3.5.7 Security from Error States

Participants’ descriptions emphasise the importance of dealing with error states within a
CLI — actions were described often as destructive, and where this went wrong diagnostic
elements or recovery mechanisms needed to be utilised.

Some participants stated that aspects such as destructive action verification and incorrect
syntax highlighting can help prevent errors before they occur.

The crux of the desire for reversal appears to be to abort undesired states that a user
finds themselves in. When asked how to reverse a particular action, Amy simply stated
“snapshots” — it is unclear whether snapshots were seen as viable reversal options by other
participants, however. Others stated the addition of an “undo” command would be useful,
provided that the use of such a command had a transparent effect on the state of the system.
Indeed, studies such as Cass et al. [2006] add force to claims that undo functionality is only

CHAPTER 3. EXPLORATORY STUDY 62

effective if users are able to understand it.

Participants had various suggestions for what allowed easier diagnosis of error states —
these were mostly concerned with the form and understandability of the error messages
produced by the command line, and the incorporation of suggestions for consequent action.
The way in which participants also discussed action history also suggests that this is another
mechanism which can provide some form of diagnosis.

Some participants touched upon how safe or forgiving command line environments can be
conducive to their experience as a whole — this highlights the value of security from error
states. In light of this, participants also stated that critical actions within a command line
made them fearful of costly incorrect actions or assumptions.

3.5.8 Miscellaneous Codes

Other miscellaneous points identified by one or two participants included considerations of
computation complexity of operations, and aesthetic value of command lines.

3.5.9 Summary of Themes

In this section, a broad range of themes which exist within the data gathered have been
presented. It seems that crucial aspects which relate to the broader aims of this dissertation
have been explored, including artificial intelligence, knowledge-priming of actions, command
action specification, efficiency of actions and conceptualisation.

3.6 Participant Review of Findings

All participants who reviewed the themes defined above agreed with the points made, and
did not request that changes be made.

3.7 Discussion

To address the research questions previously set out, we can summarise the overarching
sentiments of the findings of this study.

CHAPTER 3. EXPLORATORY STUDY 63

3.7.1 In what way do CLI users recognise the utility of CLI tools for
solving problems?

Experts find the power and expressiveness of many CLIs particularly useful for problem
solving. A common method experts use to exploit powerful expression is divide and conquer.

However, it falls upon an expert user to appraise the usefulness of particular commands in
a given context or domain.

3.7.2 What characteristics of CLI tools make them helpful for solving
problems?

Customisation is often a part of an expert CLI user’s experience. Arguably, expert users
are drawn to this due to a lack of usability features in many CLIs — the base experience of
CLIs appears to be inadequate or dissatisfactory in terms of usability requirements.

In particular, the extent to which experts are able to specify their intent via the commands
available is a key factor to determining how helpful they find a CLI artefact.

3.7.3 What affects the experience of CLI users when problem solving?

Experts often find it easier to solve problems when they can tackle them effectively via
trial and error. However, some provision must exist for security from domain error states in
order to safely perform commands speculatively.

The ability to which expert users can access operational CLI documentation is an important
factor in their experience, but is arguably a flawed method for discovery. This is because
the act of documentation browsing obstructs useful action, and breaks down task flow.

Experts also value being able to form mental models of the domains they work within.
An explanation for this is that models of the domain assist in formulation of intent when
solving a domain problem.

3.7.4 What are the characterising features of problems which users find
CLIs are helpful in solving?

It seems that experts tend to utilise a CLI for two types of activity.

The first are routine tasks, which constitute well-known or over-learnt sequences of commands
to fulfil workflow, maintenance or navigation goals. These are solved in a rapid, almost re-

CHAPTER 3. EXPLORATORY STUDY 64

flexive manner, such that the decisions which underpin their solutions are recognition-primed.

The second are novel problems, which arise from a scenario where an unknown sequence of
commands must be applied to achieve a specialised goal. It may be the case that a user
understands a domain solution to a problem such as this, but they do not know the specific
syntax which allows them to specify their intent. These problems require a user to take
a reflective or analytical approach, or to discover useful, perhaps previously unknown, syntax.

It would seem that traditional CLIs are more primed to help a user achieve their goals if
the activities required fall into the first type described.

3.7.5 What do expert users value in their CLI experiences?

A fundamental desire that expert users of CLIs hold is the ability to carry out efficient action
to achieve rapid task success. They frequently achieve this through heavy customisation,
automation and exploitation of powerful or expressive syntax.

Another aspect that they value is agency and control over their working CLI environment.
That is, the ability to successfully specify their intentions on the basis of their own deci-
sions, but to also personalise and tailor their experiences via customisation and end-user
programming.

In addition, expert users often desire security from error states, which result from issuing
invalid commands, or commands which lead to domain errors. This is because many actions
taken within CLIs are potentially highly destructive, or involve institutionally sensitive
domain objects.

3.8 Critical Analysis

It is likely that the findings here are highly subject to researcher bias, due to the qualitative
and interpretive nature of the data. Thus, findings related to the overall aims of the research,
particularly those relating to themes of exploration and discovery, should not be treated in
an unlimited fashion. It is indeed possible that the data gathered could be interpreted in an
entirely different manner to that which is presented here under different research conditions.

These findings are also limited by the fact that only a small participant sample was taken,
all of whom are computer science students at the University of Bath. This negatively affects
the universality of the claims.

CHAPTER 3. EXPLORATORY STUDY 65

3.9 Summary

In this chapter, we have demonstrated an in-depth investigation into perspectives of expert
users of CLIs and addressed the research questions set out.

We have also discussed factors which show that there is indeed force behind the notion
of difficulties performing action specification within CLIs, the need for operational docu-
mentation checking in these contexts and also the desire to complete these processes in an
efficient manner. This provides force and insight into the Exploration Problem previously
set out. These ideas can be taken forward to derive a specification for a command line
artefact which improves upon the vanilla experience of command line users.

Chapter 4

Designing and Implementing a CLI

66

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 67

In this chapter, a design-focused synthesis of an enhanced CLI for problem solving, which
addresses the Exploration Problem, will be presented.

Building upon the findings from the Literature Review and the Exploratory Study, we will
begin with the derivation of a design specification. Several designs will then be proposed
which aim to address the interface-oriented factors of this specification. A final design will
be selected, developed further, and a formal claims analysis on the enhancing features of this
design will be presented. This chapter closes with some brief notes on the implementation
of the final design.

4.1 Deriving a Specification

When examining the literature and the findings made at this time, one can derive a detailed
specification of requirements for a CLI which addresses the Exploration Problem.

The aim of this specification is to provide a loose framework for the derivation of initial
designs for an enhanced CLI. They, in effect, act as a set of design principles which broadly
address the usability and usefulness requirements of CLI users.

4.1.1 Understanding Basic CLI features

It is very easy to say that CLI artefacts, by definition, have some area for textual input,
and some area for textual output. However, it is pertinent to the goals of this specification
to understand why archetypal CLIs fulfil this definition.

To offer more insight into this, we must refer to the fundamental principles previously dis-
cussed in the review of the literature. The CLI is an interaction paradigm which provisions
vast functionality structured by a control language [Norman, 2007]. In effect, this control
language could take the form of any sort of descriptive symbolic representation, but it is
reasonable to propose that the most universal representation is via text.

Therefore, for the purposes of this specification, we assume that the artefacts to be designed
support the entry of textual input and afford the interpretation of output via text. We
can specify this further by also stating that, this notion of output is only presented as a
consequence of an action of input which preceded it.

4.1.2 Problems to be Solved

It is possible to arrive at a number of broad aims which an enhanced CLI artefact must
address in order to solve the Exploration Problem, or provide a better experience to a CLI

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 68

user. These are explored in the context of design principles for complex problem solving
proposed by Mirel [2004], and more general interface design principles proposed by Preece
et al. [2007].

Promote Efficient User Action

Evidence from the literature and the investigation priorly carried out suggests that a primary
goal of CLI users is the efficiency with which they can carry out useful action. This aim
is, in effect, a maintenance goal of the Exploration Problem — indeed, the possibility of
efficient action should be maintained/enhanced/not eliminated by an artefact which aims
to solve the Exploration Problem.

This aim might broadly be fulfilled by enabling commands to be performed more rapidly, or
the expression of commands to become more powerful — they achieve more work for less
input. Reflexively executed commands which form the basis of routine tasks can also in
fact be actively supported similarly by some means. Automation in some forms, including
provision of end user programming capabilities, is a potential avenue for this.

Repetitive tasks or actions can be supported via some automatic iterative capabilities or by
allowing past commands to be re-executed.

To afford cognitive and physical efficiency, a focus should also be placed upon the use of the
keyboard as an input device, as a mouse or trackpad does not effectively contribute to the
modality of textual input.

In addition, aspects which break task flow, such as elements which are distracting or
obtrusive to a user, should be minimised; obstruction to useful action must critically be
limited. That is, elements which promote other usability goals should be judiciously added
as not to interfere with a user’s efficiency goals.

Promote Understandability of the Domain

It is clear that the design of a CLI artefact can have some effect on the extent to which the
salient aspects of a domain are made clear, though aspects of the control language provided
seem to have the most effect here. Norman [1981] proposed that a principal aim of interface
design in this context is to make the underlying model of the system clear.

Many participants of the Exploratory Study stated the importance of the formation and
maintenance of clear underlying mental models which encapsulate domain knowledge. In-

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 69

deed, an intuitive model that seems to emerge from CLI use is the divide and conquer
approach to solving problems. A reasonable theory for this is that well designed commands
should perform a singular or unitary function, and that these can be combined over one or
many statements of action to construct the solution to a problem. This appears to be a
principle aspect that should be supported in some manner through design.

In conjunction with this, efforts should also be made to increase the parsability of output
text, in part to support associations made between the actions users undertake and their
results, but also to stimulate better understanding of the output content.

Enable Discovery of Useful Commands

Seemingly the crux of the Exploration Problem at hand, a design must address how a user
can discover a required command, where their intended action may or may not be known.
This might involve some sort of parsable presentation of the commands which are possible,
and the enhancement of the user’s ability to appraise the usefulness of presented commands,
both with respect to the context the user finds themselves in. The fundamental goal here is
to reduce the time it takes for a user to translate their intentions into the control language,
by limiting the need to refer to external documentation.

Another way to do this is to support the guessability of the control language, though these
concerns largely lie with the conceptualisation of the domain or provision of language level
constructs such as aliasing, flexible parameter orders, or simply by labelling the commands
in a domain-oriented manner.

Another possible approach is to support an environment where trial and error becomes a
safer activity, possibly by providing security methods such as undo or versioning.

Support Learning

Reviews of the literature have indicated that CLIs are exceptionally beginner-unfriendly,
principally due to lack of visibility, but also because of the presence of a control language
which must be learnt. Efforts should be made to promote the process of learning of the
control language, not just via features of the language such as memorability of labels, aliases
and consistency of format, but also provision of interface level features. These notions are
reinforced by similar concepts explored by Norman [1981].

It is pertinent to bear in mind the insights about learning paths attained from the Exploratory
Study — CLI users typically learn through their peers or in a task-driven way. Thus, we

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 70

can imagine that artefacts for collaboration or crowd-sourced insights might play a role in a
learnability-enhanced CLI, as well as the narrowing of guidance based on task context.

Promote Visibility

The quality of visibility of possible commands appears to be a vehicle for a potential
solution to the Exploration Problem — indeed, a step towards this is in the provision of a
representation of what commands are possible in a given context.

There are also several auxiliary aspects of problem solving exercises that CLI users care
about which require provision of greater visibility than that which the base CLI experience
provides. These include ongoing processes, side-effects of action, the task context, statuses
and static information.

With respect to this, the gratuitousness of visual elements should be limited, such that the
benefits of minimality that CLIs provide are preserved.

Enable Security of Action and Recoverability

Another principal desired quality is the extent to which an enhanced CLI can provide
recovery or security from error states. This can be broadly achieved by ensuring users
understand what constitutes a valid and invalid action so that error states are prevented,
but this cannot always be achieved. That said, certain mechanisms, such as verification for
particular destructive actions, or highlighting incorrect syntax, can help serve this purpose.

Highly diagnosable error messages and visibility on context and command history are
mechanisms which can provide support for users who find themselves in an error state. The
ultimate solution for this, however, would be to allow the transparent reversal of erroneous
commands via an undo functionality, or through built-in versioning.

4.2 Formal Design Specification

By defining the problems that an enhanced CLI must solve, we are able to identify the
principal aspects which allow us to formulate our design goals into a formal specification.
Individual aspects will relate in varying capacities to different components of the proposed
CLI artefact — syntax, interface and domain model — though they are presented here with
an aim to promote largely domain agnostic ideals. Syntactic and domain model requirements
will not be addressed by the proposed designs, but are included here for the purposes of
completeness and further development.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 71

The full specification is detailed in table 4.1 below.

Requirement Aims Pertinent
Components

The artefact must provide some
rapid means by which valid syntax
can be browsed, limited or filtered
by the problem context

Discoverability Interface

The artefact must provide the user
with a means to appraise the useful-
ness of particular commands given a
particular problem context

Discoverability Syntax, Interface

The artefact should allow some
means by which syntax can be ef-
fectively guessed by a user given a
domain context

Discoverability Syntax, Interface,
Domain

The artefact must afford some means
by which actions can be taken in a
low-effort manner

Efficiency Syntax, Interface

The artefact must afford some means
by which actions that allow the user
to influence a significant portion of
the domain objects can be performed

Efficiency Syntax

The artefact must afford some means
by which composites of multiple ac-
tions can be performed

Efficiency Syntax

The artefact must not require the
user to use a pointing device

Efficiency Interface

The artefact should by some means
limit the extent to which operational
documentation must be checked

Efficiency Interface

The artefact must provide some
means which enhance a peer-driven
learning process

Learning Interface

The artefact must provide a non-
intimidating new-user experience

Learning Syntax, Interface,
Domain

The artefact must provide com-
mands with labels which are memo-
rable

Learning Syntax, Domain

The artefact must provide com-
mands with domain-relevant labels

Learning Syntax, Domain

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 72

The artefact must provide some
means by which a user can reverse
or recover from an erroneous domain
state

Recovery Interface, Domain

The artefact must by some means
make the underlying domain model
clear

Understandability Interface

The artefact must by some means
make the underlying interaction
model clear

Understandability Interface

The artefact must provide com-
mands which perform atomic func-
tionality

Understandability Syntax

The artefact must present output in
a clearly and in a parsable and highly
visible manner

Visibility Interface, Domain

The artefact must provide a simple
method by which users can visualise
their action history

Visibility Interface

Table 4.1: Requirements specification.

4.3 Generative Discussion

In order to begin generating initial designs, it is useful to speculate about potential features
of an enhanced CLI which fulfils the requirements set out above.

4.3.1 Context Awareness/Classification/Recognition

To allow the artefact to provide a relevant representation of valid commands given a context,
it must be capable of intelligently analysing the history of the user’s action, or indeed must
be provided with some indication of the task that the user will be attempting to undertake.
Indeed, many existing suggestion engines [de Arruda, 2013][Doras] perform on the basis of
a user’s action history. These notions are also proposed in the context of works on plan
recognition such as Charniak and Goldman [1993] and Carberry [2001].

However, there is a possibility here to harness action history from other users to enable a
widely distributed artefact to learn to classify context from widespread expert use. This in
particular may be an especially useful mechanism in enhancing peer-driven learning.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 73

These capabilities could be wielded to provide sorting or filtering criteria for a condensed
help menu, or a list of possible commands. It is particularly important for such an artefact
to be capable of filtering a list of valid commands as, given a set of domain objects, a
command space could be intractably large due to combinatorics.

4.3.2 Customisability

Many expert users stated the importance of CLI customisation during the Exploratory
Study. Customisation is a tool for allowing a user to design their own optimised experiences,
and so may enable an enhanced CLI to fulfil certain efficiency goals. One can imagine
custom aliasing in particular to be amongst a feature of this kind.

4.3.3 Alternative Layouts

In the interest of exploring an innovative CLI experience, one can imagine providing
variations on the traditional layout of CLIs, particularly of output, in the interests of
understandability and parsability. One such method might be the provision of a visualised
graphical space, where nodes are input-output tuples, and links demonstrate reactionary
ties between them, particular benefits being the flexibility of such a layout, and potential
for visual grouping between input and output to strengthen a user’s model of causality.

Another pertinent aspect is investigating direction of flow of action history — should this
be presented left-to-right, top-to-bottom, bottom-to-top? It is unclear which direction may
be optimal. Models described by Bradley [2011] seem to indicate that, in the absence of a
visual hierarchy, or the abundance of text-heavy content, a reader’s eye will sweep down
across a page, due to “reading gravity”, and in the direction of an “axis of orientation”.
This suggests that, if a design does not visually indicate otherwise, information should flow
in a downwards fashion across a viewing window.

4.3.4 Indicators and Visualisers

It would indeed be possible to provide a more visual experience for command line users,
wielding colour or iconography to express semantic content. The internal state of a particular
domain environment could also be made permanently visible to the user — many participants
within the Exploratory Study stated their frustrations with having to routinely perform
visibility commands. This does, however, present a clear trade-off between visibility and
potential obtrusiveness through visual clutter.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 74

4.3.5 Undo Schemes

As previously discussed, a mechanism by which a user can reverse the effect of the most
recently executed command will be very useful for users to ensure their security from domain
error states, or erroneously executed commands. The most obvious way to provide this
is via a command which performs this function, although other schemes can be imagined,
such as visualised versioning systems or snapshots.

An extended notion brought up in the Exploratory Study is a tree-undo scheme, which
preserves undone actions as a branching point from the current state. However, accessing
and redoing separate undone states in a tree may potentially require more nuanced control,
and is also of niche usefulness.

4.3.6 Queried Hints and Documentation

Another potential solution to fulfilling the discoverability goals set out is to provide a user
with a mechanism or command which allows them to receive hints for further action given
a particular query. This solves the problem in a simpler fashion than the so-proposed
context-awareness mechanisms, and places more control over the information presented in
the hands of the user. In a similar way, the discovery aims might also be solved by allowing
documentation to be conveyed on the basis of queries.

4.3.7 Commitment Deferral

To allow a user to rapidly appraise the usefulness of a particular presented command,
a “shadow execution” mechanism can be imagined which simulates the execution of a
typed command which has not yet been executed, and presents the result to a user. This
affords the benefit of allowing a user to understand the effect a command might have before
committing to its execution.

4.4 Proposed Designs

In light of the speculative discussions presented, a number of proposed designs for an
enhanced CLI are described formally below, along with discussion points that were gener-
ated when presenting them to participants from the Exploratory Study. These are, again,
presented as divorced from a domain model or the corresponding syntax for such.

A number of sub-designs and variations will also be described and presented as variations on
the overarching designs for each, as reactions to informal discussions with the participants of

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 75

the Exploratory Study1 in the role of prospective/target users. In these informal discussions,
user were demonstrated how each design would work, and were asked various unstructured
questions to prompt their views on the suitability of various design features, such as “How
would you execute a command in this situation?” Quotes and sentiments they expressed
will be presented to illustrate design issues that were encountered.

4.4.1 Context-aware Suggestions

A consistent aspect of all the designs presented is the incorporation of suggestions which
are context-aware. As previously discussed, these present a stronger notion than suggestion
engines provided by zsh-autosuggest [de Arruda, 2013] or Fish [Doras], which simply act as
a tool for rapid history retrieval.

The way these would function is on the basis of how other users have acted or reacted in
similar situations to the one the user is currently situated in. Information such as the user’s
command history, and the state of the environment after the last command will be used to
produce one to several suggestions for useful commands. This is in the assumed practical
context of using big data and machine learning methods to teach a distributed artefact to
recognise domain contexts. Based on these, the artefact may judiciously or intelligently
select from a combinatorial space of valid commands to present a short list of suggestions.

These suggestions are proposed to serve multiple functions: primarily as a peer-driven
learning tool, but also to promote the discovery of new commands which a user may find
useful. Suggestions are not proposed as a tool for entirely automating the process of problem
solving — thus the intention is to deliberately provide fuzzy suggestions which the user has
agency to choose from.

User Discussion

Review participants had positive comments about the notion of command suggestions —
that they would be “good for a new area” and useful for “recovering from error states” —
but had some criticisms.

Many questioned the helpfulness of the suggestions in the context of other methods of
discovery, or where suggestions produced common command aliases used by others which
were not assigned on a particular user’s machine, and vice-versa:

“Would other user’s commands be helpful? Not the same tasks as my task
runner...”

1And two others, Computer Science students from the University of Bath with CLI experience.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 76

One participant stated that they might be more helpful if they took the form of a “plugin
based architecture that could add specialised suggestions” based on a particular domain. It
seems that there are technical aspects to the implementation of such a feature which extend
past the scope of this dissertation.

4.4.2 Enhanced Traditional CLI Prototype (v1.0)

Figure 4.1: V1.0 introduces a paradigm focused on discovery.

This design alters the archetypal layout of traditional CLIs by adding a wide margin around
the operating area. This does two things: the output of the previous command has a
narrower column width, which is known to aid legibility [Dyson and Haselgrove, 2001], but
it also allows peripheral information to be shown to the user.

The previous command is shown within the top margin, and only the result of that previous
command is shown in the output area, with the input area shown below that as usual. It
may be hypothesised that this aids conceptualisation by allowing results to appear in a
consistent place. It may also provide extra focus on the most recent information.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 77

In order to access history further back, the user may press the up arrow, which will change
a user’s “position” in the history, the output area changing to reflect the output of the
previous command. This will also allow a user to obtain a historic command for re-executing
by automatically filling the input area with the previous command.

Below the input area lie context-aware suggestions. These can be explored by pressing
the down arrow, which will automatically fill the input area. Another core idea behind
this design is idea of a conceptual flow from future-to-past as the information moves from
bottom-to-top. It can be hypothesised that this will promote a spatial association of linear
progression to the upper and lower parts of the screen.

Initial Criticisms

The problem with this design is that it potentially obscures too much history and con-
text — this is pertinent when considering the importance of action history to CLI users
(see section 2.4.8). What if a user wished to make a decision on the basis of multiple
past commands? It is not clear how far back in the history of a user’s action contextual
information starts becoming non-useful — perhaps even the idea of a limit is not meaningful.

In addition, the actions of contextual history searching and obtaining previous commands
for re-execution are conflated into one action. What if a user wishes to see the context of
their actions without re-executing the command that produced them?

Greater History Visibility

The design was altered to remove the restrictive view on the output content, and now
shows as much history as possible — however it now visibly presents the inputs as paired
to the output they produced. One can argue that this visual association may help users
identify required context, but also assist learning efforts by building upon the user’s mental
associations of a command and their expectation of the output.

These are traversed in much the same way as before — thus exhibiting the same problems
as the previous iteration.

Multipurpose Help Region

The altered design also diversifies the purpose of the suggestion region. When the user has
not typed a command, the region will present context-sensitive command suggestions, which
can be navigated to by pressing the down arrow. However, when the user types or selects
a command, the suggestions will disappear, and the area will display brief/summarised

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 78

Figure 4.2: V1.1 introduces paired input-output tuples, multipurpose help region, and
syntax transformation.

documentation relating to the commands in the input area. These are provided to help a
user remember the details of a particular command, or discover how a new command works
or what function it performs.

This diversity works well in theory, because it addresses two facets of the Exploration
Problem directly — allowing a user to discover what there is, and discover how it works.
There may however be a problematic case where users select a command which they think
they might need, but see from the presented documentation that this was not what they
were looking for. Frustrating and time-consuming, perhaps, but an error state has been
prevented.

Syntax Transformation

This iteration also adds a feature whereby commands which are typed using long-form
aliases are transformed on execution to their shorter counterpart alias. The idea here is to
make more efficient aliases more visible to a user, and potentially help them build semantic

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 79

associations between short and long form aliases for commands.

This transformation might be made more obvious via the use of animations or visual
indicators such as colouration.

User Discussion

Review participants had some problems with the way arrow keys we proposed to be used:

“Wouldn’t reach for the down arrow, not my expectation — used to tab comple-
tions”

Another suggested that arrow keys could become conflated for suggestion and history
purposes.

There were also mixed opinions on the visual pairing of inputs and outputs. Some review
participants stated that such visual elements were potentially unhelpful and not necessary,
due to reasons such as particularly long output lines and screen-clearing habits. One target
user even stated the following:

“The majority of my commands are more interesting than the output of them”

However, they also stated that they had “never realised this was a problem” and that they
were often confused where an output ended or began. Another stated that they would enjoy
the ability to pin a particular input-output tuple to maintain the context of particularly
useful outputs.

Review participants also suggested the incorporation of more control over suggestions and
help areas, such as special command keys or clickable elements to show and hide them.

4.4.3 Spacial Exploration CLI Prototype (v2.0)

This design visualises command line interactions as a directed graph environment/space of
input-output tuples. It can be hypothesised that visualising an interaction sequence as a
graphical space can promote the conceptualisation of one’s exploratory activities within a
solution space or a problem solving flow. The tuples allow strong associations to be made
between an input command and the result it produced, while making clear the flow that is
produced by these interactions. This is intended to strengthen the visibility of cause and
effect of commands to promote learning.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 80

Figure 4.3: V2.0 introduces a paradigm focused on exploration.

The screen is divided into two: the left side for historic/contextual information and the
right side for input or future action. It can be hypothesised that the left-to-right order is
readily associated with past-to-future chronology, at least amongst English speakers.

On the left, tuples are presented in some way in which relevant context and previous action
can be clearly seen. They are visibly linked by strands or arrows, which themselves create
an association of how the user reacted to the previous output.

On the right, a working area is presented. This constitutes an input area, but also a few
other enhancing features. Contextual suggestions, as well as the input area, are shown as
being attached by strands to the most recent output to signify that they represent possible
interpretations of the output. Underneath the input area, there is a space for “expected
effect/output”, which will display short explanations of what the user can expect the various
commands they have typed to do. As well as providing consistency of the input-output tuple
scheme, this area is provided with the intention to promote better visibility of in-application
documentation in a succinct way.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 81

The graph will also provide visibility on lost undo states as alternative interpretations of a
previous output state. These will be slightly greyed out or blurred to show that, though
they no longer apply, they are still accessible.

Navigation of the space is done by means of the arrow keys, shifting the focus spatially
between various elements, including suggestions and past input-output tuples. This will
allow the user to auto-fill the input field with suggestions and past commands.

Initial Criticisms

One potential issue with the visual aspect of this design is that commands and their outputs,
as lines of text, are typically horizontal/wide in nature — this limits how they can be usefully
visualised as nodes in a graph. There may be a way to symbolically summarise a previous
command and output such that it becomes easier to represent in a more rounded fashion,
although there is nothing to suggest such a representation would work or be beneficial.

It is also the case that this proposal may be too radically different to a traditional CLI
experience to be useful for expert users — obtuse visualisation is amongst the candidates of
these, though it is unclear how users might actually react.

This design also exhibits a similar problem to the first design in that it does not distinguish
exploration and acquisition of previous commands for re-execution in the use of arrow keys
for exploration. This is a problem of conflating meta-navigation with command acquisition
or alteration.

Flipped Tuples

This idea was also explored with a slight alteration — the swapping of output and input
within tuples. Each node is now an output along with the input command that the user
previously reacted with.

This puts more emphasis on the state of the environment as a node, as it visibly appears
first, and can appear more prominently above the input field as part of the tuple model.
The links between the nodes now demonstrate the result of an input command.

It is unclear whether this is more or less intuitive than the first iteration. However, this
makes it more difficult to present candidate or undone commands due to the altered meaning
of links.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 82

Figure 4.4: V2.1 presents an alternative method of pairing inputs and outputs.

Altered Layout and Control Scheme

In order to make better use of the space, the design was re-imagined again in a layout which
promoted better use of screen real-estate with respect to the wide nature of inputs and
outputs, whilst maintaining a logical flow from left to right.

Controls were also altered to make the distinction between historic command re-triggering
and history search more pronounced. Users must now press tab to switch between history
and input, and navigation of the space via arrow keys is broadly the same — however, when
focusing historic commands, the user should press enter to auto-fill the command into their
input area.

It is unclear whether this arguably more fiddly control scheme provides a benefit of finer
control, or will simply frustrate or obstruct users.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 83

Figure 4.5: V2.2 presents an attempt to create a more meaningful and structured variant of
the layout than previous iterations.

User Discussion

Many review participants were wary of the first iteration of the design due to its unfamiliar
nature — one user commented that they “wouldn’t consider this a command line at all”.
However, many were still interested in exploring the ideas presented. One such user suggested
that this type of scheme would likely be “more natural or nicer for new users”, but that
their “command line knowledge” would be almost “inapplicable” to such an interface.

Review participants also expressed their confusions with the various proposed control
schemes — for instance, one user stated that they would not be sure whether the left
arrow key would get a previous command, perform an undo, or scroll through a typed
command. Indeed, another stated that their “intuitions about arrow keys” were “messed
around” by such a scheme. One participant also stated that they would feel quite natu-
ral using a mouse for certain interactions, like undoing graphically to a specific level of history.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 84

Participants stated that the positioning of the history also adds a certain complexity — it
was difficult to reach a consensus on what direction would be suitable for the history to flow in.

When presented with the second iteration, one participant stated that they would enjoy
being able to toggle between the different representations shown in each iteration, stating
that “they would be good in different situations”.

One participant also stated, when presented with the third iteration, that they did not like
how suggestions were presented, and that they were intrusive. They stated that this was
because they were above where the user types, took up a lot of space, and that a mechanism
such as auto-fill within the prompt for suggestions would potentially be more suitable.

Participants also stated that the layout seemed strange and cluttered to them — one such
user stated that the zig-zagging nature of the flow was particularly strange.

In addition, participants expressed their concerns with the control schemes in this iteration,
stating that arrow keys were “probably more intuitive” if the scheme was “better organised”.

4.4.4 AI Conversation CLI Prototype (v3.0)

This prototype design exploits the descriptive and conversational nature of command line
interaction by modelling the interactive process as a conversation with an AI, but is other-
wise largely traditional. These notions of action via conversation are supported by works
within Speech Act Theory proposed by Winograd and Flores [1987]. However, artefacts gen-
erated on the basis of a theory of performative speech are not without their implementation
issues — labelling is a principle challenge highlighted by works such as Wobbrock et al. [2005].

The AI will largely simply carry out requested commands, but may also provide suggestions
along with requested output. The AI might also be capable of interpreting erroneously
typed commands or correcting them.

This design is intended to emulate the peer-driven learning paths of command line users by
providing an always-present peer to gain insight from.

Initial Criticisms

It is clear that this design would likely be unsuitable for most expert users, who are likely
to take the view that the design is gimmicky, obtrusive or “hand-holdy”. Similarities can be
drawn between this proposal and early versions of Microsoft Office’s AI assistant, “Clippit”

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 85

Figure 4.6: V3.0 presents an interactive conversation with a hosted artificial intelligence.

(better known as “Clippy”), a notorious usability failure [Swartz, 2003].

Another issue is trust: how can a user trust an intelligent artefact with agency to carry
out their requests correctly or without alterations? Command line users are likely to want
as much control and agency as possible when using what should simply be a tool — an
extension of their own will.

User Discussion

Most users saw merit in the motivations and potential of this design, one stating that they
would enjoy it if the agent “figured out when I’m lost or don’t know what to do”, or notified
them of what they might have meant when an invalid command is issued. Another stated
that in such scenarios, “it’d be easier than googling” a help query.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 86

Review participants also, however, were unsure if such an artefact would feel intrusive, and
one user was particularly concerned about their feelings of agency and control over critical
tasks:

“I don’t want an extra interpretation layer — if something goes wrong I want it
to be my fault”

4.5 Final Design

In accordance with feedback, it would appear that the most suitable choice of design for
implementation, and thus further investigation, will be v1.1, with some alterations that
allow support of desirable features from other designs. This design is arguably the most
suitable because it addresses the specification whilst maintaining some traditional command
line intuitions.

The design will largely remain as previously described, but with alterations to support the
visibility on lost undo states. This is a response to positive feedback on this feature within
the v2.x designs.

This will be visualised in the same way as shown in v2.2, where undo states will be shown
in parallel to the resultant state, split in half, and on the right side of the output area. The
arrow keys can be used to navigate these alternative states.

The design was also altered to incorporate colour in the borders of input-output tuples
to convey the semantic nature of the output — green for a successful command, red for a
syntax error, and blue for meta-information.

The principle features of this final iteration can be summarised as such:

• Context Aware Suggestions — command suggestions visually provisioned on the basis
of previous interaction, according to a model trained from many users.

• Tree Undo — the provisioning of support for undo, and the hierarchical visualisation
of undone states.

• Colour-coded Output — colouration of output frames such that the semantic nature
of the content is conveyed.

• Visually Paired Input-Output — visual grouping of inputs and their resultant outputs
within individual frames.

• Help Snippets — lines from operational documentation, queried by the currently
entered command.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 87

• Syntax Transformation — the transformation of command strings to use more concise
aliases upon execution.

Figure 4.7 shows a high-fidelity mock-up of the design created in HTML5.

4.5.1 Claims Analysis

It is now possible to present a structured design rationale of the proposal, and evaluate to
what extent its features address the goals set out in the specification, as well as where we ex-
pect the design to have a negative impact. To enrich these claims past the initial premises of
the specification, the features are also evaluated in the context of Norman’s Stages of Action.

The results of this analysis are detailed in table 4.2, showing the main areas of confidence
in the benefits of the proposed features.

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 88

Figure 4.7: A high-fidelity mock-up of the final design, created in HTML5. “git commit”
is a suggestion which appears as a result of the user previously inputting “git add .”. The
second “ls” command is undone, and is thus set aside and its opacity is reduced.

C
H
A
P
T
E
R

4.
D
E
S
IG

N
IN

G
A
N
D

IM
P
L
E
M
E
N
T
IN

G
A

C
L
I

89

Goal/Intention Implications Specification/Execution Impli-
cations

Perception Implications

Context Aware Suggestions
+ Enhances a peer-oriented learning
process
+ Provide users with increased aware-
ness of possible action
+ Provides a means by which valid
syntax can be browsed, filtered by
the context of use
+ Provides user with explicit selec-
tion of potentially appropriate ac-
tions
+ Provides user with an opportunity
to evaluate more advanced command
sequences
- May disrupt flow by forcing users
to re-evaluate their intentions
Tree Undo
+ May encourage users to formulate
more risky intentions, which broad-
ens their experience
Colour-coded Output
+ Helps a user to identify inappro-
priate action

Context Aware Suggestions
+ Limits the extent to which op-
erational documentation must be
checked when deriving a command
- May execute a command without
understanding its effect, accidentally
or otherwise
Help Snippets
+ Limits the extent to which opera-
tional documentation checking inter-
rupts execution
- May distract from command speci-
fication process
Keyboard Control
+ Allows selectable features to be ac-
cessed rapidly
+ Allows actions to be executed in a
physically low effort manner
- Rapid access to features makes slips
more likely

Help Snippets
+ Provide a means to appraise the
usefulness of particular commands
Syntax Transformation
+ Increases visibility of more efficient
command aliases
- May cause user to disassociate their
action from the tuple displayed
Tree Undo
+ Provides a comprehensive view on
a user’s action history
Visually Paired Input-Output
+ Clarifies the underlying interaction
model of the interface
+ Allows users to focus on pertinent
output
Colour-coded Output
+ Assists a user to identify an error
state at the point of occurrence

Table 4.2: Claims analysis structured by Norman’s Human Action Cycle [Norman, 1988].

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 90

4.6 Implementation

The designed interface was subsequently implemented using a boilerplate project (courtesy
of https://github.com/myurasov/Angular-ES6-JSPM-Gulp) incorporating Angular 2.0
[Google], ES6 [ECMA], JSPM [Bedford] and Gulp [Bublitz] web frameworks, and a back-end
service was created in the Spring [Pivotal] J2EE [Oracle] framework. These are connected
via a websocket connection. The code written can be found in the digital appendices.

The interface constitutes a drivable viewmodel of all the features detailed. The server is
capable of responding to the client interface when a command is submitted, but at this
point in the investigation, no domain model has been created. Indeed, more implementation
work is to be done on integrating a domain which addresses the aims of the study. Thus,
each feature was tested through test suite data.

Figure 4.8 demonstrates the structure of the viewmodel, and the connection between the
server and UI systems.

ServerU I

Socket Controller

Input

Output

Action H istory

Context Aware
Suggestions

Help Snippets

Endpoint
Controller

Command Factory

Domain

Response Factory

Figure 4.8: High-level architecture diagram of the integrated viewmodel, the server, and
how they connect.

4.6.1 Context Aware Suggestions

Suggestions are shown on the basis of a similarity function which takes into account key
words from the last output. This similarity function will provide suggestions on the basis of
a model, which maps a command suggestion to a set of keywords tested by the similarity
measure. The algorithm used for the similarity function is detailed below in pseudocode:

https://github.com/myurasov/Angular-ES6-JSPM-Gulp

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 91

Algorithm 4.1: Context-Aware Suggestions.

1 function compareTwoStrings (s i t ua t i on , sugge s t i on) :
2 s c o r e = 0
3 for each spl i tWords (s i t u a t i o n) as a :
4 for each spl i tWords (sugge s t i on) as b :
5 i f a == b :
6 i f a in getDisal lowedWords ()
7 and not a in getDesiredWords (s i t u a t i o n) :
8 s c o r e += getWeakScore ()
9 e l se :

10 s c o r e += getStrongScore ()
11 return s co r e
12

13 function makeSuggestions (items , command , h i s t o r y) :
14 lastCommand = la s t I t emIn (h i s t o r y)
15 sugg e s t i on s = []
16 foreach i tems as item :
17 po in t s = compareTwoStrings (item , lastCommand)
18 i f po in t s > getLowerPointsThreshold () :
19 appendTo (sugges t i ons , { lastCommand , po in t s })
20 return s o r tBySu i t ab i l i t y (sugg e s t i on s)

The basis of the algorithm is in awarding a score to each suggestion in a model for how well it
fits certain criterion. This is mostly defined by the rate of equivalence to a selection of words
performed by the getDesiredWords() on a particular context object. The splitWords

function provides a list of the words given a body of text or an object.

Some functions provide specific tuning of suggestions. The getDisallowedWords() function
provides a list of common commands words we don’t wish to match on. In particular, func-
tions like getWeakScore(), getStrongScore() and getLowerPointsThreshold() allow
precise numerical tuning of scores.

4.6.2 Help Snippets

Help Snippets work on a similar basis to Context Aware Suggestions, in that they are also
shown on the basis of the similarity function presented. In this case, the function operates
on lines from the operational documentation subject to what tokens have been typed as
input. Effectively, the interface displays a sorted list of these lines based on a similarity
measure to each token in the input command.

4.6.3 Output Model

The output model is structured as a tree of undo states, via recursive lists, and is updated
with each new response from the server. That is, each output object has optional output
text, input text, and optionally a list of output objects that came after it but were undone.
The interface renders this model as shown in the mockup (figure 4.7).

CHAPTER 4. DESIGNING AND IMPLEMENTING A CLI 92

4.7 Summary

In this section, we have detailed an approach to creating a CLI which addresses the
Exploration Problem, and presented a design which addresses several — but not all —
facets of this problem. This was achieved largely by introducing features which elaborate
on traditional CLI features, such as methods of signification for afforded commands, and
methods for promoting conceptualisation.

Chapter 5

Comparative Study

93

CHAPTER 5. COMPARATIVE STUDY 94

In this chapter, an approach to the appraisal of the features of the usability enhanced CLI
detailed in the design section will be presented in the form of an experimental study of two
CLI design alternatives — both of which include novel support for user interaction. The
pertinent features to be examined are Context Aware Suggestions, Help Snippets and Tree
Undo. We shall aim to evaluate these with respect to the facets of the Exploration Problem
previously described.

We will begin by presenting the aims of this study, including several qualitative study
questions which relate directly to the pertinent features of the enhanced CLI. Next, the
design and implementation of an artificial domain which addresses the requirements of
the study will be detailed, including the definition of tasks and specification of a control
language. We will then detail hypotheses, the experimental design, the methods and the
procedure undertaken. The results of the experiments undertaken will then be presented,
alongside detailed statistical analyses. Finally, we will discuss the implications of these
analyses and any observations taken with respect to the study questions and hypotheses
derived, and draw a number of conclusions which build upon the findings of the Literature
Review and the Exploratory Study.

5.1 Aims

The aims of this study are to appraise the effectiveness of Context Aware Suggestions, Help
Snippets and Tree Undo for completing routine tasks and solving novel problems in a CLI
environment. In addition to this, there are a number of study questions which we must aim
to answer, relating to the features of the proposed design.

5.1.1 Understandability

In investigating understandability, we shall aim to determine whether a user is able to more
easily comprehend or form appropriate mental models of a domain, command syntax, or
the interaction model of the interface with enhancing features.

SQ1a. Do Help Snippets promote a user’s understanding of commands?

We can likely expect Help Snippets to help a user to more rapidly form an understand-
ing of the functionality of possible commands, as they more readily deliver operational
documentation in a cut-down fashion.

CHAPTER 5. COMPARATIVE STUDY 95

5.1.2 Exploration

In investigating exploration, we shall aim to determine whether a user more often specula-
tively browses for or executes new commands with enhancing features. This is either in the
context of broadening one’s experience and knowledge of the command space provided, or
with the aim to discover a desired command.

SQ2a. Do users explore more with Context Aware Suggestions?

We can expect users to participate more in the exploration of new commands with Context
Aware Suggestions, because unlike other popular suggestion mechanisms for command lines
such as those from Doras and de Arruda [2013], the user is afforded the rapid execution of
commands they may never have executed before. There are several measures by which it
is possible to judge the degree to which a user is engaging in exploratory activities in the
context of suggestion mechanism use.

One such way is by examining how often a user engages in trial and error, speculatively
selecting and executing commands in order to discover the possibility of useful action. The
possibility for more rapid action is likely to enhance these processes, but also due to the
increased visibility of possible commands, even in the context of potentially incomplete
knowledge about the referents concerned.

SQ2b. Do users explore more with Tree Undo?

We can expect users to more often speculatively execute new commands with Tree Undo
provisioned. This is based on the assumption that users will feel a heightened sense of
security from erroneous or catastrophic domain states, and thus be less likely to shy away
from certain types of destructive command which may permanently effect the domain
environment.

5.2 Design of Study Environment

In order to address the aims of the study, we can propose the design of an experimental
domain, command space and tasks. These can be used to compare different configurations
of enhanced CLI features under some pertinent conditions of CLI use.

5.2.1 Domain Design

There are a number of aims which must be fulfilled when designing a domain which can
support the experimental aims laid out. These include the following:

CHAPTER 5. COMPARATIVE STUDY 96

• It must propose an underlying model which is readily attainable by any participant.

• It must propose a clear aim to the participant.

• It must permit an engaging experience, such that participants care about and are
invested in task success.

• It must be calculatively rational — that is, no real-time change occurs, and only the
participant can affect change.

• It must provide analogies for some aspects of real-world CLI use.

• It must support routine tasks and novel problems.

Given these requirements, it is possible and indeed suitable to propose the design of a
text adventure game, akin to classic titles such as Zork and Hitchhiker’s Guide to the Galaxy.

Arguably, such a domain readily provisions a very clear underlying model through com-
prehensive grounding in physical analogies, while also being engaging and fun. Through
effective scenario design, it is also arguably possible to provide an accurately analogous
experience to real-world CLI use, as studies such as Heron [2015] also propose.

One way to provision a clear aim is to propose a room-escape paradigm. Such a format will
conceptually place the user in a room from which they need to escape, using the objects
and passages that are in the room.

5.2.2 Scenario and Action Design

Given the experimental aims, we can derive some requirements for the design of a set of
scenarios to be completed by participants:

• They must provide some reasonable analogy to real-world CLI use.

• They must require the user to perform routine or maintenance tasks — that is, apply
commands they use on a frequent basis, possibly to a highly consistent or over-learnt
activity.

• They must require the user to solve novel problems — that is, to search for and apply
commands that they may never have used before, and apply critical or analytical
thinking to particular activities.

• They must be presented in a serial problem solving context — that is, the user will
not need to manage multiple goals.

• They must present a problem space with one or more unrecoverable error states —
that is, there are some actions which will cause them to fail.

CHAPTER 5. COMPARATIVE STUDY 97

• They must present tasks that make sense to perform iteratively to reduce cognitive or
physical effort.

These requirements allow us to speculate on how such scenarios may take form, given the
proposed domain environment. For instance, in one scenario, a user may have to obtain a
key to unlock a locked door to escape a room. The action of picking up the key forms a
routine task, but arriving at a state in which this can be done could require a user to solve
a novel problem, such as figuring out how to break open a crate to reveal a key — this
could require a command which was priorly never used by the user.

However, in order to derive concrete scenarios, we must first understand and specify
what actions are possible in the proposed environment. The principal aim of the design
of a set of actions is to provide adequate flexibility to design scenarios. Actions which
affect, combine or transform domain objects in a variety of different ways should be specified.

New commands may also evolve out of a process of specifying domain objects for particular
scenarios. Therefore, an iterative approach to the design of scenarios and actions will be
taken. When these are specified, appropriate operational syntax can be derived to address
the space of possible actions.

5.2.3 Syntax Design

In designing syntax to address the space of possible actions, several important design
questions must be asked which are pertinent to the aims of the investigation.

In order to fulfil understandability goals of the experiment domain, it is clear that the
derived syntax must be highly accessible — that is, participants should be able to grasp the
syntax rapidly enough to usefully participate in a short-term study. It is clear that these
accessibility goals can be achieved by producing aliases which constitute domain language,
and that command strings can be structured like plain-english sentences.

Another interesting facet of CLI interaction is the ability to iterate over a particular set of
domain objects — syntax must be provisioned to support this type of interaction.

At this juncture, we might also propose the incorporation of multiple aliases for each referent
— some of which may reflect a more efficient action paradigm through truncation or using
only the initial character. However, given the aims of the study, it is likely that such
inclusion serves only to complicate or interfere with the findings.

CHAPTER 5. COMPARATIVE STUDY 98

Meta-commands, which provide operational functionality at the interface level rather than
at the domain level, must also be included in the syntax corpus.

There is something pertinent to be said here about the use of flags in the design of command
structure — some sources [Harding, 2016][Norman, 1981] criticise the use of flags, because
they fundamentally change the way a particular referent functions, which causes severe
overloading of functionality in large CLI-driven systems. They so occur, arguably, to
fulfil efficiency aims at the expense of understandability. However, this is a sort of action
specification that is particularly interesting to examine, and is provided by many real-world
CLI syntax corpora. They are also likely to assist the structuring of command phrases in a
plain-english fashion.

5.2.4 Final Design

Given the design aims, facets and processes detailed above, the following syntax corpus
(table 5.1) and domain scenarios (table 5.2) were derived.

C
H
A
P
T
E
R

5.
C
O
M
P
A
R
A
T
IV

E
S
T
U
D
Y

99

Command Description of function

look Displays a list of objects in the room
look (object) Displays information about an object’s internal state
look inventory Displays a list of objects that are in the inventory
use (object) Uses a standalone-usable object (e.g. doors)
use (object) on (target) Catch-all for applying the object to the target in some way
pickup (object) Puts an item in the inventory, removing it from the room
every (query) Searches the room for all objects with names matching the query (used

in the context of other commands)
place (object) on (target) Places or attaches an object to the target in some manner
break (object) Destroys the object, removing it from the room
open (object) Opens a container of some kind (e.g. crates)
help Shows operational documentation
undo Reverses the effect of the last command
start Moves to the next scenario (can be used to skip a scenario)

Table 5.1: The syntax corpus for the experiment.

C
H
A
P
T
E
R

5.
C
O
M
P
A
R
A
T
IV

E
S
T
U
D
Y

100

Name Task features Description Ideal Solution Sequence

Keydoor Routine The room contains a key and a door. The par-
ticipant must pick up the key and use it on the
door, and then use the door to escape.

pickup key

use key on door

use door

Clothkey Routine The room contains a key obscured by a cloth,
and a door. The participant must pick up the
cloth, and then the key in order to unlock the
door and escape.

pickup cloth

pickup key

use key on door

use door

Pailtube Routine The room contains a pail full of water, a key with
a float in a tube, and a door. The participant
must empty the pail into the tube in order to
pick up the key and escape via the door.

use pail on tube

pickup key

use key on door

use door

Snowglobe Novel The room contains a snowglobe which has a key
in it, and a door. The participant must break
the snowglobe to obtain the key and escape via
the door.

break snowglobe

pickup key

use key on door

use door

Pressurepad Novel The room contains a pressure pad, a weight, and
a door. The participant must place the weight
on the pressure pad to unlock the door.

place weight on floorpad

use door

Weightgate Novel, Iterable The room contains a portcullis, some weights,
and a chain connected by a series of pulleys to
the portcullis. The participant must place the
weights on the chain to open the portcullis and
escape.

place every weight on chain

use portcullis

Watertube Novel, Iterable The room contains a tube half filled with water
containing a key, some stones, and a door. The
participant must use the stones to displace the
water inside the tube to reach the key and unlock
the door.

place every stone in tube

pickup key

use key on door

use door

C
H
A
P
T
E
R

5.
C
O
M
P
A
R
A
T
IV

E
S
T
U
D
Y

101
Ropeweight Novel, Iterable,

Failable
The room contains a portcullis, some weights,
and a rope connected by a series of pulleys to
the portcullis. The participant must place some
weights on the chain to open the portcullis and
escape. If the participant places more than a
certain number of weights on the rope, the rope
will snap, and they become stuck.

place weight on rope

place weight on rope

place weight on rope

place weight on rope

use portcullis

Ladderhatch Routine The room contains a ladder, and a hatch. The
ladder must be used on the hatch in order to
climb up and escape the room.

use ladder on hatch

Cratekey Novel The room contains a crate containing a key and
a door. The participant must open or break the
crate to reveal the key, and use the key on the
door to escape.

open crate

pickup key

use key on door

use door

Hairdrier Routine, Failable The room contains a hairdrier, a door, and a key
encased in a block of ice. The participant must
use the hairdrier on the ice block to obtain the
key and escape the room via the door. If the
participant breaks the ice, the key will snap and
they will become stuck.

use hairdrier on iceblock

pickup key

use key on door

use door

Cratetrapdoor Novel The room contains a crate which is obscuring a
trapdoor. The participant must break the crate
to reveal the trapdoor, and use the trapdoor to
escape.

break crate

use trapdoor

Manyice Routine, Iterable,
Failable

The room contains a door, a hairdrier, and sev-
eral blocks of ice encasing stones, but one encases
a key instead. The user must use the hairdrier on
the ice block which contains the key, and use it
on the door to escape. If the participant breaks
the ice block containing the key, the key will
snap, and they will become stuck

use hairdrier on every

iceblock

pickup key

use key on door

use door

C
H
A
P
T
E
R

5.
C
O
M
P
A
R
A
T
IV

E
S
T
U
D
Y

102
Nestedcrates Novel, Iterable The room contains a door, and a crate, which

in turn contains a smaller crate, which in turn
also contains a smaller crate, which contains a
key. The user must break each crate until they
discover the key, and use it on the door to escape.

break crate

break crate

break crate

pickup key

use key on door

use door

Table 5.2: Detail on the scenarios designed, which will form the essential participant activities of the experiment. Novel task
features are ones which require not-often used commands, and routine task features are those that require frequently used
commands.

CHAPTER 5. COMPARATIVE STUDY 103

These can be taken forward and integrated with the enhanced CLI previously created.

5.2.5 Implementation

The syntax, domain objects and scenarios for the game were integrated into the Spring
[Pivotal] application previously detailed. To provide a broad explanation, the domain
object classes are defined on the basis of command interfaces, such as IBreakable or
IPlaceableTarget1 — these provide the basis for the interaction and manipulation of these
domain objects via generated command objects. Each scenario is simply a room definition,
which creates a Room object with a set of domain objects.

The source code for the game can be found in the digital appendices, alongside a demon-
stration video of use.

Context Aware Suggestions

A very rudimentary model for Context Aware Suggestions was hand-trained — designed
and programmed by hand — based on the ideal action sequences of the scenarios detailed.
A JSON representation of this model can be found in the appendices.

Help Snippets

Help Snippets uses a list of lines from the output produced the help command (see figure
5.1).

Undo Tree Models

While the output model within the UI needs to represent the whole action history as a tree,
the internal output model on the server only needs to represent a list of command objects
that were previously executed. This is because the server only needs to know the previous
command object when an undo command is sent, which gets reversed thrown away. If a
command is selected and redone on the UI, the server simply re-executes the command.
However, these server-side command objects must hold on to the references of the domain
objects they altered for the undo operations to correctly work.

5.3 Experiment Design

In order to investigate the effectiveness of certain enhancing features, two different variations
of the enhanced CLI shall be defined.

1For example, the Door class is an IStandaloneUsable and an IUsableTarget

CHAPTER 5. COMPARATIVE STUDY 104

look - describes the room

look <object> - describes the object

look inventory - shows what objects you are holding

use <object> - performs some action with the object

use <object> on <target> - applies the object to the target in some way

pickup <object> - puts an object in your inventory

every <query> - searches the room for all objects with names matching the

query (used in the context of other commands)

place <object> on <target> - places or attaches an object to the target in

some manner

break <object> - attempts to destroy the object

open <object> - opens a container of some kind

help - shows this list

undo - reverses the effect of the last command

Figure 5.1: Output of the help command.

The first, “CAS+HS+TU”, provides the user with Context Aware Suggestions, Help Snip-
pets and Tree Undo as enhancing features. The second, “TU”, provides the user with only
Tree Undo as an enhancing feature. These can be provided by integrating two versions of
the viewmodel — one as previously described, and another which removes Context Aware
Suggestions and Help Snippets — and serving them at two different localhost locations.

Various hypotheses, derived on the basis of the broader aims of the study, will be investigated
via the differentiation of performance metrics and observations between these two interfaces.
Therefore, a 2×2 mixed factorial design was used in order to provide necessary control
whilst maximising the data which can be obtained from each participant.

The scenarios presented were split into two sets, which will be respectively completed
by each participant with each interface. That is, a participant will perform both task
sets, and each task set will be performed with a different interface. Presentation order
of task set and interface was controlled to address the impact of practice on user performance.

The task sets were designed such that their presentation order had a low impact, and that
they do not provide a fundamentally different experience to one another. This was done
by attempting to get the same proportion of routine and novel tasks, the same number of
failable tasks, and the same number of iterable tasks. We also wish to increase the difficulty
of scenarios over time in order to manage how well a user can cope with scenarios as they
learn more about the system, but also try to decrease the proximity of similar tasks such
that the solutions to certain problems are not highly primed from a previous scenario.

CHAPTER 5. COMPARATIVE STUDY 105

Task set 1 Task set 2

Clothkey Ladderhatch
Pailtube Cratekey
Snowglobe Hairdrier
Pressurepad Cratetrapdoor
Weightgate Manyice
Watertube Nestedcrates
Ropeweight

Table 5.3: Scenarios split up into ordered task sets.

CAS+HS+TU
presented first

TU presented first

Task set 1 first Group A Group B

Task set 2 first Group C Group D

Table 5.4: A mixed-factorial design to control presentation orders of task sets and interface,
and interaction effects between interface and task sets.

Table 5.3 shows the designed task sets and table 5.4 demonstrates the group design.

5.3.1 Metrics

A framework for automatically collecting data about a participant’s session of use was
created. With this, various metrics can be taken to help analyse the performance of users
under different scenarios within different interfaces. Table 5.5 details the metrics that the
framework was configured to take for each scenario the participant completes.

5.3.2 Observation Classes

In order to accurately report on pertinent aspects of participant performance, it is necessary
to define classes of observation. These serve to narrow down the events which the observer
must look out for during the experiment, increasing the clarity and salience of the findings.

The classes are detailed in table 5.6.

C
H
A
P
T
E
R

5.
C
O
M
P
A
R
A
T
IV

E
S
T
U
D
Y

106

Metric Id Type Description

UNDONE Frequency The number of times a participant executes an undo command
INTENT ACT Duration List A list of durations between each time a participant presses enter
TIME Duration The time between the start of the task and the task’s success
SUCCESS Boolean True if the participant completed the task, false if the participant skipped the task
HELP Frequency The number of times a participant executes a help command
ENTERS Frequency The number of times a participant presses enter
CHARS Frequency The number of times a participant presses a character key
ARROWS Frequency The number of times a participant presses the up or down arrow keys
INVALID Frequency The number of times a participant executes an invalid command

Table 5.5: The metrics which are automatically measured for each scenario a participant attempts.

Observation Id Event Signifiers Facets to report on

CONFUSION The participant makes an expression of confusion
in reaction to a particular event

What event caused the confusion?

RESOLUTION The participant makes an expression of realisa-
tion or understanding when priorly they were
confused

Was their understanding the result
of an aspect of the interface?

UNKNOWN INTENT The participant seems not to know what they
want to do next or spends a significant time
not performing an action, or attempting random
actions

What juncture in the scenario is the
participant at?

EXPLORE The participant attempts to find out how to
perform a desired action

What mechanism do they use to do
so?

SPECULATE The participant attempts to use a command they
have not used before

What command was it?

DISCOVER The participant finds a desired command and
executes it successfully

What mechanism do they use to do
so? What command was it?

Table 5.6: The principle observations that will be reported on during the experiment.

CHAPTER 5. COMPARATIVE STUDY 107

5.3.3 Participants

16 students of technical courses at the University of Bath were recruited as participants of
the study, each of whom had at least some prior experience of CLI use.

5.4 Hypotheses

Given these metrics and observation classes, and in the context of the design rationale
previously discussed and the study aims, we can derive several hypotheses for the performance
and suitability of the features of the enhanced CLI created, structured by some of the
broader aims of the investigation.

5.4.1 Task Success

In investigating task success, we shall aim to determine whether a user is able to complete
tasks faster or more effectively with enhancing features.

H1a. Users achieve a better task success rate with Context Aware Suggestions

We can expect participants to more often succeed at tasks — that is, they are less likely
to give up under time pressure — with Context Aware Suggestions. This is because they
deliver potential solutions to sub-problems, which, if noticed by the user, will more often
guide them to success.

H1b. Users will complete tasks in a shorter time with Context Aware Sugges-
tions

We can expect users to achieve more rapid success of tasks with Context Aware Suggestions
and Help Snippets. This is because they provide a rapid means by which potential solutions
can be selected and executed.

5.4.2 Efficiency

In investigating efficiency, we shall aim to determine whether a user requires less physical
and cognitive effort to complete a task with enhancing features.

CHAPTER 5. COMPARATIVE STUDY 108

H2a. Users will use fewer keypresses to succeed a task with Context Aware
Suggestions

We can expect users to achieve task success in fewer keypresses with Context Aware
Suggestions. This is based on the assumption that the number of times a user will have to
press an arrow key to select a suggestion will not frequently exceed the characters required
to type a desired command.

5.4.3 Discovery

In investigating discovery, we shall aim to determine whether a user more often discovers
the commands required to complete a certain task with enhancing features.

H3a. Users will discover commands faster with Context Aware Suggestions

We can expect users to discover a required command faster with Context Aware Suggestions
based on the assumption that, by design, they are able to deliver probabilistically suitable
commands for a domain context.

5.4.4 Documentation Checking

In investigating documentation checking, we shall aim to determine whether a user checks
operational documentation less often with enhancing features.

H4a. Users will check documentation less with Context Aware Suggestions and
Help Snippets

We can expect users to check operational documentation less with Context Aware Sugges-
tions, because they promote the visibility of commands that users might otherwise search for
within documentation. We can also expect this of Help Snippets, as lines from operational
documentation are, by design, made more visible with them.

5.4.5 Security from Error States

In investigating security from error states, we shall aim to determine the extent to which a
user is able to recover from or avoid domain error states with enhancing features.

CHAPTER 5. COMPARATIVE STUDY 109

H5a. Users will execute fewer invalid commands with Context Aware Sugges-
tions and Help Snippets

We can expect users to less often execute invalid commands with Context Aware Suggestions,
because they are more likely to use commands which are definitively valid from suggestions.
We can also expect this of Help Snippets, as they provision users with critical information
about correct usage before they execute a command, which may lead them to the alteration
or aversion of a potentially erroneous action.

H5b. Users will use Tree Undo to recover from error states

We can expect users to utilise Tree Undo functionalities to reverse a command which resulted
in a domain error state, on the basis that they are confident in their understanding of how
such functionality would work.

5.4.6 Intent-to-Command Translation

In investigating intent-to-command translation, we shall aim to determine the ease with
which a user is able to specify their intent to action as a command with enhancing features.

H6a. Time between the end of a user’s last action and the start of the next
action will be reduced with Context Aware Suggestions

We can expect users to, overall, take less time to derive their intention, retrieve or derive
a required command and then execute this in less time with Context Aware Suggestions.
This is because they address the rapid discovery and entry of required commands.

5.5 Procedure

Given the experimental design detailed above, the procedure undertaken is presented below.
This procedure was designed in accordance with the University of Bath Computer Science
Ethics checklist (see form in appendices).

5.5.1 Environment

The experiment was carried out in a controlled, distraction-free environment. A laptop was
provided for participants to use.

CHAPTER 5. COMPARATIVE STUDY 110

5.5.2 Consent

Participants were given a consent form before the experiment began, which detailed what
the participant was be expected to do and broadly what the research is for. A copy of this
consent form can be found in the appendices, and all signed forms can be found in the
digital appendices.

5.5.3 Explanation

The participant was then informed that they will be playing a text adventure game, and
that the aim in each scenario was to escape the room using the objects in their environment.
Any terms were clarified to the participant at this point if they were unsure of what they
were being asked to do.

5.5.4 Practice

Depending upon their group, the participant was presented with a particular variant of the
interface, loaded with a particular task set, and was invited to execute a series of commands
in a practice scenario (the Keydoor scenario). The commands specifically shown to the
user were help, look, pickup and use, as these were meant to represent routine operations.
Any other command is not explicitly shown.

5.5.5 Scenarios

The user was informed that they would be timed for the rest of the experiment, and that
they could skip past any scenario using the start command, but that they are encouraged
to attempt all of them. The user was then allowed to type start to begin the scenario. At
that point onward, observation data and automatic metrics (as detailed previously) were
taken for the participant’s activities.

When the user finished the scenarios, they were asked if they have any comments. These
were informally recorded, and both the interface and task sets were then switched. The
process, including the practice session, was then repeated for the other interface variant
and task set.

5.5.6 Post-Experiment

After the participant finished the experiment, the researcher,in particular cases, went through
some of the observations made with them to clarify particular aspects. The participant was
then asked which interface they preferred using, and why. These comments were recorded
informally.

CHAPTER 5. COMPARATIVE STUDY 111

5.6 Methods

Methods used to statistically analyse the results below include the following. For each, an
indication is provided as to why they are suitable and thus how they shall be used in the
analysis of the data:

• Histogram — suitable for the visual analysis of a frequency distribution of bucketed
continuous data.

• Averaging — the method for summarising the data gathered for each metric will
involve averaging for each scenario and each interface, and then averaging over the
scenario averages for each interface. This is to control weighting for varying sample
sizes over interface to gain a comparable average.

• Two-way ANOVA — suitable for determining the effect of two predictor variables on a
continuous outcome variable (courtesy of http://vassarstats.net/anova2u.html).

• Bar charts with indicated error — suitable for providing an indication of relationships
and noisiness of continuous samples between groups.

• Poisson Regression Model with Chi-Square Test — suitable for testing the significance
of a factor as a predictor for an effect on frequency data (courtesy of http://stats.
idre.ucla.edu/r/dae/poisson-regression/ — modified R script in appendices).

5.7 Results

A pilot was carried out on one participant, which was successful, and thus the results were
kept. Minor changes were made to the formalisms of pre-experiment explanations.

Some data was unfortunately lost, or corrupted, and thus had to be discarded from the
results. Analysable data remained for 3 participants in each group, except for group B, for
which 4 remained. This provided analysable data from 13 participants, or 169 total scenarios.

The raw results of the statistical analyses can be found in the appendices. The data gathered
can be found in the digital appendices.

5.7.1 Task Success Rate

Results show that participants successfully completed 83/85 (a success rate of 98.8%) with
CAS+HS+TU, and 83/84 (a success rate of 97.6%) with TU. This does not constitute a
significant difference.

http://vassarstats.net/anova2u.html
http://stats.idre.ucla.edu/r/dae/poisson-regression/
http://stats.idre.ucla.edu/r/dae/poisson-regression/

CHAPTER 5. COMPARATIVE STUDY 112

5.7.2 Task Success Time

A 2x2 analysis of variance (table B.1) was performed on task time, testing presentation
order and interface type. The results show that interface has a statistically significant effect
(p < 0.05), as well as a statistically significant interaction effect between interface and
presentation order.

The results also show that, across scenarios, participants achieved, on average, faster task
success with CAS+HS+TU in the majority of cases — overall averages were 34.3s (SD
18.6s) for CAS+HS+TU and 46.0s (SD 24.7s) for TU. The data gathered are however very
noisy, with very wide standard deviation.

5.7.3 Keypresses

A linear model (table B.2) of number of keypresses given interface type and scenario was
generated, and an analysis of deviance of the full model and the model excluding interface
was performed. A two degree-of-freedom chi-square test (table B.3) indicates that interface is
a statistically significant (p < 0.05) predictor of number of keypresses per-scenario. Averages
show that significantly fewer keypresses were performed when using CAS+HS+TU — 59
(SD 45) for CAS+HS+TU and 112 (SD 49) for TU.

5.7.4 Number of Commands

A linear model (table B.4) of number of commands given interface type and scenario was
generated, and an analysis of deviance of the full model and the model excluding interface
was performed. A two degree-of-freedom chi-square test (table B.5) indicates that interface
is a statistically significant (p < 0.05) predictor of number of commands per-scenario.
Averages show that fewer commands were executed when using CAS+HS+TU — 6 (SD 2)
with CAS+HS+TU, and 7 (SD 3) with TU.

5.7.5 Documentation Checks

A linear model (table B.6) of number of documentation checks given interface type and
scenario was generated, and an analysis of deviance of the full model and the model excluding
interface was performed. A two degree-of-freedom chi-square test (table B.7) indicates that
interface is a statistically significant (p < 0.05) predictor of number of documentation checks
per-scenario. Averages show that fewer documentation checks where performed when using
CAS+HS+TU — a rate of 0.25 for CAS+HS+TU, and 0.58 for TU.

CHAPTER 5. COMPARATIVE STUDY 113

C
lo

th
ke

y

P
ai

lt
u

b
e

S
n

ow
gl

o
b

e

P
re

ss
u

re
p

ad

W
ei

gh
tg

a
te

W
at

er
tu

b
e

R
o
p

ew
ei

g
h
t

L
ad

d
er

h
a
tc

h

C
ra

te
ke

y

H
ai

rd
ri

er

C
ra

te
tr

ap
d

o
or

M
an

y
ic

e

N
es

te
d

cr
at

es

−20

0

20

40

60

80

100

120

140

Average time to complete (seconds)

Figure 5.2: Bar graph showing average time to complete for each scenario and each interface
(blue shows CAS+HS+TU and red shows TU)

CHAPTER 5. COMPARATIVE STUDY 114

C
lo

th
ke

y

P
a
il

tu
b

e

S
n

ow
gl

ob
e

P
re

ss
u

re
p

ad

W
ei

g
h
tg

a
te

W
a
te

rt
u

b
e

R
o
p

ew
ei

g
h
t

L
a
d

d
er

h
a
tc

h

C
ra

te
ke

y

H
a
ir

d
ri

er

C
ra

te
tr

ap
d

o
or

M
an

y
ic

e

N
es

te
d

cr
at

es

0

2

4

6

8

10

12

14

16

18

Average number of commands

Figure 5.3: Bar graph showing average number of commands executed for each group and
each interface (blue shows CAS+HS+TU and red shows TU).

CHAPTER 5. COMPARATIVE STUDY 115

5.7.6 Number of Invalid Commands

A linear model (table B.8) of number of invalid commands executed given interface type and
scenario was generated, and an analysis of deviance of the full model and the model excluding
interface was performed. A two degree-of-freedom chi-square test (table B.9) indicates that
interface is a statistically significant (p < 0.05) predictor of number of invalid commands
executed per-scenario. Averages show that fewer invalid commands where performed when
using CAS+HS+TU — a rate of 0.27 for CAS+HS+TU, and 0.57 for TU.

5.7.7 Time Between Each Command

A 2x2 analysis of variance (table B.10) was performed on all times between commands,
testing presentation order and interface type. The results show no statistically significant
effects. CAS+HS+TU had an average of 4.8s (SD 3.6s) and TU had an average of 5.9s (SD
5.2s)

5.7.8 Observations

Observations which were consistently exhibited by a significant proportion of participants
are described here.

The phrase “many participants” is used here to refer to a proportion of the participants
that is greater than half, but not all. The phrase “some participants” is used here to refer
to a proportion of the participants that is less than half, but greater than one individual.

Sources of Confusion

Across interfaces, the following sources of confusion were consistently observed:

• Many participants were confused by how the domain worked in certain contexts.

• Many participants were confused by commands which had similar usage or structure,
but arbitrary applicability or validity — amongst these were the use, place and pickup

commands — this was observed more frequently during TU use than CAS+HS+TU
use.

• Many participants were confused when the usage or structure of a certain command
did not fall into expectations established by routine tasks — in particular the pickup

command — this was observed more frequently during CAS+HS+TU use than TU
use.

CHAPTER 5. COMPARATIVE STUDY 116

C
lo

th
ke

y

P
ai

lt
u

b
e

S
n

ow
gl

ob
e

P
re

ss
u

re
p

ad

W
ei

gh
tg

at
e

W
at

er
tu

b
e

R
op

ew
ei

gh
t

L
ad

d
er

h
a
tc

h

C
ra

te
ke

y

H
ai

rd
ri

er

C
ra

te
tr

ap
d

o
or

M
an

y
ic

e

N
es

te
d

cr
at

es
−10

−5

0

5

10

15

20

25

30

35

40

45

Average time between commands (seconds)

Figure 5.4: Bar graph showing average time between commands for each group and each
interface (blue shows CAS+HS+TU and red shows TU)

CHAPTER 5. COMPARATIVE STUDY 117

Figure 5.5: Histograms showing the frequency distributions of time (in ms) between each
command for CAS+HS+TU (blue) and TU (red), with bucket size 1000

For only CAS+HS+TU, the following sources of confusion were observed:

• Some participants attempted to select Help Snippets as they would Context Aware
Suggestions, which confused them.

• Some participants frequently did not examine the output of commands, and thus were
not aware of domain changes that occurred, which lead to a state of confusion.

• Some participants, expecting different results, attempted to re-execute commands
which were invalid.

Exploratory and Speculative Actions

Across interfaces, the following exploratory and speculative activities were consistently
observed:

• Many participants explored possible commands by looking through operational docu-
mentation — this was observed more frequently during TU use than CAS+HS+TU
use.

• Many participants explored the domain by using look on various objects — this was
observed more frequently during TU use than CAS+HS+TU use.

• Many participants guessed commands based on their intuitions about the domain.

• Some participants used operational documentation to explore less over time.

CHAPTER 5. COMPARATIVE STUDY 118

For only CAS+HS+TU, the following exploratory and speculative activities were observed:

• Many participants explored what was possible through Context Aware Suggestions.

• Some participants systematically trialled many different commands on one object.

For only TU, it was also observed that some participants performed undo on a successful
command out of curiosity.

Resolution Events and Discovery Methods

Across interfaces, the following resolution events and methods of discovery were consistently
observed:

• Many participants resolved a state of confusion by using look on the objects in the
room.

• Many participants discovered a required command through the use of operational doc-
umentation — commands in particular which were discovered in this way were place,
undo, open and break — this was observed more frequently during CAS+HS+TU
use than TU use.

For only CAS+HS+TU, the following resolution events and methods of discovery were
observed:

• Many participants used undo to recover from an error state.

• Many participants discovered a required command through the use of Context Aware
Suggestions — commands which were found in this way were undo, break, place and
in particular every and longer commands incorporating this.

Other Observations and Participant Comments

Across interfaces, many participants executed help and look at the start of every scenario.

For CAS+HS+TU:

• Many participants used Context Aware Suggestions to, in particular, execute routine
activities more rapidly.

• Some participants utilised Context Aware Suggestions to specifically provide rapid
action.

• Some participants rarely utilised Context Aware Suggestions.

CHAPTER 5. COMPARATIVE STUDY 119

• Some participants commented that the presence of suggestions made scenarios signifi-
cantly easier.

For TU, some participants were not able to understand iterative actions (use of every) and
did not utilise them in any scenario.

5.7.9 Preference

When queried, most participants stated that they preferred CAS+HS+TU. Specifically, 9
participants preferred CAS+HS+TU, 2 preferred TU, and 2 had no strong preference.

CAS+HS+TU

Participants had a number of common overarching reasons why they preferred CAS+HS+TU
over TU:

• It provided them with a choice of valid actions, which they stated was easier than
deriving their own commands.

• It was easier to discover the solutions to domain problems.

• They did not need to use operational documentation as much.

• It provided them with a good prompt for remembering the syntax, and thus was
useful for learning.

• There was no harm in them being there, as it only took up a small region of the
screen.

Other reasons that were given in isolation were as follows:

• It made them more willing to try new commands, because they felt safer from error
states.

• They had to type less, which was faster for them.

• They had to read and understand less of what was happening.

• It provided a welcome variation on traditional CLI experiences — “Command lines
are old and need to be updated”.

CHAPTER 5. COMPARATIVE STUDY 120

TU

Participants had a number of common overarching reasons why they preferred TU over
CAS+HS+TU:

• The command suggestions were not always relevant or useful to them, so they did not
trust them overall.

• They did not use Context Aware Suggestions.

• They were more accustomed to typing than selecting what they needed.

• They prefer to have more control over what actions they take.

• They felt less engaged with the activity.

• It was uncomfortable given their expertise with other CLIs.

• The extra features were distracting to them.

• Alternating between selecting commands and typing them was cognitively hard for
them.

5.8 Discussion

In this section, the hypotheses and study questions will be evaluated with respect to the
results obtained.

5.8.1 Evaluation of Hypotheses

H1a. Users achieve a better task success rate with Context Aware Suggestions

Hypothesis 1a. is contradicted by the results, as there was not a significant difference
between the average success rates of the two interfaces. Many participants stated that the
tasks were very easy, and as such, it is not unreasonable to suggest that the success rate
results may have been subject to a ceiling effect.

H1b. Users will complete tasks in a shorter time with Context Aware Sugges-
tions

Hypothesis 1b. is supported by the results, as CAS+HS+TU had a significantly lower
average completion time than TU. There was a significant interaction effect between interface
and presentation order, and this is shown by the fact that group A in fact had a higher

CHAPTER 5. COMPARATIVE STUDY 121

average task completion time overall. This could be due to the particular task set, or a
dithering effect caused by the presentation of a novel interface.

The chart (5.2) shown, however, throws uncertainty over claims of statistical significance
— these reveal that per-scenario, there is so much noisiness over the samples that their
variance consistently overlaps. It is possible that these results were affected in some way by
experimental error. However, observations and discussions with participants provide further
evidence to support the hypothesis, with many participants stating that they found the use
of Context Aware Suggestions a faster alternative to manual typing, and that it was easier
to find the solution to a task.

H2a. Users will use fewer keypresses to succeed a task with Context Aware
Suggestions

Hypothesis 2a. is supported by the results, as CAS+HS+TU had significantly lower average
per-scenario keypresses. Whilst this does seem to indicate that less physical effort is required
to solve a problem with Context Aware Suggestions, it is not clear whether overall cognitive
effort is reduced.

Many participants seemed divided on this matter — some stated that they preferred typing
more, and others stated that they preferred typing less. One participant pointed out that
alternating between typing and selecting suggestions was cognitively hard for them, and
this alternation was not worth the benefits to them.

H3a. Users will discover commands faster with Context Aware Suggestions

Hypothesis 3a. is supported by the results, as CAS+HS+TU had a significantly faster
average success time than TU. This is based on the assumption that faster discovery of a
desired command leads to faster task success. However, other factors may have also lead to
faster task success times.

Further evidence is given by observations that participants discovered their desired com-
mand more often from Context Aware Suggestions than from operational documentation
when using CAS+HS+TU. This suggests that Context Aware Suggestions provide a faster
discovery method than the operational documentation. This also assumes that participants
spend most of their time searching for a solution to the problem.

Novel commands especially were discovered through Context Aware Suggestions, such as
commands incorporating place, undo, open, break and every. Some participants also

CHAPTER 5. COMPARATIVE STUDY 122

stated that they found it easier to find the solution to a problem with Context Aware
Suggestions, and that they did not need to use the help command.

H4a. Users will check documentation less with Context Aware Suggestions and
Help Snippets

Hypothesis 4a. is supported by the results, as, on average, help was executed significantly
less in scenarios completed with CAS+HS+TU than with TU. The observations gathered
also broadly support this, as many participants were observed to use Context Aware Sug-
gestions as a command discovery method, which lessened the extent the help command
needed to be used. Some participants did also state that suggestions removed the need to
check documentation as much for them.

H5a. Users will execute fewer invalid commands with Context Aware Sugges-
tions and Help Snippets

Hypothesis 5a. is supported by the results, as fewer invalid commands were executed
per-scenario on average with CAS+HS+TU than with TU. It is clear that, presentation of
a set of valid commands makes it less likely that participants would speculatively execute
an invalid command.

This could either be because they selected one from Context Aware Suggestions, or because
they have a better idea of what constitutes a valid command due to exposure of valid
commands from Context Aware Suggestions and Help Snippets. One participant stated that
“suggestions almost eliminated need for undo”, because they felt they made fewer mistakes
as a result of being suggested valid commands.

H5b. Users will use Tree Undo to recover from error states

Hypothesis 5b. is difficult to support using the results presented. Had metrics been taken
on irreversible or domain error states, it might have been possible to correlate this with
undo use per-scenario. It was observed that undo was most often used to undo the Rope-
gate (table 5.2) irreversible failure state, though not all participants knew to use undo in
this scenario, and some simply skipped. In fact, only a slim majority (61.5%) of partici-
pants used undo at least once. Some participants did comment that they found undo helpful.

CHAPTER 5. COMPARATIVE STUDY 123

H6a. Time between the end of a user’s last action and the start of the next
action will be reduced with Context Aware Suggestions

Hypothesis 6a. is contradicted by the results, as there is no significant effect of interface
on the time between commands. The frequency distributions of time between commands
for each interface (figure 5.5), show that shorter times are in fact more frequent for TU
than CAS+HS+TU, which had a more spread distribution. It could be suggested that the
presentation of Context Aware Suggestions and Help Snippets incited more deliberation
time amongst participants.

However, it was observed amongst many participants that routine tasks in particular —
such as those constituting the ideal actions in the Keydoor (see table 5.2) scenario — were
executed very rapidly with suggestions. The times to read the result of help commands are
also included in these measures, so it is not clear if it is possible to conclude that suggestions
were ineffective at lowering this time. That is, reading operational documentation and
reading Context Aware Suggestions may take roughly the same amount of time, but these
measures split the time it takes to deliberate the referral of, and the reading of operational
documentation.

Given that the help command was used much less, and tasks were completed in a shorter
amount of time with CAS+HS+TU, one can argue that time of formation of intent to
transformative action — that is, not look or help — may have indeed decreased with
suggestions. However, without direct empirical evidence, its difficult to support this claim.
There are after all, many facets of a participant’s action — formation of intent, specification
of intent and execution of intent — that may have been affected here.

5.8.2 Evaluation of Study Questions

SQ1a. Do Help Snippets promote a user’s understanding of commands?

There is no quantitative data to support claims that Help Snippets promoted understanding
of commands amongst participants. Indeed, it was informally observed that only a small
minority of participants found Help Snippets useful. However, some participants did state
that Help Snippets were good for understanding command syntax and structure.

SQ2a. Do users explore more with Context Aware Suggestions?

If the assumption is taken that a participant would execute more commands if they ex-
plored more, then the results in fact contradict the hypothesis — participants executed
significantly fewer commands per-scenario with CAS+HS+TU. It can be argued that the
features within CAS+HS+TU werent specifically used to explore a command space, as

CHAPTER 5. COMPARATIVE STUDY 124

observations show that the help or look commands were used just as often as a method
for browsing possibilities.

Some participants commented that Context Aware Suggestions made them more willing
to try out new operations, but many other participants seemed to utilise Context Aware
Suggestions exclusively to provide swift action for routine tasks. One participant even
commented that they explored less with suggestions.

SQ2b. Do users explore more with Tree Undo?

There is very little quantitive data to support an answer to this question, particularly in the
context of such a small test. In addition, users were not in fact notified that undo existed
before the test began. However, some participants did undo successful commands out of
curiosity, and one participant did comment that they “wouldn’t have speculated so much
without undo”. One participant touched on the potential issue that most terminal users will
expect such an undo functionality not to exist, and that it might be difficult to “untrain”
such an expectation.

5.9 Critical Analysis

It is pertinent to provide a critical analysis of the experiment as a whole, in order to assess
the applicability of the findings presented.

5.9.1 Applicability of the Designed Domain

It is clear that the designed domain presented differs very greatly from those that are
operated on in real-world CLI use, even though an attempt is made to explore the pertinent
aspects of such domains.

The Game Factor

Indeed, some participants did question whether a game provided a correct experience to
test real-world CLI use. It seems that while a fundamental aim of a work-related activity is
effectiveness, the fundamental aim of engagement in games is very distinct. One participant
in particular stated that Context Aware Suggestions would be better “in a work context”.

CHAPTER 5. COMPARATIVE STUDY 125

Technical Aspects

Not all technical aspects of CLI interaction could be explored in the design of the domain,
such as referencing specific objects which were of the same class by a unique name. The
interactions between these sorts of aspects may have been important to consider or examine.

Long-term Use

Whilst the experimental tasks carried out only lasted, in total, around 30 minutes for each
participant, much real-world CLI use occurs in a work context over much longer periods of
time. The experiment fails to explore potential nuances of long-term use, such as learning
or customisation, which effect the use of the enhancing features. Indeed, one participant
stated that they may have found themselves getting into the habit of using Context Aware
Suggestions if they used the tool for a longer period of time.

Command Corpus Size

It is difficult to support claims that the domain presented a vast array of functionality. Indeed,
only 13 commands were exposed, when a domain such as the Unix core exposes around 160
different commands [Hamilton, 2014]. This is very likely to have had an effect on the results;
indeed more than one participant stated that there were not a lot of commands to remember.

The fact that the entire corpus was extremely easy to access via the help command meant
that users found the process of discovery often very easy. A better method might have been
to provide the corpus through some external documentation method.

Uncharacteristic Guessability

The design process taken to deriving the command corpus was largely domain driven,
however many CLI environments, such as Unix, present an generalised, OS-level paradigm
in which commands are appropriated to many domains and contexts. Indeed, it would seem
pertinent to classify two sorts of command corpora based on their generality with respect
to a particular domain. This domain-first style of syntax design certainly had an impact on
the guessability of the commands.

This provides some insight as to why many participants found the act of discovery in this
domain so easy, when much of real-world CLI discovery is very difficult. Commands were
extremely guessable because they had good cues to memory, and were easy to understand
from a domain context, due to a natural morphological affordance relationship between
domain objects and commands. These factors could have been in some way eliminated to
accurately test Context Aware Suggestions as a method for discovery in a less guessable

CHAPTER 5. COMPARATIVE STUDY 126

CLI environment. However, the principles of this project strongly derive from those of HCI,
and thus deliberately obscuring mappings between meaning and labels would not make
sense. Indeed, it would at best have created a weak “strawman” argument.

Hand-Trained Context Aware Suggestions

It is not clear whether it was reasonable to hand-train the model for Context Aware
Suggestions. The commands suggested were sometimes completely nonsensical given the
context — for example, place weight on rope is suggested when help is typed. This
is due to the fact that the suggestion engine only analyses the first most recent output.
Participants often found this confusing, and it is possible that with more sophisticated
machine learning methods, participants would have more faith in Context Aware Suggestions.

5.9.2 Limitations of the Data

The data gathered were largely unsatisfactory for the analytical requirements of the study.
Not enough metrics were taken to adequately support the evaluation of the hypothesis.

In addition, samples within groups were very small, leading to extremely noisy data, which
makes it very hard to justify claims about underlying phenomena.

Much of the data is also likely to have been affected by experimental error. A big fac-
tor in this is the ceiling effect caused by the easiness of most aspects of the scenarios
presented. Statistical tests were difficult to perform, as the experiment had a complex
design, with different numbers of participants taking different scenario sets with different
interfaces — this is due to the fact that there are 4 participants in group B, and 3 in the rest.

It is also difficult to make concrete claims about the performance of different methods of
enhancement in isolation based on the data gathered, due to the way they were incorporated
in the different interface versions. Had more versions been created and tested which
incorporated the enhancements in different ways, it might have been easier to provide a
more complete comparative analysis.

5.10 Conclusions

Given the analysis performed, it is possible to draw a number of conclusions which address
the broader aims of the study.

CHAPTER 5. COMPARATIVE STUDY 127

5.10.1 Effectiveness of Context Aware Suggestions

It is possible to conclude that Context Aware Suggestions were effective for lessening physical
effort of execution amongst participants, and also for rapidly discovering required solutions.
However, they were not effective in every case, and indeed not every participant appreciated
them. This was often due to the fact that they required more cognitive effort to engage
with, and that they had a perceived reductive effect on agency. With more sophisticated
machine learning methods and big data, Context Aware Suggestions could become much
more effective.

Though they do appear to solve a broad set of CLI problems, there are potentially better
solutions to the Exploration Problem. Indeed, suggestions seem to bypass concerns of
exploration, as they tend to just provide what is supposedly the “correct” action to take. It
is not clear whether this disrupts a user’s intent, but an option which provides more agency
or control may be more beneficial.

Another pertinent aspect of the use of Context Aware Suggestions is their impact on
engagement that many participants described. Participants described how Context Aware
Suggestions detached them from the problem solving process, or that they did not need to
know what was going on to complete certain tasks. It is clear that this disengagement can
impact the use of Context Aware Suggestions as a tool for learning and understandability.

5.10.2 Effectiveness of Help Snippets

It can be concluded that Help Snippets were not an effective feature in the context of this
experiment. Indeed, only a small minority of participants engaged with Help Snippets
as a method of documentation checking by typing a few letters from a command. Often,
however, they were typically just a source of confusion, as many participants tried to select
help items as though they were suggestions.

It seems that Help Snippets were a feature which found an improper place in the interaction
flow of the participants; a participant already knew what they wished to do when in the
process of executing a command, which is primarily where Help Snippets show. Perhaps if a
different paradigm of interaction were encouraged, one which invited users to speculatively
search for commands in the prompt, they would be more effective at promoting command
understandability.

5.10.3 Effectiveness of Tree Undo

It can be concluded that, while the undo command itself was found to be useful by
participants in a particular situation, no benefit was seen of the visualised aspect of Tree

CHAPTER 5. COMPARATIVE STUDY 128

Undo. This is likely because this functionality only finds niche usefulness in cases where a
participant had to enact certain changes before a sequence of already executed commands —
an activity which was not afforded by the scenarios presented.

Chapter 6

Analysis

129

CHAPTER 6. ANALYSIS 130

In this chapter, we shall aim to draw together and summarise the findings from the investiga-
tions carried out throughout this dissertation, generate some additional design ideas which
address the overarching aims, and provide further analysis with respect to the literature. In
doing this, it is possible to propose models which formalise the findings of these works.

We shall first present a formalised view on the Exploration Problem introduced in the
Literature Review. From this basis, and on the basis of findings from the Exploratory Study
and the Comparative Study, we will present an informed model of action specification for
CLI users. Finally, discovery methods and approaches to the Exploration Problem will be
presented and evaluated, informed by findings throughout the study.

6.1 Formalising the Exploration Problem

The Exploration Problem is presented here as a formalised extension of the Vocabulary
Problem proposed by Furnas et al. [1987], which describes issues of action specification
within CLIs.

Given the following conditions:

• An interface whose operation is subject to some structured control language [Norman,
2007], which is in part constituted of a set of labels which correspond to a set of
referents.

• An interface which exposes a sufficient number of referents such that it is not trivial
to hold comprehensive knowledge over them.

• A user subject to some overarching domain activity which requires them to solve a
“novel” problem, which is one which cannot be solved solely on the basis of recognition-
primed decisions.

• A domain of activity populated with interactive domain objects.

The Exploration Problem is the problem of, in an efficient manner, searching a combinatorial
set of commands validly applied to domain objects, with the intention to discover a set of
command strings which can be successfully applied to solve the domain problem. Commands
are formally defined here as a set of referent labels, structured in some way by the syntax
of the control language, which express a particular intention of a user.

This process of discovery can be defined as having two stages, which could occur in any
order, or simultaneously:

• The discovery of the existence of a set of domain referents for solving the problem,
and their operational details.

CHAPTER 6. ANALYSIS 131

• The discovery of actionable labels and syntactic structure to validly execute the
required referents.

This allows the generation of a model of action specification for CLIs (figure 6.1), which
characterises the operational states of a user engaging in an Exploration Problem scenario.

6.1.1 Types of Exploratory Activity

The generated model of action specification of CLI users (figure 6.1), delivers a taxon-
omy of distinct exploratory activities for progressing between states of knowledge. These
types of activity are presented in a manner specifically divorced from methods by which
a user might discover information — indeed, these can emerge from the utilisation of any
sort of artefact — but some exemplar methods of discovery are presented alongside each type.

These activities can be, more or less, accurately described in the context of the findings
of this dissertation. To illustrate each activity, a hypothetical example scenario will be
described, which features a persona, Susan, whose intention is to move a particular set of
files using a Unix Shell. Each of these incorporates key CLI issues identified in the Literature
Review, user experiences described in the Exploratory Study, and empirical observations
from the Comparative Study.

Type A: Label Speculation — from Unknown to Known Commands

Type A exploration is concerned with the discovery of syntactic structure and labels,
but where referents and their technical detail are partially or wholly unknown or not
fully understood. This primarily occurs through guessing or speculating about potential
labels which make sense from the perspective of the domain of activity, or by browsing
documentation which details high-level syntactic structure.

Susan examines some documentation on wildcards, and determines that she can
use these to apply some function to each file she wants to move. She guesses
that the function she might want might have the label mv, but she is not entirely
sure if it exists in this form. She also is not sure how she might specify the path
to move the files to, but given other commands she has used, this could be done
via a flag or simply by providing another parameter.

This categorisation is supported by observations made on the way participants of the
Comparative Study speculated about the existence of a command — some participants
systematically trialled command labels on one object (see section 5.7.8).

CHAPTER 6. ANALYSIS 132

"How do I execute
my intention as a

command?"

Intention
Formation

"I know of a valid
command which
might work, but
I'm not sure of

certain specifics."

"I know that these
referents are

possible to perform,
but I don't know

how to specify it as
a valid command."

"I know how to
specify my

intention as a
command."

Execution

Referent isn't
available. N ew tools
must be recruited,
or the intention

must be
re-evaluated.

Trial and Error

D

A

B

E

Unknown
Command Known Command

U
nk

no
w

n
R

ef
er

en
ts

K
no

w
n

R
ef

er
en

ts

C

Trial and Error

Figure 6.1: A model of action specification for CLI users.

Type B: Referent Browsing — from Unknown to Known Referents

Type B exploration is concerned with the discovery of the required referents, but where the
required structure or labels are not immediately clear. This could occur through browsing a
list of manual entries, which provide comprehensive lists of referents, but no information
on parameter formats or other syntactic structure. This can also occur by understanding
the capabilities of the tools available, but not remembering particular labels, parameter
formats or connective syntax.

CHAPTER 6. ANALYSIS 133

Susan types man and begins to search for a command which will help move her
files. She finds one, but it is not clear how this could be applied to a number of
files.

This categorisation is supported by observations made on the way participants of the
Comparative Study used operational documentation — many participants guessed commands
based on their intuitions about the domain (see section 5.7.8).

Type C: Direct Solution Discovery — from Unknown to Known Commands
and Referents

Type C exploration allows a user to directly discover exactly how to specify what they want
to do as a valid command. This process can occur if documentation is found which wholly
describes the required method, or described by a peer interpersonally or on a forum.

Susan Googles the following query: “move multiple files in Unix”. The first
result is a StackOverflow (https://stackoverflow.com/) page which explains
the exact command she requires, and how to apply it to her situation.

This categorisation is supported by discussions had with participants of the Exploratory
Study on the use of Google as a method of discovery — Googling for direct answers was
found to be a particularly common thread (see section 3.5.2).

Type D: Referent Detail Checking — from Unknown to Known Referents

Type D exploration is the process of checking the details of the referent space — does
the referent exist for the speculative method, and if it does, what are the operational
details which are required for their execution? This process can occur through referent
documentation checking by querying potential labels, or by peer guidance.

Susan types man mv into her terminal. This gives her comprehensive operational
detail on how the mv function should be used, allowing her to construct a valid
command.

It is also possible that this avenue of discovery results in failure because one or more of the
referents that the user is searching for are not available, or are not correct for the required
application. In this case, different tools may need to be used, the referents possibly imported
from a package management system, or the user may re-evaluate their intentions.

This categorisation is supported by observations made on the way participants of the
Comparative Study used operational documentation — many participants discovered a

https://stackoverflow.com/

CHAPTER 6. ANALYSIS 134

required referent through the use of operational documentation (see section 5.7.8). In
addition, participants of the Exploratory Study cite the usefulness of help flags as methods
for gaining more detail on a candidate referent (see section 3.5.2).

Type E: Syntax Checking — from Unknown to Known Commands

Type E exploration is the process of checking correct labels and connective syntax given the
required referents. This might be done by examining required operational documentation,
or through peer guidance.

Susan asks her colleague, Samantha, if the command move /file*.txt to

../folder is correct. Samantha sees what Susan is trying to do, and tells her
the command she wants is mv /file*.txt ../folder.

This categorisation is supported by discussions had with participants of the Compara-
tive Study regarding Help Snippets — some participants stated that short excerpts of
documentation were good for understanding command syntax and structure (see section
5.8.2).

Trial Actions

An additional sort of exploratory activity occurs in the process of trial and error, whereby a
trial action is taken on the basis of incomplete knowledge. This is based on a hypothesis
that some knowledge must be known about the available referents, the required elements of
the control language, or both, in order to make a valid guess. These trial actions may not
result in success, but may potentially help a user move towards a correct solution.

A trial action can result from a guessed, but valid command in the absence of knowledge
about it’s referents, but also from a guess about the exact phrasing of a command, given a
set of known referents.

This categorisation is supported by observations made on the way participants of the Com-
parative Study participated in trial and error, and also how participants of the Exploratory
Study described their approaches to this process — trial and error was a method of a
discovery, but also, in part, a learning tool for them (see sections 3.5.2 and 3.5.2).

6.1.2 The Learning Factor

The extent to which each type of activity described is an exploratory or browsing process
depends upon the expertise of the user. That is, a user may not have to search if they
already know the answer, and thus they will move more swiftly through these stages of

CHAPTER 6. ANALYSIS 135

specification the more their activities are knowledge-primed. When a user is able to maintain
complete knowledge over the required set of referents, their technicalities and labels, and
any other connective syntax, the activity becomes a routine task.

It is the aim of learning in this context to provision a process whereby novel problems within
CLIs are transformed into routine tasks. This constitutes a movement from analytical
decision processes to recognition-primed decision processes. Arguably, this factor explains
the continuum of “innateness” or automaticity of action described by participants of the
Exploratory Study, which characterises the variety of actions taken by CLI users. Indeed,
the process of learning allows users to progress to situations where they are able to achieve
states of flow — fluent translation of intent into commands, no conscious process of planning
or browsing. This state of ultimate efficiency is the goal of many CLI users.

It would also seem that many processes by which CLI users perform exploratory activities
also directly contribute to learning. As a consequence of this, it may be suggested that
certain exploratory activities are actually highly desirable from a learning standpoint. These
claims are supported by works such as Bjork and Kroll [2015] on “Desirable Difficulties”
and Howes [1994] on exploration as a learning exercise. A question remains as to what
kinds of exploratory activity are most conducive to learning efforts, and indeed whether it is
desirable to eliminate the need for exploration altogether in the context of these realisations.
Indeed, works within NDM (as discussed in section 2.3.2) suggest that exploration is simply
a natural part of human problem solving.

6.1.3 Limitations

The model presented is a highly idealised view on the action specification of CLI users and
is also limited to application under only the specific assumptions made clear. Particular
features which are explicitly not included within this model are any evaluative steps, or
backtracking to previous states. Indeed, there may be scenarios which are not encapsulated
within this model at all.

In addition, it may not be clear to what extent users undergo planning processes within the
activities described by the model. These may indeed occur before, or alongside exploratory
activities.

6.2 Approaches to the Exploration Problem

The principal aim in developing solutions to address the Exploration Problem of CLIs is
to support efficient methods of discovery which address all types of exploratory action as
detailed in the model above. High-level methods and their actualisations that address this,
which were explored in this dissertation, are summarised here.

CHAPTER 6. ANALYSIS 136

6.2.1 Peer Support

A versatile source of learning and discovery for CLI users is the provision of support from
peers. Peer support is particularly effective because observing the approaches of others can
frequently help users discover new ways to approach novel problems. Advice from a peer can
serve any of the exploratory activities detailed, but only if the user resides in an environment
where advice is rapidly accessible. Therefore, useful extensions to this method of discovery
are those that increase the availability of peer advice, such as groupware products and
public forums.

Artificial intelligence can also play a role in the delivery of peer support, as suggested by
works from Klein et al. [2004] on collaborative models of problem solving.

6.2.2 Documentation Checking

Operational documentation checking can provide an accurate and particularly educational
method of discovery, but it’s effectiveness hinges on several factors. The ability to search
documentation is a primary factor — many participants of the Exploratory Study stated
that they found manual pages difficult to search, and found them less effective as a result.
Format and layout of the represented documentation is another factor which plays an
important role, as this affects the extent to which it can be parsed and understood. The
speed with which documentation can be accessed is also affected by whether it must be
accessed internally, as with manual pages, or externally, as with web-hosted content or guides.

There are a breadth of documentation methods, including manual pages, help flags or online
guides, but each of these support a very narrow range of exploratory goals.

6.2.3 Supporting Trial and Error

Trial and error is a particularly natural method of discovery, but its effectiveness is subject
to how well it is supported by the control language and the knowledge that the user currently
holds about the domain. Artefacts which can improve the effectiveness of trial and error
typically improve the guessability of command labels for easier access to referents, such as
Wobbrock et al. [2005]’s Unlimited Aliasing method. Correction mechanisms are another
way to improve the speed with which CLI users converge on the correct referent label —
these include features like “did you mean” suggestions appended to invalid syntax error
messages.

In addition, trial and error processes can be supported by providing increased security from
error states. This allows a user to experiment with the domain and the control language
in an unimpeded manner, and encourage speculative action in critical scenarios. One way

CHAPTER 6. ANALYSIS 137

this can be achieved is to provision methods of recovery, such as the oops command found
within AutoDesk [2015].

6.2.4 Supporting Learning

The aim of learning in CLIs, as previously discussed, is to allow a user to knowledge-prime
processes of action specification, such that very little or no exploratory activities need
be engaged with. Supporting the process of learning is thus a clear way to address the
Exploration Problem.

Participants of the Exploratory Study stated that they often learnt through peer support or
checking documentation. It was also noted that learning typically occurred on a needs-driven
basis — only very occasionally is time set aside for the purpose of learning. Therefore,
CLI learning processes are effective if they can happen rapidly and within a practical context.

There is also evidence from the studies carried out that the ability to properly concep-
tualise about areas of the domain of activity is key to learning processes. It is clear
that the extent to which a user engages with a problem effects how well they are able to
formulate a mental model. In the context of this, it is possible to propose that certain
methods of discovery, particularly those which are of type C, may have a negative impact
on learning, because, as methods of discovery, they are not engaging. This hypothesis
is supported by work done by Bjork and Kroll [2015] on what they call “desirable difficulties”.

The extent to which learning is effective as a process for knowledge-priming exploratory
activities is also subject to the memorability of the control language and the referents. That
is, a user may have once discovered a method which may prove useful in a current scenario,
but has forgotten what label to refer to it by — the exploratory process must be undertaken
again to remind them. Participants of the Exploratory Study state that memorability of a
control language is affected by a number of factors, including meaningfulness and consistency
of labels, acronyms, parameter orders and connective syntax. It is clear that command
labels, when known, should be effective cues to memory for a referent, but also that, given
a known referent, a user should be able to logically derive or remember the required label.

6.2.5 Conceptualisation Mechanisms

In the analysis of the shortcomings of the Comparative Study carried out, we discover some
pertinent sentiments regarding conceptualisation. Participants of the Comparative Study
found the tasks easy because there was an emergent quality of the control language pre-
sented. The highly domain-oriented labels and essentially plain-english syntactic structure
of commands allowed for uncharacteristically effective action specification. Domain objects

CHAPTER 6. ANALYSIS 138

were characterised by a naturally present mental model of affordance, due to the physical,
rather than abstract, nature of the domain.

Participants had a natural tendency to express commands on the basis of domain sense, even
when commands were not syntactically correct. It seems that representing an underlying
model in a clear or flexible way to a CLI user may allow effective action specification
irrespective of their level of ability.

This idea of providing a highly understandable interface onto a domain may be harnessed
by helping a user understand commands from the context of the objects which they can be
used upon. That is, CLI domain objects could be enriched with representations of signifiers
that indicate afforded commands. These afforded commands, of course, change depending
upon the context of use.

Mechanisms for enhancing conceptualisation include visual representation and the use of
natural language within the design of a control language.

However, these mechanisms often cause increased “visual clutter”, and decrease overall
efficiency of parsing and expression, due to expanded or redundant command phrases.

6.2.6 Suggestion Mechanisms

Suggestion mechanisms have been thoroughly explored as an approach to address facets of
the Exploration Problem. They are mechanisms which provision direct representation of
possible commands, and aim to provide rapid support in exploratory activities.

There are many types of suggestion mechanism, including “did you mean?” suggestions
within syntax error messages, history-based mechanisms, autocompletion methods such as
those within Fish [Doras] and zsh-autosuggest [de Arruda, 2013], and sophisticated realtime
suggestions which analyse the context of execution presented in this dissertation.

These mechanisms, especially those that provide suggestions learnt from other users, are
very effective at addressing the Exploration Problem, because they directly demonstrate
what is possible to a CLI user. However, it has been found that advanced suggestion
mechanisms do have several downsides. One such downside is the fact that suggestions
often decrease the user’s engagement in a problem-solving task, which has a negative effect
on learning processes. Another downside is that they remove perceived agency and control
from a CLI user, which was described as a fundamental desire by many participants within
the Exploratory Study. It is clear that, for suggestion mechanisms to be effective, these
deficits and their effects must be somehow be addressed or limited.

CHAPTER 6. ANALYSIS 139

6.3 Summary

In this section, the key findings of this dissertation have been formalised and summarised. A
formal model of CLI action specification and the Exploration Problem have been proposed,
as well as potential ways in which the Exploration Problem may be addressed.

Chapter 7

Conclusions and Future Work

140

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 141

In the context of the work carried out during this dissertation, it is possible to draw a
number of conclusions, present a critical analysis of the findings, and propose future works
for further expansion of the area explored.

7.1 Conclusions

In conclusion, it is clear that many — but not all — CLI usability issues are caused by
the Exploration Problem of CLI action specification. A critical aim in the design of CLIs
and their control languages is to address this problem. A model of action specification
(figure 6.1) has been presented which classifies different sorts of exploratory activity. These
include:

• Label Speculation — speculating about known labels and syntax without precise
knowledge of referent detail.

• Referent Browsing — exploring what is possible to do within a particular domain
without precise knowledge of control language details.

• Direct Solution Discovery — exploring with the desire to discover an exact com-
mand that can express the given intention.

• Referent Detail Checking — converging upon details of required referents.

• Syntax Checking — converging upon required details of the control language.

• Trial Actions — speculatively executing a command on the basis of incomplete
knowledge about required referents or the control language.

There are a number of principle design methods for addressing the Exploration Problem:

• Delivery of peer support — artefacts which increase the availability or speed to
access advice from other expert users.

• Documentation — effective representation of operational details of the control
language and the domain.

• Supporting trial and error — allowing a user to safely and effectively make
judicious guesses to discover required details about a command space.

• Supporting learning — increasing the extent to which exploratory activities can
become knowledge-primed.

• Conceptualisation mechanisms — artefacts which increase user awareness of an
underlying domain model in a way which compliments the technical aspects of a
control language.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 142

• Suggestion mechanisms — a vehicle for delivery of fully-fledged commands which
are suitable for a given context.

However, each approach presents certain facets and downsides, which must be addressed in
their integration.

7.2 Critical Analysis

In many ways, this dissertation has provided a cursory examination on a diverse set of
pertinent modern CLI issues, but has often lacked specific focus on the Exploration Problem.
Indeed, though these diverse aspects were explored as facets of the Exploration Problem,
many features explored are presented in a disambiguated way, and may, in places, lack the
necessary literature support. However, this is mostly as a consequence of the fact that CLI
usability receives very little academic attention [Heron, 2015].

In addition, the results and findings of the investigations carried out are largely carried
by observations of and discussions with a slim subset of CLI users, who are all students
of technical courses at the University of Bath. As such, these conclusions may only apply
to specific sorts of CLI user experiences. Indeed, much of the works presented are done so
under the pretences of traditional CLIs, and in particular, terminal emulators and shells.

7.3 Future Works

There are a number of future works which can be proposed as a result of the investigations
taken and the findings of this dissertation.

7.3.1 Technology Review for CLI Integration

A proper technology review of the tools for CLI integration may also be conducted as a
factor for encouraging more development of modern CLI artefacts. A variety of methods
are available for review, including those for of integration into CLIs for operating systems,
and frameworks and extensions such as Hyper [Rauch], Zsh [Falstad], and Fish [Doras].

7.3.2 Real-World Integration of Context Aware Suggestions

A method for the integration of Context Aware Suggestions has been presented on the
basis of solving CLI usability problems, but very little analysis has been performed on the
feasibility of its integration into real-world CLI domains. Presenting a method for machine
learning the context of use of a real-world CLI is a difficult technology problem, but it also

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 143

introduces serious issues of security and privacy.

An extended investigation into this may provide an examination of effective statistical
methods for integration of domain context pattern recognition in the context of a real-world
CLI domain such as Unix, and explore the necessary precautions that must be taken from
the context of security and privacy. These works will likely expand upon works done within
the area of planning theory, such as Doane and Sohn [2000], Allen [1979] and Allen and
Perrault [1980].

7.3.3 Expanded Study of Suggestion Mechanisms within CLIs

The comparative study presented here was a largely speculative investigation which lacks
a specific focus on a particular approach to the Exploration Problem. An expanded
comparative study should place significant focus on the types of suggestion mechanism
which can be integrated in a CLI domain. This domain should have characterising aspects of
real-world CLI domains, including large syntax corpuses and highly unguessable command
spaces. Different methods of delivering suggestions could include:

• “Did you mean” suggestions within error messages.

• Real-time, continuously represented suggestions, as with the Context Aware Sugges-
tions design previously developed.

• Suggestions upon request, via some command, for a particular context.

• Querying domain objects, via a command, to present a list of commands that the
object affords.

This study should take an expanded array of metrics, including the recording of key-by-key
input timelines, some method of measuring user understanding, and proper quantification
of exploratory behaviours. A large sample of users must be studied, potentially under the
context of everyday use, to effectively analyse underlying phenomena.

7.3.4 Information Visualisation of Command Spaces

It is clear that there is an information visualisation problem for command spaces which
reaches past the scope of this dissertation. Understanding and developing effective methods
for visualising a command space may provide better approaches to the Exploration Problem,
by enhancing methods such as suggestion mechanisms, conceptualisation mechanisms and
documentation.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 144

7.3.5 Harnessing Benefits of CLIs in Mainstream Software Products

This dissertation has mostly presented findings which benefit a minority of technical
and expert users, but there is no reason that these cannot be extended into the realm of
mainstream products. It is clear that it may be possible to push the boundaries of definitional
CLIs to create hybrid interfaces, incorporating visual, spacial or highly interactive paradigms.
These should move towards an aim of integrating the benefits of CLIs into modern software
systems for the benefit of users of all expertise. Principally, such a study should be geared
towards the accessibility of CLI benefits such as efficiency, and rapid access to large sets of
functionality.

7.3.6 Relationship of CLI Efficiency and Understandability

At certain junctures of the investigations carried out, certain evidence can be observed that
methods for increasing efficiency and power of action within CLIs are at odds with methods
for increasing understandability and conceptualisation of a domain. It may be pertinent
to explore whether there is indeed a direct relationship between these factors, and that
whether supporting one consistently detriments the other.

7.3.7 User Customisation in CLIs

The role of customisation in CLI users’ experiences was briefly explored in the Exploratory
Study, but it is clear that customisation is a greatly important facet of how a user appropriates
their tools for a particular context of work over time. An investigation into such an aspect
should aim to understand why CLI users customise their environments, and whether it is
truly the result of a fundamentally dissatisfying “base” or “vanilla” experience.

7.3.8 Peer Support through CLI Groupware

Peer support was identified as a principle approach to the Exploration Problem, but
very little work has been done on how guidance or advice from experts can be delivered
swiftly to CLI users. An investigation which addresses groupware artefacts for CLIs should
evaluate direct integration of a CLI environment with public forums such as StackOverflow
(https://stackoverflow.com/).

7.3.9 CLI Learning Processes

Learning within CLIs is asserted as the process by which exploratory processes of action
selection become more knowledge-primed, but it is clear that it plays an expanded role
outside of this purpose. Further investigations into learning processes of CLI users should
aim to understand methods by which effective learning is achieved — it is clear that in order
to achieve this, a long-term empirical study into real-world CLI use must be performed.

https://stackoverflow.com/

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 145

7.3.10 CLI Problem Solving Agents

At many conjunctures of this dissertation, artificial intelligent problem solving agents were
identified as being a possible solution to the Exploration Problem. These can simulate the
support of a peer and provide suggestions judiciously, based on an internal model of a user’s
intentions. An investigation should be conducted into how to effectively engage users with
sophisticated artificial intelligences for assisting problem solving within CLIs, in the context
of existing personal assistants such as Apple’s Siri.

Agency, Control and Responsibility within CLIs

Many participants touched upon key notions of agency, control, and responsibility within
CLIs — that is, the extent to which a user feels that they are able to affect meaningful
action within a CLI is very important. An investigation which, in particular, examines CLI
problem solving agents in any capacity, should question how the integration of artificial
intelligence and machine learning models threatens a user’s agency and control, as well as
responsibility in the context of institutional and critical action.

7.3.11 Emotional and Aesthetic Design of CLIs

Works such as [Norman, 2004] prescribe a view upon interface design that importance
should be placed on emotional factors, and the way look and feel has an effect on this.
Indeed, these works demonstrate that emotional states can alter a user’s approach to a
problem solving exercise, their mindsets broadened if they are relaxed, or focused if they
are stressed. An investigation into emotional and aesthetic design of CLIs should evaluate
features such as colour, form, animation and typeface, and their emotional effect on users.
Perhaps findings can also be made about fundamental emotional facets of CLI interaction.

7.3.12 Undo within CLIs

It is clear from the literature and findings from the studies carried out that there is a
lack of, but strong desire for, useful methods of recovering from error states or reversing
catastrophically erroneous commands. An investigation should be performed into an expert
CLI user’s conception of undo with a CLI, as well as other methods of recovery, in the
context of works such as [Cass et al., 2006].

7.3.13 Designing Effective Control Languages

The focus of this dissertation was largely upon the form of a CLI interface, rather than the
control language which it exposes. This is because the design of a control language presents
an incredibly broad and in-depth challenge. An investigation into the design of effective

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 146

control languages should examine the extent to which it is important observe principles
such as the Unix Philosophy, or those derived from an understanding of purely functional
programming languages.

7.4 Summary

This dissertation has provided a number of insights into the patterns of use of expert CLI
users. In particular, we have defined and examined the Exploration Problem of CLI action
specification. Several methods for improving the experience of expert users of CLIs for
novel problem solving have been identified and explored, particularly for addressing the
Exploration Problem. Particular examination has been exercised on intelligent suggestion
mechanisms for commands, and the relative benefits and detriments they bring.

These works have provided a starting point for many potential extended works, and may
provide impetus for contemporary use of advanced CLI features within mainstream software
systems. Perhaps the accessibility of powerful CLI features can be improved, such that they
no longer exclusively exist within the realm of expert use.

Bibliography

Albany University. Multi-attribute Utility (MAU) Models SWOT Analysis (Strengths ,
Weaknesses , Opportunities , Threats). Technology, (1982):1–6, 2003.

J. F. Allen. A plan-based approach to speech act recognition. Portal.Acm.Org,
1979. URL http://portal.acm.org/citation.cfm?id=909217{%}5Cnpapers://

28f4590b-a64b-4c0a-9ebc-51d6773cdd9a/Paper/p505.

J. F. Allen and C. R. Perrault. Analyzing intention in utterances. Artificial Intelligence,
15(3):143–178, dec 1980. ISSN 00043702. doi: 10.1016/0004-3702(80)90042-9. URL
http://linkinghub.elsevier.com/retrieve/pii/0004370280900429.

Apple. Mac Basics: Spotlight helps you find what you’re looking for - Apple Support, a.
URL https://support.apple.com/en-gb/HT204014.

Apple. Command Line Primer, b. URL https://developer.apple.com/

library/content/documentation/OpenSource/Conceptual/ShellScripting/

CommandLInePrimer/CommandLine.html.

AutoDesk. AutoCAD For Mac & Windows — CAD Software — Autodesk. URL http:

//www.autodesk.co.uk/products/autocad/overview.

AutoDesk. OOPS (Command), 2015. URL https://knowledge.autodesk.com/support/

autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/

files/GUID-0E72CDCD-9ECA-453A-8A04-CA2921740270-htm.html.

G. Bedford. jspm.io - Frictionless Browser Package Management. URL http://jspm.io/.

R. J. Bergeron, G. Huang, R. E. Smith, N. Bharti, J. S. McManis, and A. Butler. Total
synthesis and structure revision of petrobactin. Tetrahedron, 59(11):2007–2014, 2003.
ISSN 00404020. doi: 10.1016/S0040-4020(03)00103-0. URL http://portal.acm.org/

citation.cfm?id=829549.

R. A. Bjork and J. F. Kroll. Desirable difficulties in vocabulary learning. American Journal
of Psychology, 128(2):241–252, 2015. ISSN 00029556. doi: 10.5406/amerjpsyc.128.2.0241.

S. Bradley. 3 Design Layouts: Gutenberg Diagram, Z-Pattern, And F-Pattern - Vanseo
Design, 2011. URL http://vanseodesign.com/web-design/3-design-layouts/.

147

http://portal.acm.org/citation.cfm?id=909217{%}5Cnpapers://28f4590b-a64b-4c0a-9ebc-51d6773cdd9a/Paper/p505
http://portal.acm.org/citation.cfm?id=909217{%}5Cnpapers://28f4590b-a64b-4c0a-9ebc-51d6773cdd9a/Paper/p505
http://linkinghub.elsevier.com/retrieve/pii/0004370280900429
https://support.apple.com/en-gb/HT204014
https://developer.apple.com/library/content/documentation/OpenSource/Conceptual/ShellScripting/CommandLInePrimer/CommandLine.html
https://developer.apple.com/library/content/documentation/OpenSource/Conceptual/ShellScripting/CommandLInePrimer/CommandLine.html
https://developer.apple.com/library/content/documentation/OpenSource/Conceptual/ShellScripting/CommandLInePrimer/CommandLine.html
http://www.autodesk.co.uk/products/autocad/overview
http://www.autodesk.co.uk/products/autocad/overview
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-0E72CDCD-9ECA-453A-8A04-CA2921740270-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-0E72CDCD-9ECA-453A-8A04-CA2921740270-htm.html
https://knowledge.autodesk.com/support/autocad/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/AutoCAD-Core/files/GUID-0E72CDCD-9ECA-453A-8A04-CA2921740270-htm.html
http://jspm.io/
http://portal.acm.org/citation.cfm?id=829549
http://portal.acm.org/citation.cfm?id=829549
http://vanseodesign.com/web-design/3-design-layouts/

BIBLIOGRAPHY 148

V. Braun and V. Clarke. Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(May 2015):77–101, 2006. ISSN 1478-0887. doi: 10.1191/1478088706qp063oa.

B. Bublitz. gulp.js. URL http://gulpjs.com/.

J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu. End-user mashup
programming: through the design lens. Proceedings of the 28th international conference
on Human factors in computing systems - CHI ’10, pages 1009–1018, 2010. ISSN
1605589292. doi: 10.1145/1753326.1753477. URL http://portal.acm.org/citation.

cfm?doid=1753326.1753477.

S. Carberry. Techniques for plan recognition. User Modeling and User-Adapted Interaction,
11(1-2):31–48, 2001. ISSN 09241868. doi: 10.1023/A:1011118925938.

A. G. Cass, C. S. T. Fernandes, and A. Polidore. An empirical evaluation of undo mechanisms.
In Proceedings of the 4th Nordic conference on Human-computer interaction changing
roles - NordiCHI ’06, pages 19–27, 2006. ISBN 1595933255. doi: 10.1145/1182475.1182478.
URL http://dl.acm.org/citation.cfm?id=1182475.1182478.

E. Charniak and R. P. Goldman. A Bayesian model of plan recognition. Artificial Intelligence,
64(1):53–79, 1993. ISSN 00043702. doi: 10.1016/0004-3702(93)90060-O.

T. de Arruda. Zsh Autosuggestions, 2013. URL https://github.com/zsh-users/

zsh-autosuggestions.

S. M. Doane and Y. W. Sohn. ADAPT: a predictive cognitive model of user visual attention
and action planning. User modeling and user-adapted interaction, 10(1):1–45, 2000. ISSN
0924-1868. URL http://www.ncbi.nlm.nih.gov/pubmed/12192684.

L. Doelle. Konsole Terminal - Konsole - Terminal Emulator. URL https://konsole.kde.

org/.

C. Doras. Fish Shell. URL https://fishshell.com/.

I. Durham, D. A. Lamb, and J. B. Saxe. Spelling Correction in User Interfaces. Com-
munications of the Association for Computing Machinery, 26(10):764–773, 1983. ISSN
0001-0782. doi: 10.1145/358413.358426.

M. Dyson and M. Haselgrove. The influence of reading speed and line length on the
effectiveness of reading from screen. International Journal of Human-Computer Studies,
54(4):585–612, 2001. ISSN 10715819. doi: 10.1006/ijhc.2001.0458. URL http://www.

sciencedirect.com/science/article/pii/S1071581901904586.

ECMA. ECMAScript 6: New Features: Overview and Comparison. URL http:

//es6-features.org/.

J. S. B. T. Evans. Dual-processing accounts of reasoning, judgment, and social cognition.
Annual review of psychology, 59:255–278, 2008. ISSN 0066-4308. doi: 10.1146/annurev.
psych.59.103006.093629.

http://gulpjs.com/
http://portal.acm.org/citation.cfm?doid=1753326.1753477
http://portal.acm.org/citation.cfm?doid=1753326.1753477
http://dl.acm.org/citation.cfm?id=1182475.1182478
https://github.com/zsh-users/zsh-autosuggestions
https://github.com/zsh-users/zsh-autosuggestions
http://www.ncbi.nlm.nih.gov/pubmed/12192684
https://konsole.kde.org/
https://konsole.kde.org/
https://fishshell.com/
http://www.sciencedirect.com/science/article/pii/S1071581901904586
http://www.sciencedirect.com/science/article/pii/S1071581901904586
http://es6-features.org/
http://es6-features.org/

BIBLIOGRAPHY 149

P. Falstad. Zsh. URL http://www.zsh.org/.

M. Freudenthal. Using DSLs for developing enterprise systems. Proceedings of the Tenth
Workshop on Language Descriptions, Tools and Applications - LDTA ’10, pages 1–7, 2010.
doi: 10.1145/1868281.1868292.

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The vocabulary problem
in human-system communication. Communications of the ACM, 30(11):964–971, 1987.
ISSN 00010782. doi: 10.1145/32206.32212.

K. R. Gibson and T. Ingold. Tools, Language and Cognition in Human Evolution. 1993.
ISBN 0521414741. doi: 10.2307/2804508. URL http://books.google.com/books?hl=

en{&}lr={&}id=Cb1HMHirsBQC{&}oi=fnd{&}pg=PR11{&}dq=tim+ingold+human+tool+

use{&}ots=nfvbZCt0hd{&}sig=X1VIVVU4sbMVkjee1QRh5-5dq-4.

G. Gigerenzer. Bounded rationality: The adaptive toolbox., volume 79. 2003. ISBN
0262571641. doi: 10.1901/jeab.2003.79-409.

GNU. GNU Bash. URL https://www.gnu.org/software/bash/.

Google. AngularJS Superheroic JavaScript MVW Framework. URL https://angularjs.

org/.

I. D. Greenwald. T h e SHARE 709 S y s t e m : Programming and Modification *. pages
128–133, 1958.

P. Groth and Y. Gil. A Scientific Workflow Construction Command Line. International
Conference on Intelligent User Interface 2009 (IUI2009), 2009. doi: 10.1145/1502650.
1502716.

F. G. Halasz and T. P. Moran. December 1983 Mental Models and Problem Solving in Using
a C a l c u l a t o r. Chi 1983, (December):212–216, 1983. doi: 10.1145/800045.801613.

B. Hamilton. A Sysadmin’s Unixersal Translator (ROSETTA STONE), 2014. URL
http://bhami.com/rosetta.html.

T. Harding. Snail Shells, 2016. URL http://www.tomharding.me/2016/12/24/

fixing-the-shell/.

M. J. Heron. A Case Study into the Accessibility of Text-parser Based Interaction. In
Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS ’15, pages 74–83, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3646-8. doi: 10.1145/2774225.2774833. URL http://doi.acm.org/10.1145/2774225.

2774833.

T. Hewett. Designing with the human memory in mind. ACM International Conference
Proceeding Series, 111:363–364, 2005. doi: 10.1145/1085777.1085869.

http://www.zsh.org/
http://books.google.com/books?hl=en{&}lr={&}id=Cb1HMHirsBQC{&}oi=fnd{&}pg=PR11{&}dq=tim+ingold+human+tool+use{&}ots=nfvbZCt0hd{&}sig=X1VIVVU4sbMVkjee1QRh5-5dq-4
http://books.google.com/books?hl=en{&}lr={&}id=Cb1HMHirsBQC{&}oi=fnd{&}pg=PR11{&}dq=tim+ingold+human+tool+use{&}ots=nfvbZCt0hd{&}sig=X1VIVVU4sbMVkjee1QRh5-5dq-4
http://books.google.com/books?hl=en{&}lr={&}id=Cb1HMHirsBQC{&}oi=fnd{&}pg=PR11{&}dq=tim+ingold+human+tool+use{&}ots=nfvbZCt0hd{&}sig=X1VIVVU4sbMVkjee1QRh5-5dq-4
https://www.gnu.org/software/bash/
https://angularjs.org/
https://angularjs.org/
http://bhami.com/rosetta.html
http://www.tomharding.me/2016/12/24/fixing-the-shell/
http://www.tomharding.me/2016/12/24/fixing-the-shell/
http://doi.acm.org/10.1145/2774225.2774833
http://doi.acm.org/10.1145/2774225.2774833

BIBLIOGRAPHY 150

A. Howes. A model of the acquisition of menu knowledge by exploration. Proceedings of the
SIGCHI conference on Human factors in computing systems celebrating interdependence -
CHI ’94, pages 445–451, 1994. doi: 10.1145/191666.191820. URL http://portal.acm.

org/citation.cfm?doid=191666.191820.

E. Hutchins, J. Hollan, and D. Norman. Direct Manipulation Interfaces. Human-Computer
Interaction, 1(4):311–338, 1985. ISSN 0737-0024. doi: 10.1207/s15327051hci0104 2.

M. Kampe. Guidelines for Command Line Interface Design. URL http://www.cs.pomona.

edu/classes/cs181f/supp/cli.html.

B. W. Kernighan and J. R. Mashey. The UNIX??? programming environment. Software:
Practice and Experience, 9(1):1–15, 1979. ISSN 1097024X. doi: 10.1002/spe.4380090102.

M. Kerrisk. Linux Programmer’s Manual - Glob. URL http://man7.org/linux/

man-pages/man7/glob.7.html.

G. Klein. Decision making in action: Models and methods, C.E. (eds). Norwood, NJ: Ablex,
1993, 480 pp. ISBN 089391794X (pb). Journal of Behavioral Decision Making, 8(3):
218–219, 1995. ISSN 08943257. doi: 10.1002/bdm.3960080307. URL http://doi.wiley.

com/10.1002/bdm.3960080307.

G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J. Feltovich. Ten challenges
for making automation a ”team player” in joint human-agent activity. IEEE Intelligent
Systems, 19(6):91–95, 2004. ISSN 15411672. doi: 10.1109/MIS.2004.74.

K. Kuuti. Activity Theory as a Potential Framwork for Human-Computer Interaction Re-
search. In Context and Consciousness: Activity Theory and Human-Computer Interaction,
pages 17–44. 1996. ISBN 9780262140584.

D. M. Lane, H. A. Napier, S. C. Peres, and A. Sandor. Hidden Costs of Graphical User
Interfaces: Failure to Make the Transition from Menus and Icon Toolbars to Keyboard
Shortcuts. International Journal of Human-Computer Interaction, 18(2):133–144, 2005.
ISSN 1044-7318. doi: 10.1207/s15327590ijhc1802 1.

N. Marriott. tmux. URL https://tmux.github.io/.

Microsoft. Microsoft PowerShell. URL https://msdn.microsoft.com/en-us/powershell/

mt173057.aspx.

R. C. Miller, V. H. Chou, M. Bernstein, G. Little, M. Van Kleek, D. Karger, and M. C.
Schraefel. Inky: A Sloppy Command Line for the Web with Rich Visual Feedback.
Victoria, pages 131–140, 2008. ISSN 159593975X. doi: 10.1145/1449715.1449737. URL
http://eprints.soton.ac.uk/266861/6/inky-video.mp4.

B. Mirel. Interaction Design for Complex Problem Solving. Elsevier, 2004. ISBN 1558608311.

B. Moolenaar. welcome home : vim online. URL http://www.vim.org/.

http://portal.acm.org/citation.cfm?doid=191666.191820
http://portal.acm.org/citation.cfm?doid=191666.191820
http://www.cs.pomona.edu/classes/cs181f/supp/cli.html
http://www.cs.pomona.edu/classes/cs181f/supp/cli.html
http://man7.org/linux/man-pages/man7/glob.7.html
http://man7.org/linux/man-pages/man7/glob.7.html
http://doi.wiley.com/10.1002/bdm.3960080307
http://doi.wiley.com/10.1002/bdm.3960080307
https://tmux.github.io/
https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
https://msdn.microsoft.com/en-us/powershell/mt173057.aspx
http://eprints.soton.ac.uk/266861/6/inky-video.mp4
http://www.vim.org/

BIBLIOGRAPHY 151

S. R. Murillo and J. A. Sánchez. Empowering Interfaces for System Administrators: Keeping
the Command Line in Mind when Designing GUIs. Interaccion, pages 0–3, 2014. doi:
10.1145/2662253.2662300. URL http://doi.acm.org/10.1145/2662253.2662300.

a. Newell, J. C. Shaw, and H. a. Simon. General Problem Solving?, 1969. ISSN 0028-0836.
URL http://www.nature.com/doifinder/10.1038/224923a0.

D. Norman. The next UI breakthrough: command lines. Interactions, 14
(3):44–45, 2007. ISSN 1072-5520. doi: 10.1145/1242421.1242449. URL
http://portal.acm.org/citation.cfm?id=1242421.1242449{&}coll=ACM{&}dl=

ACM{&}CFID=55881752{&}CFTOKEN=48540854{#}.

D. A. Norman. The trouble with Unix: The user interface is horrid. Datamation, (December):
139–150, 1981.

D. A. Norman. The Psychology of Everyday Things. In The Psychology of Everyday Things,
pages 1–104. 1988. ISBN 0465067093. doi: 10.2307/1423268.

D. A. Norman. Emotional design. Ubiquity, 2004(January):1–1, 2004. ISSN 15427331. doi:
10.1145/985600.966013.

R. C. Omanson, C. S. Miller, E. Young, and D. Schwantes. Comparison of Mouse and
Keyboard Efficiency. Proceedings of the Human Factors and Ergonomics Society, pages
600–604, 2010. ISSN 1071-1813. doi: 10.1177/154193121005400612.

Oracle. Java Platform, Enterprise Edition (Java EE) — Oracle Technology Network
— Oracle. URL http://www.oracle.com/technetwork/java/javaee/overview/index.

html{#}close.

H. Pashler. Dual-task interference in simple tasks: Data and theory. Psychological Bulletin,
116(2):220–244, 1994. ISSN 0033-2909. doi: 10.1037/0033-2909.116.2.220.

S. J. Payne, G. B. Duggan, and H. Neth. Discretionary task interleaving: heuristics for
time allocation in cognitive foraging. Journal of experimental psychology. General, 136
(3):370–388, 2007. ISSN 0096-3445. doi: 10.1037/0096-3445.136.3.370.

J. L. Peterson. Computer programs for detecting and correcting spelling errors. Communi-
cations of the ACM, 23(12):676–687, 1980. ISSN 00010782. doi: 10.1145/359038.359041.

Pivotal. Spring. URL https://spring.io/.

J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human-Computer Interac-
tion. Design, 18(1):68–68, 2007. ISSN 00104485. doi: 10.1016/S0010-4485(86)80021-5.
URL http://linkinghub.elsevier.com/retrieve/pii/S0010448586800215.

G. Rauch. Hyper. URL https://hyper.is/.

B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages. Computer,
16(8):57–69, 1983. ISSN 00189162. doi: 10.1109/MC.1983.1654471.

http://doi.acm.org/10.1145/2662253.2662300
http://www.nature.com/doifinder/10.1038/224923a0
http://portal.acm.org/citation.cfm?id=1242421.1242449{&}coll=ACM{&}dl=ACM{&}CFID=55881752{&}CFTOKEN=48540854{#}
http://portal.acm.org/citation.cfm?id=1242421.1242449{&}coll=ACM{&}dl=ACM{&}CFID=55881752{&}CFTOKEN=48540854{#}
http://www.oracle.com/technetwork/java/javaee/overview/index.html{#}close
http://www.oracle.com/technetwork/java/javaee/overview/index.html{#}close
https://spring.io/
http://linkinghub.elsevier.com/retrieve/pii/S0010448586800215
https://hyper.is/

BIBLIOGRAPHY 152

H. A. Simon and A. Newell. Human problem solving: The state of the the-
ory in 1970. American Psychologist, 26(2):145–159, 1971. ISSN 0003-066X.
doi: 10.1037/h0030806. URL http://www.jstor.org/stable/2063712?origin=

crossref{%}5Cnhttp://content.apa.org/journals/amp/26/2/145.

D. Stenberg. curl. URL https://curl.haxx.se/.

T. Štolfa. The Future of Conversational UI Belongs to Hybrid Inter-
faces The Layer Medium, 2016. URL https://medium.com/the-layer/

the-future-of-conversational-ui-belongs-to-hybrid-interfaces-8a228de0bdb5{#}.

b5o7hkm0m.

L. Swartz. Why People Hate the Paperclip: Labels, Appearance, Behvavior and Social
Responses to User Interface Agents. Knowledge Creation Diffusion Utilization, 2003.

E. Thorndike. The Law of Effect Author (s): Edward L . Thorndike Source : The American
Journal of Psychology , Vol . 39 , No . 1 / 4 (Dec ., 1927), pp . 212-222 Published by
: University of Illinois Press Stable URL : http://www.jstor.org/stable/1415413. 39(1):
212–222, 1927.

TLDP. GNU/Linux Command-Line Tools Summary - The command-line history. URL
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/x1712.htm.

P. M. Todd and G. Gigerenzer. Putting naturalistic decision making into the adaptive
toolbox. Journal of Behavioral Decision Making, 14(5):381, 2001. ISSN 1099-0771. doi:
10.1002/bdm.396. URL http://doi.wiley.com/10.1002/bdm.396.

L. Torvalds. Git. URL https://git-scm.com/.

G. van Rossum. Welcome to Python.org. URL https://www.python.org/.

T. Winograd and F. Flores. On understanding computers and cognition: A new foundation
for design. A response to the reviews, 1987. ISSN 00043702.

J. O. Wobbrock, H. H. Aung, B. Rothrock, and B. A. Myers. Maximizing the guessability
of symbolic input. CHI’05 extended abstracts . . . , pages 1869–1872, 2005. doi: 10.1145/
1056808.1057043. URL http://dl.acm.org/citation.cfm?id=1057043.

C. E. Zsambok and G. Klein. Naturalistic Decision Making. Human factors, 50
(3):430, 1996. ISSN 0018-7208. doi: 10.1518/001872008X288385. URL http:

//www.amazon.com/Naturalistic-Decision-Making-Expertise-Applications/dp/

080581874X/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1325860512{&}sr=1-1.

http://www.jstor.org/stable/2063712?origin=crossref{%}5Cnhttp://content.apa.org/journals/amp/26/2/145
http://www.jstor.org/stable/2063712?origin=crossref{%}5Cnhttp://content.apa.org/journals/amp/26/2/145
https://curl.haxx.se/
https://medium.com/the-layer/the-future-of-conversational-ui-belongs-to-hybrid-interfaces-8a228de0bdb5{#}.b5o7hkm0m
https://medium.com/the-layer/the-future-of-conversational-ui-belongs-to-hybrid-interfaces-8a228de0bdb5{#}.b5o7hkm0m
https://medium.com/the-layer/the-future-of-conversational-ui-belongs-to-hybrid-interfaces-8a228de0bdb5{#}.b5o7hkm0m
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/x1712.htm
http://doi.wiley.com/10.1002/bdm.396
https://git-scm.com/
https://www.python.org/
http://dl.acm.org/citation.cfm?id=1057043
http://www.amazon.com/Naturalistic-Decision-Making-Expertise-Applications/dp/080581874X/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1325860512{&}sr=1-1
http://www.amazon.com/Naturalistic-Decision-Making-Expertise-Applications/dp/080581874X/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1325860512{&}sr=1-1
http://www.amazon.com/Naturalistic-Decision-Making-Expertise-Applications/dp/080581874X/ref=sr{_}1{_}1?s=books{&}ie=UTF8{&}qid=1325860512{&}sr=1-1

Appendix A

Code Listings

153

APPENDIX A. CODE LISTINGS 154

A.1 Suggestions Model for Experiments

1 [
2 {
3 ”command” : ” he lp ” ,
4 ” h i s t o r y ” : [
5 ” i n v a l i d ”
6]
7 } ,
8 {
9 ”command” : ”undo” ,

10 ” h i s t o r y ” : [
11 ” i n v a l i d ” ,
12 ” snaps ” ,
13 ” t en s i on ”
14]
15 } ,
16 {
17 ”command” : ” look inventory ” ,
18 ” h i s t o r y ” : [
19 ”pickup” ,
20 ” help ” ,
21 ” i n v a l i d ”
22]
23 } ,
24 {
25 ”command” : ” look ” ,
26 ” h i s t o r y ” : [
27 ”use ” ,
28 ” help ” ,
29 ”welcome” ,
30 ” help ” ,
31 ” i n v a l i d ”
32]
33 } ,
34 {
35 ”command” : ”pickup key” ,
36 ” h i s t o r y ” : [
37 ”key” ,
38 ”door” ,
39 ”room” ,
40 ” r e v e a l s ” ,
41 ” f l o a t s ” ,
42 ”water ” ,
43 ” tube” ,
44 ” snowglobe” ,
45 ” deb r i s ” ,
46 ” d i s p l a c e s ” ,
47 ” stone ” ,
48 ” c r a t e ” ,
49 ”open” ,
50 ”melt ” ,
51 ”puddle ”
52]
53 } ,
54 {
55 ”command” : ” use key on door” ,
56 ” h i s t o r y ” : [
57 ”key” ,
58 ”pickup”
59]

60 } ,
61 {
62 ”command” : ” use door” ,
63 ” h i s t o r y ” : [
64 ” unlock ” ,
65 ”door” ,
66 ”key” ,
67 ” unlocks ” ,
68 ” c l i c k ” ,
69 ” he f t ”
70]
71 } ,
72 {
73 ”command” : ” look door” ,
74 ” h i s t o r y ” : [
75 ” unlock ” ,
76 ”door” ,
77 ”key” ,
78 ”room” ,
79 ” look ”
80]
81 } ,
82 {
83 ”command” : ” s t a r t ” ,
84 ” h i s t o r y ” : [
85 ” cong ra tu l a t i on s ” ,
86 ” escaped ” ,
87 ” s t a r t ”
88]
89 } ,
90 {
91 ”command” : ”pickup c l o th ” ,
92 ” h i s t o r y ” : [
93 ” c l o th ” ,
94 ” look ”
95]
96 } ,
97 {
98 ”command” : ” use p a i l on tube” ,
99 ” h i s t o r y ” : [

100 ” p a i l ” ,
101 ” tube” ,
102 ”door” ,
103 ” look ” ,
104 ”room”
105]
106 } ,
107 {
108 ”command” : ” look p a i l ” ,
109 ” h i s t o r y ” : [
110 ” p a i l ” ,
111 ” tube” ,
112 ”door” ,
113 ” look ” ,
114 ”room”
115]
116 } ,
117 {
118 ”command” : ” look tube” ,

APPENDIX A. CODE LISTINGS 155

119 ” h i s t o r y ” : [
120 ” p a i l ” ,
121 ” tube” ,
122 ”door” ,
123 ” look ” ,
124 ”room” ,
125 ” stone ” ,
126 ” d i s p l a c e s ” ,
127 ” i n s e r t ” ,
128 ”water ”
129]
130 } ,
131 {
132 ”command” : ” look snowglobe” ,
133 ” h i s t o r y ” : [
134 ” snowglobe” ,
135 ” look ” ,
136 ”room” ,
137 ”door”
138]
139 } ,
140 {
141 ”command” : ” use snowglobe” ,
142 ” h i s t o r y ” : [
143 ” snowglobe” ,
144 ” look ” ,
145 ”room” ,
146 ”door”
147]
148 } ,
149 {
150 ”command” : ”break snowglobe” ,
151 ” h i s t o r y ” : [
152 ” snowglobe” ,
153 ” look ” ,
154 ”room” ,
155 ”door”
156]
157 } ,
158 {
159 ”command” : ” p lace weight on

f l oo rpad ” ,
160 ” h i s t o r y ” : [
161 ” f l oo rpad ” ,
162 ”weight ” ,
163 ”door”
164]
165 } ,
166 {
167 ”command” : ” look weight ” ,
168 ” h i s t o r y ” : [
169 ” f l oo rpad ” ,
170 ”weight ” ,
171 ”door” ,
172 ” p o r t c u l l i s ” ,
173 ” chain ”
174]
175 } ,
176 {
177 ”command” : ” look f l oo rpad ” ,
178 ” h i s t o r y ” : [
179 ” f l oo rpad ” ,

180 ”weight ” ,
181 ”door”
182]
183 } ,
184 {
185 ”command” : ” look p o r t c u l l i s ” ,
186 ” h i s t o r y ” : [
187 ” p o r t c u l l i s ” ,
188 ” chain ” ,
189 ”weight ” ,
190 ”room” ,
191 ” look ”
192]
193 } ,
194 {
195 ”command” : ” look chain ” ,
196 ” h i s t o r y ” : [
197 ” p o r t c u l l i s ” ,
198 ” chain ” ,
199 ”weight ” ,
200 ”room” ,
201 ” look ”
202]
203 } ,
204 {
205 ”command” : ” p lace weight on chain ” ,
206 ” h i s t o r y ” : [
207 ” p o r t c u l l i s ” ,
208 ” chain ” ,
209 ”weight ” ,
210 ”room” ,
211 ” look ”
212]
213 } ,
214 {
215 ”command” : ” use chain ” ,
216 ” h i s t o r y ” : [
217 ” p o r t c u l l i s ” ,
218 ” chain ” ,
219 ”weight ” ,
220 ”room” ,
221 ” look ”
222]
223 } ,
224 {
225 ”command” : ” p lace every weight on

chain ” ,
226 ” h i s t o r y ” : [
227 ” p o r t c u l l i s ” ,
228 ” chain ” ,
229 ”weight ” ,
230 ”room” ,
231 ” look ”
232]
233 } ,
234 {
235 ”command” : ” use p o r t c u l l i s ” ,
236 ” h i s t o r y ” : [
237 ” p o r t c u l l i s ” ,
238 ” chain ” ,
239 ”weight ” ,
240 ”heavy” ,

APPENDIX A. CODE LISTINGS 156

241 ”opened” ,
242 ”hook”
243]
244 } ,
245 {
246 ”command” : ” look stone ” ,
247 ” h i s t o r y ” : [
248 ” stone ” ,
249 ” tube” ,
250 ”door” ,
251 ” look ”
252]
253 } ,
254 {
255 ”command” : ” use stone on tube” ,
256 ” h i s t o r y ” : [
257 ” stone ” ,
258 ” tube” ,
259 ”door” ,
260 ” look ”
261]
262 } ,
263 {
264 ”command” : ” use every stone on tube” ,
265 ” h i s t o r y ” : [
266 ” stone ” ,
267 ” tube” ,
268 ”door” ,
269 ” look ”
270]
271 } ,
272 {
273 ”command” : ” use rope ” ,
274 ” h i s t o r y ” : [
275 ” p o r t c u l l i s ” ,
276 ” rope ” ,
277 ”weight ” ,
278 ”room” ,
279 ” look ”
280]
281 } ,
282 {
283 ”command” : ” look rope ” ,
284 ” h i s t o r y ” : [
285 ” p o r t c u l l i s ” ,
286 ” rope ” ,
287 ”weight ” ,
288 ”room” ,
289 ” look ”
290]
291 } ,
292 {
293 ”command” : ” p lace weight on rope ” ,
294 ” h i s t o r y ” : [
295 ” p o r t c u l l i s ” ,
296 ” rope ” ,
297 ”weight ” ,
298 ”room” ,
299 ” look ” ,
300 ” p lace ” ,
301 ”on”
302]

303 } ,
304 {
305 ”command” : ” p lace every weight on

rope ” ,
306 ” h i s t o r y ” : [
307 ” p o r t c u l l i s ” ,
308 ” rope ” ,
309 ”weight ” ,
310 ”room” ,
311 ” look ”
312]
313 } ,
314 {
315 ”command” : ” look ladder ” ,
316 ” h i s t o r y ” : [
317 ” ladder ” ,
318 ”hatch” ,
319 ”room”
320]
321 } ,
322 {
323 ”command” : ” look hatch” ,
324 ” h i s t o r y ” : [
325 ” ladder ” ,
326 ”hatch” ,
327 ”room”
328]
329 } ,
330 {
331 ”command” : ” use ladder on hatch” ,
332 ” h i s t o r y ” : [
333 ” ladder ” ,
334 ”hatch” ,
335 ”room”
336]
337 } ,
338 {
339 ”command” : ” look c ra t e ” ,
340 ” h i s t o r y ” : [
341 ” c ra t e ” ,
342 ”door” ,
343 ”room”
344]
345 } ,
346 {
347 ”command” : ”open c ra t e ” ,
348 ” h i s t o r y ” : [
349 ” c ra t e ” ,
350 ”door” ,
351 ”room”
352]
353 } ,
354 {
355 ”command” : ”open every c r a t e ” ,
356 ” h i s t o r y ” : [
357 ” c ra t e ” ,
358 ”door” ,
359 ”room”
360]
361 } ,
362 {
363 ”command” : ”break every c r a t e ” ,

APPENDIX A. CODE LISTINGS 157

364 ” h i s t o r y ” : [
365 ” c ra t e ” ,
366 ”door” ,
367 ”room”
368]
369 } ,
370 {
371 ”command” : ”break c ra t e ” ,
372 ” h i s t o r y ” : [
373 ” c ra t e ” ,
374 ”door” ,
375 ”room” ,
376 ” nothing ”
377]
378 } ,
379 {
380 ”command” : ” look i c eb l o c k ” ,
381 ” h i s t o r y ” : [
382 ” i c eb l o c k ” ,
383 ” h a i r d r i e r ” ,
384 ”door” ,
385 ”room” ,
386 ” look ”
387]
388 } ,
389 {
390 ”command” : ”break i c eb l o c k ” ,
391 ” h i s t o r y ” : [
392 ” i c eb l o c k ” ,
393 ” h a i r d r i e r ” ,
394 ”door” ,
395 ”room” ,
396 ” look ”
397]
398 } ,
399 {
400 ”command” : ” look h a i r d r i e r ” ,
401 ” h i s t o r y ” : [
402 ” i c eb l o c k ” ,
403 ” h a i r d r i e r ” ,

404 ”door” ,
405 ”room” ,
406 ” look ”
407]
408 } ,
409 {
410 ”command” : ” use h a i r d r i e r on

i c eb l o c k ” ,
411 ” h i s t o r y ” : [
412 ” i c eb l o c k ” ,
413 ” h a i r d r i e r ” ,
414 ”door” ,
415 ”room” ,
416 ” look ”
417]
418 } ,
419 {
420 ”command” : ” use h a i r d r i e r on every

i c eb l o c k ” ,
421 ” h i s t o r y ” : [
422 ” i c eb l o c k ” ,
423 ” h a i r d r i e r ” ,
424 ”door” ,
425 ”room” ,
426 ” look ”
427]
428 } ,
429 {
430 ”command” : ” use trapdoor ” ,
431 ” h i s t o r y ” : [
432 ”stomp” ,
433 ” c ra t e ” ,
434 ” trapdoor ” ,
435 ” s p l i n t e r s ” ,
436 ” rubble ”
437]
438 }
439]

A.2 R Script for Statistical Analysis of Frequency Data

Courtesy of the Institute for Digital Research and Education (http://stats.idre.ucla.
edu/r/dae/poisson-regression/).

p <− read . csv (”˜/Downloads/poisson−keys . csv ”)
p <− with in (p , {

i n t e r f a c e <− factor (i n t e r f a c e , levels =1:2 , labels=c (”CASHTU” , ”TU”))
s c e n a r i o <− factor (s cenar io , levels =1:13 ,

labels=c (” Clothkey ” , ” Pa i l tube ” , ”Snowglobe” , ” Pressurepad ” , ”Weightgate” , ”Watertube” , ”Ropeweight” , ” Ladderhatch ” , ” Cratekey ” , ” H a i r d r i e r ” , ” Cratetrapdoor ” , ”Manyice” , ” Nes tedcrate s ”))
id <− factor (id)

})
summary(p)
summary(m1 <− glm(num X ˜ i n t e r f a c e + scenar io , family=” po i s son ” ,

data=p))

http://stats.idre.ucla.edu/r/dae/poisson-regression/
http://stats.idre.ucla.edu/r/dae/poisson-regression/

APPENDIX A. CODE LISTINGS 158

cov .m1 <− vcovHC(m1, type=”HC0”)
std . e r r <− sqrt (diag (cov .m1))
r . e s t <− cbind (Estimate= coef (m1) , ”Robust SE” = std . err ,
”Pr(>| z |) ” = 2 ∗ pnorm(abs (coef (m1)/ std . e r r) , lower . t a i l=FALSE) ,
LL = coef (m1) − 1 .96 ∗ std . err ,
UL = coef (m1) + 1.96 ∗ std . e r r)
with (m1, cbind (r e s . deviance = deviance , df = df . r e s i d u a l ,

p = pchisq (deviance , df . r e s i d u a l , lower . t a i l=FALSE)))
update m1 model dropping prog
m2 <− update (m1, . ˜ . − i n t e r f a c e)
t e s t model d i f f e r e n c e s wi th c h i square t e s t
anova(m2, m1, t e s t=”Chisq”)

##e x p o r t model to csv
r e s u l t s df <−summary(m1 <− glm(num X ˜ i n t e r f a c e + scenar io ,

family=” po i s son ” , data=p))$coef f ic ients
write . csv (r e s u l t s df , ”˜/Downloads/myCSV. csv ”)

##e x p o r t c h i s q to csv
r e s u l t s df <−anova(m2,m1, t e s t=”Chisq”)
write . csv (r e s u l t s df , ”˜/Downloads/myCSV. csv ”)

A.3 Collation Scripts for Experiment Results

1 var f s = r equ i r e (’fs’) ;
2 var f i l e =

JSON. parse (f s . r eadFi l eSync (’red -a.json’ ,
’utf8’)) ;

3
4
5 var ta sk s = 8 ;
6
7 var pr in tL ine = (key , raw)=>{
8 var l i n e = "" ;
9 f o r (var i = 0 ; i < ta sk s ; i++) {

10 var o = raw [key+i] ;
11 i f (typeof o != ’undefined ’) {
12 l i n e = l i n e + o ;
13 }
14 i f (i !=tasks −1) l i n e = l i n e + "\t"

15 }
16 conso l e . l og (l i n e) ;
17 }
18
19 var pr int IntentActGr id = (raw)=>{
20 var dataRemains = true ;
21 var row = 0 ;
22 while (dataRemains) {
23 dataRemains = fa l se ;
24 var l i n e = "" ;
25 f o r (var i = 0 ; i < ta sk s ; i++) {

26 var l i s t = raw ["INTENT ACT "+i] ;
27 i f (typeof l i s t != ’undefined ’) {
28 var item = l i s t [row] ;
29 i f (typeof item != ’undefined ’) {
30 l i n e = l i n e + item ;
31 dataRemains = true ;
32 }
33 }
34 i f (i !=tasks −1) l i n e = l i n e + "\t"

35 }
36 conso l e . l og (l i n e) ;
37 row ++;
38 }
39
40 }
41
42 var pr in tT imeDi f f e r ence = (raw)=>{
43 var l i n e = "" ;
44 f o r (var i = 0 ; i < ta sk s ; i++) {
45 var b = raw ["TASK TIME BEGIN "+i] ;
46 var e = raw ["TASK TIME END "+i] ;
47 i f (typeof b != ’undefined ’ && typeof

e != ’undefined ’) {
48 l i n e = l i n e + (e−b) ;
49 }
50 i f (i !=tasks −1) l i n e = l i n e + "\t"

51 }

APPENDIX A. CODE LISTINGS 159

52 conso l e . l og (l i n e) ;
53 }
54
55 conso l e . l og ("UNDONE") ;
56 f i l e . forEach ((item)=>{
57 pr in tL ine ("COMMANDS UNDONE " , item) ;
58 }) ;
59
60
61 conso l e . l og ("HELP") ;
62 f i l e . forEach ((item)=>{
63 pr in tL ine ("HELP REFERS " , item) ;
64 }) ;
65
66 conso l e . l og ("INTENTACT") ;
67 f i l e . forEach ((item)=>{
68 pr int IntentActGr id (item) ;
69 }) ;
70
71 conso l e . l og ("INVALID") ;
72 f i l e . forEach ((item)=>{
73 pr in tL ine ("INVALID SUBMITS " , item) ;
74 }) ;
75
76 conso l e . l og ("ARROWS") ;
77 f i l e . forEach ((item)=>{
78 pr in tL ine ("TASK ARROWS " , item) ;
79 }) ;
80
81 conso l e . l og ("CHARS") ;
82 f i l e . forEach ((item)=>{
83 pr in tL ine ("TASK CHARS " , item) ;
84 }) ;
85
86 conso l e . l og ("ENTERS") ;
87 f i l e . forEach ((item)=>{
88 pr in tL ine ("TASK ENTER " , item) ;
89 }) ;
90
91 conso l e . l og ("SUCCEEDS") ;
92 f i l e . forEach ((item)=>{
93 pr in tL ine ("TASK SUCCEED " , item) ;
94 }) ;
95
96 conso l e . l og ("TIME") ;
97 f i l e . forEach ((item)=>{
98 pr in tT imeDi f f e r ence (item) ;
99 }) ;

1 #!/usr/bin/env node
2
3 const read = r equ i r e (’read -directory ’)
4 const output = {}
5
6 const format = ob j e c t =>

Object . a s s i gn (object , {
7 ’task time begin’ : 0 ,
8
9 ’task time end’ : (ob j e c t [’task time

end’]
10 − ob j e c t [’task time

begin’]) / 1000 ,

11
12 ’intent act’ : ob j e c t [’intent act’]
13 ? ob j e c t [’intent

act’] . map(x => x /
1000)

14 : undef ined
15 })
16
17 const groups = {
18 A: [] ,
19 B: [] ,
20 C: [] ,
21 D: []
22 }
23
24 const groupcodes = ["A" , "B" , "C" , "D"] ;
25
26 const g r oup s c en s f u l l = {
27 A: [1 , 2 , 3 , 4 , 5 , 6 , 7] ,
28 B: [8 , 9 , 1 0 , 1 1 , 1 2 , 1 3] ,
29 C: [1 , 2 , 3 , 4 , 5 , 6 , 7] ,
30 D: [8 , 9 , 1 0 , 1 1 , 1 2 , 1 3]
31 }
32 const groupscensred = {
33 A: [8 , 9 , 1 0 , 1 1 , 1 2 , 1 3] ,
34 B: [1 , 2 , 3 , 4 , 5 , 6 , 7] ,
35 C: [8 , 9 , 1 0 , 1 1 , 1 2 , 1 3] ,
36 D: [1 , 2 , 3 , 4 , 5 , 6 , 7]
37 }
38
39 read (’Subjects ’ , { dirnames : true } ,

(err , contents) => {
40 Object . keys (contents) . forEach (i d e n t i f i e r

=> {
41 const [name , part] =

i d e n t i f i e r . s p l i t (’/’)
42
43 i f (! (name in output)) output [name]

= {}
44 output [name] [part] = []
45
46 const data =

JSON. parse (contents [i d e n t i f i e r])
47
48 Object
49 . keys (data)
50 . f i l t e r (key =>

key . match (/\d+ LAST TS$/))
51 . forEach (key => { de l e t e data [key] })
52
53 Object
54 . keys (data)
55 .map(key => {
56 const components = key . s p l i t (’ ’)
57 const index =

+components [components . l ength
− 1]

58
59 components . pop ()
60 const yek =
61 components
62 .map(x => x . toLowerCase ())

APPENDIX A. CODE LISTINGS 160

63 . j o i n (’ ’)
64
65 output [name] [part] [index] =
66 output [name] [part] [index] | | {}
67
68 output [name] [part] [index] [yek] =

data [key]
69 })
70
71 output [name] [part] . forEach (format)
72 output [name] [part] . s h i f t ()
73 })
74
75
76 Object
77 . keys (groups)
78 . forEach (group =>{
79 groups [group]
80 . forEach (part=>{
81 groups [part]=group ;
82 })
83 })
84
85 var id = 1 ;
86 var metr ic = "invalid submits" ;
87
88 conso l e . l og ("id ,num X,interface ,scenario") ;
89
90 Object
91 . keys (output)

92 . forEach (pa r t i c i p an t => {
93 var i =0;
94 var group = groups [p a r t i c i p an t] ;
95 g r oup s c en s f u l l [group] . forEach (scencode=>{
96 i f ((typeof

output [p a r t i c i p an t] ["FULL"] [i] !="undefined")&&(typeof
output [p a r t i c i p an t] ["FULL"] [i] [metr ic] !="undefined")) {

97 var keys =
output [p a r t i c i p an t] ["FULL"] [i] [metr ic]

98 conso l e . l og (id+","+keys+",1,"+scencode) ;
99 }

100 i++;
101 })
102 i =0;
103 groupscensred [group] . forEach (scencode=>{
104 i f ((typeof

output [p a r t i c i p an t] ["RED"] [i] !="undefined")&&(typeof
output [p a r t i c i p an t] ["RED"] [i] [metr ic] !="undefined")) {

105 var keys =
output [p a r t i c i p an t] ["RED"] [i] [metr ic]

106 conso l e . l og (id+","+keys+",2,"+scencode) ;
107 }
108 i++;
109 })
110
111
112 id++;
113 })
114 })

Appendix B

Statistical Analysis

161

APPENDIX B. STATISTICAL ANALYSIS 162

Source SS df MS F P

Presentation Order (r) 9098317.55 1 9098317.55 0.01 0.9205

Interface (c) 6356251720 1 6356251720 8.19 0.0048

r x c 5321080508 1 5321080508 6.86 0.0097

Error 125709327628 162 775983503.9

Total 137395758174 165

Table B.1: 2x2 Analysis of variance of task time on presentation order (groups AC vs BD)
and interface (CAS+HS+TU vs TU).

Estimate Std. Error z value Pr(> |z|)
(Intercept) 3.9449 0.0346 114.1078 0.0000

interfaceTU 0.5768 0.0180 32.1154 0.0000

scenarioPailtube 0.3999 0.0418 9.5558 0.0000

scenarioSnowglobe 0.0289 0.0455 0.6363 0.5246

scenarioPressurepad 0.0978 0.0447 2.1872 0.0287

scenarioWeightgate 0.2822 0.0439 6.4333 0.0000

scenarioWatertube 0.4465 0.0415 10.7704 0.0000

scenarioRopeweight 0.6998 0.0447 15.6557 0.0000

scenarioLadderhatch -0.3926 0.0517 -7.5972 0.0000

scenarioCratekey -0.1021 0.0476 -2.1466 0.0318

scenarioHairdrier -0.2001 0.0489 -4.0953 0.0000

scenarioCratetrapdoor 0.1381 0.0448 3.0860 0.0020

scenarioManyice 0.2222 0.0439 5.0624 0.0000

scenarioNestedcrates 0.3053 0.0442 6.9139 0.0000

Table B.2: Linear model of interface and scenario for keypresses per scenario.

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 148 4889.205467

2 147 3814.332501 1 1074.872965 9.55E-236

Table B.3: Chi-squared analysis of deviance on models of keypresses with and without
interface as a predictor.

APPENDIX B. STATISTICAL ANALYSIS 163

Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.823 0.112 16.261 0.000

interfaceTU 0.140 0.057 2.436 0.015

scenarioPailtube 0.370 0.139 2.657 0.008

scenarioSnowglobe 0.023 0.151 0.151 0.880

scenarioPressurepad -0.096 0.155 -0.621 0.535

scenarioWeightgate 0.215 0.147 1.460 0.144

scenarioWatertube 0.476 0.137 3.485 0.000

scenarioRopeweight 0.713 0.148 4.816 0.000

scenarioLadderhatch -0.312 0.165 -1.886 0.059

scenarioCratekey -0.013 0.153 -0.082 0.935

scenarioHairdrier -0.111 0.157 -0.712 0.477

scenarioCratetrapdoor -0.001 0.152 -0.005 0.996

scenarioManyice -0.048 0.154 -0.315 0.753

scenarioNestedcrates 0.459 0.140 3.287 0.001

Table B.4: Linear model of commands executed per scenario for interface and scenario.

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 148 170.7670673

2 147 164.8168778 1 5.950189515 0.01471570398

Table B.5: Chi-squared analysis of deviance on models of number of commands per scenario
with and without interface as a predictor.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.783 0.374 -2.096 0.036

interfaceTU 0.819 0.274 2.986 0.003

scenarioPailtube -0.357 0.493 -0.724 0.469

scenarioSnowglobe -0.916 0.592 -1.549 0.121

scenarioPressurepad -0.357 0.493 -0.724 0.469

scenarioWeightgate -0.401 0.516 -0.777 0.437

scenarioWatertube -0.693 0.548 -1.266 0.206

scenarioRopeweight -0.099 0.548 -0.180 0.857

scenarioLadderhatch -1.144 0.659 -1.738 0.082

scenarioCratekey -1.144 0.659 -1.738 0.082

scenarioHairdrier -1.144 0.659 -1.738 0.082

scenarioCratetrapdoor -0.297 0.493 -0.602 0.547

scenarioManyice -1.550 0.775 -2.000 0.045

scenarioNestedcrates -1.433 0.775 -1.849 0.064

Table B.6: Linear model of documentation checks performed for interface and scenario.

APPENDIX B. STATISTICAL ANALYSIS 164

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 148 123.4167062

2 147 113.6900884 1 9.726617765 0.001816183906

Table B.7: Chi-squared analysis of deviance on models of documentation checks per scenario
with and without interface as a predictor.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.217 0.288 -0.752 0.452

interfaceTU 0.590 0.189 3.119 0.002

scenarioPailtube 0.470 0.329 1.428 0.153

scenarioSnowglobe -1.322 0.563 -2.349 0.019

scenarioPressurepad 0.000 0.365 0.000 1.000

scenarioWeightgate -0.527 0.438 -1.203 0.229

scenarioWatertube -0.143 0.379 -0.378 0.706

scenarioRopeweight -0.161 0.458 -0.353 0.724

scenarioLadderhatch -2.664 1.033 -2.579 0.010

scenarioCratekey -1.278 0.563 -2.270 0.023

scenarioHairdrier -1.971 0.753 -2.618 0.009

scenarioCratetrapdoor 0.332 0.342 0.971 0.332

scenarioManyice -1.278 0.563 -2.270 0.023

scenarioNestedcrates -0.611 0.458 -1.334 0.182

Table B.8: Linear model of invalid commands performed for interface and scenario.

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 148 240.544938623533

2 147 230.35468026161 1 10.1902583619235 0.00141184532315303

Table B.9: Chi-squared analysis of deviance on models of invalid commands per scenario
with and without interface as a predictor.

Source SS df MS F P

Presentation Order (r) 14035989.02 1 14035989.02 0.05 0.8231

Interface (c) 197274521.9 1 197274521.9 0.69 0.4063

r x c 25727235.9 1 25727235.9 0.09 0.7642

Error 386316565982 1357 284684278.5

Total 386553603729 1360

Table B.10: 2x2 Analysis of variance of times between each command on presentation order
(groups AC vs BD) and interface (CAS+HS+TU vs TU).

Appendix C

Study Documents

165

	Introduction
	Literature Review
	Interaction
	Human-Computer Interaction
	The Human Action Cycle
	Affordances and Signifiers
	Referents and Function

	Understanding Interface Types
	Direct Manipulation Interfaces
	Command Line Interfaces
	Distinctions
	Types of CLI
	Key Interface Concepts for Reconsidering CLI Design

	Models of Problem Solving
	Rational Problem Solving
	Naturalistic Decision Making
	Recognition Primed Decision Models
	Dual Process Theory
	Adaptive Toolbox
	Collaborative Models
	CLIs for Problem Solving

	Command Line Features
	The Unix Philosophy
	Unlimited Aliasing
	Natural Language Processing
	Domain-Specific Languages
	Visual Feedback
	End-user programming
	Wildcard Expansion
	Command History
	Contextual Autocompletion
	Spelling Autocorrection
	Reversal Commands

	Summary
	Key Issues for Effective CLI Design

	Exploratory Study
	Research Questions
	Design of Study
	Procedure
	Participant Recruitment
	Interviews
	Audio and video transcription
	Codification of Data

	Participant Profiles
	Thematic Analysis
	Enhancing the Base Experience
	Reflexive vs Reflective Action
	Efficiency
	Learning
	Conceptualisation
	GUIs in Contrast with CLIs
	Security from Error States
	Miscellaneous Codes
	Summary of Themes

	Participant Review of Findings
	Discussion
	In what way do CLI users recognise the utility of CLI tools for solving problems?
	What characteristics of CLI tools make them helpful for solving problems?
	What affects the experience of CLI users when problem solving?
	What are the characterising features of problems which users find CLIs are helpful in solving?
	What do expert users value in their CLI experiences?

	Critical Analysis
	Summary

	Designing and Implementing a CLI
	Deriving a Specification
	Understanding Basic CLI features
	Problems to be Solved

	Formal Design Specification
	Generative Discussion
	Context Awareness/Classification/Recognition
	Customisability
	Alternative Layouts
	Indicators and Visualisers
	Undo Schemes
	Queried Hints and Documentation
	Commitment Deferral

	Proposed Designs
	Context-aware Suggestions
	Enhanced Traditional CLI Prototype (v1.0)
	Spacial Exploration CLI Prototype (v2.0)
	AI Conversation CLI Prototype (v3.0)

	Final Design
	Claims Analysis

	Implementation
	Context Aware Suggestions
	Help Snippets
	Output Model

	Summary

	Comparative Study
	Aims
	Understandability
	Exploration

	Design of Study Environment
	Domain Design
	Scenario and Action Design
	Syntax Design
	Final Design
	Implementation

	Experiment Design
	Metrics
	Observation Classes
	Participants

	Hypotheses
	Task Success
	Efficiency
	Discovery
	Documentation Checking
	Security from Error States
	Intent-to-Command Translation

	Procedure
	Environment
	Consent
	Explanation
	Practice
	Scenarios
	Post-Experiment

	Methods
	Results
	Task Success Rate
	Task Success Time
	Keypresses
	Number of Commands
	Documentation Checks
	Number of Invalid Commands
	Time Between Each Command
	Observations
	Preference

	Discussion
	Evaluation of Hypotheses
	Evaluation of Study Questions

	Critical Analysis
	Applicability of the Designed Domain
	Limitations of the Data

	Conclusions
	Effectiveness of Context Aware Suggestions
	Effectiveness of Help Snippets
	Effectiveness of Tree Undo

	Analysis
	Formalising the Exploration Problem
	Types of Exploratory Activity
	The Learning Factor
	Limitations

	Approaches to the Exploration Problem
	Peer Support
	Documentation Checking
	Supporting Trial and Error
	Supporting Learning
	Conceptualisation Mechanisms
	Suggestion Mechanisms

	Summary

	Conclusions and Future Work
	Conclusions
	Critical Analysis
	Future Works
	Technology Review for CLI Integration
	Real-World Integration of Context Aware Suggestions
	Expanded Study of Suggestion Mechanisms within CLIs
	Information Visualisation of Command Spaces
	Harnessing Benefits of CLIs in Mainstream Software Products
	Relationship of CLI Efficiency and Understandability
	User Customisation in CLIs
	Peer Support through CLI Groupware
	CLI Learning Processes
	CLI Problem Solving Agents
	Emotional and Aesthetic Design of CLIs
	Undo within CLIs
	Designing Effective Control Languages

	Summary

	Code Listings
	Suggestions Model for Experiments
	R Script for Statistical Analysis of Frequency Data
	Collation Scripts for Experiment Results

	Statistical Analysis
	Study Documents

