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Abstract 37 

Human biomonitoring, i.e. the determination of chemicals and/or their metabolites in human 38 

specimens, is the most common and potent tool for assessing human exposure to pesticides, but it 39 

suffers from limitations such as high costs and biases in sampling. Wastewater-based epidemiology 40 

(WBE) is an innovative approach based on the chemical analysis of specific human metabolic 41 

excretion products (biomarkers) in wastewater, and provides objective and real-time information on 42 

xenobiotics directly or indirectly ingested by a population. This study applied the WBE approach 43 

for the first time to evaluate human exposure to pesticides in eight cities across Europe. 24h-44 

composite wastewater samples were collected from the main wastewater treatment plants and 45 

analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates 46 

and pyrethroids, by liquid chromatography-tandem mass spectrometry. The mass loads 47 

(mg/day/1000 inhabitants) were highest for organophosphates and lowest for triazines. Different 48 

patterns were observed among the cities and for the various classes of pesticides. Population 49 

weighted loads of specific biomarkers indicated higher exposure in Castellon, Milan, Copenhagen 50 

and Bristol for pyrethroids, and in Castellon, Bristol and Zurich for organophosphates. The lowest 51 

mass loads (mg/day/1000 inhabitants) were found in Utrecht and Oslo. These results were in 52 

agreement with several national statistics related to pesticides exposure such as pesticides sales. The 53 

daily intake of pyrethroids was estimated in each city and it was found to exceed the acceptable 54 

daily intake (ADI) only in one city (Castellon, Spain). This was the first large-scale application of 55 

WBE to monitor population exposure to pesticides. The results indicated that WBE can give new 56 

information about the “average exposure” of the population to pesticides, and is a useful 57 

complementary biomonitoring tool to study population-wide exposure to pesticides.  58 

Keywords: Urban wastewater; Mass spectrometry; Pesticides; Human urinary metabolites; 59 

Biomonitoring; Human intake 60 

61 
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 62 

1 Introduction  63 

Pesticides play an important role in agriculture by protecting plants and plant products 64 

against harmful organisms and their action, and helping boost the growth of crops. Meeting the 65 

demand in food supply will be one of the great challenges in the near future, since the global 66 

population is expected to grow to nine billion by the middle of the century (Godfray et al., 2010). In 67 

order to raise food production, an increased pesticides use is expected. Taking into account that 68 

thousands of tons of pesticides are yearly applied in agriculture, homes, gardens, sports fields, and 69 

public areas (Grube et al., 2011), contamination of the environment most likely will further increase 70 

and human exposure to pesticides will continue being a matter of substantial concern in the near 71 

future.  72 

Many “old and harmful” pesticides, such as p,p-dichlorodiphenyl-trichloroethane (p,p’-73 

DDT), have been banned because of their toxicity and they were replaced by less-persistent 74 

pesticides, such as organophosphates and pyrethroids (Barr, 2008; López et al., 2005). Pesticides 75 

provide mankind with many benefits, but at the same time have the potential to pose risks for 76 

human health due to widespread use and high biological activity (Cooper and Dobson, 2007). For 77 

instance, pesticides exposure has positive association with the development of idiopathic 78 

Parkinson’s disease, neurobehavioral and neuropsychological disorders, respiratory symptoms or 79 

diseases, and sperm DNA damage (Allen and Levy, 2013; Mamane et al., 2015; Saillenfait et al., 80 

2015; Stallones and Beseler, 2016). However, in the last two decades, the concept of “green 81 

chemistry” has been promoted and the agrochemical industry has focused on less toxic substances 82 

(Garrison, 2004).  83 

The general population is exposed to pesticides mainly through diet and household use 84 

(Aprea, 2012). Human biomonitoring (HBM) is the main tool for assessing exposure and consists in 85 
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the measurement of chemicals and/or their metabolites in body fluids or tissues (Barr, 2008; Yusa et 86 

al., 2015). The reliability of HBM depends on the selection of a proper biomarker that reflects the 87 

exposure to the parent compound, and is specific and detectable in the investigated matrices. Urine 88 

is the preferred human biological matrix, since it is easy to collect and non-invasive and it is also 89 

accessible in large volumes allowing the determination of very low concentrations of chemicals 90 

compared to other fluids (Wessels et al., 2003). Extensive HBM studies have analyzed the urine of 91 

thousands of individuals to investigate pesticide exposure in the general population (Barr et al., 92 

2010, 2004; Heudorf and Angerer, 2001; McKelvey et al., 2013; Ye et al., 2015). Despite their 93 

power to evaluate exposure to chemicals, HBM studies suffer by limitations such as high costs for 94 

sample collection and analysis, ethical issues and data analysis to extrapolate individual results to 95 

the whole population. Moreover, urine sampling can reflect only a momentary snapshot of exposure 96 

due to sampling procedures (i.e. morning urine collection), and excretion profiles may vary 97 

throughout the day/days because of the short half-lives in the human body of most of pesticides.  98 

Wastewater-based epidemiology (WBE) is a recent approach for the retrieval of 99 

epidemiological information from wastewater through the analysis of specific human metabolic 100 

excretion products (biomarkers) (Castiglioni et al., 2014). It can be described as a collective urine 101 

test, as the wastewater from a city pools the anonymous urine samples of thousands of individuals. 102 

WBE was originally developed in Italy to estimate illicit drug consumption in a population (Zuccato 103 

et al., 2008) and has later been applied worldwide with promising results (Banta-Green et al., 2009; 104 

Ort et al., 2014). New possibilities permit information on public health and lifestyles (Thomas and 105 

Reid, 2011; Venkatesan and Halden 2014). The main advantage of WBE is to provide objective, 106 

real-time information on substances directly or indirectly ingested daily by a population, with a 107 

clear potential to provide complementary data for epidemiological studies and to overcome some of 108 

the HBM limitations. 109 
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The first exploratory study proposing WBE as a novel biomonitoring tool to evaluate the 110 

exposure of the general population to pesticides was recently performed (Rousis et al., 2016).  111 

Several metabolites of organophosphates, triazines and pyrethroids were detected in raw wastewater 112 

and their frequency of detection and abundance were in agreement with the profiles reported in 113 

urine of HBM studies (Rousis et al., 2016). Later three human urinary metabolites of pyrethroids 114 

were selected and used to back-calculate the population intake of pyrethroids in Italy (Rousis et al., 115 

2017). This study indicated for the first time that WBE can be employed as a complementary 116 

biomonitoring tool to the HBM studies, but more data and a wider scale of investigation were 117 

necessary in order to confirm these preliminary results.  118 

The aim of the present study was to apply for the first time this new WBE approach in eight 119 

countries across Europe and to evaluate the pan-European human exposure to pesticides in order to 120 

validate the method by comparing results with international statistics. 24-h composite raw 121 

wastewater samples were collected and analyzed for organophosphate, triazine and pyrethroid 122 

metabolites. The results for the cities were compared and population-wide pyrethroid intake was 123 

estimated. To the best of our knowledge, this is the first WBE study designed to assess human 124 

exposure to pesticides at a European scale.   125 

 126 

2 Materials and methods  127 

2.1 Chemicals and reagents  128 

Hydrochloric acid (HCl, 37%) and acetonitrile for liquid chromatography-mass 129 

spectrometry (LC-MS) were purchased from Riedel de Haen (Seelze, Germany); methanol (MeOH) 130 

for pesticide analysis from Carlo Erba Reagents (Italy); triethylamine and acetic acid from Fluka 131 

(Buchs, Switzerland). HPLC grade Milli-Q water was obtained with a Milli-RO Plus 90 apparatus 132 

(Millipore, Molsheim, France). Analytical standards for diethyl phosphate (DEP, purity 97.6%), 133 
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chlorpyrifos (CPF, purity 99.9%), chlorpyrifos methyl (CPF-MET, purity 99.5%) and 3,5,6-134 

trichloro-2-pyridinol (TCPY, purity 99.5%) were purchased from Chemical Research 2000 (Rome, 135 

Italy). Atrazine (ATZ, purity 97.5%), atrazine desethyl (DEA, purity 99.9%), terbutylazine desethyl 136 

(DES, purity 97.4%), atrazine desisopropyl (DIA, purity 95.4%), dimethyl chlorophosphate 137 

(DMCIP, purity 96%), dimethyl chlorothiophosphate (DMCITP, purity 97%), and O,O-diethyl 138 

thiophosphate (DETP, purity 98%) potassium salt were supplied by Sigma-Aldrich (Schnelldorf, 139 

Germany). Atrazine mercapturate (AM, purity 95.0%), 3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-140 

cyclopropane)carboxylic acid (DCCA, purity 99.0%), 3-phenoxybenzoic acid (3-PBA, purity 141 

99.0%), 2-isopropyl-6-methyl-4-pyrimidinol (IMPY, purity 99.5%), cis-3-(2,2-dichlorovinyl)-2,2-142 

dimethyl-(1-cyclopropane) carboxylic acid (cis-DCCA, purity 98%) and malathion monocarboxylic 143 

acid (MMA, purity 97.0%) were purchased from Lab Service Analytica (Bologna, Italy). 144 

Isotopically labeled compounds (deuterated or 13C-enriched) were used as internal standards (IS). 3-145 

Phenoxybenzoic acid-C6 (3-PBA-13C6, phenoxy-13C6, 99%; purity 98%) and 3,5,6-trichloro-2-146 

pyridinol-C3 (TCPY-C3, 4,5,6-13C3, 99%; purity 97%) were obtained from Cambridge Isotope 147 

Laboratories, Inc. (Massachusetts, USA); atrazine-D5 (ATZ-D5, 99.5%) from Sigma-Aldrich 148 

(Schnelldorf, Germany); and chlorpyrifos D10 (CPF-D10, 97.0%) from Lab Service Analytica 149 

(Bologna, Italy). Dimethyl phosphate (DMP) and dimethyl thiophosphate (DMTP) were 150 

synthesized by simple hydrolysis of DMCIP and DMCITP (Hernández et al., 2002; Rousis et al., 151 

2016a).  152 

 153 

2.2 Selection of exposure biomarkers  154 

Specific urinary metabolites of pesticides were selected as biomarkers from HBM studies 155 

available in literature and official reports of the United States Environmental Protection Agency and 156 

the Centers for Disease Control and Prevention, as described elsewhere (Rousis et al., 2016). The 157 

biomarkers were chosen according to specific criteria: a) levels in urine; b) frequency of detection; 158 
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c) frequency of use of the respective classes of pesticides; d) risks for human health; e) specificity 159 

of the metabolites (human excretion versus environmental formation).  160 

The selected biomarkers were three parent substances and 15 urinary metabolic products 161 

belonging to different pesticide classes. Among triazines, the parent atrazine and the metabolites 162 

DES, DIA, DEA and AM were selected. Among pyrethroids 3-PBA, the common metabolite of 163 

about 20 synthetic pyrethroids, and cis- and trans-DCCA, which are the specific metabolites of 164 

permethrin, cypermethrin and cyfluthrin were chosen. Among organophosphates, the four alkyl 165 

phosphates DEP, DETP, DMP and DMTP, which are common metabolites of a large group of 166 

organophosphates, chlorpyrifos, chlorpyrifos methyl and their specific metabolite TCPY, the 167 

metabolites of malathion (the α and β isomers of MMA) and the metabolite of diazinon (IMPY) 168 

were selected.  169 

The reliability of back-calculation of the exposure to parent chemicals (pesticides) depends 170 

strictly on the selection of an appropriate WBE biomarker, which can be either the compound itself 171 

or one of its metabolites. Therefore, the selected metabolites were checked to fulfill the 172 

requirements of a WBE biomarker, which are: a) measurable in raw wastewater; b) released into 173 

sewers only as a result of human excretion; c) a well-defined excretion profile to avoid interference 174 

from other exogenous or endogenous sources; d) limited adsorption to suspended matter; e) stable 175 

in wastewater during in-sewer transit, sampling and storage (Gracia-Lor et al., 2016). The stability 176 

of each compound in wastewater was evaluated through specific laboratory tests (Rousis et al., 177 

2016), and the specificity of each metabolite was assessed by checking the presence of sources 178 

other than human metabolism (i.e. any potential environmental transformation) (Rousis et al., 2017 179 

and this study). The results for the selected substances are summarized in Table 1.  180 

 181 

2.3 Samples and sampling method  182 
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Raw wastewater samples were taken from the inlet of the wastewater treatment plants 183 

(WWTPs) of eight European cities: Bristol, the United Kingdom; Brussels, Belgium; Castellon, 184 

Spain; Copenhagen, Denmark; Milan, Italy; Oslo, Norway; Utrecht, The Netherlands and Zurich, 185 

Switzerland (Figure 1).  186 

Composite 24-h samples of untreated wastewater were collected by automatic sampling 187 

devices (Table S1). Sampling was carried out over one week in March 2015. For each WWTP, 188 

seven consecutive 24-h samples were collected in high-density polyethylene bottles, transferred to 189 

Milan and stored at -20°C until sample treatment.  190 

 191 

2.4 Sample pretreatment  192 

The method for sample preparation was published in detail elsewhere (Rousis et al., 2016). 193 

Briefly, samples were filtered on a glass microfiber filter GF/A 1.6 µm (Whatman, Kent, U.K.) and 194 

on a mixed cellulose membrane filter 0.45 µm (Whatman, Kent, U.K.) before extraction. Solid 195 

phase extraction (SPE) was used to extract the target analytes using OASIS® HLB 3 cc/60 mg 196 

cartridges (Waters Corp., Milford, MA, USA) and an automatic GX-274 ASPEC (Gilson, 197 

Middleton, WI, USA) extractor. Samples (50 mL of untreated wastewater) were spiked with 2 ng of 198 

a mixture of internal standards and the pH was adjusted to 7.0-7.5, using diluted HCl (12%). 199 

Cartridges were conditioned with MeOH (5 mL) and Milli-Q water (3 mL) and samples were 200 

passed at a flow rate of 5 mL/min. The cartridges were dried under a nitrogen stream at a flow rate 201 

of 10 mL/min for 10 min and eluted with 3 mL of MeOH. Eluates were evaporated under a gentle 202 

nitrogen stream at room temperature and dried samples were reconstituted in 100 µL of Milli-Q 203 

water and transferred into glass vials for LC-MS/MS analysis.  204 

The alkyl phosphate analytes DEP, DETP, DMP and DMTP were directly injected into the 205 

LC-MS/MS system; 500 µL of filtered samples were centrifuged at 2500 rpm for 2 min and 180 µL 206 
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of supernatant were collected, spiked with 2 ng of a mixture of internal standards and transferred 207 

into glass vials for LC-MS/MS analysis.  208 

 209 

2.5 Instrumentation and analytical method 210 

Chromatographic separation was done with an Agilent 1200 Series system (Agilent 211 

Technologies, Santa Clara, CA, USA) using an XSELECTTM CSHTM C18 (2.1 × 100 mm, 2.5 µm) 212 

column (Waters Corp., Milford, MA, USA). Mass spectrometric analysis done using an AB SCIEX 213 

Triple QuadTM 5500 LC–MS/MS System (AB-Sciex, Thornhill, Ontario, Canada). Two or three 214 

most abundant product ions of the protonated pseudo-molecular ion of each substance were chosen 215 

for analysis which was done both in positive and negative ionization modes using the selected 216 

reaction monitoring mode (SRM). Quantification was performed by isotopic dilution. Method limits 217 

of detection and quantification are reported in Table S2. The method was fully validated in raw 218 

wastewater, as described elsewhere (Rousis et al., 2016).  219 

 220 

2.6 Stability of biomarkers and parent pesticides in wastewater  221 

Stability experiments aim to ensure that no degradation of the targeted compounds occurs in 222 

the sewage system and during sampling and storage, so no pre-analytical losses occur (McCall et 223 

al., 2016). The stability of parent pesticides is crucial, since degradation of these compounds could 224 

lead to formation of the targeted biomarker in wastewater, hence to overestimation of human 225 

exposure. The stability of metabolites in raw wastewater and the formation of pyrethroid 226 

metabolites from the degradation of parent pyrethroids were evaluated in previous studies (Rousis 227 

et al., 2016, 2017). The present study investigated the formation of triazine and some 228 

organophosphate metabolites after addition of the corresponding parent pesticides in raw 229 

wastewater, under different conditions. Parent triazine (atrazine, simazine, propazine, terbutylazine) 230 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

11 

 

and organophosphate pesticides (chlorpyrifos, chlorpyrifos-methyl, malathion, diazinon) were 231 

spiked in wastewater to the maximum acceptable concentration (0.1 µg/L) for a single pesticide in 232 

groundwater, surface water and water intended for human consumption according to EU directives 233 

(Commision, 2008, 2006, 1998) to test their stability under controlled conditions (room temperature 234 

and 4°C). These temperatures were chosen in order to mimic conditions in the sewer system (room 235 

temperature, ~23°C; worst case scenario) and during the collection of the composite 24-h samples 236 

(occurring at 4°C). Each experiment was run in triplicate and samples were analyzed immediately 237 

after spiking (t0), and after 6 (t6) and 24 h (t24). Unspiked samples were used as matrix blanks. 238 

Analysis of formed DEP, DETP, DMP and DMTP compounds following addition of parent 239 

pesticides in wastewater was not performed, since these metabolites are excretion or transformation 240 

products of a wide number of pesticides and other substances including flame retardants, 241 

plasticizers and industrial chemicals (Rousis et al., 2016).  242 

 243 

2.7 Daily mass loads  244 

Daily mass loads of biomarkers were calculated by multiplying the concentrations (ng/L) 245 

found in a 24h composite sample of raw wastewater by the daily wastewater flow rate (m3/day) at 246 

the WWTPs (Table S1). Biomarker mass loads (mg/day) were then normalized to the number of 247 

people served by each WWTP (mg/day/1000 inhabitants), in order to compare results between 248 

different cities.  249 

 250 

2.8 Pyrethroid intake and uncertainty evaluation 251 

At present, pyrethroid metabolites (3-PBA and DCCA) were found to be the most suitable 252 

biomarkers of exposure according to the specific requirements of WBE (Table 1), so they were used 253 

to back-calculate population-wide intake of pyrethroids. Specific correction factors (CFs) were 254 
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developed by Rousis et al. (2017) and the following equation was used to estimate pyrethroids 255 

intake:  256 

 257 

where: Conc. is the concentration of each target analyte (ng/L) in wastewater, F is the 258 

corresponding flow rate of wastewater in WWTP (m3/day), CF is the specific correction factor for 259 

each analyte and P is the population served by each WWTP.  260 

CFs were calculated taking into account the molar mass ratio between parent pesticide and 261 

target metabolite and the percentage of excretion of the target metabolite in human urine. Since 262 

each metabolite is common to more than one parent substance, the molar mass ratios were 263 

calculated using the arithmetic mean of the molecular weights of all parent substances divided by 264 

the molecular weight of each metabolite. All human urinary pharmacokinetic studies reporting the 265 

excretion rate of metabolites after a dose of the parent substances were considered. The weighted 266 

mean (WM) excreted fraction was calculated as the mean percentage of excretion weighted by the 267 

number of subjects in each study (Rousis et al., 2017). The following equation was used to calculate 268 

CFs:  269 

 270 

where: Mw is the molecular weight and WM is the weighted mean of the percentage of excretion of 271 

the targeted metabolites.  272 

The procedure used to develop CFs has been described in detail elsewhere (Rousis et al., 273 

2017). CFs were 6.95 for 3-PBA (used to estimate the intake of 20 pyrethroids) and respectively 274 

3.67 and 5.45 for trans- and cis-DCCA (used to estimate the intake of permethrin, cypermethrin, 275 

and cyfluthrin) (Rousis et al., 2017). The intake levels of permethrin, cypermethrin and cyfluthrin 276 

(sum of cis- and trans- levels) estimated by WBE were compared with a toxicological indicator, the 277 
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acceptable daily intake (ADI), so as to evaluate the measured levels of exposure in relation to their 278 

potential effects on human health.  279 

Uncertainty was evaluated following the available best practice protocols for WBE 280 

(Castiglioni et al., 2014, 2013). Sampling procedures were selected to keep uncertainty below 10%, 281 

while the analytical procedure was optimized to have an analytical variability lower than 15% 282 

(Rousis et al., 2016). The variability of excretion profiles of pyrethroids metabolites was carefully 283 

evaluated to assess the uncertainty related to CFs and consequently to the back-calculation. It was 284 

calculated as the standard deviation of the percentages of excretion collected from the literature as 285 

shown previously (Rousis et al., 2017) and it was lower than 16%. Finally, data normalization to the 286 

population served by each WWTP was done considering the most reliable population estimation to 287 

keep uncertainty as lower as possible. Nevertheless, as described elsewhere, this is probably the 288 

most critical aspect of determining the variability (Castiglioni et al., 2013). 289 

 290 

2.9 Data elaboration  291 

Data were analysed using a MultiQuantTM 2.1 software package of Analyst® (AB-Sciex, 292 

Thornhill, Ontario, Canada). GraphPad Prism (Version 6.0) was used for figures elaboration and 293 

statistical analyses which was performed by using an unpaired t-test or a Mann-Whitney test 294 

according to the normality of data. All tests were done considering a statistical significance level of 295 

p<0.05. Concentrations below the Limit of Quantification (LOQ) were replaced with a value equal 296 

to half the LOQ.  297 

 298 

3 Results and Discussion  299 

3.1 Stability of metabolites and parent pesticides  300 
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The stability experiments showed no formation of triazine and organophosphate metabolites 301 

in any of the tested conditions (Table S3). Thus, the percentage variation of the concentration for 302 

each metabolite at t6 and t24 respect to t0 indicated that very small variations occurred for all 303 

metabolites. Even though these laboratory experiments were conducted under controlled conditions 304 

(pH = 7.0-7.5; room temperature and 4 °C) that are not reproducing the spatial and temporal 305 

variability in a sewer system, they can provide indicative information regarding the stability of a 306 

compound in wastewater.  307 

 308 

3.2 Occurrence of biomarkers in raw wastewater  309 

Concentrations of the biomarkers measured in wastewater are shown in Table 2 with their 310 

frequencies of detection. The substances most frequently observed were ATZ and DEA (detection 311 

rates 98.2% and 62.5%) among triazines; 3-PBA and trans-DCCA (detection rates 98.2% and 312 

96.4%) among pyrethroids; TCPY (detection rate 100%), IMPY (detection rate 87.5%), and DMP 313 

and DEP (detection rates 100% and 94.6%) among organophosphates. The other biomarkers had 314 

lower frequencies of detection (<40%), and chlorpyrifos, chlorpyrifos–methyl and DMTP were not 315 

detected. Mean concentrations ranged from a few ng/L (triazines) to 2.3 µg/L (DMP).  316 

The results were comparable with those of a previous study in seven Italian cities (Rousis et 317 

al., 2016). The profiles of the compounds most frequently detected were similar, besides a few 318 

exceptions; i.e. the frequency of detection of DES and cis-DCCA was higher in Italy (100% and 319 

73%) than in the other European cities (38% and 36%), and CPF was detected in one city in Italy 320 

(Rousis et al., 2016), but not in the EU cities (Table 2). The results for the other compounds were 321 

quite similar in both studies: AM, CPF-MET and DMTP were not detected; malathion and triazine 322 

metabolites were detected sporadically (frequency of detection <40%); and TCPY and DMP were 323 

detected in all samples. The highest concentrations in both studies were measured for the alkyl 324 
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phosphate metabolites, DEP and DMP, which are metabolic products of most organophosphates, 325 

while the triazines group was found at the lowest concentrations (Rousis et al., 2016). The 326 

concentrations of trans-DCCA were always higher than those of cis-DCCA, in accordance with 327 

HBM studies, where the trans-isomer predominated (Rousis et al., 2017). The trans- to cis- DCCA 328 

ratio is used as an indicator of the route of human exposure and a ratio of 2:1 or higher indicates 329 

oral uptake and/or inhalation. This suggests that these metabolites in wastewater resulted mainly 330 

from human metabolism, since the ratio was higher than 2:1, as reported previously (Rousis et al., 331 

2017).  332 

 333 

3.3 Mass loads of biomarkers in the different cities  334 

The mean mass loads of organophosphates, triazines and pyrethroids (parent and 335 

metabolites) expressed as mg/day/1000 inhabitants, are reported in Table S4.  336 

The alkyl phosphates DMP and DEP gave the highest loads (up to 975 mg/day/1000 inh for 337 

DMP and 244 mg/day/1000 inh for DEP). These high mass loads were expected, since these 338 

substances are metabolic products of most of the organophosphate insecticides used in Europe. 339 

These substances also might originate from plasticizers or flame retardants following hydrolysis or 340 

from other industrial chemicals (Reemtsma et al., 2011) and are therefore not specific for human 341 

exposure. Among the other specific metabolites investigated, the loads of the diazinon metabolite 342 

IMPY ranged from 1.3 to 16 mg/day/1000 inh. and the metabolite of chlorpyrifos and chlorpyrifos-343 

methyl, TCPY, ranged from 3.9 to 22 mg/day/1000 inh., suggesting different exposure to these 344 

organophosphates in the various countries.  345 

Triazines had the lowest loads, ranging from 0.33 to 5.0 mg/day/1000 inh. Generally, the 346 

metabolite mass loads were of the order of magnitude of atrazine or slightly higher. Among the 347 

compounds investigated, only AM is a specific metabolite of atrazine that may indicate human 348 
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exposure, but it was never detected in wastewater. The other metabolites detected can also result 349 

from exposure to other triazines, particularly terbutylazine, which is the only chlorotriazine 350 

herbicide approved for use in EU, and DES, DIA and DEA can originate from degradation of the 351 

parent substances in the environment (Barr et al., 2007). It was therefore very difficult to correlate 352 

their occurrence in wastewater with human exposure.  353 

The mass loads of pyrethroids were higher than those of triazines, 3-PBA ranged between 354 

4.2 and 30 mg/day/1000 inh and trans-DCCA from 7.0 to 46 mg/day/1000 inh. In all the cities, cis-355 

DCCA mass loads were the lowest (3.6 - 10.5 mg/day/1000 inh). These specific metabolites were 356 

used to evaluate human exposure as described here below. 357 

The sum of the mass loads of the compounds measured for each class of pesticides was 358 

calculated as described in paragraph 2.7, in order to compare results from the different cities (Figure 359 

2). Different patterns were observed among the cities and for the various classes of pesticides, but 360 

Utrecht and Oslo invariably had the lowest loads. The specific biomarkers of exposure to 361 

pyrethroids had the highest loads in Castellon (mean 86 mg/day/1000 inh) followed by Milan and 362 

Bristol (mean 43 mg/day/1000 inh), and Copenhagen (mean 41 mg/day/1000 inh). This may 363 

indicate a higher human exposure to pyrethroids in Spain due to either direct exposure or 364 

consumption of contaminated food, and fits with the fact that Spain is classified as one of the 365 

countries with the highest sales of pesticides in Europe (Eurostat, 2014). Regarding the specific 366 

metabolites of organophosphates, the highest loads were again in Castellon (mean 28 mg/day/1000 367 

inh), Bristol (mean 26 mg/day/1000 inh) and also in Zurich (mean 21 mg/day/1000 inh). Among 368 

non-specific metabolites a direct correlation with exposure could not be performed. The highest 369 

levels were found for alkyl phosphates in Zurich (mean 1056 mg/day/1000 inh), followed by Bristol 370 

(mean 573 mg/day/1000 inh) and Brussels (mean 322 mg/day/1000 inh), and for triazines in Milan 371 

(mean 14 mg/day/1000 inh) Zurich and Brussels (mean 10 mg/day/1000 inh) (Figure 2).  372 
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Since human exposure occurs mainly through the diet and can be related to direct exposure 373 

only in some cases (i.e. rural areas), the results obtained for the specific biomarkers of exposure can 374 

reveal new information about the “average exposure” of the population to these pesticides 375 

(pyrethroids and organophosphates). Regarding the other non-specific biomarkers, further 376 

investigation will be necessary to assess the main sources of these substances, and exclude the 377 

possibility of discharges from sources other than human metabolism.  378 

 379 

3.4 Comparison of mass loads of insecticides with official sales statistics 380 

Organophosphates and pyrethroids were the classes most frequently detected in wastewater, 381 

both of which are classified as insecticides. Wastewater results were therefore compared with the 382 

national sales statistics of insecticides reported by Eurostat (Eurostat, 2014). The sum of the specific 383 

biomarkers of insecticides was normalized to the population investigated in each city and the means 384 

are reported in Figure 3. Mass loads were the highest in Castellon, Bristol, Copenhagen and Milan 385 

and the lowest in Olso (Figure 3). These results mainly reflect the Eurostat official sales statistics 386 

(Figure 3), which reported that Spain, Italy and UK had the highest sales data of insecticides, and 387 

Norway had the lowest. Because human exposure to pesticides is mainly influenced by the diet, we 388 

can speculate that in the countries with a high sale of insecticides, and a consequent higher use in 389 

agriculture, there is also a major supply of products (vegetable and fruits) that leads to a higher 390 

exposure to these substances. This is supported by the fact that our study was focused on urban 391 

areas where direct exposure related to agricultural use can be excluded. In Spain and Italy the 392 

Mediterranean diet, which includes lots of fruits and vegetables, may also play an important role in 393 

the exposure to pesticides. Wastewater results seem to reflect also the available figures of vegetable 394 

and fruit supply and consumption in Europe which are reported to be higher in the South than in the 395 

North of Europe (EUFIC).  396 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

18 

 

 397 

3.5 Back-calculation of pyrethroid intake  398 

The daily intake by the general population was calculated for pyrethroids due to the 399 

suitability of wastewater biomarkers. The mass loads of biomarkers (3-PBA and trans- and cis-400 

DCCA) were therefore used to back-calculate the intake of the corresponding parent substances. 401 

The mass loads of 3-PBA, which is the common urinary metabolic product of about 20 pyrethroids, 402 

were multiplied by its specific CF as previously described (Rousis et al., 2017). Pyrethroids highest 403 

intake was in Castellon (207 mg/day/1000 inh.) followed by Bristol (77 mg/day/1000 inh.) and 404 

Milan (75 mg/day/1000 inh.), and the lowest in Oslo (17 mg/day/1000 inh.) (Table 3).  405 

The intake of trans- and cis- permethrin, cypermethrin and cyfluthrin was estimated using 406 

the mass loads of their specific metabolites trans- and cis-DCCA in wastewater and their specific 407 

CF (Rousis et al., 2017). Results are reported in Table 3 as the sum of the cis- and trans- DCCA 408 

isomers. The estimated intakes ranged between 227 mg/day/1000 inh in Castellon and 26 in Oslo. 409 

Similar intakes were found in UK (126 mg/day/1000 inh), Copenhagen (123 mg/day/1000 inh) and 410 

Milan (130 mg/day/1000 inh).  411 

The intake profiles from both DCCA and 3-PBA were highest in Castellon and lowest in 412 

Oslo, indicating an extremely divergent exposure to this class of pesticides. These results are in 413 

accordance with the eEuropean statistics of fruit and vegetable consumption and also with national 414 

statistics of pesticides sales as previously discussed for the entire class of insecticides. The intake of 415 

pyrethroids estimated from DCCA was generally higher than those estimated from 3-PBA in all the 416 

cities (in several cases the difference was statistically significant, DCCA vs. 3-PBA) (Table 3). This 417 

may reflect different patterns of exposure to pyrethroids, which are excreted as the investigated 418 

biomarkers. Further research is therefore required to investigate the specific patterns of the 419 

household use of these substances and the food contamination.  420 
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 421 

3.6 Comparison of estimated intake with the acceptable daily intake (ADI) 422 

The potential risk related to the intake of permethrin, cypermethrin and cyfluthrin was 423 

assessed using the daily intake estimated from the loads of trans- and cis-DCCA measured in 424 

wastewater. In order to compare these data with ADI values, the ADI of beta-cyfluthrin was used as 425 

a worst case scenario, since it was the lowest for this class of compounds. An ADI of 0.003 mg/kg 426 

body weight per day for a man of 70 kg resulted in an average consumption of 0.21 mg/person per 427 

day (Rousis et al., 2017). The comparison between intakes estimated by WBE and the %ADI are 428 

reported in Table 4. The estimated intake of permethrin, cypermethrin and cyfluthrin in the 429 

population was generally lower than the ADI, and exceeded this reference value only in one case 430 

(Castellon) (Table 4). As previously discussed, this area was found to have the highest exposure 431 

level to insecticides (particulary pyrethroids) probably due to a combination of wide use of 432 

pesticides and high consumption of contaminated food.  433 

3.7 Limitations and future research needs  434 

Up to date we checked the formation of metabolites from the parent substances through 435 

laboratory tests performed in wastewater mimicking different temperature conditions during in-436 

sewer transport and sampling. Nevertheless, it would be ideal to perform transformation 437 

experiments in real sewers, but many factors make troublesome to obtain accurate results in such 438 

studies. Moreover, the stability of biomarkers in wastewater can be highly affected by “local” 439 

conditions in a WWTP and may require specific investigations. Future research in this area should 440 

take into account the main processes occurring in sewer compartments, and consequently the 441 

potential presence of pesticides/metabolites in the different compartments: a) the bulk liquid 442 

(wastewater with suspended particulate matter); b) biofilm growing on the sewer walls; c) 443 

sediments; d) the sewer atmosphere (McCall et al., 2016).  444 
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The present study is the first one in which an attempt is made to correlate  the mass loads of 445 

insecticides obtained from WBE with national sales statistics and vegetable and fruit consumption. 446 

A number of limitations must be considered to improve future comparisons of this kind of data. On 447 

one side, WBE results were obtained by measuring a few specific urinary metabolites that indicate 448 

the exposure to a limited number of parent substances within the entire class of insecticides. 449 

Furthermore, WBE was performed only in one city per country and for a limited period (seven 450 

consecutive days). Thus, results may not reflect longer periods of exposure. Under these conditions, 451 

the extrapolation of results to the whole country will be biased by the specific spatial and temporal 452 

profiles of that city. This was seen in previous studies, where significant differences in pesticide 453 

intake were found among cities within the same country (Rousis et al., 2016), and pesticides levels 454 

showed seasonal variations (Rousis et al., 2017). Thus, future WBE studies should include more 455 

cities per country and sampling should be repeated seasonally to improve the comparability of 456 

wastewater results with the available national statistics. On the other side, national sales statistics 457 

for pesticides may not reflect the actual use of these substances in a country and they are obviously 458 

not directly related to exposure, even if the first results suggest a correlation. Moreover, these data 459 

are referred to the sales of an entire class of substances, for instance insecticides in our case, 460 

registered in an EU database and collected over the whole year in each country, being therefore 461 

more comprehensive and aggregated than our information from WBE. Finally, food consumption 462 

can be measured in different ways and statistics can be obtained with different methods which are 463 

not directly comparable. Since National Authorities often adopt different methods to collect data, 464 

the comparability of international statistics should be carefully verified.  465 

 466 

4 Conclusions  467 

WBE was applied here for the first time to assess human exposure to different classes of 468 

pesticides across Europe. Several selected biomarkers of exposure to pesticides were measured in 469 
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raw wastewater and used as indicators of human exposure in the population. Mass loads suggested a 470 

different pattern of exposure to organophosphates, pyrethroids and triazines. Spatial differences in 471 

exposure to insecticides in the various cities were in line with national statistics related to pesticides 472 

exposure. Results suggested that in the countries with higher insecticides sales, there is also a major 473 

supply of products (vegetables and fruits) that leads to a higher exposure to these substances. WBE 474 

was able to provide new information about the “average exposure” of the population to pesticides. 475 

Moreover, the calculation of the daily intake of pyrethroids highlighted also a different pattern of 476 

exposure within this class. The comparison of daily intake calculated for permethrin, cypermethrin 477 

and cyfluthrin and a worst case ADI (the one from beta-cyfluthrin) indicated a potential risk for 478 

human health. This study suggest that WBE as can be a very promising complementary 479 

biomonitoring tool to evaluate population-wide exposure to pesticides. Some current limitations 480 

were also discussed in order to improve future applications. 481 
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 608 

Table 1. Summary of the main characteristics of the metabolites selected as WBE biomarkers. 609 

Metabolites 
selected as 
WBE 
biomarkers 

Parent pesticides 

Detection 
in 

wastewater  
(present 
study) 

Other 
potential 
sources 

(Rousis et 
al., 2016) 

Stability in 
wastewater 
(Rousis et 
al., 2016) 

Formation from 
parent pesticides 

in wastewater 
(Rousis et al., 
2017); present 

study) 
Triazines 
DES Terbuthylazine Yes Yes Yes No 
DIA Atrazine, 

terbuthylazine, 
simazine, propazine 

Yes Yes Yes No 

DEA Atrazine, 
terbuthylazine, 

simazine, propazine 
Yes Yes Yes No 

AM Atrazine No Yes Yes No 
Pyrethroids 
3-PBA 20 pyrethroidsa Yes Yes Yes No 

trans-DCCA Permethrin, 
cypermethrin, 

cyfluthrin 
Yes No Yes No 

cis-DCCA Permethrin, 
cypermethrin, 

cyfluthrin 
Yes No Yes No 

Organophosphates 
TCPY Chlorpyrifos, 

chlorpyrifos-methyl 
Yes Yes Yes No 

MMA Malathion Yes Yes Yes No 
IMPY Diazinon Yes Yes Yes No 
DEP Several 

organophosphate 
insecticides 

Yes Yes Yes -b 

DETP Several 
organophosphate 

insecticides 
Yes Yes Yes -b 

DMP Several 
organophosphate 

insecticides 
Yes Yes No -b 

DMTP Several 
organophosphate 

insecticides 
No Yes Yes -b 

aPermethrin, cypermethrin, deltamethrin, fenvalerate, phenothrin, cyphenothrin, cyhalothrin, esfenvalerate, 610 

fenpropathrin, allethrin, resmethrin, tralomethrin, flucythrinate, fluvalinate and their isomers; b not assessed 611 

because these compounds come from multiple substances. 612 

 613 
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Table 2 Mean concentrations (ng/L) and standard deviations of the raw wastewater samples collected in eight European cities in March 2015.  614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

<LOQ/2 are reported as used for further calculation. LOQ values are reported in Table S2. 625 

 626 

Compound Bristol Brussels Castellon Copenhagen Milan Oslo Utrecht Zurich 
Frequency of 

detection 
(%) 

Triazines 

ATZ 4.4 ± 0.4 12.8 ± 1.3 2.0 ± 1.0 1.3 ± 0.1 7.9 ± 0.8 1.7 ± 0.2 2.1 ± 0.3 5.4 ± 0.6 98.2 

DES <0.6. <0.6. 21.1 ± 3.7 <0.6. 12.2 ± 1.4 <0.6. <0.6. 6.2 ± 0.8 37.5 

DIA <1.4 6.7 ± 2.0 <1.4 <1.4 8.9 ± 1.4 <1.4 <1.4 4.3 ± 0.2 36.2 

DEA 7.5 ± 3.0 19.6 ± 5.5 4.5 ± 1.2 <1.1 7.7 ± 1.1 <1.1 <1.1 7.4 ± 0.9 62.5 

AM <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0 

Pyrethroids 
3-PBA 49 ± 25 22.4 ± 1.4 129 ± 32 12.4 ± 2.3 26.1 ± 9.3 5.3 ± 1.5 30.1 ± 7.4 9.6 ± 1.4 98.2 

trans-DCCA 118 ± 65 65 ± 13 200 ± 60 44 ± 16 63 ± 34 15.1 ± 8.8 124 ± 54 31 ± 10 96.4 

cis-DCCA 22 ± 11 <7.7 45 ± 11 <7.7 14 ± 11 <7.7 22.9 ± 8.3 <7.7 35.7 

Organophosphates 
CPF <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 <2.4 0 

CPF-MET <3.5 <3.5 <3.5 <3.5 <3.5 <3.5 <3.5 <3.5 0 

TCPY 43 ± 23 23.8 ± 2.7 93 ± 23 17.8 ± 2.3 20.1 ± 2.9 8.3 ± 1.3 28.3 ± 3.9 26.4 ± 3.1 100 

MMA isomer 1 <3.9 <3.9 397 ± 966 <3.9 4.7 ± 2.3 <3.9 <3.9 <3.9 8.9 

MMA isomer 2 <4.8 <4.8 285 ± 661 <4.8 <4.8 <4.8 <4.8 <4.8 7.1 

IMPY 72 ± 48 4.9 ± 1.1 25 ± 11 3.6 ± 0.8 <1.29 6.5 ± 1.2 12.7 ± 2.8 19 ± 16 87.5 

Alkyl phosphates (Organophosphates)  
DEP 1076 ± 670 180 ± 24 231 ± 56 110 ± 12 123 ± 20 46 ± 19 206 ± 13 187 ± 22 94.6 

DETP 39 ± 19 <17.5 <17.5 <17.5 <17.5 <17.5 <17.5 <17.5 7.1 

DMP 1388 ± 2228 1072 ± 1018 278 ± 77 280 ± 92 128 ± 22 233 ± 60 269 ± 43 2269 ± 630 100 

DMTP <395 <395 <395 <395 <395 <395 <395 <395 0 
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Table 3 Pyrethroid intake (mg/day/1000 inhabitants; mean and standard deviation) back-calculated 627 

from 3-PBA and cis- and trans-DCCA. 628 

WWTP 
Group of 

pyrethroids 
(3-PBA) 

Permethrin, cypermethrin 
and cyfluthrin 

(DCCA*) 

Statistical analysis 
(p-values)§ 

Bristol 77 ± 37 126 ± 60 0.091 
Brussels 41 ± 6 62 ± 11 0.012 
Castellon 207 ± 47 227 ± 59 0.507 
Copenhagen 57 ± 13 123 ± 50 0.005 
Milan 75 ± 39 130 ± 101 0.209 
Oslo 17 ± 5 26 ± 13 0.128 
Utrecht 33 ± 8 90 ± 36 0.001 
Zurich 29 ± 6 50 ± 22 0.031 
*Sum of cis- and trans-DCCA;§ unpaired t-test or Mann-Whitney test were performed considering a 629 

statistical significance for p<0.05. 630 

631 
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 632 

Table 4 Estimated intake of permethrin, cypermethrin and cyfluthrin of the population living in 633 

different European cities and comparison with the acceptable daily intake (ADI) for beta-cyfluthrin 634 

(0.21 mg/day/person).  635 

WWTP 
Intake of permethrin, cypermethrin and 

cyfluthrin (mg/day/person) 
% ADI* 

 

Bristol 0.126 ± 0.060 60 
Brussels 0.062 ± 0.011 30 
Castellon 0.227 ± 0.059 108 
Copenhagen 0.123 ± 0.050 58 
Milan 0.130 ± 0.101 62 
Oslo 0.026 ± 0.013 12 
Utrecht 0.090 ± 0.036 43 
Zurich 0.050 ± 0.022 24 
*Permethrin, cypermethrin and cyfluthrin intake percentage compared to the ADI of beta-cyfluthrin and 636 

expressed in %.  637 

638 
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 639 

Figure Legends  640 

Fig. 1. Cities investigated in the present study in Europe.  641 

Fig. 2. Sum of the mass loads (mg/day/1000 inhabitants) of organophosphates, triazines, 642 

pyrethroids and alkyl phosphates in eight European cities. 643 

Fig.3. Sum of the mass loads of insecticides (mg/day/1000 inhabitants) estimated from wastewater 644 

in eight European cities and national sales from Eurostat (2014).  645 
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Highlights  

• WBE was applied for the first time to assess human exposure to pesticides in Europe 

• Different patterns were observed among the cities and the classes of pesticides 

• Results were in line with the national statistics related to pesticides exposure  

• This study gives new information about the “average exposure” of the population 

 




