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As large-scale wind farms (WFs) are integrated to the power grid, the interaction between the WF and the grid may excite shaft 

torsional vibration of the wind turbine. To study the shaft torsional vibration characteristics of the doubly fed induction generator 
(DFIG)-based WF, a detailed small signal model for DFIG is established first. Then the small signal model for a WF composed of 
multi-DFIGs is developed on the basis of the single-machine model. Modal analysis is employed to investigate the torsional 
vibration characteristics of a WF made up of several identical DFIGs, whose accuracy is also demonstrated through the 
time-domain simulation. To simplify the torsional vibration analysis for the DFIG-based WF, a reduced order equivalent model is 
proposed. The results obtained from modal analysis show that the equivalent model not only precisely maintains all the torsional 
vibration modes of the original small-signal model, but also greatly reduces the computation complicity. With the equivalent 
model, the “dimension disaster” problem is solved in torsional vibration analysis for large WFs, which is of great help in further 
damping schemes design. 

Keywords: Doubly Fed Induction Generator (DFIG), equivalent model, shaft torsional vibration, small signal analysis, wind farm. 

1. Introduction 

As a green and renewable energy resource, wind energy has 
been developed quickly in recent years, which has led to the 
explosive growth of wind turbine generators (WTGs) connected to 
the power grid [1, 2]. However, there also exist obvious 
disadvantages of wind energy, such as intermittency of wind.  
Thus, the large amount of WTGs integrated to the grid will impact 
the power system a lot (e.g. low- frequency oscillation and 
sub-synchronous oscillation (SSO) etc.), which will, in turn, in 
turn excite shaft torsional vibration of wind turbines [3]. The 
torsional vibration may reduce the lifespan of the wind turbine, 
and the even worse case is resulting in shaft break [4]. Therefore, 
it is of great significance to study the torsional vibration 
characteristics of WTGs, especially that of large Wind farms 
(WFs). 

To achieve a high conversion efficiency of wind energy, various 
speed wind turbines are in wide adoption. Among athe large 
number of variable speed wind turbines, doubly-fed induction 
generator (DFIG)-based wind turbine is popularly used nowadays 
for its high power efficiency, economical characteristic, and power 
decoupling controllability [5-7]. There exist a multitude of 
literatures on DFIG modeling and dynamic characteristics analysis 
of DFIG-based wind turbines. An available model of DFIG is 
developed in [8] to study how the model parameters will influence 

the transient responses of DFIG-based wind plants. But the 
mechanical system and electrical system are both simplified 
during the investigation. Thus, the dynamic characteristics of the 
shaft cannot be analyzed in detail. Reference [9, 10] use the modal 
analysis to characterize the small-signal behavior of DFIG wind 
turbine, and research the DFIG intrinsic dynamics with the change 
of the system parameters, operating points, grid strength and some 
other factors, which neglects the shaft torsion vibration during the 
research. To reflect the dynamic characteristics of the shaft, 
reference [11-13] developed a lump shaft model, a two-mass 
model and a three-mass shaft model for the drive train of DFIG 
respectively. The simulation results show that when the drive train 
is modeled with more masses, the  dynamic characteristics of the 
shaft system can be analyzed more clearly and accurately. It is 
noted that above researches are concentrated on the dynamic 
characteristics of a single DFIG, and that of a large WF is not 
involved, especially the shaft torsional vibration.  

With the size of WFs increasing, the wind turbines will 
influence each other greatly during operation. A sSmall 
disturbance in the WF may impact the power grid greatly, such as 
low- frequency oscillation and even system splitting. Also, 
electrical disturbance (e.g. voltage sag) may excite shaft torsional 
vibration in one or several WTGs when the damping is at a low 
level. So it is necessary to study the dynamic characteristics of 
WFs and the research topic is gaining increasing interests. 
Reference [14] developed an equivalent model for the fixed speed 
induction generator (FSIG) WF. During the research, the drive 
train is modeled with only one mass, which fails to analyze the 
dynamic characteristic of the shaft clearly. The small-signal model 
of a WF is developed in [15] to research the effect of series 
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compensation capacitor on torsional vibration, while the gear box 
is represented with the ratio and the shaft system is modeled with 
just two masses. In [16], the two-mass shaft model is also adopted 
for the FSIG WF to study the effect of different system parameters 
on fault-clearing time. However, the torsional vibration between 
different wind turbines is ignored in the aforementioned literatures 
since the WF is equivalent to one unit or the mechanical system is 
not modeled in detail. Also, how will the number of wind turbines 
influence the torsional vibration of the WF is not researched, 
either. Another problem is that when the WTGs of a WF are all 
modeled with differential equations, the state matrix will be in 
high dimension and difficult or impossible to deal with. Then a 
valid equivalent model for a WF is necessary to study its dynamic 
characteristics. 

In order to exactly analyze the torsional vibration characteristics 
of the mechanical system of DFIG, a three-mass shaft model, 
which consists of blades, a gearbox, a low- speed shaft, a high- 
speed shaft and an induction generator rotor in [17] is adopted. 
Then the small signal model of the voltage source converter 
(VSC) is developed, where the three subsystems, including a rotor 
side converter (RSC), a grid side converter (GSC) and a DC-link, 
are modeled respectively. The transmission line and the 
transformer are modeled as an equivalent RLC (resistor, inductor 
and capacitor) line. At last, the union small signal model of DFIG 
consisting of seven modules is obtained. Based on the model of a 
single DFIG, the small signal model of a DFIG-based WF is 
derived. Through conducting matrix transformation to the state 
matrix of the WF model, an equivalent model for the WF is 
proposed and its accuracy is validated through eigenvalues 
analysis.  

The novelty of this paper is that it: i) develops a small signal 
model of DFIG-based wind power system for easy shaft torsional 
vibration analysis; ii) establishes a small signal model for a WF 
and study its shaft torsional vibration through modal analysis; iii) 
propose an effective equivalent model for shaft torsional vibration 
analysis of WF, which reduces the computation complexity 
significantly. 

The remaining parts of this paper are organized as follows. 
Section 2 provides the union small-signal model of the DFIG, 
consisting of the drive train, the induction generator, the converter 
controller and the transmission line model. An equivalent model 
for WF to simplify the torsional vibration analysis is proposed in 
Section 3. Section 4 employs the modal analysis to study the shaft 
torsional vibration issues of DFIG-based WF with identical WTGs 
and the results are demonstrated through time domain simulation. 
Finally, conclusions are drawn in section 5. 

2. Model of grid-connected DFIG wind turbine 
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IGDFIG

VSC

DFIG

LR CjX−LjXT TR jX+

Infinite busDrive train model

Transmission line

RSC GSC

Blades

Filter 

Compensation 
capacitor

 
Fig.1 Schematic diagram of the DFIG wind turbine  

The schematic diagram of the studied DFIG-based wind turbine 

is shown in Fig.1 [18]. The wind turbine is connected to the 
induction generator via a gearbox. The stator side of the induction 
generator is connected to the infinite bus by a transmission line, 
including the impedance of transformer and cable. The rotor side 
is fed through a VSC and a filter to supply exciting voltage to the 
induction generator, where the inductor is used as a filter. The 
compensation capacitor is used to provide reactive power for the 
DFIG. As shown in Fig.1, the model of the grid-connected DFIG 
wind turbine mainly consists of five parts: the drive train, DFIG, 
VSC, filter and the transmission line. 

2.1 Three-mass drive train model    The mechanical 
system of a wind turbine is composed of windmill blades, a 
low-speed shaft, a gearbox, a high-speed shaft and the generator 
rotor. All the shaft parts can be lumped into masses to describe the 
physical characteristics of the real system. To study the drive train 
system accurately, a three-mass shaft model in [17] is adopted 
shown in Fig.2. 

K12
M1，D1

D12

M2，D2 K23

D23

M3，D3

 
Fig.2 Three-mass drive train model for DFIG 

The three-mass drive train model can be expresseds as 
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where, 21,M M and 3M denote the moment of inertia of the 

blades, low speed shaft and the high speed shaft respectively; rotω , 

2ω  and genω  denote the angular velocity of the three parts 

respectively; 1 2,θ θ and 3θ  are mechanical rotation angle of the  

three parts respectively; 1 2,D D and 3D  are damping coefficient 

of the three parts respectively and 12D the damping coefficient 

between the blades and the low- speed shaft and 23D the damping 

coefficient between the low and high- speed shaft; 12K and 

23K are torsional stiffness of the low- speed and high- speed shafts 

respectively; wT is input wind torque from the blade side; eT is 

the electromagnetic torque of the generator.  
After linearizing equation (1), the corresponding small signal 

model for the three-mass drive train is presented as follows: 

 2  



 
 

DT DT DT DT DT

DT DT DT DT DT

X A X B u
Y C X D u
 = +


= +



               

(2) 

where subscript DT denotes the three-mass drive train model, and  
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where, " "∆  denotes a small deviation of the variables. 

2.2 DFIG model     In order to model the induction 
generator, the stator flux orientated control strategy is adopted. 
Then the flux is selected as a state variable, and a 5th order 
dynamic model in [19] is used to describe the induction generator. 
The equation of motion has been included in eq.(1) and reflected 
in the 3rd mass. Thus, the small signal model for the induction 
generator is shown as follows 
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= +



                

(3) 

where subscript G refers to DFIG, and 
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where, ψ , i and u denote flux, current and voltage of DFIG 

respectively, whose subscript s and r denote stator and rotor 
respectively, and subscript d, q denote the components in d-q 

frame; subscript "0"  denotes the initial values of variables in 

steady state; sR  
is the stator resistance (p.u.); rR is the rotor 

resistance (p.u.); sX  is the stator reactance (p.u.); rX is the rotor 

reactance (p.u.); mX  
is the excitation reactance (p.u.); sω  is the 

synchronous angular velocity; bω  is the base angular velocity; 

0s  is the slip of DFIG. 

2.3 DFIG converter controller model     The VSC 
of DFIG consists of a RSC and a GSC, which are connected 
back-to-back via a DC-link. Because of the variable-frequency 
supply provided by the DFIG converter, the rotor angular 
frequency and synchronous angular frequency are decoupled, 
which realizes the operation of a wind turbine with variable speed. 
The equivalent circuit of the VSC is shown in Fig.3. 
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Fig.3 Equivalent circuit of the DFIG converter 

2.3.1 DC-link model     The power balance equation about 
the DFIG converter is described by 

DC r gP P P= −
                     

(4) 

where rP   is the rotor-side active power, gP  is the grid-side 

active power, and DCP  is the active power of the capacitor in the 

dc link. 
Then  

( )DC DC dg dg qg qg dr dr qr qrCV V u i u i u i u i= + − +
     

(5) 

After linearization of (5), the standard state equation of DC-link 
in p.u. can be obtained as follows: 

DC DC DC DC DCX A X B u= +             (6) 

where subscript DC refers to the DC-link, and [ ]DC DCX V= ∆ ; 

T

DC qg dg qg dg qr dr qr dru u u i i u u i i = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆  ; 

0DCA = ; [ ]00000000
0

1
drqrdrqrdgqgdgqg

DC
DC uuiiuuii

CV
B −−−−= . 

2.3.2 RSC controller model     The RSC is responsible for 
regulating DFIG active power and terminal voltage based on stator 
flux vector orientation method. The block diagram of RSC 

controller is shown in Fig.4, where qruϕ  and druϕ  are used to 

control the active power and voltage of DFIG respectively. “s” in 
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the feed-forward pass of msX  and rrsX  in Fig.4 represents the 

“slip” frequency, 
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Fig.4 Block diagram of RSC controller 

Assume that the converter operates fast enough so that the 
dynamics can be ignored and the controlled variable closely 
follows the given value. The corresponding equation of RSC 
controller is expressed as 
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(7) 

During linearization, we first have following equations: 
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Then the standard state equation of RSC controller is presented 
as follows 

r r r r rX A X B u= +                (9) 

where subscript r denotes RSC, and 
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2.3.3 GSC Controller Model     The GSC is responsible for 
controlling the DC-link voltage as a constant value and the output 
reactive power of DFIG. The block diagram of GSC controller is 
shown in Fig.5. 
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Fig.5 Block diagram of GSC controller 

Similar to the RSC controller, the linearized equations of the 
GSC controller can be expressed as 
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where, _ 0DC refV∆ =  and _ 0qg refi∆ = . 

The standard state equation of GSC controller is 

g g g g gX A X B u= +                   (11) 

where subscript g refers to GSC, and 
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2.4 Transmission line model     In an actual wind 
power system, a series compensation capacitor is usually 
integrated in the transmission line to enhance the transmission 
capacity. On the other hand, the series compensation capacitor will 
influence both the shaft torsional vibration frequency and damping, 
and even causes SSR problem. So a series compensation capacitor 
is included in the transmission line in this research. Then the 
transmission line is equivalent to a RLC line model to study the 
shaft torsional vibration characteristics to reflect actual situations 
and capture the generality. Selecting the current and the voltage of 
the series compensation capacitor as the state variables, the 
standard state equation of the transmission line in xy-frame is 
expressed as 

TL TL TL TL TL

TL TL TL TL TL

X A X B u
Y C X D u
 = +


= +



                     

(12) 

where subscript TL refers to the transmission line, and 
T

TL x y cx cyX i i u u = ∆ ∆ ∆ ∆  ;  
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2 40TLD ×= . where bω  is the base angular frequency of the 

system, 2π×50; r and x are the resistance and reactance of the 
transmission line respectively.  

After considering the resistance of the inductor, the filter is 
equivalent to a RL line model. Similar to the transmission line, the 
state space equation of the filter can be expressed as 

= +
= +
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where Lr  and Lx  are the resistance and reactance of the filter 

respectively.  
Similarly, the compensation capacitor can be modeled as 
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where, subscript C represents the compensation capacitor and 
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where Cx  is the reactance of the capacitor.  

2.5 Unified small signal model of DFIG     Based on 
the small signal model developed for each component above, the 
unified small signal model of the grid-connected DFIG-based 
wind power system can be established. The interaction between 
different modules is shown in Fig.6. 
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Fig.6 Schematic diagram of the small-signal model 

By grouping the equations (2), (3), (6), (9), (11), (12), (13) and (14) 
together, the unified small signal model can be expressed as follows 

DFIG DFIG DFIG DFIG DFIG

DFIG DFIG DFIG DFIG DFIG

X A X B u
Y C X D u
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= +



              (15) 
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D 0= . where _DT GA ( _G DTA ), _G rA ( _r GA ), _r DCA ( _DC rA ), 

_DC gA ( _g DCA ), _g CA ( _C gA ), _C RLA ( _RL CA ), 

_RL TLA ( _TL RLA ) represent the correlations between adjacent 

models. 

3.  Model of a DFIG-based wind farm 

To analyze the torsional vibration characteristics of the WF, a 
WF with several identical 2MW, 690V DFIG-based wind turbines 
is designed. The schematic diagram of the WF is shown in Fig.7. 
Assume that the blade diameter of each WTG is 40m, the lateral 
distance between every two WTGs is set as 100m, and the vertical 
distance is also set as 100m. Every WTG is connected to the 10kV 
bus via a transformer and the transmission line.  

...
690V

10kVInfinite bus

...

...
690V

 
Fig.7 Schematic diagram of the DFIG-based WF 

Based on the small signal model of a single DFIG-based wind 
turbine developed in Fig.6, the small signal model for the 
DFIG-based WF is built in MATLAB/SIMULINK with each 
component jointed together, which is easy to realize. The 
parameters of the DFIG-based wind turbine are listed in the 
Appendix.  

It is noted that the state matrix A in equation (15) is a 26 order 
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square matrix. If the WF in Fig.7 is analyzed directly with the 
application of equation (15), then the state matrix of the WF, e.g. 
including 6 DFIGs, will be a 150 order matrix, which is rather 
complex to solve. Also as the number of WTGs increases, the 
perplexity of the mathematical model and its computation 
complexity will increase significantly, and the time domain 
simulation for the WF is rather difficult even impossible to 
conduct. Therefore, a reduced order equivalent model of the WF is 
necessary for further deep research. 

Transmission line 
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Infinite busTransformation 
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Fig.8 Schematic diagram of multi-WTG system 

Take the multi-DFIGs system shown in Fig.8 as an example. 
Each WTG is connected to the 10kV bus with a cable first and 
then the 10kV bus of the WF is connected to the infinite bus with 
a long transmission line.  

The schematic diagram of the small signal model for the WF is 
shown in Fig.9. The transformer together with the cable is 
equivalent to a RLC line model and the state space equation is the 
same with that shown in equation (12). The transformation 
capacitor is actually the capacitor of the transmission line and the 
output current of the DFIGs is converted into the input voltage of 
the transformer & cable, thus the capacitor is also called 
transformation capacitor, whose state space equation is the same 
with equation (14). 
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Fig.9 schematic diagram for the small signal model of the WF

According to equation (15), the state space equation of the 
multi-DFIGs system in Fig.9 can be expressed as follows 
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(16) 

where [ ]TCableiRLiCigiDCiriGiDTiDFIGi XXXXXXXXX =

, 1,2, ,i n=  ; subscript TC denotes the transformation capacitor; 

subscript RL denotes the filter; subscript Cable denotes the 
equivalent RL line model of the transformer & cable; subscript TL 
denotes the transmission line. 

As for the transformation capacitor, its input and output satisfy 
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where, TCu and TCY  are the input current and output voltage of 

the transformation capacitor, respectively; Cableiu  is the input 

voltage of the transformer & cable model. 
By substituting equation (17) into (16), the following equation 

can be derived 
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Equation (18) can be further expressed as 
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In order to conduct eigenvalue analysis conveniently, the state 
space matrix of equation (19) is denoted by 
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Because all the DFIGs in Fig.7 are in completely symmetry 

connection, ( )niADFIGi ,2,1=  in (20) are all the same and 

denmoted by DFIGA . Similarly, ( )[ ]0VTCDFIGiDFIGV AM _= i=1, 2, 

…, n; ( )ni
CB

M DFIGiTC
DFIGI ,2,1=








=

0
; 








=

TL

TC
RLC A

A
A

0
0

. 

Based on matrix theory, Asys can be converted into an 
orthogonal one by using matrix transformation, represented 

by sysA′ [20]. 
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For any two similar matrices, their eigenvalues are the same. 
Thus the eigenvalues of Asys can be obtained through calculating 

those of sysA′ , which is achieved as follows. 
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From equation (22), it is found that the eigenvalues of Asys are 
derived from two parts: N-1 identical matrices ADFIG and one 
modified matrix. Namely, the multi-DFIGs system in Fig.8 can be 
simplified as a system consisting of n single-DFIGs. The n-1 
identical single-DFIGs are connected to the infinite bus directly, 
while the nth DFIG with modified output current is connected to 
the infinite bus via a transmission network. The output current of 
the modified DFIG is n times that of the original single DFIG. 

The equivalent model of the WF is shown in Fig.10. Therefore 
for the multi-DFIGs system, there will be n-1 groups of identical 
eigenvalues. As a result, the shaft torsional vibration analysis for 
the WF is simplified significantly. 

n i∆
V∆

Infinite 
bus

i∆ V∆
N-1

1
XT ZL

 

Fig.10 Equivalent model of the multi-DFIGs WF 

Table I. Eigenvalues of the WF (imaginary part represents oscillation frequency) 

Number of DFIG 1 2 3 4 5 6 

Oscillation modes 
of the low-speed 

shaft 

-0.154± 14.6525i -0.1545±14.6525i -0.1545±14.6525i -0.1545±14.6525i -0.1545±14.6525i -0.1545±14.6525i 
 -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i 
  -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i 
   -0.1533±14.5764i -0.1533±14.5764i -0.1533±14.5764i 
    -0.1533±14.5764i -0.1533±14.5764i 
     -0.1533±14.5764i 

Oscillation modes 
of the high-speed 

shaft 

-0.4072±2.884i -0.0161±2.8194i -0.0197±2.8198i -0.0214±2.8199i -0.0224±2.8201i -0.023± 2.8201i 
 -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i 
  -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i 
   -0.5416± 2.8834i -0.5416± 2.8834i -0.5416± 2.8834i 
    -0.5416± 2.8834i -0.5416± 2.8834i 
     -0.5416± 2.8834i 

When some wind turbines’ operating conditions are different 
from others, the proposed method can also work well after 
extending the model a little. Supposing that the first DFIG of a 
wind farm runs at 25% of rated power. The remaining n-1 DFIGs 
all run at rated power. The state space matrix of the wind farm 
system consisting of n wind turbines is denoted by 
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We can also simplify eigenvalue calculation of Asys based on 
matrix transformation and the characteristic of arrowhead matrix. 
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4.  Studied cases 

4.1 Torsional vibration analysis with the small signal 
model of the WF      

4.1.1 Modal analysis     To study the shaft torsional vibration 
characteristic of the DFIG-based WF, the small signal model of 
Fig.7 is established in MATLAB/SIMULINK first. Varying the 
number of DFIG from 1 to 6, the shaft torsional vibration 
characteristics of the low- speed and high- speed shaft can be 
obtained through the sensitivity analysis, as shown in Table I. The 
modes of the low- speed and high- speed shafts are separated 
according to the participation factors, which are used to measure 
the relative participation of system variables in the oscillation 
modes [19]. 

In Table I, all the oscillation modes are obtained when the 
DFIGs are operated at their nominal states. It should also be noted 
that the eigenvalues are calculated when the damping of the shaft 
system is zero. The imaginary part has been converted into the 
corresponding oscillation frequency through divided by 2π. It can 
be seen from Table I that for a WF with n DFIGs, only two kinds 
of oscillation modes appear in the torque of the low-speed shaft. 
One oscillation frequency is 14.6525Hz, which is the same with 
that of the single DFIG, and the absolute value of the real part is a 
little larger than that of the single DFIG, which means the 
damping of this mode increases. The other n-1 repeated oscillation 
frequencies are 14.5764Hz, which is lower than that of the single 
DFIG, and the absolute value of the real parts is a little smaller 
than that of the single DFIG, which means the damping of these 
modes decreases. So, in a WF, the natural oscillation frequency of 
the low-speed shaft differs from that of the one DFIG case. Also, 
the shaft torsional vibration for some DFIGs is easier to be excited 
for the decreased damping. 

Similarly, there exist two oscillation modes in the torque of the 
high-speed shaft as well. The n-1 repeated oscillation frequencies 
are 2.8834Hz, which is lower than that of the single DFIG, and the 
absolute value of the real parts is larger than that of the single 
DFIG, which means the damping of these modes increase. The 
other oscillation frequency of the high- speed shaft decreases from 
2.8194Hz to 2.8201Hz with the number of DFIGs increasing, and 
the damping decreases first and then began to increase. While the 
absolute value of the damping is much smaller than the single 
DFIG, which means the corresponding mode is much easier to be 
excited in the transient process. The phenomenon means that in a 
multi-DFIGs WF, the shaft torsional vibration of the high-speed 
shaft for one DFIG is quite easy to be excited and effective 
damping strategy is necessary. On the other hand, a WF with more 
DFIGs can help damping the shaft torsional vibration. 

4.1.2 Time domain simulation     A WF made up of three 
DFIGs is taken as an example to demonstrate the results obtained 
from modal analysis. The time domain simulation is conducted in 
MATLAB/SIMULINK and the parameters are the same with that 
of the small signal model except for the damping of the shaft 
system. After the WF is operated in its stable state, a 1% voltage 
sag is imposed on the power system at t=1s, which sustains for a 
period of 0.1s. In order to achieve converged shaft torque in a 
short time, the damping of the shaft system of the time-domain 

model is set at a relatively high value. Simulation results are 
illustrated in Fig.11. 
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(a) Shaft torque of DFIG 1     (b) Shaft torque of DFIG 2 
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(c) Shaft torque of DFIG 3 

Fig.11 Torsional vibration of a three-DFIG WF 

It can be observed from Fig.11 that the shaft torsional vibration 
is excited at 1s by the small electrical disturbance. The oscillation 
calms down gradually because of the positive damping. Though 
the shaft torque of the three DFIGs are in oscillation, they are all 
around 1 p.u.. After the small electrical disturbance appears at 1s, 
the maximum shaft torque of three DFIGs reaches 1.028 p.u., 1.03 
p.u. and 1.024 p.u. respectively. At t=1.1s, after the voltage sag is 
removed, the torsional vibration of the shaft begin to decay, which 
can be explained using the results in Table I. The real part of the 
oscillation modes of the 3 DFIGs in Table I is negative, which 
means the damping for the mode is positive and the shaft torsional 
vibration will decay after the disturbance is removed. 

The frequency spectrum of the shaft torques in Fig.11 is shown 
in Fig.12. It can be seen that the shaft torques oscillate at six 
frequencies. The frequencies of 2.766Hz, 2.67Hz and 2.67Hz are 
for the oscillation modes of the low-speed shaft for the three wind 
turbines, and that of 14.69Hz, 14.59Hz and 14.59Hz are for the 
oscillation modes of the high-speed shaft. Two kinds of torsional 
modes appear in the high and low shaft torque respectively, which 
are consistent with the results derived from the modal analysis. 
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Fig.12 Frequency spectrum of the three-DFIGs WF 

4.2 Torsional vibration analysis with the equivalent 
model of the WF     To verify the proposed equivalent model 
for a WF, the equivalent model of a WF composed of 6 DFIGs is 
established. As has been discussed above, the six-DFIGs WF can 
be simplified into 6 single-DFIG systems. 5 single-DFIGs are 
connected to the infinite bus directly, and the other one modified 
DFIG connected to the infinite bus via a transmission network, 
including a transformer and a transmission line. Then the small 
signal model of the equivalent multi-DFIGs system is built in 
MATLAB/SIMULINK with each component jointed together. The 
parameters for DFIGs are shown in the Appendix. Torsional 
vibration modes of the low speed and the high- speed shafts can be 
obtained by sensitivity analysis, as shown in Table II. 

Table II. Torsional vibration modes of the 6-DFIGs WF 
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 Eigenvalue Frequency/Hz 

5 single-DFIGs 
-0.1533±14.5764i 14.5764 
-0.5416± 2.8834i 2.8834 

1 modified DFIG 
-0.1545±14.6525i 14.6525 
-0.0223± 2.8211i 2.8211 

As shown in Table II, there are four kinds of torsional modes in 
the equivalent model. There exist one frequency of 14.6525Hz and 
5 repeated frequencies of 14.5764Hz in the low-speed shaft torque. 
There exist one frequency of 2.8211Hz and 5 repeated frequencies 
of 2.8834Hz in the high-speed shaft torque. Both the oscillation 
frequency and the damping are for the 5 single DFIGs are the 
same with that shown in Table I. As for the modified DFIG, the 
oscillation frequency and the damping for the low-speed shaft is 
the same with that in Table I. While the oscillation frequency for 
the high- speed shaft is 2.8211 Hz, a litter higher than 2.8201 Hz 
in Table I. At the same time, the damping is 0.0223, a little smaller 
than 0.023 shown in Table I. Thus, the equivalent model maintains 
the torsional vibration modes of the original small-signal model 
completely.  

Torsional vibration modes of the low speed and the high- speed 
shafts of the (1+5)-DFIGs wind farm are obtained by the original 
model and the equivalent model respectively, as shown in Table III. 
The first DFIG runs at 25% of rated power. The remaining 5 
DFIGs run at rated power. According to the results in Table III, the 
equivalent model can also maintain the torsional vibration modes 
of the original small-signal model when DFIGs have different 
operating conditions. 

Table III. Torsional vibration modes of the (1+5)-DFIGs WF 
Adopted model  Eigenvalue Frequency/Hz 

Original model 

DFIG1 
-0.1185±14.5793i 14.5793 
-0.2724±2.9667i 2.9667 

DFIG2 
-0.1533±14.5764i 14.5764 
-0.5416±2.8834i 2.8834 

DFIG3 
-0.1533±14.5764i 14.5764 
-0.5416±2.8834i 2.8834 

DFIG4 
-0.1533±14.5764i 14.5764 
-0.5416±2.8834i 2.8834 

DFIG5 
-0.1533±14.5764i 14.5764 
-0.5416±2.8834i 2.8834 

DFIG6 
-0.1547±14.6525i 14.6525 
-0.0226±2.8198i 2.8198 

Equivalent 
model 

1 single-DFIG 
(25% power) 

-0.1185±14.5793i 14.5793 
-0.2724±2.9667i 2.9667 

4 single-DFIGs 
(100% power) 

-0.1533±14.5764i 14.5764 
-0.5416±2.8834i 2.8834 

1 modified 
DFIG 

-0.1547±14.6525i 14.6525 
-0.0223±2.8205i 2.8205 

The equivalent modeling method proposed in this paper brings 
a significant reduction in the system order by using matrix 
transformation and the problem of “curse of dimensionality” 
appearing in modeling for large-scale WFs can be avoided. 

5.  Conclusions 

Through developing small signal model for DFIG-based wind 
turbines first, that for a multi-DFIGs WF is established. At the 
same time, an equivalent model for the WF is proposed. Through 
conducting simulation in MATLAB/SIMULINK, the effectiveness 

of the proposed equivalent model is validated and the conclusions 
are drawn then summarized as follows. 
 For a DFIG-based WF with N identical WTGs, there are two 

kinds of torsional modes in the high speed and low- speed 
shaft torque respectively. For the low- speed shaft, there exist 
one single oscillation frequency, which is the same with that 
of the single DFIG case, and N-1 repeated oscillation 
frequencies. For the high- speed shaft, there exist one single 
oscillation frequency, which decreases first and then 
increases with the number of DFIGs increasing, and N-1 
repeated oscillation frequencies. 
 With the number of DFIGs in a WF increasing, the 

complexity of the mathematical model and its computation 
will increase significantly. The proposed equivalent model of 
the WF is able to simplify the original small signal model a 
lot. By an appropriate similarity transformation, the N-DFIGs 
WF can be equivalent to N-1 identical single DFIGs, which 
have the same eigenvalues, and one N-time-current modified 
DFIG. Therefore only two torsional frequencies need to be 
analyzed in the equivalent model, which will reduce the 
model complexity and improve the computation speed. 
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Appendix 

All the parameters in this paper are in their p.u. value and the 
base power is 2 MW. 

Induction generator: np=2; Xm=3.9507p.u.; Xs=0.0924p.u.; 
Xr=0.0990 p.u.; Rs=0.0046p.u.; Rr=0.0055 p.u.. 

Transmission line: XT=0.044 p.u.; RT =0.007 p.u.; XL=8.402 p.u.;  
RL=0.8402 p.u.; XB=0.060 p.u.; RB=0 p.u.; Xpc=2 p.u.. Here, RT and 
XT represent the resistance and reactance of the transformer; RL and 
XL represent the resistance and reactance of the transmission line; 
RB and XB represent the resistance and reactance of the infinite bus 
system; Xpc represents the reactance of the compensation capacitor. 

DFIG converter: CDC=2.591p.u.; Xcon=0.0024p.u.; 
Rcon=0.0024p.u.; Kp1=0.02; Ki1=0.01; Kp2=0.02; Ki2=0.01; 
Kp3=0.02; Ki3=0.01; Kpdg=18; Kidg=1; Kpg=50; Kig=1. Here, CDC is 
the capacitor value of the DC-link; Rcon and Xcon are the resistance 
and reactance of the converter. 
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