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ABSTRACT 

The ubiquitous flavonoid quercetin is broadly recognized for showing diverse biological and health-

promoting effects, such as anti-cancer, anti-inflammatory and cytoprotective activities. The 

therapeutic potential of quercetin and similar compounds for preventing such diverse oxidative 

stress-related pathologies has been generally attributed to their direct antioxidant properties. 

Nevertheless, accumulated evidence indicates that quercetin is also able to interact with multiple 

cellular targets influencing the activity of diverse signaling pathways. Even though there are a 

number of well-established protein targets such as phosphatidylinositol 3 kinase and xanthine 

oxidase, there remains a lack of a comprehensive knowledge of the potential mechanisms of action 

of quercetin and its target space. In the present work we adopted a reverse screening strategy based 

on ligand similarity (SHAFTS) and target structure (idTarget, LIBRA) resulting in a set of predicted 

protein target candidates. Furthermore, using this method we corroborated a broad array of 
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previously experimentally tested candidates among the predicted targets, supporting the suitability 

of this screening approach. Notably, all of the predicted target candidates belonged to two main 

protein families, protein kinases and poly [ADP-ribose] polymerases. They also included key 

proteins involved at different points within the same signaling pathways or within interconnected 

signaling pathways, supporting a pleiotropic, multilevel and potentially synergistic mechanism of 

action of quercetin. In this context we highlight the value of quercetin's broad target profile for its 

therapeutic potential in diseases like inflammation, neurodegeneration and cancer. 

Keywords: drug target prediction; molecular docking; flavonoids; quercetin. 
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1. Introduction 

Phytochemical rich diets are correlated with increased longevity and a wide range of health benefits 

including a decreased incidence of cardiovascular diseases and a slowed progression of 

cerebrovascular diseases (Commenges et al., 2000; McCullough et al., 2012). Flavonoids constitute 

one of the largest families of phytochemicals found in plants. Alongside their contribution to the 

flavor and the color of fruits and vegetables, flavonoids are widely recognized for their direct 

antioxidant properties (Cao et al., 1997; Fuhrman and Aviram, 2001). In particular, many flavonoids 

display anti-inflammatory, anti-carcinogenic, and neuroprotective effects among other bioactivities 

(Arredondo et al., 2010; Spencer 2012; Vidya Priyadarsini et al., 2010). 

This ubiquitous polyphenolic group comprises several subclasses such as flavones (including 

flavonols), flavanones, flavans (including flavanols), isoflavones, chalcones and anthocyanidins. 

Flavonols are by far the most abundant and widely distributed in nature, with quercetin (2-(3,4-

dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) being a prototypical flavonol. Despite having 

well characterized antioxidant actions, there is an emerging view that the neuroprotective, anti-

inflammatory and anti-cancer effects of flavonoids are likely mediated by interaction with specific 

proteins involved in intracellular signaling cascades (Spencer, 2009; Williams et al., 2004). 

Currently quercetin and related flavonoids are well known phosphatidylinositol 3 kinase (PI3-

kinase), xanthine oxidase and cyclooxygenase inhibitors but beyond these targets, a complete 

understanding of the underlying mechanism of action of quercetin requires the description of its 

whole target space. Modulating multiple targets is potentially more beneficial than a single target in 

terms of overall efficacy, possible side effects, resistance or compensatory mechanisms andsuch a 

multi-modal mechanism of action for quercetin supports its therapeutic potential (Koeberle and 

Werz, 2014). 

While multi-target detection by wet-lab studies such as affinity chromatography, expression cloning 

and protein microarray is work- and time-intensive, in silico target prediction is a valuable 
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inexpensive and complementary approach that could bring an unbiased view of the potential protein 

targets of quercetin (Hart, 2005). ReverseScreen3D, INVDOCK, Tarfisdock, PharmMapper and 

idTarget are some of the in silico target prediction tools available (Cereto-Massagué et al., 2015; 

Koutsoukas et al., 2011). Employing these platforms has led to the identification of protein targets 

for a number of novel bioactive compounds such xyloketal and kinetin as well as for approved 

drugs like mebendazol (Dakshanamurthy et al., 2012; Kumar et al., 2015; Su et al., 2014). For a 

comprehensive review on the topic please refer to (Cereto-Massagué et al., 2015). 

In the present study we propose a hierarchical screening of quercetin protein targets based on the 

sequential arrangement of ligand similarity search, binding site comparison and inverse docking. 

Additionally, a selected set of targets was assessed by means of molecular dynamics simulations 

demonstrating favorable binding with quercetin. Taking together, these approaches resulted in a 

predicted set of protein target candidates that can be related to the biological effects of quercetin. 

Supporting these findings, a broad array of previously proposed quercetin protein targets were 

identified as positive hits in this screening approach validating its utility. Above all, through its 

ADP/ATP mimetic capacity, quercetin might influence several proteins from related signaling 

pathways implying a potentially multilevel and synergistic mechanism of action. 

2. Methods 

2.1 Reverse Screening 

The current in silico strategies for target identification include ligand-based, structure-based, 

machine learning-based and biochemical network-based approaches. When searching for potential 

target proteins in the first case, a query ligand is compared against a library of known interacting 

compounds and protein targets are retrieved by association (Klabunde, 2007). Alternatively, binding 

site comparison relies on the structure similarity between known and unknown protein targets. 

Inverse docking is another structure-based method, contrary to classic docking schemes it screens 

and ranks a protein library instead of a ligand library. 
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The present work followed a hierarchical screening scheme, which took advantage of the fastest 

methods (ligand similarity and binding site comparison) in its first stages to reduce the search space 

for the most expensive approach (docking) and to reduce the number of false positives obtained 

(Kumar and Zhang, 2015). For each step in the screening we chose three of the most recent publicly 

available software’s for in silico target prediction (Fig. 1), also including protein candidates with 

similar binding site recognized by our in-house-developed software LIBRA (Ligand Binding Site 

Recognition Application) (Hung et al., 2015). 

2.1.1 The ligand-target database 

A database of suitable ligands contained in the Protein Data Bank was developed for ligand-based 

screening (Berman, 2000). Firstly, all the ligands contained in the PDB were downloaded from the 

2014 version of LigandExpo database, a repository for co-crystalized structures and hetero-atoms in 

general indexed with the corresponding protein entry (Feng et al., 2004). The molecular structures 

were downloaded in SMILES-Stereo format as a whole database and rebuilt in Molecular Operating 

Environment (MOE) software (Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite 

#910, Montreal, QC, Canada, 2011). Starting from 17969 PDB ligand entries, a series of 

hierarchical filters were applied with MOE to construct the database as follows: 1) Hydrogenation 

was corrected; 2) Undesirable small molecular weight ligands (salts and water molecules) and 

repeated entries were removed; 3) Molecules below the molecular weight of the flavonoid frame 

were deleted and Oprea rules were applied to restrict the database to flavonoid-like molecules and 

drug-like molecules respectively. Oprea rules are a refined version of the classical Lipinski's rules 

of five to determine drug likeliness (Oprea et al., 2007); 4) Molecules containing Se or As were also 

deleted. The current molecular database was energy minimized in MOE with a Merck molecular 

force field (MMFF94x) until 0.01 kcal/mol RMS gradient and saved in mol2 format. The final 

database contained 9924 different molecules. 

2.1.2 Ligand-based screening of quercetin 
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Taking quercetin as a probe, we searched our in-house ligand-target database for similar co-

crystallized ligands in the PDB. Quercetin molecular structure was built in MOE, energy minimized 

(MMFF94x, 0.01 kcal/mol RMS gradient) and saved in mol2 format for screening processes. 

SHAFTS (SHApe-Feature Similarity) algorithm implemented in its stand-alone version was used to 

screen quercetin against the conformers obtained from the ligand-target database. SHAFTS is an 

algorithm for tridimensional structural similarity calculation and ligand-based virtual screening (Liu 

et al., 2011). SHAFTS has been validated with decoy benchmark datasets and has demonstrated 

satisfactory active compounds enrichment and scaffold hopping capability against several 

representative kinases in retrospective virtual screening studies (Bai et al., 2012; Kong et al., 2012; 

Liu et al., 2011; Lu et al., 2011). It adopts a similarity metrics considering both molecular shape and 

pharmacophoric characteristics (hydrophobic center, positive or negative charge center, hydrogen 

bond acceptor and donor, and aromatic rings). A feature triplet hashing method is used for the fast 

rigid alignment of molecular structure. It finally returns a sorted list of molecule identifiers 

associated with structural similarity score against the query and the corresponding structural 

alignment. 

Because SHAFTS uses a semi-rigid strategy for structural alignment, the conformational analysis 

program Cindy was used to generate a maximum of 100 lowest-energy conformers for each 

molecule in the ligand-target database (Liu et al., 2009). SHAFTS was then implemented with its 

default configuration. Protein complex identifiers were retrieved for ligands with a similarity score 

against quercetin above 1.5 (maximum 2.0) and subjected to the next stage of the screening. 

2.1.3 Target candidate amplification based on binding site similarity 

Delineating binding site similarities for proteins is another possible route for finding new targets for 

existing ligands. The protein candidates selected by SHAFTS were subjected to binding site 

comparison against a representative set of proteins contained in the PDB using our in-house-

developed software LIBRA[RW1] (Hung et al., 2015). LIBRA is a tool for searching local structural 
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similarities between a protein structure and a collection of functional sites and their environment. It 

employs a graph-based approach in conjunction with a database of more than 170 thousand ligand 

binding sites generated by extracting residues surrounding the ligand from approximately 75 

thousand structures of protein-ligand complexes deposited in PDB. Similar sites were defined 

according to these requirements: 100 % of similar residues (blosum62 scoring), minimum motive 

size of 5 residues, maximum structural alignment RMSD of 1 Å (Ångström) and no steric clashes 

between the ligand from the query protein and the known protein. 

2.1.4 Structure-based screening 

The optimized structure of quercetin was uploaded onto the online inverse dock server idTarget for 

screening against the selected list of protein candidates obtained in the previous stage. 

idTarget performs inverse molecular docking for a query molecule against the whole PDB or a 

custom list of protein structures (Wang et al., 2012). It applies a divide and conquer algorithm to 

search the protein surface for suitable docking sites and a state-of-the-art scoring function optimized 

for binding energy prediction and evaluated with external decoy sets (Wang et al., 2012, 2011). A 

protein target i for a ligand j is selected considering the affinity profile for the ligand. Analogously 

to the use of docking decoys a Z-score is calculated according to: Zij=(Eij–Ei)/sdi, where Eij is the 

dock score of ligand j to the protein pocket i, Ei and sdi are the center and width of the affinity 

profile of protein i. 

We selected the server scanning mode as it is the most exhaustive, where usual molecular docking 

procedures are carried out for each protein structure. Proteins were considered to be possible ligand 

targets if the idTarget binding energy was lower than -9.0 kcal/mol (250 nM predicted affinity) with 

a Z-score of 1.0 or lower (adapted from (Nikolić et al., 2015)). 

In order to assess the reliability of the results, docking studies were also performed using MOE 

against target candidates. Protein candidate crystallographic structures were retrieved from the PDB 

as its biological unit. Each structure was optimized before analysis, hydrogen atoms were adjusted 
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and charges assigned with Amber12 force field, missing loops and atoms were completed by 

structure preparation module. For docking purpose, binding sites were defined by the corresponding 

co-crystallized ligand, and co-factors were included as part of the receptor if present. Default 

docking parameters were used such as Triangle Matcher Algorithm with London dG (scoring) and 

GBVI/WSA-dG (re-scoring) functions to generate 10 poses of each ligand.  It should be taken into 

account that for the docking strategy, the solvent was not considered explicitly but using a scoring 

function in which the desolvation was calculated in an empirical way. 

2.2 Molecular dynamics simulations of quercetin-target candidate complexes 

Molecular dynamics (MD) simulations used the Nose Poincare Anderson (NPA) method 

implemented in MOE. The constant number of particles, volume, and temperature (NVT) ensemble 

with T) 300 K was used. The complex was immersed in a periodic water box with 6 Å margin with 

neutralizing ions (NaCl), and the whole system minimized to 1 kcal/mol RMS gradient before 

starting the MD run. Prior to the main simulation of 10 ns, a 100 ps stage gradually heated the 

molecular system to 300 K. Between the heating stage and main simulation the system velocities 

were reassigned which can improve sampling (Su et al., 2015). The interaction potential energy 

between the atoms of the ligand and the rest of the system was registered along the simulation and 

quercetin interactions were assessed by MOE PLIF module with default parameters. Equilibration 

was monitored by convergence in terms of the temperature, energy, and the RMSD (root-mean-

squared deviations) of the backbone atoms as compared to the crystal structure of both complexes. 

2.3 Functional annotation of protein target candidates 

The final set of protein candidates was annotated according to protein structure and family, activity 

and involvement in disease. The corresponding human homologue was taken for proteins belonging 

to other mammals. The information was obtained from different sources including publicly 

available databases and tools like PDB, Uniprot (Consortium, 2014), DAVID (gene ontology terms 

and literature information) (Dennis et al., 2003), KEGG (biological pathways) (Kanehisa and Goto, 
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2000), GO TermMapper (gene ontology terms) (Boyle et al., 2004; Harris et al., 2004) and FlyMine 

(gene ontology terms and literature information) (Lyne et al., 2007) which bring complementary 

data. In addition, molecular targets identified by different approaches can be mapped onto specific 

disease-associated networks or pathways and target databases to construct protein-protein 

interaction networks. The “Search Tool for the Retrieval of Interacting Genes/Proteins” (STRING) 

database integrates information about interactions of proteins from different types of databases and 

was used for this purpose (Kuhn et al., 2012). 

3. Results and discussion 

3.1 Reverse screening 

3.1.1 Ligand-based screening of quercetin 

Using quercetin as an input molecule for SHAFTS algorithm we screened a database of 

pharmacologically relevant ligands associated with protein complexes in the PDB. Quercetin-like 

compounds were selected based on SHAFTS similarity score obtaining a list of 34 molecules  

which share the typical flavonoid scaffold with the exception of those identified by PDB as FL9, 

PIT, RE2, SLX, STL and DEH (see Table 1 from supplementary material). The corresponding co-

crystallized protein set comprised 25 mammalian proteins. Proteins from plants and other organisms 

were not considered for the subsequent analysis. 

3.1.2 Binding site comparison 

Based on LIBRA analysis on local similarity at the protein binding site we conducted an 

amplification stage of the candidates found by ligand-based screening. Interestingly, most of the 

proteins identified also bind ligands with some similarity to quercetin and can be found in the first 

screening stage with a SHAFTS score ranging from 1.0 to 1.3 (see Table 2 from supplementary 

material). Such consistency between both approaches suggests that additional reliable candidates 

could have been initially found with a less stringent cut-off ligand based screening. 

Along with the previous set of candidates three main protein classes can be distinguished, 
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sulfotransferases, tankyrases-poly(ADP-ribosyl)transferases and kinases. Most of these kinases 

share the same fold according to PFAM, the protein kinase domain (PF00069) followed by the 

tyrosine kinase domain (PF07714). Another kinase domain present in the candidate dataset is the 

PI3-kinase domain (PF00613) corresponding to the well-known quercetin target 

phosphatidylinositol 3 kinase (Walker et al., 2000). 

3.1.3 Structure-based screening 

From the previous screening stages, a list of 74 protein target candidates was identified. This set of 

proteins was then subjected to structure-based screening against quercetin using idTarget. This 

procedure allowed us to obtain protein target candidates associated with docking poses for quercetin 

and ranked according to their predicted affinity (see Tables 3 and 4 from supplementary material). 

The predicted affinity ranges from 15.1 nM to 494.1 nM, and has minor variations depending on the 

specific crystal structure for a given protein. From the unranked set idTarget server only rejected 1 

mammalian protein, sirtuin 5, which confirms the reliability of the molecular similarity comparison. 

It is also remarkable that all known complexes for quercetin available in the PDB at the time of the 

assay were retrieved. 

According to the docking poses obtained by idTarget, quercetin reaches a known binding site of 

every protein which is generally a catalytic or an allosteric site (Fig. 2). While idTarget accurately 

predicted protein binding sites, docking poses did not always resemble the co-crystallized ligand 

orientation. Frequently quercetin appeared in the same plane but with opposite orientation. This 

divergence can be explained by the quercetin inner symmetry. Additionally, a small number of 

docking simulations showed peculiarities, for example a few sirtuin 3 docking poses overlapped 

with the protein substrate, glycogen phosphorylase docking poses were located in a known 

allosteric site normally occupied by the endogenous ligand AMP, sulfotransferases and ATPase 

docking poses could also bind the ATP site proximal to an allosteric site. Except for 

sulfotransferases all these proteins showed unfavorable Z-scores and predicted affinities. Proteins in 
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this latter group have wide and exposed binding sites in contrast with the best scoring candidates. 

According to idTarget score and taking into account the qualitative considerations expressed above, 

proteins such as macrophage migration inhibitory factor, troponin C, transthyretin, and ATP 

synthase among others should not be prioritized as target candidates. 

An interesting finding of the present study is that most of the endogenous ligands, substrates or 

cofactors related to the resulting protein set are nucleotide derivatives like ATP/ADP, FAD, NAD, 

pyridoxal phosphate, PAPS, PAP, HIBYL-CoA and xanthine. The protein target candidates greatly 

vary in sequence length, fold and quaternary structure, meaning that any structural similarity found 

among them might be rather local than global. In the first instance, structural similarity between 

quercetin and ATP/ADP was thus analyzed. The result of this analysis (Fig. 3) indicated that 

quercetin may work as an ATP mimetic. In this regard, previous studies suggested a correspondence 

between the benzopyranone moiety of the flavonoid and the adenine part of the ATP as well as the 

ortho-dihydroxyphenyl and the phosphates of ATP (Teillet et al., 2007). 

Additionally, a comparison between idTarget score and MOE score is depicted in Fig. 4 showing a 

rough but significant agreement between both systems (p-value < 0.0001) supporting idTarget 

screening. MOE docking incorporates GBVI/WSA dG, a forcefield-based scoring function which 

estimates the free energy of binding of the ligand from a given pose as well as the solvation effect 

and allows the explicit representation of co-factors and substrates in the vicinity of the binding site 

which supposed an improvement of idTarget results. 

3.2 Molecular dynamics simulations of quercetin-target candidate complexes 

Taking into consideration their biological relevance we evaluated a selected group of protein 

candidates by means of molecular dynamics. This is a more realistic approach that allows the 

dynamic behavior of a system and the explicit influence of solvent molecules to be addressed as 

would occur in a living organism. 

The following quercetin-protein complexes were generated: glycogen synthase kinase-3 beta (GSK-
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3b) from 1j1b crystal, mitogen-activated protein kinase 14 (MAPK14) from 3s3i crystal, 

phosphatidylinositol 3-kinase gamma (PI3K) from 1e8w crystal, and poly [ADP-ribose] polymerase 

1 (PARP) from 3gjw crystal. For MAPK14 a different crystal was chosen from the one identified in 

the screening due to a missing loop in the structure that could not be correctly completed in MOE. 

Three 10 ns simulations were run for each system in a periodic water box at 300 K. Ramachandran 

plots indicated that phi/psi dihedral angles of each protein chain generally remained under allowed 

regions with few exceptions located nearby. Each system showed an initial divergence from the 

starting point of around 1 Å measured at backbone atoms (see Table 5 from supplementary 

material). Frames along the simulation had a divergence of around 0.5 (not shown). Total potential 

energy and interaction potential energy measured along the simulation indicated a homogeneous 

behavior of the systems and showed that quercetin was stabilized in the protein binding site (see 

Fig. 1 to 3 from supplementary material). The average values of three 10 ns simulations measured 

from the last ns were -98,4 kcal for GSK-3b, -112,3 kcal for MAPK14, -123,1 kcal for PI3K and -

113,8 kcal for PARP1. A characteristic interaction pattern was observed involving residues with 

hydrogen donating or accepting moieties like glutamate, aspartate and serine (Fig. 5). It was the 

receptor protein which contributed with most of the interaction energy through hydrogen-donating 

and accepting groups and to a lesser extent aromatic residues and also showed an explicit 

involvement of water molecules in the binding. Solvent contribution with the interaction energy 

grows from around 15 % in the case of PI3K, 30 % in PARP1 and MAPK14 complexes and 40 % in 

GSK-3b. Another major feature of quercetin interaction is the participation of the different hydroxyl 

groups, being substitutions in positions 3', 4' and 7 those which were generally involved in direct 

contacts with the target. Interestingly these feature are shared by other polyphenols like resveratrol 

with similar biological effects documented. 

3.3 Functional characterization 

The ranked candidate set comprises proteins with a broad range of macromolecular folds and 
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biological activities including enzymes, transcription factors and transporters, and can be divided 

into proteins with direct metabolic action like xanthine oxidase and proteins involved in 

intracellular signaling pathways. The significantly enriched gene ontology (GO) functional 

annotations of quercetin target candidates include regulation of cell death and proliferation and 

KEGG pathways highlight their involvement in cancer and neurodegeneration (annotations 

incorporated in Table 1). The role of some target proteins in neuronal physiology is also notable, 

given their involvement in neurotrophin signaling, neuronal differentiation and synapse function 

(not shown). These correspond with already reported effects of flavonoids (Blasina et al., 2009; 

Chen et al., 2015; Spencer, 2009). STRING protein-protein interaction network analysis illustrates 

many functional associations among the target candidates supporting their participation in related 

biological processes (Fig. 6).  

Remarkably, there is a wide array of predicted proteins like tyrosine protein kinase Src, casein 

kinase 2 and vascular endothelial growth factor receptor 2 which have been tested by experimental 

assays supporting their interaction with quercetin and/or related flavonoids like myricetin, apigenin 

and luteolin (Table 2). Furthermore, among the predicted candidates, experimentally tested and 

untested proteins behaved equally in terms of docking scores having no statistically significant 

difference (t-test). On the whole the predicted target candidates are associated with a spectrum of 

biological activities that is in agreement with the multi-target mechanism of action proposed for 

quercetin (Table 1). Considering the underlying structural similarities, being kinases and PARPs the 

two main protein folds involved, it is safe to assume the predicted candidates constitute a whole 

group of quercetin protein targets. Predicted candidates that have not previously been reported 

could be of interest for drug discovery and future target validation. 

Protein kinases should be highlighted, a number of which have been recognized as promising drug 

targets for tumor therapy and neurodegeneration including MAP kinases, receptor tyrosine kinases, 

and kinases related to the PI3-kinase/Akt/mTOR signaling pathway (Han et al., 2015; Sebolt-
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Leopold and Herrera, 2004; Zhang et al., 2015; Zhou and Huang, 2012). For example, p38 MAPK 

is a key protein kinase involved in neuronal apoptosis and inflammation, whose inhibition has been 

proposed as a treatment against ischemic damage and neurodegeneration (Zhang et al., 2015). In 

this regard, previous studies have shown that quercetin treatment leads to pro-apoptotic effects in 

cancer models through modulation of these kinase pathways (Russo et al., 2014). Thus, our results 

are in agreement with such proposed quercetin effect. 

Another interesting group is that of Tankyrases, which are a particular group of poly(ADP-

ribosyl)transferases that differ by their overall domain structure and functions. It has been suggested 

that tankyrase inhibitors could improve anti-cancer effects if combined with other kinase inhibitors 

such as MEK, epidermal growth factor receptor or PI3-kinase inhibitors in cancer treatment (Lehtiö 

et al., 2013). PARP-1 is also related to kinase signaling. PARP-1 facilitates diverse inflammatory 

responses by promoting inflammation-relevant gene expression through NF-kappaB and promotes 

mitochondria-associated cell death in injured tissues (Ba and Garg, 2011). It is widely accepted that 

PARP-1 signals to the MAPK pathway by modulating the phosphorylation of ERK1/2, p38, and c-

Jun NH2-terminal kinase. Thus far, studies on the relationship between PARP-1 and MAPK suggest 

that they might stimulate each other in a positive feedback cycle to propagate the responses to long-

lasting stress signals (Ba and Garg, 2011). Such crosstalk between protein targets reinforces the 

concept of multilevel and synergistic mechanisms of action underlying the biological effects of 

flavonoids. 

Another relevant point is the pleiotropism of many of the protein targets in both cancer and 

neuroprotection. Glycogen synthase kinase 3b is a perfect example of a promising target candidate 

which is involved in cancer survival and also promotes nuclear export and degradation of Nrf2 

(Nuclear Factor-erythroid 2 (NF-E2) p45-related Factor-2), a transcription factor that triggers 

antioxidant and cytoprotective responses (Jain and Jaiswal, 2007; Russo et al., 2014; Yoshino and 

Ishioka, 2015). 
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The metabolism of polyphenols is also suggested by the presence of oxidoreductases and 

sulfotransferases like sulfotransferase 1B1 and NRH dehydrogenase [quinone] 2 (NQO2). The 

latter, apparently serves as a quinone reductase in connection with conjugation reactions of 

hydroquinones involved in detoxification pathways. NQO2 inhibition by quercetin (experimental 

Kd = 50 nM) resveratrol (Kd = 30 nM) and other polyphenols was suggested to have a role in the 

induction of antioxidant defenses that could underly their long term chemopreventive effects 

(Buryanovskyy et al., 2004). Whether this enzyme activity is simply limited to polyphenol excretion 

or also to the production of biologically active molecules is currently unclear. 

Thereis remarkable similarity between quercetin, resveratrol and other flavonoids which share 

common pharmacophoric features. In accordance with the underlying hypothesis of this work, the 

target profile of quercetin may not be specific and could be generalized. For instance docking scores 

between target candidates and related flavonoids extracted from PubChem with a Tanimoto 

similarity of 98 % like myricetin and fisetin showed in general a difference below 5 % from 

quercetin. 

Flavonoids have been widely studied for their in vitro free radical scavenging activity considering it 

a property that could prevent or delay the onset of oxidative stress related diseases. However, this 

mechanism of action presents many difficultiessuch as kinetic limitations and the fact that many 

endogenous antioxidants are present at much higher concentrations. In thisstudy we shed light, in an 

unbiased way, on the potential protein targets of quercetin that could underlie its wide ranging 

biological effects. In light of these considerations and the known involvement of protein targets like 

kinases and PARPs in disease, the polypharmacological profile of quercetin and related flavonoids 

could be very relevant reinforcing their therapeutic potential. 

Even though most multi-target drugs have been discovered serendipitously, rationally designed 

multi-target directed drugs have shown promising results (Bolognesi and Cavalli, 2016). Indeed, in 

addition to quercetin described here, several drugs are known to modulate multiple targets, and this 
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polypharmacological property could underlie therapeutic efficacy (Talevi, 2015). Another 

potentially favorable feature is that a weak-binding molecule acting on multiple targets can 

potentially deliver the same outcome as a high-affinity drug acting on a single target (Wang et al., 

2016).  Moreover, promiscuous, or multi-target drugs, have a higher likelihood of successfully 

modulating whole cellular networks in diseases driven by multiple pathological processessuch as 

cancer and neurodegeneration. Despite this, and even though dietary derived compounds are 

generally recognized as safe, it must be considered that different target profiles could lead to 

positive or negative effects depending largely on drug dose. How to fine-tune different antagonistic 

effects for maximal efficacy is an important and emerging area of research (Prati et al., 2016; Wang 

et al., 2016). 

4. Conclusions 

In conclusion, in this study, a hierarchical inverse screening approach using SHAFTS-LIBRA and 

idTarget was employed to identify potential protein targets of quercetin. The screening successfully 

retrieved every quercetin target contained in the PDB including phosphatidylinositol 3-kinase, 

xanthine oxidase and expanded the list to new putative quercetin targets like poly(ADP-ribose) 

polymerases. Most of the predicted panel of targets fall under recognized clinical targets with anti-

tumour and neuro-protective effects or target enzymes of drug design such as glycogen synthase 

kinase-3 beta and mitogen-activated protein kinase 14, and some of them have been well 

established in experimental settings. In addition, some of these protein targets are involved at 

different stages within the same signaling pathways or in interconnected signaling pathways, 

supporting a pleiotropic, multilevel and synergistic mechanism of action of quercetin. Above all the 

predicted targets could be grouped in two main groups comprised of protein kinases and PARPs. 

These protein groups established similar interactions with quercetin that persisted during molecular 

dynamics simulations. These results support the hypotheses that quercetin is a multi-kinase and 

multi-PARP inhibitor that could act synergistically. PARP-1 as a stress sensor is a potential 
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therapeutic target in pathologies like cancer, inflammation related diseases and neurodegenerative 

diseases (Martire et al., 2015). Indeed, multi-kinase inhibitors are a promising therapeutic approach 

for many pathologies like cancer and viral infections, with imatinib, desatinib and staurosporine as 

examples (Broekman, 2011; Carra et al., 2013; Kruse et al., 2011; Martinez-Gil et al., 2013). Above 

all, the interactions described hereconstitute a potential explanation for the multiple and diverse 

biological effects documented by epidemiological, in-vivo and in-vitro studies of quercetin and 

related flavonoids. 

However, some issues still need to be addressed. Apart from docking scoring limitations in protein-

target ranking, the under representation of rare proteins in the PDB or the absence of proteins for 

which three-dimensional structures are not available can cause false negatives (Warren et al., 2006; 

Xie and Bourne, 2005). In addition, to further refine these results other interaction repositories like 

DrugBank could be incorporated. Additional validation of the results for some target candidates can 

also be achieved by explicitly using docking benchmark data-sets (decoys) (Bauer et al., 2013; 

Huang et al., 2006). Moreover, the interactions of more ligand-protein complexes could also be 

analyzed by means of molecular dynamics simulations to ensure that flexibility of proteins and 

solvent effects are considered. 

In conclusion, reverse screening approaches describes a different workflow to provide valuable 

information for future in vitro and in vivo studies with flavonoids or, in general, for drug discovery. 

Overall, the present results may broaden the understanding of the mechanisms of action of quercetin 

and generate new hypotheses about its therapeutic potential, allowing a repositioning of quercetin 

and quercetin analogues for potential future therapeutic developments. 
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Tables 

Table 1 

Disease association and relevant biological process for the target candidates found in the Protein 

Data Bank (PDB). 

Uniprot id Name Associated disease 
Biological 

process 
Class 

Homo sapiens

Q00534 Cyclin dependent kinase 6 Cancer  Cell cycle/transferase

Q9H2K2 Tankyrase-2   
Transferase/transferase 

inhibitor

P49888 Estrogen sulfotransferase Cancer  Transferase

O75897 Sulfotransferase 1C4   Transferase

O00338 Sulfotransferase 1C2 Cancer  Transferase

P50225 Sulfotransferase 1A1 Cancer  Transferase

O43704 
Sulfotransferase family cytosolic 

1B member 1 
  Transferase 

P09960 Leukotriene A-4 hydrolase Immune diseases  Hydrolase

P49759 
Dual specificity protein kinase 

CLK1 
 Proliferation Transferase 

P0DMM9 Sulfotransferase 1A3 Cancer  Transferase

P35968 
Vascular endothelial growth 

factor receptor 2 
Cancer 

Cell 
death/proliferation 

Transferase/transferase 
inhibitor

P16083 NRH dehydrogenase [quinone] 2
Cancer, Parkinson's 

disease 
 Oxidoreductase 

Q13554 
Calcium/calmodulin-dependent 

protein kinase type 2 beta 
Cancer 

Cell death/neuron 
related 

Transferase 

O95271 Tankyrase-1   
Transferase/transferase 

inhibitor

Q6IMI6 Sulfotransferase 1C3   Transferase

Q13627 
Dual specificity tyrosine-

phosphorylation-regulated kinase 
1A 

  Transferase 

Q460N3 
Poly [ADP-ribose] polymerase 

15 
  Transferase 

Q460N5 
Poly [ADP-ribose] polymerase 

14 
  Transferase 

P09874 Poly [ADP-ribose] polymerase 1 Alzheimer's disease  
Transferase/transferase 

inhibitor

O60674 Tyrosine-protein kinase JAK2 Cancer 
Cell 

death/proliferation/n
euron related 

Transferase/transferase 
inhibitor 

P68400 Casein kinase 2 subunit alpha Parkinson's disease  Transferase

Q9NZL9 Methionine adenosyltransferase 2   Oxidoreductase
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subunit beta 

P15056 
Serine/threonine-protein kinase 

B-raf 
Cancer 

Cell 
death/proliferation/n

euron related 

Transferase/transferase 
inhibitor 

Q9UGN5 Poly [ADP-ribose] polymerase 2  Cell death Transferase

O14965 Aurora kinase A Cancer 
Cell death/neuron 

related 
Transferase/transferase 

inhibitor

P23458 Tyrosine-protein kinase JAK1 Cancer Proliferation 
Transferase/transferase 

inhibitor

O43293 Death-associated protein kinase 3 Cancer 
Cell death/neuron 

related 
Transferase 

P11362 
Fibroblast growth factor receptor 

1 
Cancer 

Cell 
death/proliferation/n

euron related 

Transferase/transferase 
inhibitor 

Q96RR4 
Calcium/calmodulin-dependent 

protein kinase kinase 2 
Anxiety disorder  

Transferase/transferase 
inhibitor

P49841 Glycogen synthase kinase-3 beta 
Alzheimer's disease, 

cancer 
Cell death/neuron 

related 
Transferase 

O94768 
Serine/threonine-protein kinase 

17B 
 Cell death Transferase 

O14757 
Serine/threonine-protein kinase 

Chk1 
Cancer Proliferation Transferase 

P24941 Cell division protein kinase 2 Cancer  Transferase

P51813 
Cytoplasmic tyrosine-protein 

kinase BMX 
 

Cell 
death/proliferation 

Transferase/transferase 
inhibitor

P52333 Tyrosine-protein kinase JAK3  
Cell 

death/proliferation 
Transferase 

Q16539 
Mitogen-activated protein kinase 

14 

Parkinson's disease, 
Amyotrophic Lateral 

Sclerosis 

Cell death, neuron 
related 

Transferase/transferase 
inhibitor 

P45983 
Mitogen-activated protein kinase 

8 
Cancer, Parkinson's 

disease 
Cell death, neuron 

related 
Transferase/transferase 

inhibitor

P08631 Hematopoetic cell kinase HCK 
Immune diseases, 

Parkinson's disease 
Cell death Transferase 

P12931 
Proto-oncogene tyrosine-protein 

kinase Src 
Cancer 

Cell 
death/proliferation/n

euron related 
Tyrosine-protein kinase 

P50750 Cell division protein kinase 9  Proliferation Transferase

O14936 
Peripheral plasma membrane 

protein CASK 
Microcephaly Proliferation Transferase 

P37231 
Peroxisome proliferator-activated 

receptor gamma 

Diabetes, Cancer, 
Alzheimer's disease, 
Huntington's disease 

Cell death Transcription regulation 

Q9Y6E0 
Serine/threonine-protein kinase 

24 
 

Cell death/neuron 
related 

Transferase 

P21802 
Fibroblast growth factor receptor 

2 
Cancer 

Cell 
death/proliferation/n

euron related 
Transferase 

P11309 Serine/threonine-protein kinase  Cell death Transferase
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PIM-1 

O15530 
Phosphoinositide-dependent 

kinase-1 
Cancer 

Cell death/neuron 
related 

Transferase 

P00519 Tyrosine-protein kinase ABL1 Cancer 
Cell 

death/proliferation/n
euron related 

Transferase 

P06239 Tyrosine-protein kinase LCK Diabetes 
Cell 

death/proliferation/n
euron related 

Transferase 

Q08881 Tyrosine-protein kinase ITK/TSK Immune diseases Proliferation 
Transferase/transferase 

inhibitor

Q9H0J9 
Poly [ADP-ribose] polymerase 

12 
  Transferase 

P45984 
Mitogen-activated protein kinase 

9 
Cancer 

Cell death/neuron 
related 

Transferase 

Q8N5Y8 
Poly [ADP-ribose] polymerase 

16 
 Cell death 

Transferase/transferase 
inhibitor

Q6NVY1 
3-Hydroxyisobutyryl-CoA 

hydrolase 
  Hydrolase 

P29320 Ephrin type-A receptor 3  Neuron related Transferase

P14174 
Macrophage migration inhibitory 

factor 
Immune diseaases, 
Alzheimer's disease 

Cell death Isomerase 

P63316 
Troponin C, slow skeletal and 

cardiac muscles 
 Cell death Contractile protein 

Q13464 Rho-associated protein kinase 1 Cancer 
Cell death/neuron 

related 
Transferase 

Q99683 
Mitogen-activated protein kinase 

kinase kinase 5 
Amyotrophic Lateral 

Sclerosis 
Cell death/neuron 

related 
Transferase/transferase 

inhibitor

P49137 
MAP kinase-activated protein 

kinase 2 
 Neuron related Transferase 

P53779 
Mitogen-activated protein kinase 

10 
Epileptic 

encephalopathy 
Neuron related 

Transferase/transferase 
inhibitor

O00311 
Cell division cycle 7-related 

protein kinase 
 Proliferation Transferase 

P04746 Pancreatic alpha-amylase 
Alzheimer's disease, 
Parkinson's disease 

 
Hydrolase/hydrolase 

inhibitor

P02766 Transthyretin Amyloidosis  Transport protein

Q9Y6F1 Poly [ADP-ribose] polymerase 3 Cancer  
Transferase/transferase 

inhibitor

Q9NTG7 
NAD-dependent protein 

deacetylase Sirtuin-3 
Aging  

Hydrolase/hydrolase 
inhibitor

Q53GL7 
Poly [ADP-ribose] polymerase 

10 
 Proliferation Transferase 

     

Mus musculus  

P54763 
(P29323) 

Ephrin type-B receptor 2 Cancer  Transferase 
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Rattus norvegicus  

P63086 
(P28482) 

Mitogen-activated protein kinase 
1 

Alzheimer's disease, 
cancer 

Cell 
death/proliferation/n

euron related 
Transferase 

     

Oryctolagus cuniculus  

P00489 
(P11217) 

Glycogen phosphorylase, muscle 
form 

  
Transferase/transferase 

inhibitor

     

Sus scrofa  

O02697 
(P48736) 

Phosphatidylinositol 3-kinase 
catalytic subunit 

Aging, Cancer 
Cell death, neuron 

related 
Phosphoinositide 3- 

kinase gamma

     

Bos taurus  

P80457 
(P47989) 

Xanthine 
dehydrogenase/oxidase 

 Cell death Oxidoreductase 

Q28021 
(O75116) 

Rho-associated protein kinase 2 Cancer 
Cell death/neuron 

related 
Transferase 

P19483 
(P25705) 

ATP synthase 
Alzheimer's disease, 
Parkinson's disease, 
Huntington's disease 

 Hydrolase 

     

Candidate proteins are segregated by source organism and depicted according to the corresponding 

Uniprot entry (human homologue in parenthesis), name, PDB class, related disease and biological 

process. Proteins co-crystallized with quercetin are depicted in bold. The information was gathered 

from publicly available databases like PDB, Uniprot and gene ontology repositories (Berman, 2000; 

Consortium, 2014; Dennis et al., 2003). 
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Table 2 

Experimental assays supporting quercetin target candidates. 

Name PubChem BioAssay AID; PDB Literature

Cyclin dependent kinase 6 242481, 109522, 1095229, 1224758  

Tankyrase-2 735784 (apigenin, luteolin)  

Estrogen sulfotransferase 747  

Dual specificity protein kinase CLK1 382, 1224761 
Reference (Boly et al., 

2011)

Vascular endothelial growth factor receptor 2 1063038 
Reference (Pratheeshkumar 

et al., 2012)

NRH dehydrogenase [quinone] 2  
Reference (Buryanovskyy 

et al., 2004)

Calcium/calmodulin-dependent protein kinase 
type 2 beta 

673630, 353599, 1224752 
Reference (Boly et al., 

2011)

Tankyrase-1 735786 (apigenin, luteolin)  

Dual specificity tyrosine-phosphorylation-
regulated kinase 1A 

588345 (myricetin), 504441 (kaempferol, 
luteolin), 588345 (keampferol) 

 

Poly [ADP-ribose] polymerase 1 735783 (apigenin, luteolin)  

Tyrosine-protein kinase JAK2  
Reference (Boly et al., 
2011)(Luo et al., 2016)

Casein kinase 2 subunit alpha 353598, 378676, 435640, 587344 
Reference (Lolli et al., 

2012)

Aurora kinase A  
Reference (Boly et al., 

2011)

Tyrosine-protein kinase JAK1 1224770 
Reference (Boly et al., 

2011)(Kumamoto et al., 
2009)

Death-associated protein kinase 3 1224767  

Fibroblast growth factor receptor 1 378675 (apigenin)  

Calcium/calmodulin-dependent protein kinase 
kinase 2 

1224756  

Glycogen synthase kinase-3 beta 1115335, 1224769, 512292, 512292  

Serine/threonine-protein kinase 17B PDB: 3LM5  

Serine/threonine-protein kinase Chk1 512298  

Cell division protein kinase 2 298693, 1224757  

Tyrosine-protein kinase JAK3  
Reference (Boly et al., 

2011)

Mitogen-activated protein kinase 14 512278, 512278, 603838  

Mitogen-activated protein kinase 8 512277, 603841, 512277  

Hematopoetic cell kinase HCK PDB: 2HCK  

Proto-oncogene tyrosine-protein kinase Src 420260; 1063039  

Peroxisome proliferator-activated receptor 
gamma 

517390, 743191, 439367, 439368, 439367, 
439368 (pathway assays) 

 

Fibroblast growth factor receptor 2  Reference (Boly et al., 
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2011)

Serine/threonine-protein kinase PIM-1 
393, 418378, 706714, 257081, 1063041, 

257081, 311148, 257079, 257080, 257082, 
1224786, 257079; PDB: 4LMU 

Reference (Boly et al., 
2011) 

Phosphoinositide-dependent kinase-1 1224785; 512288  

Tyrosine-protein kinase ABL1 588664 (myricetin) 
Reference (Boly et al., 

2011)

Tyrosine-protein kinase LCK 378681, 512297, 512297  

3-Hydroxyisobutyryl-CoA hydrolase PDB: 3BPT  

Mitogen-activated protein kinase kinase kinase 5 515, 1224773  

MAP kinase-activated protein kinase 2 512283  

Mitogen-activated protein kinase 10 530  

Transthyretin 
1239060 (apigenin, luteolin), 1239061 

(apigenin, luteolin) 
 

Mitogen-activated protein kinase 1 512276, 512276  

Phosphatidylinositol 3-kinase catalytic subunit 
1185177, 325654, 378677, 1120054; PDB: 

1E8W 
 

Xanthine dehydrogenase/oxidase 

1185460, 1185463, 42472, 424718, 424725, 
424721, 424722, 424735, 424736, 424727, 
424729, 424723, 424734, 424719, 424720, 

424724, 424728, 424730, 1238320, 424718, 
424723, 424725, 424734; PDB: 3NVY 

 

Rho-associated protein kinase 2 512293; 512293  

ATP synthase 338025, 338026; PDB: 2JJ2  

   

   

Bio-assay information was gathered from PubChem and PubMed repositories, tested targets are 

presented along the PubChem assay ID and/or associated publication. Protein co-crystallized with 

quercetin were are also included. 
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Figures 

 

Fig. 1. Reverse screening work-flow. The strategy involved a similarity search with SHAFTS 

(SHApe-Feature Similarity) algorithm of co-crystalized ligands from the Protein Data Bank (PDB) 

(Liu et al., 2011).  An amplification stage is added to identify related proteins by LIBRA (Ligand 

Binding site Recognition Application) binding site comparison (Hung et al., 2015). Finally, protein 

candidates are submited to reverse docking with idTarget web server 

(http://idtarget.rcas.sinica.edu.tw/) (Wang et al., 2012). 
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Fig. 2. Result of quercetin (yellow sticks) molecular docking with mitogen-activated protein kinase 

14 (p38 MAP kinase) co-crystallized with naringenin (violet sticks) (Protein Data Bank accession id 

4eh3) according to idTarget web server (http://idtarget.rcas.sinica.edu.tw/) (Wang et al., 2012). A 

dotted electrostatic surface was drawn around quercetin at a Van der Waals distance, areas depicted 

in red color correspond to a negative charged surface and white surface to a neutral charge. A good 

overlapping between naringenin a quercetin docking pose is observed confirming the reliability of 

the docking method. 
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Fig. 3. Structural alignment between ATP/ADP and quercetin given by SHAFTS (SHApe-Feature 

Similarity) algorithm (Liu et al., 2011). The alignment shows two different quercetin orientations 

(ATP alignment similarity score: 0.8693, ADP alignment similarity score: 0.9790) that can overlap 

functional groups of these endogenous ligands and suggests a quercetin ATP/ADP mimetic action. 
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Fig. 4. Comparison between idTarget docking score and MOE docking score.  For docking porpoise 

a single crystallographic structure representative of each protein was used in MOE. The score of the 

best ranking pose in MOE was compared against the best idTarget score. Orange dots: predicted 

targets, green dots: predicted and experimentally assayed targets. See Methods for further details. 
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Fig. 5. Protein-ligand interaction depictions of quercetin-target complexes by the end of molecular 

dynamics simulations (10 ns). Green circles represent greasy, purple circles represent polar, red 

circles represent acidic and blue circles represent basic amino acids. Protein contacts are depicted 

by a blue half moon around the amino acids. Blue arrows represent backbone acceptors; green ones 

depict side chain acceptors and side chain donors. Green benzol rings with a “+” describe an arene–

cation binding; 2 benzol rings, an arene–arene binding. Areas with a blue background are exposed 

to the ligand. The purple dotted lines represent metal contact (Clark and Labute, n.d.). 
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Fig. 6. STRING protein-protein interaction network analysis of target candidates. STRING database 

establishes functional associations between protein pairs based on documented experimental 

evidence, homology and text mining inference including protein modification, aggregation, 

genomic neighborhood and co-expression (Jensen et al., 2009). Only high confidence associations 

were depicted (0.7 probability and above). 
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