
        

Citation for published version:
Goguelin, S, Flynn, JM, Essink, WP & Dhokia, V 2017, 'A Data Visualization Dashboard for Exploring the
Additive Manufacturing Solution Space', Procedia CIRP, vol. 60, pp. 193-198.
https://doi.org/10.1016/j.procir.2017.01.016

DOI:
10.1016/j.procir.2017.01.016

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.procir.2017.01.016
https://researchportal.bath.ac.uk/en/publications/a-data-visualization-dashboard-for-exploring-the-additive-manufacturing-solution-space(c1702750-3268-4a86-a3e0-c127a33336d8).html


 Procedia CIRP   60  ( 2017 )  193 – 198 

Available online at www.sciencedirect.com

2212-8271 © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference
doi: 10.1016/j.procir.2017.01.016 

ScienceDirect

27th CIRP Design 2017 

A Data Visualization Dashboard for Exploring the 
Additive Manufacturing Solution Space 

 Steven Goguelina*, Joseph M. Flynna, Wesley P. Essinka, Vimal Dhokiaa   
aDept. Mechanical Engineering, University of Bath, Claverton Down Road, Bath, BA2 7AY, UK 

 

* Corresponding author. Tel.: +44 1225 386131; E-mail address: s.goguelin@bath.ac.uk 

Abstract 

This paper will examine the use of data visualisation tools as a method for exploring the additive manufacturing (AM) solution 
space. One of the challenges of AM is understanding the trade-offs that occur within the design space. It is often challenging to 
understand the overall performance of a design if there are many performance indicators. This paper presents an AM data 
visualisation dashboard which is characterised by a three stage filtering process. The first stage utilises a parallel coordinate plot 
to search through groups of solutions by category and reduce the size of the solution space. Secondly, the filtered solutions are 
displayed on a scatter plot, providing the designer with the ability to check for correlations between AM specific design variables. 
Finally, the designer is able to select designs from the scatter plot to evaluate an individual part performance further using both a 
bar and radar chart. A visual representation of the part is also shown. A case study is presented in which the solution space for an 
additively manufactured part is explored.  A parametric model was used to generate a series of design alternatives to be explored 
using the interactive visualization dashboard. Three design iterations were performed with the results from each iteration used to 
inform the development of the next parametric model. The results from this study show that interactive data visualization tools are 
key to exploring AM solution spaces, assisting designers to gain a deeper understanding of the problem statement and allowing for 
the generation of improved design solutions. 
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference. 
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1. Introduction 

The engineering design process typically begins with ill-
defined, imprecise design goals. As the design process 
continues further design goals and constraints are developed 
until a final design that fulfils the design requirements is met 
[1]. This process can be done manually, however, it typically 
involves the use of some form of computational aid.  

Computer aided design (CAD) software gives the designer 
the opportunity to test different design iterations, however, the 
majority of CAD software is not suitable for design exploration 
with part design software generally focusing on a single design 
instance. There is therefore a requirement for CAD tools that 
allow for a greater exploration of the design space. 

The design space describes the mathematical definition of 
the design. It includes the design variables and the constraints 
of the system [2]. The solution space refers to the set of all 
designs that are produced as a result of sampling the design 
space.  

Additive manufacturing (AM) has increased the set of 
possible manufacturable part geometries. This is due to the 
geometric part complexity that is possible to produce when 
using layered manufacturing techniques. As such, finding 
optimal design solutions given the range of geometric 
possibilities is extremely challenging. 

Design for Additive Manufacturing (DfAM) is a field of 
design in which design techniques are applied to maximize the 
performance of additively manufactured parts [3]. With current 
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CAD tools it is often challenging for designers to generate a 
vast range of AM specific designs, explore an AM specific 
solution space and hone in on the most appropriate design. 

To overcome some of these issues, this paper presents an 
interactive data visualization environment to be used as a 
method for navigating through large computationally generated 
solution spaces. The role of the designer is to select the most 
appropriate solutions based on a set of AM specific evaluation 
criteria. This process can be repeated until a solution that 
adequately fulfils the design specification is found.  

A case study is presented as an example of how such a data 
visualization dashboard can be used to discover feasible design 
solutions. 

2. Previous work 

Much of the precedent associated with visualizing large 
design spaces comes from the architectural domain. Ashour 
and Kolarevic [4] proposed a visualization tool developed 
within Rhino Grasshopper3D, a parametric modelling CAD 
environment, to be used in conjunction with a multi-objective 
genetic algorithm. The authors highlighted that exploration of 
sub-optimal solutions can yield better design exploration than 
searching for a single optimum. Results showed that the use of 
real time visualization tools can increase the level of design 
space exploration and improve the quality of design solutions.  

Chaszar et al [5] used an interactive parallel coordinate plot 
in combination with an interactive x-y scatter plot to explore 
designs created using the ParaGen model [6]. The results 
showed that interactive plots are key to aiding comprehension 
and modification of the design space. A secondary result 
showed that the use of data visualizations can also aid in the 
validation of design models. 

The Living design studio [7], used an evolutionary approach 
to design a number of novel chair designs. The designs were 
displayed on a parallel coordinate plot to allow for further 
design exploration. The results showed that the designer was 
able to reduce the mass of the chair from 10.3kg to 2.9kg by 
specifically designing a chair for the AM platform. 

Smith et al [8] studied eighteen designers in tasks where 
computational design tools were used to generate conceptual 
design ideas. From the study, the authors derived a number of 
points that must be considered when managing alternative 
ideas in early design. These included 1) making it easy to 
switch between ideas, 2) providing an efficient way of viewing 
multiple ideas at once, 3) providing multiple ways of 
classifying ideas and 4) to be able to identify ideas both 
pictorially and textually.  

3. Data visualization dashboard for AM 

From the literature it is clear that interactive data 
visualizations provide users with a greater understanding of 
design spaces. However, work is required to extend the levels 
of interaction within these visualizations and apply an 
interactive exploration tool to the AM domain. 

To achieve a flexible method for visualizing and exploring 
the solution space for a specified design problem, a web-based 

interactive visualization dashboard was developed using the 
D3.js library.  

The interactive visualization dashboard is comprised of 
three stages, guiding the designer from an entire solution space 
exploration to a single design solution. Multiple visualization 
techniques are applied, which are best suited to the amount of 
data being presented at each stage. The following section will 
describe the implementation of an interactive AM visualization 
dashboard. For clarity, figures 3-4 have cursors and mouse 
paths, indicated by dashed lines, included within the 
visualization to highlight where the user interactive zones 
occur. 

3.1. Stage 1 -  Solution space visualization 

A parallel coordinate plot is used for the first stage of the 
data visualization.  Parallel coordinate plots have been shown 
to be an effective way of visualization vast quantities of high-
dimensional data [9]. This gives the user the opportunity to 
view the entire solutions space. Studies have shown that 
parallel coordinate plots require a level of interactivity to be 
useful as a plot when large datasets are to be shown [10]. 
Brushing is therefore applied to the axes to permit the user to 
generate a subset of the solution space by reducing the domain 
of a selected axis. The filtered results from the parallel 
coordinate plot serve as an input to stage two of the 
visualization. 

3.2. Stage 2 – Filtered solution space visualization 

The goal for this visualization stage is to understand the 
relationships within the dataset. A scatterplot was selected for 
this stage of the visualization as this plot type allows the 
designer to easily see patterns within the data set determining 
correlations between design variables. 

An α-transparency value of 0.7 is applied to all filtered 
designs to allow the designer to distinguish the filtered designs 
from the rest of the solution space. Further interactivity is 
available to the designer within this stage, firstly, by allowing 
the designer to select the axis type. By selecting different axes, 
the designer is able to view correlations between any two 
variables. A zoom function is also implemented within the 
scatterplot to allow the user to zoom into areas that show 
multiple design instances with similar values. This is 
particularly important when large datasets require exploration. 

The designer is able to highlight particular design instances 
by clicking on the circle. Upon doing this, the circle is 
highlighted and individual part information appears in a table 
below the scatter plot. This part information is also fed into 
stage three of the visualization tool. 

3.3. Stage 3 – Individual solution visualization 

The final stage of the data visualization involves feeding 
individual part data back to the user for selection of the most 
appropriate design solution whilst also giving the user the 
opportunity to provide feedback on the qualitative aspects of 
the design.  
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The objective of this visualization stage is to allow the user 
to evaluate and select superior designs from the solution set. 
The part data within this stage is presented as normalized data 
from the entire solution set. A further requirement at this 
visualization stage is to provide feedback on qualitative aspects 
of the part design, such as aesthetics.  

A number of charts are provided to aid the designer in 
evaluating individual design instances. Two primary charts are 
selected for this visualization, namely a radar chart and a bar 
chart. The radar chart is provided to visualize a normalized 
comparison of the part for five user selected criteria against the 
solution set. Radar charts provide a method of visualizing high 
dimensional quantitative data.  

A bar chart is also presented which contains part specific 
information including elements to judge how easy the part will 
be to manufacture. Three manufacturability criteria are 
provided: build height, support structure quantity and aspect 
ratio. The manufacturability data provided is scaled against the 
data set and scaled to a value between 0-10. This is so that the 
designer can easily get numerical feedback on a part’s quality 
relative to the entire solution set. A pictorial representation of 
the design is also shown to allow the designer to judge the part 
on qualitative specification criteria such as part aesthetics. 

Qualitative feedback provided by the designer is captured 
using an interactive slider bar. The designer is given the 
opportunity of rate the design from 0 to 10. When the user 
clicks the ‘Rate and Compare’ button the current design image 
and slider bar value are stored above the radar chart; these 
designs can then be accessed at any point by clicking on the 
image. Two designs can be stored at any time. The evaluation 
score for each part name is stored within an array and can be 
accessed or exported from the visualization environment at any 
time.  

4. Case study 

To test the efficacy of the visualization dashboard the 
following example was conceived. A test part to demonstrate 
their design capabilities. A chair design is required that fulfils 
the following part design specification criteria. 

 
 Should have max dimensions of 1000 x 500 x 500 mm 
 Should have a high surface to volume ratio 
 Should be manufactured using a polymer 
 Should be aesthetically pleasing 
 Cost should be considered throughout the design process 

 
In order to produce designs which are capable of fulfilling 

these design requirements a CAD model was developed within 
Grasshopper3D that could be used to parametrically design a 
number of chairs. The chair was initially divided into seven 
dimensional parameters, labelled A-G and shown in figure 1 
with the corresponding values in table 1.   

 
 
 

Table 1. Parameter description for initial chair designs. 

Parameter letter Parameter name 

A Backrest width 

B Backrest thickness 

C Backrest height 

D Seat width 

E Seat height 

F Leg height 

G Leg thickness 

 
 Each of the parameters were designated an exploration range 
and a Python script was written in Rhino to automate the 
creation of each design. Each time a parameter value is 
changed, a new design instance is created and data associated 
with that design is recorded. 

The quality of each design instance is measured by how well 
each design fulfils the given performance requirements derived 
from the part design specification. A number of evaluation 
criteria were derived to be able to assess the quality of each 
design. The evaluation criteria were recorded in a data tree for 
each design instance and input into the visualization dashboard. 

The criteria derived from the part design specification 
require knowledge of the parts geometry. The overall part 
height which was recorded as the sum of parameters C, E and 
F. The seat height recorded as the sum of parameters E and F.  

 
  (1) 

 
  (2) 

 
The volume and surface area of each chair are also recorded. 

These values will be useful in determining the surface area to 
volume ratio, which is a further specification point. The mass 
of the chair was determined from the product of the part volume 
and density of the selected material. 

As one of the main specification points dictates that the part 
should be additively manufactured, two materials were selected 
for design exploration. Due to the size of the part, the fused 
deposition modelling (FDM) process was deemed to be the 

Fig. 1. Labelled dimensions chair parameters. 
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most suitable process and therefore two common plastics for 
the FDM process, PLA and ABS were selected for evaluation.  

The amount of support structure was determined using a 
custom algorithm developed using a script written in 
Grasshopper3D. The support structure density was kept 
constant for each design instance and support structure was 
generated on all structural elements which have an angle of 
greater than 45° between the design and the build plate. An 
example of a design instance shown with and without the 
support structure algorithm is shown in Figure 2. The support 
generation algorithm requires the user to orient the part to the 
desired position before the support structures are generated. 
Whilst it may be beneficial to employ an optimised part 
orientation algorithm to minimise structure [11], this was 
deemed to be beyond the scope of this paper. 

The total length of the support structure was then calculated. 
The amount of support structure was then feature scaled 
between 0 and 10 to allow for ease of comparison between 
design instances. 

The part manufacturability was defined as the sum of two 
criteria, the aspect ratio of the part, and the amount of support 
structure required in the part build. Parts with a large aspect 
ratio are more difficult to build and support structure amounts 
to wasted time and material.  

The manufacturability of each part was feature scaled 
between 1 and 10 to provide a relative manufacturability score 
for each part. The smaller the value, the easier the part will be 
to manufacture. 

The relative cost of the part in AM is estimated to be a 
function of its direct build costs, for example, build time and 
material costs and indirect costs such as post-processing labor 
and setup costs [12]. It is assumed that design instances will 
have fixed indirect costs, therefore a cost model is devised 
which is only a function of the direct costs associated with build 
time, and the material usage. As build time is highly correlated 
with the part height [13], determined from equation 1, this 
value is used as a measure of the build time. The material usage 
is estimated to be the sum of the part volume (V_part) and total 
support structure volume (V_support). An estimate for part cost 
is derived using equation 3. 

 
     (3) 

 
The cost value is used to provide a relative comparison 

between all generated design instances therefore the cost value 
is feature scaled between 1 and 10. 

Initially, 128 design alternatives were generated by varying 
the parameters specified in Table 1 and also by varying material 
type. This data was saved into a .CSV file and used to populate 
the AM solution space dashboard shown in Figure 3. 

A designer is able to rapidly search through the solution 
space in the first stage by applying brushes to the coordinate 
plot. In this case, all chair designs with a seat width below 
325mm, all chairs with large amounts of support structure and 
parts made with ABS are filtered. 

The filtered designs appear in the stage two comparison. 
Once a satisfactory number alternatives have been explored by 
clicking on the circles; stage three is updated with individual 
part information and a table under the scatter plot is updated 
with information associated with that particular design 

Fig. 3. Interactive visualization dashboard for parametric chair design 

Fig. 2. Chair design (a) before and (b) after support structure algorithm 
is applied. 
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instance. The objective of this design iteration is to fulfil as 
many of the part specification criteria as possible.  

Taking into account the values from the radar chart and the 
relative manufacturability from the bar chart, a number of 
designs were evaluated and compared using the slider bar. A 
part was then selected which best fulfilled the dimensional 
requirements from the design specification. Results from stage 
three show that whilst the overall part dimensions have been 
satisfied, one of the specification requirements, the surface to 
volume ratio, of the parts generated in this set were very poor. 
It was determined that the part cost can be reduced by cutting 
down the amount of required support structure. 

Using the most satisfactory design instance from the first 
iteration as a guide for the overall chair dimensions, an 
improved part specification can be drawn up with increased 
knowledge gained from the initial solution space exploration. 
The design specification was changed and designs were 
required to fulfill the following performance requirements. 

 

 
 

 Should have an organic looking structure 
 Should have a low mass 
 Should have a maximum build height greater than 930mm 
 Seat height should be greater than 400mm from the ground 

 
A second parametric model was developed in 

Grasshopper3D utilizing the Millipede plug-in as an 
exploratory tool for generating organic structures. A further 
128 designs were generated before translation into the 
interactive AM visualization dashboard for exploration. The 
results from the second interaction are shown in Figure 4. 

Akin to the first iteration, the parallel coordinate plot in the 
primary stage is used to filter out the solutions that do meet the 

Fig. 5. Stage three visualization dashboard comparison of two lattice unit cell types. 
Fig. 4. Visualization dashboard output for second design iteration. 
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initial specification requirements of a chair with a greater 
height than 930mm and a seat height greater than 400mm.  

As the main objective was to minimize the mass of the chair 
the scatter plot axes were changed to highlight the relationship 
between the mass and the relative cost of the part. A design was 
chosen which was low mass, a low relative cost factor, as well 
as a good manufacturability rating. 

The mass of the design could be further reduced by applying 
a lattice structure into the backrest region of the chair. A further 
iteration was carried out and the final stage filter for two 
different lattice unit cells, a grid unit cell and a cross unit cell, 
shown in Figure 6. Results show that whilst part performance 
is similar for both parts, the amount of support structure 
required for the grid lattice is far greater than the cross lattice. 
This is due to the lattice struts 45° overhang angle within the 
structure. The stage three visualization results from the third 
design iteration are shown in Figure 5. 

From the information gained from these design iterations, it 
was decided that a combination of the two best solutions, the 
organic lattice structure in the leg region, combined with the 
diamond cell unit structure in the back rest of the chair fulfils 
all of the main specification criteria defined within the design 
specification. The final chair design is illustrated in Figure 7. 

5. Conclusions and future work 

This paper provides one of the first attempts at developing 
and using interactive data visualizations throughout the early 
stages of the AM design process. The visualization tool 
comprises a web-based three stage interactive dashboard that 
allows the designer to explore and compare numerous design 
concepts.  

A case study was developed whereby a parametric 
modelling tool to develop an initial solution space of chair 
designs that the designer could explore. A number of 
evaluation criteria including AM elements such as part 
manufacturability and cost were developed to further inform 
the designer about the quality of generated solutions. Three 
iterations of the design were performed before a design 
fulfilling all of the specification criteria was achieved.  

The major outputs of this paper are: 
1) The realization of an AM visualization dashboard which is 

shown to assist the designer in narrowing vast solution 
spaces of computationally generated design solutions. 

2) Interactive data visualization tools are a key component to 
design exploration in early stage DfAM and by using 
interactive visualization tools, designers are able to gain 
further knowledge of the design problem and therefore 
generate more suitable part design solutions.  

3) This work provides the underpinning knowledge required 
for a future generation of CAD tools to support design 
synthesis and exploration.  

Further work will be undertaken to extend the accuracy and 
the number of evaluation criteria, with the aim to improve the 
quality of output designs and reduce the time taken to find 
satisfactory design solutions. 
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Fig. 7. Final chair design (a) side view and (b) front view after three 
iterations using AM visualization dashboard 

Fig. 6. (a) Grid unit cell (b) cross unit cell 


