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Quasi-periodic Fibonacci and periodic one-dimensional hypersonic
phononic crystals of porous silicon: Experiment and simulation

Gazi N. Alieva) and Bernhard Gollerb)

Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom

(Received 9 May 2014; accepted 23 August 2014; published online 5 September 2014)

A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed

from porous silicon. The structures had the same number of layers and similar acoustic impedance

mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness

of the individual layers in the stacks was approximately 2 lm. Both types of hypersonic band gap

structure were studied by direct measurement of the transmittance of longitudinal acoustic waves

in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures.

The experimental results were compared with model calculations employing the transfer matrix

method. The acoustic properties of periodic and quasi-periodic structures in which half-wave

retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong

correlation between width and depth of gaps in the transmission spectra is demonstrated. The domi-

nant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic con-

stants remain proportional over our range of porosity, and hence, the Gr€uneisen parameter is

constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894620]

I. INTRODUCTION

Phononic crystals, like photonic crystals, are of increas-

ing scientific interest mainly due to the existence of fre-

quency gaps, where propagation of elastic waves in the

crystal is fully suppressed. Phononic crystals are widely

applied as thermal barriers, elastic/acoustic filters, acoustic

lenses, waveguides, mirrors, and sound-protection devices

(see e.g., review by Steurer et al.1). Acoustic mirrors and fil-

ters operating in the GHz region, for instance, are of great

importance in acoustoelectronic devices used in modern

communication systems.2

1D phononic crystals consist of multilayers with peri-

odically or aperiodically alternating thickness and acoustic

impedance. A structure is said to be aperiodic if it lacks

translational symmetry. A quasi-periodic structure is an ape-

riodic structure that nevertheless possesses some form of

spatial ordering. In a 1D quasi-periodic structure, this order-

ing is due to a rule that generates the structure. As a result,

these quasi-periodic structures exhibit spectral gaps in the

frequency domain, which give an extra degree of freedom

for tailoring phononic and photonic band gaps.3 For exam-

ple, a Fibonacci 1D quasicrystal is a more preferable candi-

date than a periodic Bragg structure for constructing

omnidirectional photonic band gaps.4 The creation of wave-

guides and cavities can profit from the isotropy and the

assumed defect insensitivity of quasiperiodic metacrystals1

(see also in Ref. 1, the review of the applications of the qua-

siperiodic structures). Hybrid structures—periodic structures

combined with aperiodic ones—have been reported to be

effective for tuning resonance transmission modes.5

In periodic 2D and 3D phononic and photonic crystals,

the spectral gaps are usually called pseudo-gaps if they are

not omnidirectional. Further, in a quasi-periodic structure,

the gaps have been also termed pseudo-gaps due to the lack

of translational symmetry.6 However, for brevity, we shall

not make this distinction between gaps and pseudo-gaps in

this paper.

Recent experimental work7–10 shows that porous silicon

(PSi) is a promising material for phononic and phoxonic (si-

multaneous phononic and photonic gaps) applications.

Porosity (fractional volume of voids) determines density and

acoustic velocity and can be varied for PSi from 4% to 95%.

For mesoporous PSi (a pore size �2–50 nm), it has been

shown11 that the acoustic longitudinal velocity varies from

�7 km/s to �1 km/s for 25% to 85% porosity, respectively.

This allows one to fabricate hypersonic phononic structures

in commercially available Si wafers.

Optical properties of PSi based 1D quasicrystals such as

reflectance,12–14 transmittance,12,15,16 and photolumines-

cence12 have been reported in the literature. For PSi based

passive optical devices, e.g., multilayers for optical filtering

or sensing applications,17,18 knowledge of the refractive

index calculated from the porosity is normally sufficient to

characterize a sample or its constituent layers. This is the

case because the effective medium method for the dielectric

constant depends predominantly on the porosity (i.e., den-

sity) of a layer with only a weak dependence on the micro-

morphology.19 In contrast, for acoustic devices, e.g., a PSi

Bragg reflector or a rugate filter,8–10 the characteristic im-

pedance of an acoustic layer, Z ¼ qv, depends on the density

q of the layer and the acoustic velocity v, which depends, in

turn, on the porosity and morphology of the layer.11
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Therefore, optical characterization of structures designed for

acoustic applications alone does not give information suffi-

cient to predict the acoustic properties of the structures.

Also, optical devices working in the visible and near-

infrared regions usually have a lattice spacing an order of

magnitude less than the acoustic superlattices designed for

the hypersonic (GHz) region. The overall thickness of optical

multilayers is usually smaller, which makes fabrication

easier.

In optics, the speed of light in the porous material in the

effective medium approximation is equal vop ¼ c=nef f , where

c is speed of light in a vacuum and neff is the effective refrac-

tive index of the material. In acoustics, there is no such sim-

ple relationship. There are various semi-empirical models

for the porosity dependence of the velocity (or elastic con-

stants) of porous materials (see review of the models in Refs.

20 and 21). These have been used to calculate acoustic

velocities through porous rocks21 and composite materials.22

In this work, we discuss a new formula, which is a modifica-

tion of the well known formula,22 by considering the effect

of multiple scattering (Sec. III A).

The other difference between optical and acoustic waves

propagating through a material is the mechanism of losses.

While scattering by surface and interface roughness,23–27

and Rayleigh or multiple scattering by voids28–30 in optics

and acoustics can be described by almost the same formal-

ism, the mechanism of light absorption within a layer is com-

pletely different from the mechanism of acoustic damping.

In Sec. III F, we discuss the dominant mechanism of viscous

acoustic damping and its dependence on porosity.

Ageing effects, e.g., oxidation in air, are noticeable31,32

for optical properties of PSi based devices as silica has

significantly different optical properties from silicon:

nSi=nSiO2
� 2:7. In contrast, silica and silicon have a smaller

difference in acoustic properties: vSi=vSiO2
� 1:4 and

ZSi=ZSiO2
� 1:5. Bellet et al.33 concluded that oxidation did

not significantly change the Young’s modulus of PSi samples

and almost no effects of ageing were observed to cause

changes in the transmission spectra of an acoustic super-

lattices.8 Therefore, the acoustic properties obtained from

optical characterization of the freshly fabricated and the

aged sample may be inconsistent.

In spite of all the differences mentioned, at normal inci-

dence of acoustic wave, the optical methods can be applied

for simulation of acoustic wave propagation through a multi-

layered structure. By just changing a scaling factor, acoustic

devices can be designed in the same way as optical devices

(Secs. III D and III C).

In the present work, we report fabrication of a quasi-

periodic one-dimensional Fibonacci phononic crystal of PSi

and its acoustic spectrum for longitudinal waves. A

Fibonacci quasicrystal is a structure (FS) that is formed

by stacking two layers A and B with different impedances

according to the Fibonacci sequence generation scheme:

(FS)L¼fF0F1F2 � � �FLg, where F0 ¼ A; F1 ¼ B; F2 ¼
AB; F3 ¼ BAB; F4 ¼ ABBAB; …; FL ¼ fFL�2;FL�1g. This

is equivalent to iterated application of the substitutional rule:

A! B; B! AB. We shall note that, for odd L, (FS)L¼fB
FLþ 2g and, for even L, fA (FS)Lg¼ fAB FLþ2g. Here, we

discuss the acoustic measurements an FS with L¼ 7, which

consists of 21 A-layers and 33 B-layers of PSi on a bulk Si

substrate: ABABBABABBABBABABBABABBABBABA

BBABBABABBABABBABBABABBAB.

In this work, we also study a periodic Bragg structure

(BS) consisting of 27 pairs of AB layers of nearly the same

thickness and impedance mismatch as for the FS. Phononic

properties of both types of multilayered structures correlate

strongly:34 the spectral gaps of the FS are distributed about the

central frequency of the band gap of the corresponding BS.

Most of the work in the literature considers periodic and

aperiodic structures comprising of AB layers in which A-

layer and B-layer are both quarter-wave retarding. Here, we

discuss some properties of the structures in which half-wave

retarding bi-layers do not consist of two quarter-wave retard-

ing layers (Secs. III C and IV H).

Our work aims to illustrate the different characteristics

of the FS and BS. We provide a novel analysis which we feel

will aid other workers to chose between the two types of

structure and design them appropriately.

II. EXPERIMENTAL

PSi multilayers were fabricated using electrochemical

etching.17 The wafer material used was highly-boron-doped

CZ silicon with a resistivity of 0.001–0.005 Xcm and a thick-

ness of 525 lm cut in the (100) plane. Room temperature

anodization was performed in a 1:1 solution of 48%

aqueous-HF and ethanol. High- and low-porosity layers were

obtained by alternating the current density in the range

100–150 mA/cm2. The thickness of the layers was controlled

by the etching duration. Figure 1 shows scanning electron

microscope (SEM) images of cross-sections of the fabricated

BS (a) and FS (b). Thicknesses of the A and B layers were

assessed using the results of SEM measurement, and were

found to be constant throughout the whole structure with an

uncertainty of �0.06 lm (see more details in Sec. IV).

To characterize the etched structures acoustically, the

acoustic transmission spectra (ATS) were recorded using the

experimental technique shown schematically in Figure 2. A

FIG. 1. SEM cross sections of fragments of (a) the BS (first 36 layers from

54) and (b) the FS (first 41 layers from 54). High and low porosity layers are

depicted by A and B, respectively. The layers with higher porosity appear

darker. The overall thickness was measured to be �109 lm for the BS and

�115 lm for the FS. Scale bars are shown in each micrograph.

094903-2 G. N. Aliev and B. Goller J. Appl. Phys. 116, 094903 (2014)
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specimen was placed between two transducers operating

with the maximum efficiency at 1 GHz. Each transducer con-

sists of a ZnO piezoelectric layer driving waves into a square

silicon pillar 160 lm� 160 lm� 520 lm with a thin

(0.5 lm) SiO2 antireflection coating. Transducers were

coupled to the specimen via water or liquid In-Ga eutectic.

Acoustic waves were emitted into the PSi layers with normal

incidence (less than 0:5� uncertainty in alignment). The

transducers were connected to 2-ports of a vector network

analyzer (VNA) and the signal transmitted through the struc-

ture was measured as an S21-parameter with sweeps per-

formed from 0.1 to 2.6 GHz with a bandwidth of 100 Hz and

a resolution of 1.5 MHz. The magnitude of S-parameters

(scattering parameters) are determined by measuring the

magnitude of the incident, transmitted, and reflected voltage

signals Vin, Vt, and Vr, respectively:35 S11 ¼ Vr=Vin; S21

¼ Vt=Vin.

For the Si wafer and etching conditions employed for

our measurement, the pore shape was something between a

right prism and a cylinder with distribution of pore radius

a � 5–20 nm and an aspect ratio f � 1� 4 (see e.g., Refs.

17 and 36). The velocity dependence on porosity, i.e., j-pa-

rameter (see Sec. III A), was experimentally determined for

PSi single layers from acoustic Fabri-Perot interference spec-

tra recorded in the same frequency range using the same ex-

perimental technique as described above (see details in Refs.

11 and 37). The parameter j obtained was 0.585 6 0.030.

For the PSi layers etched at similar conditions, this value

within the frame of an experimental error was validated by

the several works: 0.595 (Ref. 9), 0.58 6 0.03 (Refs. 11 and

37), 0.62–0.76 (Ref. 38), and 0.560 6 0.015 (Ref. 39).

III. THEORY

A. Acoustic velocity in PSi

The density q and the acoustic velocity v in PSi are

functions of porosity / and can be expressed as11

q ¼ q0ð1� /Þ; (1)

v ¼ v0ð1� /Þj�d=<fð1� b/Þ1=2g; (2)

where q0 and v0 are the density and the acoustic velocity of

bulk Si, respectively (see Table II), j is a fitting parameter,

b ¼ wðAþ Bk2
1a2 � iCk3

1a3Þ, where w is 1, f�1; 2
3
f�1 and

p
6
f�1 for voids with the spherical, ellipsoidal, cylindrical,

and right-prism shape, respectively, f is aspect ratio of pores,

a is the pore radius, A, B, and C are the Sayers’ coefficients

depending on the ratio of longitudinal (vL) and shear (vS)

wave velocities (see Appendix), and k1 ¼ x=v1, where

v1 ¼ v0ð1� /Þj�d
. The parameter d ¼ � 1

2
lnð1� b1/1Þ

=lnð1� /1Þ, where b1 ¼ wA, is introduced to make Eq. (2)

consistent with the similar but simpler equation commonly

used in the literature22,37–41

v ¼ v0ð1� /Þj; (3)

such that Eqs. (2) and (3) with the same j intersect at

/ ¼ /1. In this work, we used /1 ¼ 0:5.

As a consequence of the assumptions made in Ref. 11

about porosity dependence of vL and vS, the ratio vL=vS is in-

dependent of porosity and equal to 1.44 for PSi. Thus, the

Sayers’ coefficients are independent of porosity and for PSi

are: A � �0:919; B � �1:86, and C � 2:16.

The acoustic velocity dispersion induced by the effect of

multiple scattering28–30 is also included in Eq. (2), though,

for ka� 1, it can be neglected with b � wA, thus the term

ð1� b/Þ1=2
is always real, and there is no need to use a as a

fitting parameter. We shall note that in bulk Si, the velocity

dispersion is negligible.42,43

As it is seen from Eqs. (2) and (3), increasing porosity /
and increasing the j-parameter lead to decreasing acoustic

velocity v in PSi. Note that Eqs. (2) and (3) are valid in the

effective medium approximation when the pore size is

smaller than the acoustic wavelength. For mesoporous PSi

multilayers studied in our work at the GHz range, this limit

is well fulfilled: ka< 0.03.

B. Fibonacci structure

Though the FS is constructed by stacking two (A and B)

types of layer, physically, there are three types of layer in the

FS: A-type layers and two B-type layers: a single thickness

(B0) and a double thickness (B00) (see Figure 1(b)). The num-

ber of B-letters in a Fibonacci word is: NB ¼ NB0 þ 2NB00 ,

where the upper index corresponds to the type of layer.

Clearly, the number of A-type layers is equal to the number

of B-type layers: NA ¼ NB0 þ NB00 . Further, NA in the FS of

any L is equal to the L-th member of the natural Fibonacci

sequence whereas NB, NB0 and NB00 are equal to the L-th

members of the natural Fibonacci-like sequences given in

Table I. Thus, for L¼ 7, we have NB0 ¼ 9 and NB00 ¼ 12.

C. Distributed Bragg reflector

1. Position and width of forbidden gaps

In optics, a BS consists of a number of repeated layer

pairs where each pair consists of a layer of thickness dA

FIG. 2. Schematics of the experimental setup used for the acoustic transmis-

sion measurements.

TABLE I. Number of layers in Fibonacci structures of different L.

L 0 1 2 3 4 5 6 7 8 9 10 … L

NA 1 1 2 3 5 8 13 21 34 55 89 … NL�1 þ NL�2

NB 0 1 2 4 7 12 20 33 54 88 143 … NL�1 þ NL�2 þ 1

NB0 0 1 2 2 3 4 6 9 14 22 35 … NL�1 þ NL�2 � 1

NB00 0 0 0 1 2 4 7 12 20 33 54 … NL�1 þ NL�2 þ 1

094903-3 G. N. Aliev and B. Goller J. Appl. Phys. 116, 094903 (2014)
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having refractive index nA followed by a layer of thickness

dB with index nB. The reflectivity of the structure is deter-

mined by the number of repeating pairs and by the refractive

index contrast between the layer materials. The strong reflec-

tivity profile—the optical band gap—appears around the

Bragg wavelength (in vacuum), kBr, given for normal inci-

dence by: mkBr=2 ¼ dAnA þ dBnB, where mð¼ 1; 2; 3…Þ is

the order number for the multiple stop bands. This can be

rewritten as: mc=2fBr ¼ dAc=vA þ dBc=vB, where fBr is the

Bragg frequency and vAðBÞ is the speed of light in the layer

material. In this form, the Bragg condition can be applied for

acoustic waves. Thus, for the BS, the center frequency of the

stop bands fBr of different order m, for normal incidence, can

be expressed as

f
ðmÞ
Br ¼ m=2t; (4)

where t ¼ tA þ tB; tA ¼ dA=vA; tB ¼ dB=vB, and vAðBÞ is the

acoustic velocity of the layers. The corresponding gap widths

Df b for odd and Df c for even m can be expressed following

Ref. 44 as

Df b
m ¼

2

pt

����M cos
pm t0

2t

� �����; m ¼ 1; 3; 5…;

Df c
m ¼

2

pt

����M sin
pm t0

2t

� �����; m ¼ 2; 4; 6…;

(5)

where M ¼ ðZA � ZBÞ=ðZA þ ZBÞ and t0 ¼ tA � tB.

As follows from Eq. (5), the widths of the gaps change

with increasing m in a complex manner depending on the ra-

tio t0=t. In special cases, when tAðBÞ ¼ p tBðAÞ, where p is an

integer, the gaps of the order m ¼ qðpþ 1Þ, where

q ¼ 1; 2; 3…, are missing. For instance, when p¼ 1, i.e.,

tA¼ tB and t0 ¼ 0, all gaps with even m disappear and the

widths of all gaps with odd m become equal. Such structures,

where the alternating A and B layers are both quarter-wave

retarding with tA ¼ tB ¼ 1=4f
ð1Þ
Br , we call “balanced.” Thus,

for the balanced BS, there are no even-order stop bands. In

the other special case, when p¼ 2, i.e., tB ¼ 2tA; t0 ¼ tA, all

gaps with m ¼ 3; 6; 9… collapse and the widths of all

remaining gaps are equal. However, when p¼ 3, i.e.,

tB ¼ 3tA; t0 ¼ 2tA, and all gaps with m ¼ 4; 8; 12… collapse,

there will be two types of gaps with different width (and,

thus, depth): narrower for orders m ¼ f1; 3gq and wider for

orders m ¼ 2q. In general, there will be a sequence of n ¼
dp=2e types of gap with gap-width increasing with n for

orders

m ¼ f1; pgq; f2; p� 1gq;…; fn; p� nþ 1gq: (6)

The FS, strictly speaking, cannot be balanced in the same

way as the BS: if tA¼ tB, then tB00 ¼ 2tA. However, when BS

gaps of certain orders collapse, the corresponding FS gaps,

spacing around the BS gaps, also collapse. Interestingly, the

center frequencies of the dominant FS gaps, as demonstrated

in Figure 4(b), nearly coincide with the center frequencies cal-

culated for the periodic AB00 structure.

2. Depth of the gaps

The value of the center gap transmittance TBr in the bal-

anced BS consisting of N ¼ NA þ NB quarterwave-layers,

without attenuation considered, can be estimated following

Ref. 45 as

TBr ¼
4v

1þ vð Þ2
; (7)

TABLE II. Acoustic properties of coupling liquid and transducer materials.

q vL vS a=f 2

(g/cm3) (km/s) (km/s) (dB cm�1 GHz�2)

Ga-In 6.35a 2.74a 0 137b

Si 2.329c 8.4332d 5.8446d 9.32e

SiO2 2.150c 5.968c 3.764c 4.46f

ZnO 5.606c 6.400c,g 2.950c,g 13.6h

aReference 50.
bReference 53, (liquid Ga).
cReference 51.
dReference 52.
eReference 54.
fReference 55.
gc-axis.
hReference 56.

FIG. 3. Measured (thick black line) and calculated (thin red line) spectra of

acoustic wave transmission through (a) the BS and (b) the FS on bulk Si sub-

strates with porosity and thickness of A and B layers given in the text. The

transmittance (log power in dB) is normalized to its maximum and corrected

for transducer response. The longitudinal modes of the transducer and the

coupling liquid, and the acoustic losses are included into the calculation.

The dashed green line shows the detecting limit of the experimental system.

For (a), right scale: the dash-dot blue line is the reciprocal wavevector k
(real values) in units of p=d calculated using Eq. (11).
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where v ¼ Zin

Zsub

ZA

ZB

� �N
, and Zin and Zsub are the acoustic impe-

dances of the incident and substrate media, respectively. To

estimate the center gap transmittance for the unbalanced BS,

we suggest Eq. (7) with modified v! v0:

T
mð Þ

Br �
4v0

1þ v0ð Þ2
; (8)

where

v0 ¼ Zin

Zsub

1þM0

1�M0

� �N

; (9)

and

M0 ¼

����M cos
pm t0

2t

� �����; m ¼ 1; 3; 5…����M sin
pm t0

2t

� �����; m ¼ 2; 4; 6…:

8>>><
>>>:

(10)

From Eq. (7), M0 ¼ ptDf=2. The expected center gap reflec-

tivity is R
ðmÞ
Br ¼ 1� T

ðmÞ
Br .

3. Folded phonons

Eq. (5) is derived by the authors of Ref. 44 in the frame-

work of Rytov’s model.46 The model gives a relation

between the normal components of the phonon wavevectors

of individual layers kA and kB and the wavevector of the

superlattice k, assuming an infinite number of AB pairs

cos kdð Þ ¼ cos kAdAð Þcos kBdBð Þ

� 1

2

gA

gB

þ gB

gA

� �
sin kAdAð Þsin kBdBð Þ; (11)

where d ¼ dA þ dB. Non-zero imaginary values of k corre-

spond to the frequencies of forbidden gaps.

D. Transfer matrix method

The ATS have been modeled using a generalized matrix

method given by Mitsas and Siapkas26 for optical wave prop-

agation through a multilayered structure. At normal inci-

dence, this method can be used for acoustic waves by

replacing the optical wave number with the acoustic wave

number k ¼ x=v, where v is the sound velocity (shear or lon-

gitudinal) and x ¼ 2pf is the angular frequency, and by

replacing optical admittance, i.e., refractive index, with the

parameter g ¼ ðkKÞ�1
, where K is a stiffness constant.47,48

For waves propagating in the [100] direction of a material

with cubic symmetry, KL ¼ c11 ¼ qv2
L for longitudinal acous-

tic waves and KS ¼ c44 ¼ qv2
S for shear waves.11 As one can

see, g�1 ¼ xZ, where Z ¼ qv is the characteristic acoustic

impedance. The acoustic potential u ¼ P=qx2, where P is

acoustic pressure, in the incident (in) and output (Nþ 1)

media (assuming them to be infinite) can be expressed for

longitudinal plane waves propagating in the z-direction as49

uinðz;x; tÞ ¼ ðAþineizkin þ A�ine�izkinÞe�ixt;

uNþ1ðz;x; tÞ ¼ AþNþ1eiðzkNþ1�xtÞ;
(12)

where t is time, kin and kNþ1 are the wavenumbers of the

incidence and output media, respectively, Aþin; A�in, and AþNþ1

are the amplitudes of waves propagating in the positive (þ)

and negative (�) directions of the z-axis. These amplitudes

are connected to each other by the system of equations26

Aþin
A�in

� �
¼ G

AþNþ1

A�Nþ1

� �
; (13)

where G is called the system transfer matrix. The amplitude

A�Nþ1 is equal to zero while wave incidence is considered

only from one side. Reflectance and transmittance are

defined as r ¼ A�in=Aþin and t ¼ AþNþ1=Aþin, respectively. G is

obtained by consecutive multiplication of reflective (W) and

phase (U) matrices for each interface and layer in the multi-

layered structure consisting of N layers:

G ¼ W0=1U1W1=2U2…WN=Nþ1 ¼
G11 G12

G21 G22

� �
: (14)

The index 0 here corresponds to the incidence medium.

The reflective matrix for the interface between the

ðj� 1Þ-th and j-th layers is given as

FIG. 4. (a) The simulated ATS of the BS (28 pairs), thick red line, and the FS

(L¼ 7), thin blue line. The layer porosity and thicknesses for both structures

are: /A ¼ 0:69; /B ¼ 0:49; dA ¼ 1:792 lm, and dB ¼ 2:367 lm. Overall

thicknesses of both structures are �116 lm. The acoustic losses and the

effects of transducers, substrate, and coupling liquids are not included. (b) The

simulated ATS of the FS as in (a), thin black line, the periodic structures

fAB00g � 19 with overall thickness of 124 lm, dashed red line, and

fAB0AB00AB0AB00AB00g � 4 with overall thickness of 112 lm, thick green line.

094903-5 G. N. Aliev and B. Goller J. Appl. Phys. 116, 094903 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

138.38.178.74 On: Fri, 05 Sep 2014 17:15:47



Wj�1=j ¼
1

tþj

1 �r�j
rþj tþj t�j � rþj r�j

 !
; (15)

where

rþj ¼
gj�1 � gj

gj�1 þ gj

; r�j ¼ �rþj ; tþj ¼ 1� rþj ; t�j ¼ 1� r�j :

The phase matrix for the j-th layer is given as:

Uj ¼ eikjdj 0

0 e�ikjdj

� �
; (16)

where kj and dj are the z-component of the wavevector and

the thickness of the j-th layer, respectively.

From Eq. (13),

r ¼ G21=G11; t ¼ 1=G11: (17)

The power reflectance and transmittance are obtained as

magnitudes of the complex vectors r and t, respectively

R ¼ r	r; T ¼ Zin

< ZNþ1f g t	t; (18)

where the asterisk denotes complex conjugate and Zin and

ZNþ1 are acoustic impedances of input and output media,

respectively.

Without including the effect of transducers into the calcu-

lation, left and right half-spaces were Ga-In liquid. The effect

of transducers was included by adding a 520 lm thick Si layer

followed by a �0:4 lm thick SiO2 layer to both sides of the

structure, symmetrically. ZnO was taken to be the material of

left and right half-spaces, and coupling liquid was taken to be

the layer with finite thickness (�1–50 lm). The acoustic prop-

erties of ZnO, SiO2, and Ga-In eutectic are given in Table II.

The described transfer matrix method was chosen for our

numerical calculations because of its convenience in including

wave scattering by interface roughness. We have to note that

the method is not valid for calculation of reflection and trans-

mission coefficients of acoustic waves in solid at oblique inci-

dence. The appropriate method49,57,58 must be used in that case.

E. Scattering by interface roughness

Interface roughness can be considered by modification

of quantities given in Eq. (15) as23–27

~rþj ¼ rþj e�2k2
j�1

r2
j ;

~r�j ¼ r�j e�2k2
j r

2
j ;

~t
þ
j ¼ tþj e�

1
2

kj�1�kjð Þ2r2
j

~t
�
j ¼ t�j e�

1
2

kj�kj�1ð Þ2r2
j ;

(19)

where rj is the roughness (the root mean square deviation of

the surface to the planarity) of the ðj� 1Þ=j interface.

F. Acoustic losses within a layer

Attenuation can be included by making the wavenumber

of an attenuating layer complex,29 such that ~k ¼ k � ia,

where a is an attenuation coefficient of the layer (the index j
is omitted for brevity). The acoustic impedance of the attenu-

ating layer also becomes complex. With the definition of

attenuation given, the complex impedance of the layer is

Z
�
¼ qx= k

�
¼ Zð1þ ieÞ=ð1þ e2Þ; (20)

where e ¼ a=k is an extinction coefficient of the layer.

The attenuation coefficient a can be split to two components

depending on the mechanism of acoustic losses: a ¼ aatt þ asca,

where aatt / x2 corresponds to the acoustic losses due to vis-

cous damping, and asca / x4 corresponds to the acoustic losses

in porous material due to multiple scattering by voids.

1. Akhiezer damping

At finite temperatures, there exists in all materials an

equilibrium distribution of thermally-excited phonons.

Propagating acoustic waves disturb this phonon equilibrium,

with a resulting energy loss. This loss mechanism is known

as Akhiezer damping, which is assumed to be dominant in

semiconducting materials.59,60 The slightly simplified for-

mula for Akhiezer damping (see detailed discussion in Ref.

60) is given as61

aatt ¼
3�c2KTx2

q�v2v3
; (21)

where �c is the averaged Gr€uneisen parameter, �v�3 ¼
ðv�3

L þ 2v�3
S Þ=3 is the Debay average velocity,60 K is the

thermal conductivity, T is the temperature, and v is the veloc-

ity (vL or vS) of the propagating wave. The effective thermal

conductivity of PSi can be expressed as62

K ¼ K0ð1� /Þbþ1
(22)

where b ¼ 1:3� 2 is a parameter depending on the morphol-

ogy of PSi and K0 is the thermal conductivity of bulk Si. The

ratio of attenuation coefficients of PSi and bulk Si can be

written as:

aatt

a0

¼ �c2

�c2
0

K

K0

q0

q

�v2
0

�v2

v3
0

v3
: (23)

As discussed in Refs. 63 and 64,

�c � 3
2
ðc11 þ 2c12Þ=ðc11 þ 2c44Þ, where cij are elastic con-

stants. The assumption that the elastic constants remain pro-

portional over our range of porosity11 implies that �c is

independent of porosity: �c=�c0 ¼ 1. The acoustic velocities

vL and vS also depend on / in the same functional form (Eq.

(2)), thus �v0=�v ¼ v0S=vS ¼ v0L=vL. Therefore, the attenuation

in a porous layer with respect to the attenuation in a layer of

zero porosity can be written as:

aatt � a0

K

K0

q0

q
v0

v

� �5

: (24)

Using Eqs. (1), (2), (22), and (24), we can write

aatt ¼ a0ð1� /Þb�5ðj�dÞ½<fð1� b/Þ1=2g
5: (25)
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This gives the porosity dependence of the Akhiezer damping

in PSi. The room temperature attenuation coefficient of bulk

Si at 1 GHz is given in Table II. To use in Eqs. (12) and (16),

the attenuation coefficient must be in nepers per unit length59

such that aðNp=cmÞ ¼ aðdB=cmÞ ln10
20

. The extinction coeffi-

cient, corresponding to the attenuation via the Akhiezer

damping, can be expressed as

e ¼ e0ð1� /Þb�4ðj�dÞ½<fð1� b/Þ1=2g
4: (26)

2. Multiple scattering

In the limit of ka< 1, the acoustic losses due to the mul-

tiple scattering by voids are defined30 by the imaginary part

of the term, whose real part is given in Eqs. (2), (25), and

(26)

asca ¼ k1 =fð1� b/Þ1=2g: (27)

IV. RESULTS AND DISCUSSION

A. Characteristics of the structures

Pairs of layers in the structures were designed to form a

halfwave thick layer for �0.6 GHz longitudinal acoustic

waves. The measured average thicknesses were

dA¼ 1.67 lm and dB¼ 2.37 lm for the BS and dA¼ 1.82 lm

and dB¼ 2.33 lm for the FS. These thicknesses were used

as fixed parameters in the simulation. Overall thicknesses

for the BS and the FS were �109 lm and �115 lm,

respectively.

The thicknesses, the characteristic impedances, and the

acoustic velocities for longitudinal waves in the layers of the

fabricated structures and the position and width of the funda-

mental Bragg gap are given in Table III. Note, f
ð1Þ
Br and Df

ð1Þ
Br

given in Table III for the FS are the center frequency and the

width, respectively, of the fundamental gap of the periodic
structure having the constitutive layers as the fabricated FS.

B. Acoustic transmission spectra

Figure 3 demonstrates the ATS measured for the BS and

the FS on Si substrates described in Secs. I and II. The result

of modelling all the layers in the system, including trans-

ducers, fluid, and substrate (see Figure 2), is also shown in

Figure 3.

For the BS, in Figure 3(a), the band gaps at 0.63 and

1.86 GHz have a depth of �60 dB, which is less than the

modeled 150 dB. It was not possible to experimentally verify

the predicted 150 dB attenuation for several reasons, which

must be clarified in future work. One reason could be the

fact that our experimental setup was measuring its sensitivity

floor, shown in Figure 3(a) by a dashed green line. However,

we see a truncated gap also in the cases when the experimen-

tal system is not yet hitting its noise floor. A small deviation

from normal incidence can cause truncation of the gap due

to the conversion of longitudinal and transverse modes. This

deviation can be not only from imperfection in alignment of

the transducers but also from the fact that the experimental

coupling of the acoustic waves between the transducers

varies from the idealised model of plane waves. In addition,

wider and shallower gaps can appear due to the unintended

variation of the target thickness and porosity of the etched

layers (the gaps of higher order are more sensitive to this

variation). There is also some discrepancy between theory

and experiment, which comes from the correction procedure

for the combined response of both transducers.

Thus, we can conclude that the stop bands have a depth

of at least 50 dB for the 1st and 3rd order gaps at 0.63 and

1.88 GHz, respectively, and 30 dB and 20 dB for the 2nd and

4th order gaps at 1.26 GHz and 2.51 GHz, respectively. The

existence of the 2nd and 4th order gaps show that the BS is

not balanced (tA 6¼ tB 6¼ 1=4fBr). The 4th gap is not well pro-

nounced since the efficiency of the used transducers is very

low in this region. The fine features of the spectrum are not

noise but the side lobes from the whole structure with an

overall thickness of �109 lm, plus longitudinal modes from

the Si pillars of the transducers (�520 lm) and the bulk Si

substrate (�410 lm) (see Figure 2).

For the FS, in Figure 3(b), the gaps at 0.45 and

0.76 GHz have a depth of �50 dB which, again, is less than

the modeled value of 120 dB for the reasons mentioned

above. These two deeper gaps are accompanied by two shal-

lower gaps at 0.25 and 0.95 GHz. The gaps about 1.8 GHz

are as well pronounced as corresponding 3-rd order gap

of BS. The gaps at 1.2 and 2.4 GHz are weaker than the dom-

inant gaps similar to the 2nd and 4th gaps of the BS in

Figure 3(a).

C. Acoustic losses

Acoustic losses such as attenuation and scattering by

voids, and interface and surface roughness were included

into the calculation. This results in the slope in the baseline

of the ATS with reduced contrast of interference fringes (see

Figure 3). The systematic experimental investigation of

acoustic losses in PSi multilayers was not within the scope

of the present work and future study is needed. We only note

that the roughness of PSi surface is small (�1 nm) and has

negligible contribution (<1%) to the scattering losses.65,66

The roughness of interfaces between layers etched in the

wafers of high doping level as used in our work is also small

(2–5 nm). The interface between the porous layer and the

substrate has been found slightly more rough

(r� 5–15 nm).66,67 The main contribution to interface losses

comes in our case from the unpolished back side of the sub-

strate with r of 50–700 nm.68 The backside roughnesses of

100 nm and 350 nm were used for fitting the BS and FS spec-

tra, respectively. The losses from viscous damping and

multiple scattering by pores were included as described in

TABLE III. Characteristics of the fabricated BS and FS.

dA dB vA vB ZA ZB f
ð1Þ
Br Df

ð1Þ
Br

(lm) (lm) (km/s) (km/s) (MRayl) (MRayl) (MHz) (MHz)

BS 1.67 2.37 4.46 5.62 10.38 13.09 628 249

FS 1.82 2.33 4.31 5.69 10.03 13.24 600 283
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Sec. III F. The thickness of the coupling liquid layer was

�1 lm for the BS and �40 lm for the FS.

D. Chirp

The target high and low porosity values were /A ¼ 0:62

and /B ¼ 0:47. Porosity is difficult to estimate from SEM

pictures because charging affects the contrast profile.9

Therefore, the porosity values were refined by fitting the ex-

perimental data. The best fit (see Figure 3) for the measured

spectra gave porosity of /A ¼ 0:67 and /B ¼ 0:50 for the

BS and /A ¼ 0:69 and /B ¼ 0:49 for the FS. These values

were slightly higher than nominally planned.

Etching of relatively thick PSi structures, such as ours, is

difficult due to the depletion of the etchant resulting in variation

in the etch rate. This, in turn, results in a gradient—not necessar-

ily linear—in both the porosity and thickness of the layers across

the structure. This gradient is known as chirp. It is larger in high

porosity layers due to the larger etching current and the conse-

quent rapid depletion of the etchant. The chirp can be mitigated

by implementing etch-stops during the etching process or by

applying corrections to the etch current and duration time for

each layer. The latter method was used in our case.

Consequently, the layer thicknesses, as mentioned above in

Sec. II, revealed no chirp in SEM measurements. The maximum

uncontrolled porosity gradient over the structure was less than

3% and 7% for low and high porosity, respectively. Uncertainty

in j affects simulation in a similar way to uncertainty in / as

mentioned above in Sec. III A. Therefore, the deviation of the

actual porosity from the nominal values may be smaller than

obtained in simulations if j is varied. However, at fitting, we

decided to use a constant j of 0.585, varying porosity / instead.

Thus, the positive chirp of porosity was included into the simula-

tion implicitly by using averaged porosity for all layers of the

same type in the structure. Although neither disorder nor chirp

of thickness was included in simulation, a good agreement

between the modelled and measured spectra is seen.

E. Folded phonons

The Brillouin zone folded dispersion curve for the real

part of k calculated using Eq. (11) is shown in Figure 3(a).

Attenuation was not included. The curve is in full agreement

with the experimental spectrum and with the spectrum calcu-

lated using the transfer matrix method.

F. Balanced structures

In Figure 4(a), we demonstrate simulated spectra for BS

(28 pairs) and FS (L¼ 7) where tA ¼ tB ¼ 1=4fBr. The poros-

ity and, thus, the velocity and impedance mismatch of the

layers are the same as for the fabricated FS (see Table III).

The layer thicknesses are modified to fulfil the relation

dA=vA ¼ dB=vB keeping the gap frequency f
ð1Þ
Br the same as

before, i.e., 0.6 GHz. The new thicknesses were calculated

as: dA ¼ vA=4f
ð1Þ
Br and dB ¼ vB=4f

ð1Þ
Br and were 1.792 lm and

2.367 lm, respectively.

The amount of AB-pairs in the simulated BS is chosen

to be 28 to keep the same overall thickness as for the simu-

lated FS: �116 lm. The small variation of overall thickness

results mainly in small variation in spacing between the in-

terference fringes (side lobes) of the ATS. This does not

affect either the width or position or depth of the forbidden

gaps. Those are defined by the impedance mismatch, the

thickness of individual layer (A and B) and the number of

AB-pairs in the structure according to Eqs. (4), (5), and (7).

The losses and the effects of transducers and substrate

were not included in the calculation. Note that the frequency

range of the ATS in Figure 4(a) is wider than in Figure 3 and

the spectrum is plotted in dimensionless units f=f
ð1Þ
Br .

It is seen from Figure 4(a) that, for the balanced struc-

tures, the even-order gaps have completely vanished and the

odd-order gaps have become uniform in width and depth as

predicted. In the FS, the gaps occur symmetrically about the

BS gap frequencies. The deepest gaps of the FS are shal-

lower and narrower than the corresponding gaps of the BS of

the same overall thickness. Peaks with transmittance

approaching unity (i.e., 0 dB) are seen between these FS

gaps, and are similar to the mid-gap defect transmitting lines

(defect states introduced when a periodic system is perturbed

by a defect element) in the ATS of microcavities.6,8 The

position of the mid-gap transmission line of the microcavity

is rather sensitive to the cavity phase length. On the contrary,

the position of the transmission lines between FS gaps is

more robust to dimensional change because it is the result of

the whole FS structure. In the case of an unbalanced struc-

ture, however, the FS gaps distributed about the BS gap

become asymmetric in intensity (see Figure 5(a)).

G. “Quasi-Fibonacci” periodic structures

It is shown in Figure 4(b) that the periodic BS con-

structed from 19 A	B	 pairs, where A	 ¼ fAg and

B	 ¼ fBBg, thus tB	 ¼ 2tA	 , roughly mimics the FSjL¼7. The

better approximation of the FS can be achieved by the BS

with A	 ¼ fABABBg and B	 ¼ fABABBABBg. This can be

useful for rough estimation of properties of the FS using the

tools which exploit periodicity.

H. Unbalanced structures

In Figure 5(a), we demonstrate the simulated ATS for

the FS (L¼ 7) and the BS (27 pairs) with tA 6¼ tB. The thick-

nesses dA¼ 1.45 lm and dB¼ 2.82 lm are arbitrary and cho-

sen to make the layers strongly unbalanced with tA and tB not

being integer multiples of each other, but keeping the gap

position the same as before: f
ð1Þ
Br ¼ 0:6 GHz. The transmit-

tance in the center frequency of the odd and the even-order

BS gaps is depicted in Figure 5(a) by the guiding lines. It is

seen that the increase of the depths of the BS gaps is strongly

correlated with the increase of the gap widths according to

Eq. (5) with oscillatory behaviour with a half-period of 2t=t0,
which goes to infinity for t0 ¼ 0. In the FS, the gaps spanned

around the BS gap of the order m are asymmetric about the

center frequency of the BS gap, as mentioned above, and

some gaps almost completely disappear. Nevertheless, the

combined depth of the FS gaps is correlated with the depth

of the corresponding BS gaps.

In Figure 5(b), the correlation between widths and

depths of the BS gaps from Figure 5(a) is demonstrated. As
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it is seen from Figure 5(b), Eq. (8) gives a good approxima-

tion for gap depths in the ATS of an unbalanced BS.

V. CONCLUSIONS

This work provides experimental verification of the

acoustic transmission properties of one-dimensional quasi-

periodic Fibonacci and periodic phononic crystals fabricated

in porous silicon. Transmission spectra for hypersonic longi-

tudinal phonons propagating perpendicularly to the interface

have been recorded. These spectra exhibit phononic gaps

with more than 50 dB depth (measurement is limited by the

accuracy of the experimental system).

The layers were consecutively electrochemically etched

into highly boron doped (100)-Si wafers. Throughout the over-

all thickness of about 110 lm, the layers were etched almost

without chirp in thickness and with moderate chirp in porosity.

The spectra were simulated using the transfer matrix

method. It has been shown that at normal incidence of acous-

tic waves, the optical methods can be used for simulation of

acoustic wave propagation through a multilayered structure.

By just changing a scaling factor, acoustic devices can be

designed in the same way as optical devices. However, the

important difference—the acoustic velocity dependence on

porosity—must be considered in designing acoustic devices.

The formula describing velocity dispersion via multiple scat-

tering by voids has been given (Eq. (2)). The formula is con-

sistent with the one commonly used in the literature.

It has been shown that, as result of the proportionality of

elastic constants as a function of porosity, the averaged

Gr€uneisen parameter for porous silicon is constant. The con-

stant Gr€uneisen parameter simplifies the formula for porosity

dependence of the Akhiezer damping (Eq. (25)).

The periodic and quasi-periodic structures consisting of

layers which are not quarter-wavelength have been simulated

and analyzed. Special cases when the path-length of one

layer is an integer multiple of the second layer have been an-

alyzed. Gaps of certain orders will collapse in these cases.

An analytical expression approximating the relation

between the widths and the depths of forbidden gaps in

unbalanced periodic structures has been suggested (Eq. (8)).

Good agreement with the numerically simulated data has

been demonstrated.

The natural Fibonacci-like sequences for calculating the

number of B0 and B00 type layers in Fibonacci structure have

been given (Table I).

Periodic structures mimicking quasi-periodic Fibonacci

structure have been simulated.

We hope that the methods described here will be of as-

sistance in the further development of both periodic and non-

periodic phononic devices working in the hypersonic region,

especially those fabricated from PSi and similar porous

materials.
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APPENDIX: SAYER’S COEFFICIENTS

A ¼ 2� 3

4
n2 þ 5 1� 9

4
n2

� ��1

;

B ¼ � 16

15
þ 5

12
n2 � 3

16
n4 þ 7

15
1� 19

12
n2

� ��1

� 5

9
5� 9

4
n2

� �
1� 9

4
n2

� ��2

;

C ¼ 4

9
� 1

2
n2 þ 2

9
n3 þ 3

16
n4

þ 5

3
1� 9

4
n2

� ��2

1þ 3

2
n5

� �
;

n ¼ vL=vS:

1W. Steurer and D. Sutter-Widmer, J. Phys. D: Appl. Phys. 40, R229

(2007).

FIG. 5. (a) The simulated ATS of the BS (27 pairs), thick red line, and the

FS (L¼ 7), thin black line. Porosity of the layers is the same for the BS

and FS: /A ¼ 0:69 and /B ¼ 0:49, as in Figure 4. The thicknesses are:

dA ¼ 1:45 lm and dB ¼ 2:82 lm. The transmittance in the center frequency

of the odd (even) order BS gaps is depicted by the circles (squares) and

guided by the dashed line. (b) Correlation between the gap width and the

gap depth. Left scale, open circles: the gap width calculated using Eq. (5).

Right scale: the transmittance in the center frequency of the gaps obtained

from the numerical simulation (close squares) and calculated using Eq. (8)

(close triangles). The odd and the even gaps are guided by the dashed

(green) and the dash-dot (blue) lines, respectively.
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