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ABSTRACT  

The uneven mapping of the Maltese continental shelf precludes a full assessment of its marine 

habitats, important for their monitoring and conservation in line with the EU Marine Strategy 

Framework Directive and local initiatives. From 2009 to 2012, high-resolution multibeam 

echosounder (MBES) surveys offshore the NW and E coasts of the Maltese archipelago were 

carried out, covering a total area of 1,408.3 km2 with a maximum resolution of 1 m, at depths from 

1.5 to 263 m. The types of benthic habitats occurring on the continental shelf often showed subtle 

acoustic variations. This article aims at 1) integrating analyses of the bathymetry and acoustic 

textures with ground-truthing (grab samples) in key areas; 2) validating this combined approach by 

rewriting an existing benthic habitat map of the eastern continental shelf of Malta; 3) exploiting this 

ground-truthed classification to calibrate an unsupervised classification of a dataset acquired with a 

different sonar. The main results obtained from these analyses are i) a sediment map of the 

continental shelf of NW Malta and east of the Maltese archipelago – classifying in detail bedrock, 

rocky blocks, coarse sand and gravel, fine to medium sand and maërl, sand and gravel – that 

supports the geomorphological interpretation of the seabed features; ii) an automatic classification 

of the seafloor morphology, highlighting a very gentle sloping seabed crossed by the shelf break 

and by palaeo-river valleys; iii) the first full benthic habitat map of the continental shelf offshore E 

and NW coast of Malta obtained with a semi-automatic classification. In this work, we highlight and 

explain the main differences in seafloor sediment coverage, its morphology and the relative 

occurrences of benthic habitats between the NW and E sides of the Maltese archipelago. 
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1. INTRODUCTION 

Shallow waters host the most complex mosaic of benthic habitats, making them the most 

productive marine environments (Eyre and Maher, 2011; Gray, 1997). Increasingly, anthropogenic 

activities are concentrating along the coasts, in shallow waters in particular. They include fishing 

(comprising trawl fishing), aquaculture, harbour and shipping activities, mineral exploration and 

exploitation, and offshore construction (e.g. for marine renewable energy, like wind farms). These 

activities all have potentially important impacts on the marine environments and habitats, which 

need to be monitored and controlled. The knowledge of marine ecosystems spatial distribution and 

their quality is fundamental to protect them from anthropogenic actions (Jackson et al., 2001). 

Thus, habitat maps are a necessary tool for marine environmental assessment and management, 

protection of valuable habitats, hazards assessment and monitoring human activities. 

There are many approaches to benthic habitat mapping, depending on the type of acoustic data 

and its spatial resolution, the types and varieties of habitats under investigation, the size of the 

datasets and the quality of any ancillary information available (from ground samples to video 

transects of sub-bottom profiles). For a rapid view of the current state of the field, the reader is 

directed toward the more recent articles of Brown and Blondel (2009), Brown et al. (2011), 

Ierodiaconou et al. (2011), Lucieer and Lamarche (2011), Micallef et al. (2012), Diesing et al. 

(2014), McGonigle and Collier (2014) and Montereale Gavazzi et al. (2016) and references therein. 

It is possible to apply a single method or to combine several (e.g. hybrid approaches, multi-method 

ensembles) as suggested by Diesing et al. (2014) or Montereale Gavazzi et al. (2016). This 

second approach has been repeatedly shown as the most effective way to improve any kind of 

classification since the final seabed classification is supported by more than one analysis (Erdey-

Heydorn, 2008; Wright and Heyman, 2008; Marsh and Brown, 2009; Lamarche et al., 2011; 

Micallef et al., 2012). 

These different procedures can use automatic or manual classification of the data. Automatic 

classification uses either signal-analysis or image-analysis methods: the latter can be applied to 

data acquired with different instruments, and both methods are repeatable, quantitative and 

objective – as suggested by Diesing et al. (2014) – allowing to process large amounts of data 

faster. Signal-based analyses are associated to individual measurements, at the level of the 

backscatter value, whereas image-based ones better described the larger-scale organisations of 

seafloor substrate and benthic habitats. Again, there is a plethora of approaches developed 

specifically for sonar measurements. These include Principal-Components Analyses of multiple 

attributes within proprietary software packages, e.g. QTC-Sideview (Preston et al., 2000; 

McGonigle et al., 2009; Preston, 2009); artificial neural network techniques (Marsh & Brown, 

2009); Bayesian decision rules (Simons & Snellen, 2009); decision trees (Dartnell and Gardner, 

2004; Rooper and Zimmermann, 2007;  Rattray et al., 2009; Ierodiaconou et al., 2011; Che Hasan 

et al., 2012a); support vector machines (Che Hasan et al., 2012b); Random Forest (Che Hasan et 

al., 2012b; Lucieer et al., 2013); Maximum Likelihood Classifier (Cochrane, 2008; Buhl-Mortensen 

et al., 2009; Ierodiaconou et al.,2011; Che Hasan et al.,2012b); Texture Analysis (Blondel, 1996; 

Blondel et al., 1998; Gao et al., 1998; Huvenne et al., 2002; Cochrane and Lafferty, 2002; Gómez 

Sichi et al., 2005; Huvenne et al., 2007; Blondel and Gómez Sichi, 2009). 

The Mediterranean Sea represents an ideal natural laboratory for benthic habitat mapping and 

monitoring due to: i) its complex geological setting and seafloor geomorphology; ii) high diversity of 

its important ecosystems; iii) high density of human activities impacting on seafloors and habitats. 

The Maltese seafloors in particular host habitats of high ecological value, going from white, red and 

black corals (Deidun et al. 2010) to seagrass meadows and maërl beds (Borg et al., 1998, 2005, 



2009; Galdies and Borg, 2006; Sciberras et al., 2009). They are often located in touristic areas, 

close to harbour zones and fisheries, and part of these habitats are recognized as marine Natura 

2000 sites.  

The present study focuses on the Maltese archipelago and its marine habitats, presented in 

Section 2. The Materials and Methods are explained in Section 3, showing the different types of 

acoustic measurements and supporting data (grab samples in representative locations) that we 

collected, along with recent information on marine habitats from the Malta Environment and 

Planning Authority (MEPA; Borg et al., 1998, 2005, 2009; Scieberras et al., 2009). The first 

objective is to outline a quantitative, repeatable, automatic or semi-automatic procedure to map the 

distribution of benthic habitats around Malta. The large amounts of high-resolution acoustic data 

(bathymetry and backscatter), in two different locations (E and NW continental shelves of the 

Maltese archipelago) and with different echosounders, justify the need for image-based 

approaches, namely the automatic analysis of seafloor morphology (Section 3.2) and semi-

automatic classification of backscatter with Textural Analysis (Section 3.3). The second objective of 

this study is to extend an existing and ground-truthed classification (Micallef et al., 2013) to an 

adjacent dataset where no seafloor samples are available. These results are presented for each 

region individually (Section 4). Thus, we present a single benthic habitat classification for two 

adjacent datasets acquired with different devices. The differences in habitat distributions between 

the E and NW sides of the Maltese archipelago are analysed in Section 5, compared to each other 

and to previous works in neighbouring areas, showing the synergy between approaches and 

contributing to the knowledge of the marine habitats around Malta at depths ranging from 1.5 

(immediate near-shore) to 263 m (continental break).  

 

2. STUDY AREA 

The Maltese archipelago is located in the Sicily Channel on the Malta Plateau and comprises the 

islands of Malta, Gozo and Comino. An Oligocene-Miocene succession made up of mainly 

carbonatic formations (Pedley et al., 2002) characterises the geological setting of the archipelago 

(Fig. 1): (a) Lower Coralline Limestone Formation; (b) Globigerina Limestone Formation; (c) Blue 

Clay Formation; (d) Upper Coralline Limestone Formation. The whole succession slopes 4° 

towards NE because of the uplift and tilting due to the location of the archipelago on a shoulder of 

the Malta Graben (part of the Pantelleria Rift system; Pedley et al., 2002). The islands are also 

affected by two fault systems: the WSW-ENE-oriented system is the oldest one and its major 

lineament is the Great Fault; the NW-SE-oriented system is the most recent one, parallel to the 

Pantelleria Rift, and its major fault is the Maghlaq Fault (Dart et al., 1993; Putz-Perrier and 

Sanderson, 2010). This tectonic setting and the superimposition of lithologies with different 

mechanical behaviour and resistance to erosion are the main agents controlling the land- and 

seascape. 

The geomorphology of the Island of Malta has been largely investigated by Alexander (1988), 

Magri (2006), Devoto et al. (2012), Mantovani et al. (2013), Biolchi et al. (2016). The Maltese 

landscape is tectonically and lithologically controlled and modelled by marine action processes, 

karst, fluvial and gravity-induced processes. The ENE-WSW fault system is responsible for the 

horst-and-graben structure both at small and large scale (Dart et al., 1993), especially in the area 

north of the Great Fault. The NW-SE fault system controls the trend of the northern and southern 

coasts of the islands. Generally, on the E side of the archipelago, low-lying coasts occur (i.e. 

sloping coasts and shore platforms), while plunging cliffs and boulder screes characterise the 



western and southern coasts of the islands. Screes are widespread, especially along the NW coast 

of Malta, and are due to the development of mass movements, mainly block slides. The latter 

involve the Upper Coralline Limestone plateaus and the underlying Blue Clay terrains: limestone 

blocks detached from the carbonate plateaus and slide downhill over the clayey slopes. Rock fall 

and superficial earth flow/slides are common processes too. Also karst processes are widespread, 

creating karst pavements, speleothems, caves, dolines and sinkholes (Pedley et al., 2002; Galve 

et al., 2015). Due to the 4°-tilting toward NE, the hydrography developed with a SW-NE orientation, 

with river valleys and temporary water streams (named wied in Maltese).  

Preliminary results about the morphological features and evolution of the continental shelf of the 

Maltese archipelago were presented by Micallef et al. (2013) and Foglini et al. (2016). The 

differences in landscape between the E and NW areas of Malta observable on land are reflected 

on the seafloor. On the E side of the islands, there is a wide and almost flat continental shelf, 

bordered by an escarpment parallel to the present-day coast and crossed by the submerged 

prolongations of the river valleys. Karst features and marine terraces are also present. On the NW 

side of Malta, the continental shelf is very narrow and fragmented and the escarpment is 

constituted by subvertical cliffs and marine terraces; the main landforms of the shelf are given by 

the submarine extension of the coastal landslides resulting in large accumulations of rocky blocks. 

The marine habitats of the Maltese seafloor are characterised by the presence of white corals 

deeper than 400 m, red and black corals at intermediate depths (Deidun et al. 2010), seagrass 

meadows in the infralittoral zone and maërl in the circalittoral zone (Borg et al., 1998, 2005, 2009; 

Galdies and Borg, 2006; Sciberras et al., 2009). The prevailing occurrence of red coral on the 

seafloor offshore the NW coasts of the Maltese Islands, as recorded by Deidun et al. (2010), might 

be attributed to the seabed morphology and composition (mainly rocky with pockets of 

coralligenous biocoenosis), the sea currents chiefly from the NW and the restriction of the 

continental shelf causing an abrupt increase in sea depth, forming submarine cliffs and vertical 

walls.  

The dominant benthic habitats in shallow waters, and mainly offshore the E coasts of the 

archipelago, are sandy bottoms with seagrass meadows (Posidonia oceanica and Cymodocea 

nodosa); at 40 m and even deeper, bare sands occur with seagrass meadows; the circalittoral 

zone is characterised by a strip of maërl and then fine sediments at 80 m and deeper (Borg et al., 

1998). In particular, Borg et al. (2009) described the types of bed on which P. oceanica could be 

settled. From shallow to deep water, they vary from small patches of P. oceanica on rocky 

substratum, to reticulate beds settled on soft sediment interspersed with bare sand, continuous 

and/or reticulate beds on matte and finally both reticulate or patches of P. oceanica. The 

abundance of seagrass meadows on the Maltese seafloors can be attributed to water clarity with 

no eutrophication, due to the absence of permanent hydrography, and can also be influenced by 

the submarine geomorphology and the hydrodynamic conditions of the area (Drago, 1999). 

Deeper than 44 m, P. oceanica and Cymodocea nodosa habitats are replaced by the occurrence of 

maërl, a type of benthic habitat characterised by a high diversity of associated macrobenthos (Borg 

et al., 1998; Sciberras et al., 2009). It is formed by accumulations of calcareous rhodophytes 

forming a rhodolith-like shape and, in the NW Mediterranean, it can occur down to 65 m deep 

(Pérès, 1985). On the seafloor offshore the E Maltese coasts, a small patch of relict maërl was first 

found in 1994 at a depth of 42 m offshore the Island of Comino, as confirmed by Borg et al. (1998). 

Sciberras et al. (2009) characterised the species occurrence in Maltese maërl. It has been found at 

depths of ca. 40 – 100 m, in particular the rocky shoal of Sikka Il-Bajda (off Mellieha Bay) is 

covered by beds extending north-eastward offshore Gozo. 



3. MATERIALS AND METHODS 

3.1 Data 

The datasets analysed were collected offshore the E coasts of the Maltese archipelago and 

offshore the NW coast of the Island of Malta, north of the Great Fault (Fig. 1).  

The E dataset (offshore from north Gozo to south-east Malta – 1,390 km2) was acquired with a 

Kongsberg multibeam echosounder (MBES) EM710 (70-100 kHz) installed on board the R/V 

Urania of the CNR (Italy). In this area, grab samples of the seafloor were also collected (Fig. 2). 

Bathymetric and backscatter data offshore the NW coast of Malta (from Marfa Ridge to Ras Il-

Pellegrin promontory – 18.53 km2) were acquired with the wide swath sonar system SWATHplus-L 

(117 kHz) installed on board the catamaran Isis II of the AquaBioTech Group. High-resolution 

bathymetry (2-m resolution seafloor DEM; Fig. 1)  and backscatter data (1-m resolution for the NW 

dataset and 2-m resolution for the E dataset) of the Maltese continental shelf were processed 

using CARIS HIPS and SIPS, in order to analyse the seafloor geomorphology and the backscatter 

image. 

Data on the distribution of Posidonia oceanica on the Maltese seafloor are available from MEPA 

and have been published by Borg et al. (1998, 2005, 2009) and Sciberras et al. (2009). This 

biological information will be overlaid on the final maps resulting from the combination between the 

geomorphological and backscatter texture analyses. 

 

3.2 Morphological classification 

In the present work, a morphometric analysis of the Maltese bathymetry was carried out in order to 

produce an automatic seafloor morphological classification into crests, depressions, slopes and flat 

areas. The morphometric analysis was performed using the Benthic Terrain Modeller (BTM) 

toolbox implemented for ArcGIS 10.x (Wright et al., 2005; Lundbland et al., 2006). This toolbox 

allows to calculate environmental variables, such as the slope, the Bathymetric Position Index 

(BPI) and the standardised BPI. The slope is the first derivative of the bathymetry and shows the 

inclination of the seafloor expressed in degrees. The BPI is the Topographic Position Index 

described by Wright and Heyman, 2008 and Jenness et al., 2011, but applied for the bathymetry 

instead of the emerged topography. It quantitavely defines the position of each points with respect 

to the surroundi8ng areas. The standardised BPI is a statistical measure that overcomes the scale-

dependency of BPI data, as suggested by Verfallie et al., 2007. Among the tools included in the 

BTM toolbox, we used the Zone Classification Builder which is a codified flow chart that 

automatically classifies seafloor morphology combining the properties of slope, BPI and 

standardised BPI. We manually set a slope threshold at 5° in to distinguish between gentle and 

steep slopes and to highlight also subtle variations of the slope. Then, the variables derived from 

the bathymetric DEM (slope, BPI, standardised BPI) and the selected parameter (slope threshold 

of 5°) were combined to automatically identify distinct seafloor morphometric regions. The resulting 

seafloor morphological classification is presented in Fig. 2, where we extracted four classes: 

crests, depressions, flat areas and slope. 

 

3.3 Backscatter Texture Analysis 



The decision to apply TexAn Texture Analysis to the Maltese datasets instead of any other 

methodology was motivated by the following factors: 

i. it is an image-based segmentation method and a feature-based approach: it identifies 

acoustic patterns and specific features at the local or regional level. An image-based 

segmentation can be applied to datasets acquired with different devices giving comparable 

results, as in this work. Moreover, the analysis of acoustic patterns typical of specific 

features is the best way to describe the seafloor substrate, since the analysis of the 

backscatter signal would have been a partial characterisation of the seafloor due to the 

occurrence of features with the same signal or more signals for the same features 

according to the variation of grazing angle. 

ii. it identifies textures not distinguishable by human eye, making the classification more 

objective (Blondel, 1996);  

iii. it is based on Grey Level Co-occurrence Matrices (GLCMs) that have been proven to be 

the most adaptable tools for textural analyses of sonar imagery (Blondel, 1996; Gao et al., 

1998; Micallef et al., 2012); 

iv. it is not influenced by depth, data acquisition choices and variation in pulse lengths during 

the acquisition: along with the adequate processing performed with CARIS software, any 

variations at very large scales would be ignored by the localised texture analyses (Blondel 

et al., 2015). The individual acoustic responses from seabed patches are combined into 

MBES pixels, 1-m2 in this case. They are modulated by the spatial scale at which the 

seabed changes, which can be smaller or larger than 1 m, and by the amount of acoustic 

penetration into the seabed (estimated at centimetres for the frequencies used here). Their 

variations are best expressed as textures, and the TexAn software (Blondel, 1996) has 

been used successfully to identify and quantify subtle acoustic patterns in sidescan sonar 

imagery (e.g. Huvenne et al., 2002) and in MBES imagery (e.g. Blondel and Gómez Sichi, 

2009), in particular for similar terrains in the coastal regions of Malta (Micallef et al., 2012), 

and to relate them to specific habitats, validated with ground-truthing; 

v. two benthic habitat maps are already available for the dataset located offshore the E coasts 

of the Maltese archipelago. The first one was performed by Micallef et al. (2012) for a 

portion of the seafloor located in coastal waters (6-57 m deep), between Marfa Ridge and 

Salina Bay (see Fig. 1B in Micallef et al., 2012), that is not comprised in the dataset 

analysed here. A more recent classification of the entire E dataset was produced by Micallef 

et al. (2013). We decided to apply the same approach that they used in the previous works: 

a combination of morphometric classification with textural analysis of the backscatter image 

to produce a ground-truthed benthic habitat map. This decision was motivated by the fact 

that we wanted to reproduce the same classification for the E dataset in order to extend it to 

the NW dataset that cannot rely on seabed samples and was acquired with an 

interferometric system, different from the MBE used for the E dataset. 

Textures are quantified by the co-occurrence of identical grey levels at specific distances from each 

other, within computation windows of a size commensurate to the morphological processes of 

interest. The full details are given in Blondel (1996), Blondel and Gómez Sichi (2009) and Micallef 

et al., (2012) inter alia, and they will not be repeated here. MBES backscatter imagery expressed 

pixels as calibrated dB values: they are initially resampled to 8-bit grey levels, yielding resolutions 

of ca. 0.3 dB and 0.1 dB per grey level, for the E and NW datasets respectively. Quantified over a 

specific number of grey levels (noted NG, decreasing from 256 down to 8 by factors of 2), this high 



radiometric resolution should allow distinguishing the more subtle variations in textural patterns. 

These are quantified using the indices of entropy and homogeneity, calculated over windows of 

different sizes (noted WDSZ, varying from 60 down to 10 pixels square by steps of 5 pixels) and for 

inter-pixel displacements (noted SZ) from slightly less than the window size down to 5 pixels, again 

by steps of 5 pixels.  

In order to classify the backscatter image for the different type of substrate, it is necessary to select 

Training Zones, areas representative of the main acoustic facies within each dataset. They are 

used to train the model in the identification and separation of the acoustic patterns representative 

of each type of seafloor substrate. Training Zones need to be small enough to incorporate only one 

type of facies, if possible, but they also need to be large enough that they yield enough textural 

signatures (entropy/homogeneity pairs) to be statistically significant. For the E dataset, Training 

Zones of 80 × 80 pixels (i.e. 160 × 160 m on the ground) were used to define 10 Training Zones, 

further identified with grab samples (Fig. 3A; Table A1). The selection of Training Zones centred on 

the location of grab samples allow an automatic ground-truthing of the classification for the E 

dataset. For the NW dataset, they were chosen as 82 × 82 pixels (i.e. 82 × 82 m on the ground), 

and 12 different Training Zones were selected (Fig. 3B; Table A2). 

After the selection of the Training Zones, GLCMs were calculated for these selected areas, 

averaged over all orientations possible, using different values of the number of grey levels NG, the 

extent of the area over which their textures are distinct enough (WDSZ) and the intrinsic scale at 

which these changes occur (SZ). At this stage, it is necessary to identify the optimal combination of 

NG, WDSZ and SZ that better separate the Training Zones within the diagram. The indices 

reported on the horizontal and vertical axes are entropy and homogeneity: the best textural indices 

to be applied for seafloor backscatter image classification, as evaluated by Blondel (1996) and 

later confirmed by Gao et al. (1998) or Cochrane and Lafferty (2002). Entropy is higher for rougher 

textures, lower for smoother or more organized textures. Conversely, homogeneity quantifies the 

amount of local similarities (it is also called inverse-difference moment by some authors; see 

Blondel, 1996). The inverse scale used in TexAn means it is lower for more organised textures, 

and higher as textures include more heterogeneous objects, e.g. blocks within a smooth 

background.  

For the E dataset, the optimal separation between Training Zones was found for NG = 64 grey 

levels, WDZ = 50 pixels and SZ = 5 pixels. This means that, based on their textures, the different 

regions were best distinguished if looking at differences of more than 1 dB, over scales of 10 m but 

within ranges less than100 m. The progression in entropy and homogeneity is associated with 

increasing grain sizes. The parts covered by fine to medium sand and the more homogeneous 

areas have lower entropies and homogeneities (Fig. 4). Both textural signatures increase for 

coarse sand (slightly rougher but less homogenised), coarse sand, gravel and blocks of calcarenite 

(rougher textures at this scale, with local organisation but no organisation visible at scales close to 

60 m).  

For the NW dataset, TexAn found an optimal separation between Training Zones (Fig. 4) for NG = 

64 grey levels, WDSZ = 60 pixels and SZ = 5 pixels. This means that, based on their textures, the 

different regions are best distinguished if looking at differences of more than 0.4 dB (the full 

radiometric range of 25.5 dB, Fig. 3, resampled onto 64 grey levels), over scales of 5 m but within 

ranges of less than 60 m. These values are comparable with those of the E dataset. 

The textural parameters identified as optimal for the E dataset are then used to process the entire 

E backscatter mosaic, producing one image of entropy and one image of homogeneity, co-located 



and at the same resolution as the backscatter image (Fig. A1 for E dataset and Fig. A2 for NW 

dataset). These images are clustered using K-means, as presented in Blondel and Gómez Sichi 

(2009), in order to get an objective combination of entropy and homogeneity within the dataset. 

This simple partitioning scheme (Duda and Hart, 1973) results in mutually exclusive clusters of 

entropy/homogeneity signatures, recursively adapted until convergence. The initial number of 

classes is generally chosen as slightly higher than the number of acoustic facies expected, 

allowing provision for “mixed” classes, “unexpected classes” etc. (Blondel and Gómez Sichi, 2009). 

Through K-means, we combined the entropy and homogeneity maps to produce a map of 20 

classes for the E dataset of Malta. Then, user-led contextual editing allows re-assigning clusters to 

physically meaningful processes such as habitats and morphologies, guided by any ground truth or 

other available measurements. The final sediment classification highlights the occurrence of 4 

types of seabed sediments: bedrock; coarse sand and gravel; maërl, sand and gravel; fine to 

medium sand (see Fig. 5). The same procedure was conducted on the NW dataset, allowing to 

produce a map of seafloor sediments including the same classes of the E dataset and adding the 

class rocky blocks (Fig. 6). Thus the two datasets have a common legend for the seafloor 

sediments distribution. 

 

4. RESULTS  

4.1 E Malta dataset 

The seafloor offshore the E coasts of the Maltese archipelago is flat or almost flat from the coastal 

waters (1.5 – 2-m deep) to the basin area. The main seafloor feature is the shelf break dividing the 

continental shelf from the basin area and well highlighted in the BTM morphological classification, 

where it is represented as a crest (Fig. 2). The main feature of the basin area is an elongated 

mound drift due to contouritic currents (Micallef et al., 2013), located just downslope the 

escarpment and extending from NE Gozo to Comino. It has a very gentle slope, thus only the 

external boundary of this deposit is classified as crest and slope, while the rest of this feature is 

classified as flat areas. The shelf break and the breaks of slope of the marine terraces are 

classified as crests, while the cliffs of the escarpments are classified as slopes. The occurrence of 

the channels crossing the continental shelf in direction SW-NE and interpreted as palaeo-river 

valleys by Micallef et al. (2013) and Foglini et al. (2016) area highlighted by the BTM classification, 

especially in their final part, the mouth cutting the continental escarpment. According to their 

inclinations, the lateral walls of the channels are classified as crests or slopes. In shallow waters, 

offshore Mellieha Bay, in the Comino Channel and in front of Comino, there are slightly elevated 

plateau-like areas showing an irregular, rough surface. The largest of these areas is Sikka I-Bajda, 

a bedrock reef identified as a potential offshore wind farm location (as reported in the Global 

Offshore Wind Farm Database; Micallef et al., 2013). In the southern part, from Sliema to south of 

Valletta, features parallel to each other, and interpreted by Micallef et al. (2013) and Foglini et al. 

(2016) as palaeo-shoreline deposits formed during the post-glacial sea level rise are classified as 

crests. 

Through K-means, we obtained the seafloor sediment map shown in Fig. 5, where the geological 

map of the Maltese archipelago is reported, so that we can relate the Texan sediment map of the 

seafloor to the geology on land. The seafloor located downslope the escarpment is principally 

characterised by an almost flat and smooth seafloor with low backscatter intensity, except for the 

southern area where some parts of high intensity are scattered across the seafloor. The habitat 

map classified this deeper area as flat seafloor, mainly covered by fine to medium sand and with 



some scattered bedrock outcrops in its southern sector, highlighted both in the morphological and 

sediment maps. 

On the continental shelf, both the morphology and the sediment coverage vary considerably:  

generally, the seafloor is almost flat and characterised by some bedrock outcrops in positive relief 

and by channels crossing the shelf with an orientation NW-SE. The seabed is mainly constituted by 

coarse sand and gravel, often the substrate is characterised by wide maërl beds. The presence of 

finer sediment is primarily located within the channels, whose bottom is characterised by ripples. 

Fine to medium sand is alternated with coarse sand and gravel in a shallow area offshore Comino 

Island, in correspondence of a meandered channel, where the seafloor is almost flat, smooth and 

slightly lowered with respect to the surrounding bedrock outcrops. It is interpreted as a palaeo-

alluvial plain filled by mobile sediment and characterised by lobes and ripples. 

The seafloor located in front of Valletta and the Grand Harbour shows a very singular acoustic 

pattern highlighted through the entropy and homogeneity maps: in a flat area, that is supposed to 

be covered by fine sediment since it is situated at the mouth of an important hydrographic network, 

a number of high intensity “dots” are scattered over a low backscatter matrix. It was classified as a 

great variety of sediments covering the seafloor: medium to fine sand alternated with small bedrock 

outcrops and coarse sand and gravel with the presence of blocks of calcarenite (Fig. 5B). This is 

due to the human activities that highly disturbed the seafloor integrity, resulting in an area exploited 

for dumping, excavating and trawling activities (Micallef et al., 2013; Foglini et al., 2016). 

We combined the BTM morphological classification with the Texan sediment map through the tool 

Combine of ArcGIS (Spatial Analyst toolset): we produced the final map showing 16 types of 

seafloor substrate, on which we overlaid the biological data on Posidonia oceanica by MEPA (Fig. 

7). The richest area in Posidonia oceanica and maërl is the continental shelf. There, the P. 

oceanica occurs up to a depth of about 50 m and is settled on bedrock or coarse sand and gravel 

substrate. The largest P. oceanica bed is located on the Sikka Il-Bajda reef, offshore Mellieha Bay 

and the Island of Comino. The maërl distribution confirmed by the only one sample reporting the 

occurrence of maërl bed at a depth of 102 m, offshore Salina Bay (sample DECORS47 from one of 

our surveys) agrees with the records by Borg et al. (1998) and Sciberras et al. (2009).  

 

4.2 NW Malta dataset 

The continental shelf offshore the NW coast of Malta is flat or gentle sloping and bounded offshore 

by the shelf break, classified as crest in the BTM classification (Fig. 2). From coastal waters to ca. 

50 m deep, the shelf is characterised by an irregular surface with crests, slopes and depressions of 

limited extension alternated with almost flat and smooth areas. These features are located 

especially in correspondence of the headlands of Bajda Ridge, Il-Qarraba and Ras Il-Pellegrin and 

also on the seafloor close to the coast just north of Bajda Ridge and were interpreted as the 

submerged portion of the landslides affecting the NW coast of Malta (Foglini et al., 2016). The 

continental slope is characterised by different levels of marine terraces delimited by breaks of 

slope are classified as crests; while the cliffs constituting the escarpments are recoreded as slopes 

with depressed areas at their base. The area located mainly downslope the continental 

escarpment is almost flat and characterised by the presence of scattered features in positive relief 

of different size and shape. The most relevant feature is like a plateau 1000 x 210 m offshore 

Ghadira Bay, at depths of 70-130 m and ENE-WSW-oriented. Its shape is highlighted by the 

classification of its boundaries as crests, its cliffs as slopes and its top as flat area. The other 

features are scattered, with almost rounded shapes and ~50 m in diameter.   



TexAn classification brought to the production of 5 classes seafloor sediment map shown in Fig. 6. 

The terrestrial geomorphology shown in Fig. 6 comes from an updated and simplified version of the 

geomorphological map by Devoto et al. (2012) and is inserted here to relate the seafloor sediment 

map to the terrestrial geology and geomorphology. 

The area can be considered as divided into two main parts: a very shallow area (maximum depth 

50 m) and the deeper area (maximum depth 154 m). The latter is mainly characterised by a flat 

and smooth seafloor where the backscatter is lower than in the shallower area and the TexAn 

analysis identified a very homogeneous texture for the entire area. This portion of the seafloor is 

covered by fine to medium sand with scattered small bedrock outcrops. The shallower area is 

highly diversified both in geomorphology and in sediment coverage. 

In correspondence of the promontories there are large accumulations of rocky blocks alternated 

with the outcrops of bedrock and filled by a matrix of coarse sand and gravel. Since the NW coast 

of Malta is largely affected by block slides (called rdum in Maltese; Devoto et al., 2012, 2013) 

creating wide deposits of large limestone blocks sliding on the clayey terrains towards the sea, the 

submarine accumulations of rocky blocks constitute the prolongation of the terrestrial mass 

movements (Foglini et al., 2016) and TexAn succeeded in isolating the acoustic pattern typical of 

these accumulations from the surrounding bedrock outcrops (see Fig. 4B). 

In correspondence of inlets in shallow waters (such as Ghadira Bay and Gnejna Bay), there are 

some maërl beds and alternation of sand and gravel, sediments coming from the sandy pocket 

beaches present on land. For example, the submarine area of Gnejna Bay (in the southern part of 

the dataset) is a flat and smooth seafloor showing a high variation in sediment type, from rocky 

blocks to coarse sand and gravel with or without maërl. 

The last step of the analysis is the combination of the maps resulting from BTM and Texan 

classification through the Combine tool of ArcGIS: we obtained a 20-class substrate map, over 

which we overlaid the information on Posidonia oceanica occurrence, extracted from the MEPA 

map server (Fig. 8). The area covered by Posidonia oceanica is the most extended habitat of this 

area. The Posidonia oceanica is mainly settled on hard substrate (bedrock, rocky blocks) or on 

matte (Borg et al., 2009) and occurring on the continental shelf up to the continental escarpment. 

 

5. DISCUSSION  

This study presents a multi-method approach to map the marine habitats of the continental shelf off 

the NW coast of Malta and the E coasts of the Maltese Islands, using predominantly MBES 

bathymetry and backscatter with ground-truthing in selected locations in the E part only. 

Generally, we can say that TexAn succeeded in isolating the most representative patterns of 

sedimentary coverage, as proved in past applications (e.g. Blondel and Gómez Sichi, 2009). This 

is confirmed for the E dataset where the grab samples available were used to define the Training 

Zones and validate the classification. A benthic habitat map of the E continental shelf of Malta was 

already provided by Micallef et al. (2012, 2013). Micallef et al. (2012) focused on a small area in 

shallow water along the E coast of the Island of Malta, adjacent but not overlapping with the zone 

analysed in the present work. Micallef et al. (2013) extended the same methodology used in the 

2012 paper to the whole E dataset. We reproduced the classification applying their same 

methodology, but identifying different training zones. On the whole, the results that we obtained are 

comparable to those produced by Micallef et al. (2012, 2013), with some dissimilarities that could 



be ascribable to the different processing techniques applied and to the different selection of the 

Training Zones, the latter playing a key role in our case.  

The area offshore Valletta and the Grand Harbour is affected by anthropogenic activities that had 

and still have a large impact on the seafloor. The location and the size of the Training Zones that 

we selected did not allow the isolation of the pattern typical of spoil ground, apparently at larger 

spatial scales than the one achievable by the Training Zones. For this reason, the seabed was 

classified on the basis of the sediment distribution. The inability of isolating this pattern could be 

considered both as a negative point – since we do not have a “spoil” class in the final map – and 

as an advantage – since combining our information and the one from Micallef et al. (2013), we 

know that this portion of seafloor is made of coarse sand and gravel and fine-to-medium sand with 

blocks of calcarenite, and that this mixture of sediments is due to spoil. 

Also, the inability in isolating the Posidonia oceanica pattern in the present work is mainly caused 

by the absence of a Training Zone located in the P. oceanica meadow. Furthermore, even though 

the ground samples MEDCOR 51 and 42 (Table A1) recorded the occurrence of P. oceanica leaves 

and rhizomes, Texan was not able to identify its pattern. Micallef et al. (2012) also highlighted this 

difficulty. In the case of vegetation overlaying a hard substrate, it might be explained by the fact 

that the acoustic response is predominantly that of the seabed, and only modulated by the 

vegetation depending on its density, its areal cover within each pixel or groups of pixels, and its 

intrinsic acoustic reflectivity at the frequencies used (which can vary with photosynthesis or gas 

content) (e.g. Blondel and Pouliquen, 2004; Kruss et al., 2012). This means that TexAn focused on 

the key attributes of the substrate but does not appear as good at detecting subtle acoustic 

modifications if they do not occur over large enough areas. 

The rationale for the classification of the E dataset was to extend this classification, validated with 

comparison with ground-truthing dataset, to the NW Malta dataset which was totally lacking 

ground-truthing. This approach is possible mainly because the TexAn analysis is an image-based 

segmentation, thus allowing to overcome the fact that the datasets were acquired with different 

sonar instruments. 

The differences between the classifications of the E and the NW areas of Malta are shown also in 

Tables 1 and 2, describing backscatter and bathymetry distributions for each sediment class. The 

bedrock class in the E dataset is located mainly in correspondence of the continental escarpment, 

while, on the NW side, bedrock outcrops are widespread at all depths. The class made of coarse 

sand and gravel is characterised by medium to low values of backscatter and, in the E area, it is 

quite uniformly distributed down to a depth of 160 m; while on the NW area, it occurs at all depths, 

with a peak for shallow waters (< 38 m). The sediment class of fine to medium sand has the 

narrower distribution of backscatter intensity for the E dataset, where it is characterised by low 

values of backscatter; while in the NW dataset, it is characterised by higher values of backscatter. 

In both the areas, it is predominant in deeper water. The maërl beds are located only on the 

continental shelf on both the sides of the islands. In the E dataset, they are widespread and 

present high backscatter intensity, while in the NW area, they have a limited distribution and show 

medium backscatter intensity. The rocky blocks are present only in the NW dataset, down to a 

depth of about 40 m and show mainly medium values of backscatter. 

The E and the NW areas show some differences in sediment distribution that are due to the distinct 

tectonic and geological settings resulting in a tilt of the archipelago of 4° towards NE that originated 

a wider continental shelf offshore the E coasts of the islands (continuing the low lying coasts of the 

E side of Malta) and a narrower continental shelf offshore the NW coast of Malta. The first one is 



mainly covered by coarse sand and gravel with extensive maërl beds; the bedrock outcrops 

predominantly in correspondence of the continental escarpment and in some scattered reliefs 

across the dataset, while the deeper area is made of fine and medium sand shaped by bottom 

currents and contourites. The presence of loose material on the shelf is due both to the temporary 

streams on land which have their submerged prolongations that acted as channels of sediment 

transport and to marine sediments deposited during the post-glacial transgression. The NW 

continental shelf is characterised by coarser and harder sediments: the most significant features 

are made up by the submarine prolongations of the coastal landslides made up of rocky blocks 

accumulations, where also bedrock and coarse sand and gravel alternate. The deeper area is flat, 

smooth and mainly covered by fine and medium sand with some scattered harder outcrops. The 

most important habitat of the NW area are the P. oceanica meadows, while in the E area both P. 

oceanica meadows and maërl beds occur. This could be due to the difference in sediments and, 

especially, to the currents: the NW shores of Malta are characterised by high hydrodynamics 

(Drago, 1999; http://ioi.research.um.edu.mt/capemalta/stations@malta/INDEX/), which does not 

favour the formation of maërl biocoenosis. 

Finally, the advantages of combining data and methods are also discussed by Ierodiaconou et al. 

(2007), Marsh and Brown (2009) and Che Hasan et al. (2014), who integrated bathymetry and 

backscatter using different methods. For example, Che Hasan et al. (2014) integrated also analysis 

of backscatter angular response with that of backscatter image, considering that the contribution of 

bathymetry represents the most important predictor of marine benthic habitats. They all proved that 

data integration is more efficient in predicting the benthic habitats than classifications based solely 

on backscatter or on bathymetry.  

In the end, the methodology that we propose in this paper could overcome the difficulty of 

integrating datasets acquired within different cruises, with different instruments and different 

samples coverage. 

 

6. CONCLUSIONS 

The novelty of the present work is that, through a combined approach, we were able to draw a full 

benthic habitat map of the continental shelf offshore E and NW coast of Malta drawn from a 

validated dataset (the E one) and then extended to an adjacent dataset – the NW one, acquired 

with a different device – where no seabed samples were collected. 

The combined approach applied here is based on the quantitative automatic classification of 

seafloor morphology with semi-supervised analyses of seafloor backscatter imagery, guided at key 

points by the biological information already available, either from ground samples or from the 

MEPA database: 

i. The morphological classification was obtained using the ArcGIS-based tool BTM, different 

from the technique used by Micallef et al. (2012, 2013), but allowing to extract the same 

types of quantitative attributes. This kind of analysis can be conducted also through open 

source software (e.g. GRASS), through additional toolboxes or extensions (e.g. SEXTANTE 

for QGIS) or through self-built scripting (Lecours et al., 2016 online and references 

therein).The seafloor features were distinguished in terms of crests, depressions, slopes 

and flat areas.  

ii. The backscatter mosaics were classified through the TexAn Texture Analysis from which we 

obtained the sediment distribution map of the seafloor offshore NW Malta and offshore E 

http://ioi.research.um.edu.mt/capemalta/stations@malta/INDEX/


the Maltese archipelago, distinguishing bedrock, rocky blocks, coarse sand and gravel, fine 

to medium sand and the occurrence of maërl beds. 

iii. The morphological and the sediment classifications have been combined to obtain a 

seafloor substrate map. Since, the seagrass pattern was not isolated by TexAn (as it was 

not clearly visible on the acoustic data), the resulting map has been integrated with existing 

biological data (from literature and environmental servers) to produce the benthic habitat 

map of the continental shelf offshore E and NW coast of Malta. 

We can confirm the reliability of TexAn in classifying the backscatter image, since the sediment 

distribution map of the seafloor is comparable to those previously produced by Micallef et al. (2012, 

2013) despite the differences in backscatter processing and the identification of the Training 

Zones. This kind of automated methods for habitat mapping, reliable also with limited ground-

truthing, revealed to be a good and less time-consuming solution to produce seascape maps both 

at local or regional scale. They offer a valid support to marine resources management, marine 

spatial planning, habitats monitoring and conservation, usable by Governments and decision 

makers. 
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FIGURE CAPTIONS 

Figure 1. Geology and acquired bathymetry of the Maltese archipelago. Geographical and 

geological setting of the Maltese archipelago (see text for references about geology) and new high-

resolution (2 m) bathymetry of the study area, acquired with SWATHplus-L (NW coast of Malta) 

and Kongsberg EM710 (E coasts of the Maltese Islands). The main faults are highlighted in brown, 

showing the WSW-ENE system and the NW-SE orientations parallel to the Pantelleria Rift, further 

offshore west of Malta. 

Figure 2. Seafloor morphological classification, related to land topography of the Maltese Islands. 

Maps obtained with the Benthic Terrain Modeler (BTM) toolbox of ArcGIS 10.x (Wright and 

Heyneman, 2005). A) Global overview of all areas; B) Details of the NW Malta dataset, showing a 

clearly more complex morphology. 

Figure 3. A) Backscatter of the area located offshore the eastern coasts of the Maltese 

archipelago and B) of the area offshore the NW coast of the Island of Malta. Note the grey level 

https://www.aquabt.com/
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http://www.sea.co.uk/products/survey/SWATHplus.aspx
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scales are slightly different, to better emphasize local features. Training Zones for the E dataset 

are defined around grab samples at coinciding locations (red circles). Training Zones for the NW 

dataset are not based on grab samples and are represented as green squares. Onshore elevation 

data from 0 to 250 m.  

Figure 4. Entropy/homogeneity distributions of Training Zones of both datasets. Textures have 

been tested on a large number of Training Zones (10 for the E Malta dataset, 12 for the NW Malta 

dataset), defined as representative of the different acoustic facies (Tables A1 and A2 respectively) 

and associated to grab samples for the E dataset. Entropy and homogeneity were computed on 

backscatter images resampled onto 64 grey levels (NG), with moving windows of similar sizes 

(WDSZ = 50 and 60 pixels respectively) and looking at co-occurrences 5 pixels away (SZ). Top 

(NE Malta): the clear separation of training zones shows a progression in entropy and homogeneity 

associated to increasing grain sizes, with more sedimented areas at the bottom-left part of the plot 

and the more rocky areas at the top right. Bottom (NW Malta): the same progression is seen, with 

smaller variations in homogeneity but similar variations in entropy. This is explained by differences 

in the local geology (see text for details). 

Figure 5. A) Seafloor sediment maps derived from TexAn classification – E Malta dataset. B) Detail 

of theseafloor offshore Valletta and the Grand Harbour affected by anthropogenic activities. 

Figure 6. Benthic habitat map for the E Malta dataset derived from the combination of BTM (Figure 

2) and Texan (Figure 5) classifications, combined with available MEPA information on Posidonia 

oceanica and maërl distribution.  

Figure 7. Seafloor sediment maps derived from TexAn classification – NW Malta dataset. The 

continuation of terrestrial geomorphology (modified from Devoto et al. 2012) on the seafloor is 

highlighted. 

Figure 8. Benthic habitat map for the NW Malta dataset derived from the combination of BTM 

(Figure 2) and Texan (Figure 5) classifications, combined with available MEPA information on 

Posidonia oceanica distribution. 

Table 1. Comparison of backscatter intensity values and bathymetric distribution of each sediment 

class for the E dataset. 

Table 2. Comparison of backscatter intensity values and bathymetric distribution of each sediment 

class for the NW dataset. 

 

SUPPLEMENTARY MATERIAL CAPTIONS 

Table A1. Training Zones of the E mosaic, 80 x 80 pixels (i.e. 160 x 160 m on the ground), with 

associated description of the sample centred in the Training zone, the type of sediment (from grain-

size analyses) and seabed composition (from the entropy/homogeneity diagram). 

Table A2. Training Zones of the NW mosaic, 82 x 82 pixels (i.e. 82 x 82 m on the ground), with 

associated description of backscatter and morphology, and the seabed composition (from the 

entropy/homogeneity diagram). 

Figure A1. Entropy and homogeneity maps for the E Malta dataset. The square shows a detail of 

the bottom of the palaeo-river channels and of the variations of entropy and homogeneity values 

inside the channels. Entropy and homogeneity distributions obtained from the TexAn processing of 



the whole E dataset show similar characteristics. The navigation lines are very visible and 

characterised by high entropy and low homogeneity values, but they are easily removed later, 

during the K-means classification. Generally, the basin area presents an almost homogeneous 

seafloor, with medium entropy and homogeneity. The continental escarpment, characterised by 

high backscatter intensity, is highlighted by high values of entropy and low values of homogeneity, 

representing an important passage from two different environments (the basin and the continental 

shelf). We can observe the same for the area characterised by the ridges of the palaeo-shoreline 

deposits. The continental shelf shows high variations of entropy and homogeneity values: the 

platform is generally homogeneous in substrate type, but it is characterised by some highly 

heterogeneous features. The bottoms of the palaeo-river valleys show high entropy and low 

homogeneity, and their uppermost parts are more marked than their mouths. This mixed area is 

due to the variations in sediment type characterising the bottom of the channels and similar to a 

pattern typical of ripples. Also the shallow area offshore Comino and Mellieha Bay shows high 

values of entropy and low homogeneity. Another interesting zone is the seafloor in shallow water 

offshore Valletta: its shows a dotted distribution of high and medium values of entropy and 

homogeneity, explained further in this section.  

Figure A2. Entropy and homogeneity maps for the NW Malta dataset, showing details of the area. 

Entropy measures textural roughness, and homogeneity is lower as textures are more organised. 

Both parameters are visibly sensitive to artefacts introduced at the junction between swaths; this 

was accounted for in the selection of Training Zones (Table A2) and the classification of 

entropy/homogeneity signatures. The maps show a continental shelf characterised by high 

variations in entropy and homogeneity values. On the contrary, the area located downslope the 

continental escarpment is characterised by medium values of both indices, without variations in 

intensity, reflecting an almost homogeneous backscatter image, apart from the noisy track lines, 

highlighted by high entropy and high homogeneity values. The boundaries of the plateau offshore 

Ghadira Bay are highlighted by values of entropy and homogeneity both higher than the 

surroundings. Generally, the edges between individual swaths are marked with high entropies and 

high homogeneities, identified and removed during the next stage.  

 


