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Travelling waves for a Frenkel-Kontorova chain

Boris Buffoni, Hartmut Schwetlick and Johannes Zimmer

September 30, 2016

Abstract

In this article, the Frenkel-Kontorova model for dislocation dynamics
is considered, where the on-site potential consists of quadratic wells joined
by small arcs, which can be spinodal (concave) as commonly assumed in
physics. The existence of heteroclinic waves —making a transition from
one well of the on-site potential to another— is proved by means of a
Schauder fixed point argument. The setting developed here is general
enough to treat such a Frenkel-Kontorova chain with smooth (C2) on-site
potential. It is shown that the method can also establish the existence of
two-transition waves for a piecewise quadratic on-site potential.
Mathematics Subject Classification: 37K60, 34C37, 58F03, 70H05

1 Introduction

In 1938, Frenkel and Kontorova proposed a fundamental model of dislocation
dynamics [8]. The model is given by Newton’s equation of motion for a chain
of atoms,

mu′′k = β(uk+1 − 2uk + uk−1)− 2π
α̃

γ
g′
(

2π

γ
uk

)
(1)

with some constants α̃, β, γ, describing the displacement uk of atom k ∈ Z
in a one-dimensional chain. The nonlinearity is the derivative of an on-site
potential describing the interaction with atoms above and below the chain of
atoms considered. The periodicity of the nonlinearity thus reflects the periodic
nature of a crystalline lattice. The Frenkel-Kontorova chain is a fundamental
model of dislocation dynamics, describing how an imperfection (dislocation)
travels through a crystalline lattice; see for example the survey [3]. The simplest
motion that may exist is that of a travelling wave, uj(t) = u(j − ct) with wave
speed c. This ansatz transforms (1), after rescaling, into

c2u′′ −∆Du+ g′(u) = 0 (2)

on R, where ∆D is the discrete Laplacian,

∆Du(x) := u(x+ 1)− 2u(x) + u(x− 1).
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In the original paper [8], the on-site potential g is sinusoidal. A dislocation
corresponds to a heteroclinic wave in the sense that the states near −∞ are in
one well of g and the states near +∞ are in another well, which we here take
to be a neighbouring one; see Figure 1 for a plot of an approximate solution,
where the dislocation is in travelling wave coordinates positioned at the origin;
the oscillations in the left half plane take place in one well of the on-site potential,
and the solutions in the positive half plane take place in the neighbouring well.
It thus suffices to consider potentials g with two wells only, say

g(u) =
1

2
αu2 − αψ(u), (3)

which leads to the reformulation of (2) as

c2u′′ −∆Du+ αu− αψ′(u) = 0 (4)

(in the setting considered here, it is easy to show that a solution to (4) with a
two-well on-site potential is also a solution to the same equation with a suitable
periodic continuation of the on-site potential).

The study of equation (4) has a long history in mechanics. Initial work
by Frank and van der Merwe [7] resorted to the analysis of the continuum ap-
proximation of (1), the sine-Gordon equation, is analysed. This simplifies the
analysis significantly, but already Schrödinger [18] pointed out the difference be-
tween PDE limits and underlying lattice equations. Indeed, the analysis of (1)
has proved to be very hard. To the best of our knowledge, all existing analytic
results, spanning more than 50 years, rely on the assumption that g is piece-
wise quadratic; then the force g′ in (1) is piecewise linear and Fourier methods
can be applied. We refer the reader to papers by Atkinson and Cabrera [2],
Earmme [5]) and extensive work by Truskinovsky and collaborators, covering
the so-called Fermi-Pasta-Ulam-Tsingou chain with piecewise quadratic interac-
tion [22] and the Frenkel-Kontorova model [14]. Kresse and Truskinovsky have
studied the case of an on-site potential with different moduli (second derivatives
at the minima) [15]. We also mention important contributions by Slepyan, for
example [21, 20]. Flytzanis, Crowley and Celli [6] apply Fourier techniques to a
problem where the potential consists of three parabolas, the middle one being
concave.

A difficulty with a piecewise quadratic on-site potential is that it is not
smooth, but has a cusp. One would expect the physical potential to be smooth,
but the use of Fourier methods automatically leads to singularities in the force.
Does the presence or absence of this singularity affect the existence of waves?
The answer is neither obvious from physical view, since the singularity can
be seen as an additional force, albeit only acting very locally; mathematically
the persistence of solutions would mean that one can perturb from a singular
situation to a regular one; we are not aware of well-developed tools to address
this question.

In this article, we give an affirmative answer to this question, by showing that
a solution to (4) exists for suitable choices of parameters, for nonlinearities which
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are suitable mollified versions of the sign function, αψ′(u) ≈ α sgn(u). Note that
the unperturbed case αψ′(u) = α sgn(u) corresponds to the piecewise quadratic
force (3). The main technical restriction is that the admissible perturbation are
small, in a well-defined sense . This is a technical requirement stemming from
the use of a fixed point argument employed in the proof. It may be possible
to apply continuity methods to show that the solutions we found persist for a
wider range of perturbations; but this is a problem not studied in this article.

In terms of the equation, (4) combines a number of difficulties. It combines
a differential operator (the second derivative) with a difference operator (∆D).
See, e.g., [10] for the subject of such functional equations. Here the equation
is looking ‘forward’, u(x + 1), and ‘backward’, u(x − 1). The theory of such
advance-delay equations is still not very well developed, though there are very
remarkable results, employing tools ranging from variational techniques to cen-
tre manifold/normal form analysis, for example [9, 12, 4]. The non-monotonicity
of g′ finally is the core difficulty of the problem.

In terms of the methods, we have to deviate completely from any previous
work, as we no longer can rely on Fourier arguments. Instead we develop a
perturbative approach capable of starting from a degenerate situation. Two
of us have with M. Herrmann and K. Matthies recently developed a differ-
ent approach for such a perturbation from the so-called Fermi-Pasta-Tsingou
chain with smooth nonconvex interaction potential, showing the existence of
heteroclinic waves for cases where the potential has a small spinodal (concave)
region [11]. As the method used here, the approach relies on a perturbation ar-
gument, but then proceeds differently by relying on the Banach fixed point theo-
rem, following a careful analysis of an integral equation describing the travelling
wave equation. The framework developed in the present article is relatively flex-
ible and allows potentially the analysis of a range of problems in the setting of
(at least) the Frenkel-Kontorova chain. To give an example, we study in Sec-
tion 4 the problem with a piecewise quadratic on-site potential, ψ′(u) = sgn(u),
and establish what is to our knowledge the first proof of solutions exhibiting
two transitions between the wells of the on-site potential. It can be regarded as
a simplified version of the shadowing lemma [1].

We close the introduction by relating the result here to a few results in the
literature. There are few rigorous results for nonconvex interaction potentials
available, in particular for heteroclinic solutions as we will study. A very remark-
able existence result for such solutions is that of Iooss and Kirchgässner [12];
there a general theory for small solutions is developed. Here we are interested
in (large) heteroclinic solutions that stay asymptotically for x → −∞ in one
well of a nonconvex on-site potential g and for x → ∞ in another well. For
the particular choice αψ′(u) = α sgn(u), the existence of such travelling waves
has been established for suitable parameters with an argument based on Fourier
estimates [13]. Here we show that this result holds true in greater generality, in
particular for on-site potentials where the concave part is not degenerate as it
is assumed in [13]. We work in a nonlinear setting where the Fourier methods
of [13] are not applicable. The existence of heteroclinic travelling waves for the
Frenkel-Kontorova problem (1) has been open since 1939 (for coherent spatially
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localised temporally periodic solutions, existence was established in the seminal
paper by MacKay and Aubry [16]; see also [17]).

2 Setup and main result

The central argument we are going to employ is a Schauder fixed point theorem.
This is possibly surprising, as equation (4) is defined on the whole real line and
therefore there is a priori no reason to expect compactness properties for (4).
We now sketch the setting in which the Schauder theorem applies.

We start by considering the linear part of (4). The linear operator

u→ Lu = c2u′′ −∆Du+ αu (5)

has in Fourier space the representation

−c2ζ2 + 2(1− cos ζ) + α = −c2ζ2 + 4 sin2(ζ/2) + α =: D(ζ), (6)

where D is the dispersion function. Obviously, for the sound speed, c = 1, the
dispersion relation D has exactly two nonzero roots ±k0, where

k0 :=
π

2
(7)

if

α = c2
(π

2

)2
− 2, (8)

and furthermore D′(ζ) = −2c2ζ + 2 sin ζ vanishes only at ζ = 0. We will work
in a parameter regime where c is marginally subsonic; we keep k0 fixed by (7)
and α given by (8). Then c is the only free parameter in the dispersion relation.
Since we seek to find heteroclinic solutions, we will focus on subsonic waves,
that is, c ≤ 1.

By continuity, the dispersion function will have exactly two real roots near
±k0 for ‘almost sonic’ subsonic speeds c.

Our main theorem can be considered as perturbation result, allowing for a
family of smooth, even potentials ψε ∈ C2(R) which are ‘close’ to the special
case ψ′(u) = sgn(u) considered in [13]. More specifically, we will assume in our
main Theorem 2.2 below that ψ′ε(x) = sgn(x) for |x| ≥ ε and |ψ′′ε (x)| ≤ 2ε−1 for
|x| < ε.

We sketch the situation for this degenerate potential briefly. For |λ| < 1
and θ ∈ [0, 2π), trivially 1 + λ sin(k0 · +θ) is a solution to (4) on [1,∞) and
−1 + λ sin(k0 · −θ) is a solution on (−∞,−1]. The question is whether these
two solution segments can be glued together to form a heteroclinic solution,
traversing from one well of the on-site potential g to another.

The answer is affirmative for the degenerate potential discussed in this
paragraph, as shown in [13] (recalled in Theorem 2.1 below). This solution
u ∈ H2

loc(R) is odd, u(x) = −u(−x), and heteroclinic in the sense that

lim
x→±∞

[u(x)∓ 1− λ sin(k0x± θ)] = 0
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Figure 1: Left: A plot of upa for upa for k0 = π
2 and c2 = 0.9, which is in the

parameter regime studied in this article. Right: The analogous plot for k0 = 7
8π

and c2 = 0.8.

for some λ and θ, and α given by (8). This solution is well approximated by
the explicit function

upa(x) := sgn(x)
[
A
(

1− e−β|x|
)

+B (1− cos (k0x))
]
, (9)

with

A =
c2k20 − α

c2 (β2 + k20)
and B =

α+ β2c2

c2 (β2 + k20)
(10)

and

β2 =
α

c2
· k0 sin (k0)

2− 2 cos (k0)− k0 sin (k0)
=
α

c2
· k0

2− k0
.

Plots of upa for two different sets of parameter values are shown in Figure 1.
The argument in [13] and this paper uses an idea developed by Schwetlick

and Zimmer for a Fermi-Pasta-Ulam chain with nonconvex interaction potential,
and no on-site potential [19]. This idea is to represent the solution u as u = up−r
with explicitly given up; then the analysis is reduced to a careful investigation
of the Fourier representation of r. Here, we will argue similarly and consider a
“profile” function up ∈ H2

loc(R). By profile function we mean that the function
c2u′′p −∆Dup + αup − α sgn(up) satisfies

(1 + x2)(c2u′′p −∆Dup + αup − α sgn(up)) ∈ L2(R) (11)∫
R

[
c2u′′p −∆Dup + αup − αsgn(up)

]
sin(k0·)dx = 0. (12)

The former condition implies c2u′′p −∆Dup + αup − αsgn(up) ∈ L1(R), so the
latter condition is well posed. In addition, we demand the function should
be odd, sgn(up(x)) = sgn(x) on R, vanishes at x = 0, satisfy u′p(0) > 0 and
lim inf |x|→∞ |up(x)| > 0, so that equation (16) below holds. It is somewhat
tedious but not difficult to find such a up. In this paper, we will use as profile
up a solution to (4) with the special force ψ′(x) = sgn(x), obtained in [13] and
recalled in Theorem 2.1 below. The advantage is that for this choice of up, the
verification of essential conditions such as (11), (12) and (C2) below is relatively
straightforward.
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Theorem 2.1 ([13, Theorem 4.1]). Let ψ′(x) = sgn(x). Let c be such that
c2 ∈ [0.83, 1]. Let k0 be given by (7) and α be given by (8). Then (4) has a
solution up = upa − r with upa given by (9) with√

π

2
|r(z)| ≤

{
0.257 for c2 ∈ [0.9, 1],

0.339 for c2 ∈ [0.83, 0.9],

and √
π

2
|r′(z)| ≤

{
0.43 for c2 ∈ [0.9, 1],

0.34 for c2 ∈ [0.83, 0.9].

Furthermore, r ∈ H2
odd(R), sgn(up(x)) = sgn(x) on R, up(0) = 0, u′p(0) > 0

and lim inf |x|→∞ |up(x)| > 0.

The last claim follows from [13, p. 1147, bottom], while the conditions at
the origin are direct consequences of [13, (25), (30) and (32)]; the sign condition
is [13, (9), proof of Theorem 4.1] and r ∈ H2

odd(R) is a consequence of [13,
Corollary 3.2] and the symmetric construction.

Remark For lower wave speeds, the theorem above is not applicable, and one
thus would have to find a profile up satisfying the assumptions of this paper,
in particular (11), (12) and (C2). Since we want to focus on the method to
prove existence, which takes a suitable up as mere input, we do not pursue this
question here.

We are left with having to find r ∈ H2
odd,loc(R) (that is, r ∈ H2

loc(R) and
r(−x) = −r(x)) such that up − r is a solution:

c2(up − r)′′ −∆D(up − r) + α(up − r)− αψ′(up − r) = 0,

and hence for r

c2r′′ −∆Dr + αr = c2u′′p −∆Dup + αup − αψ′(up − r),

which is an equation of the form

c2r′′ −∆Dr + αr = Q,

or Lr = Q with nonlinear Q. This is not a standard perturbation problem,
because of two important interrelated features. Firstly, the solution u given by
Theorem 2.1 is not isolated. Namely, up(x0 + ·) + γs sin(k0·) + γc cos(k0·) is
another solution, for all γs and γc close enough to 0 and all x0 ∈ R. Secondly,
the linear operator L is not invertible, in the sense that sin(k0·) and cos(k0·) are
in its kernel. Although sin(k0·) and cos(k0·) do not decay to 0, their existence
creates difficulties even when working with r decaying to 0; a difficulty is that
in finite balls in L2 as one uses in fixed point arguments, the corrector r could
take the shape of a kernel function restricted to a finite domain, which could
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lead to an approximate solution on the boundary of the ball which is different
from the intended solution. For simplicity, we shall in the following theorem
assume that ψε is even, so that we can consider only odd solutions and reduce
partially in this way the degeneracy of the problem.

To apply perturbative techniques, we first need to recast the problem (see
Subsection 3.1). Then we will employ Schauder’s fixed point theorem, for the
following reason. As Schauder’s fixed point theorem does not require assump-
tions on the derivative of the nonlinear operator or a Lipschitz condition, it
is in principle easier to deal with than the Implicit Function Theorem or the
Banach fixed point theorem, for example, provided that some compactness is
available. As a consequence, it allows in principle to obtain existence results
under less restrictive hypotheses. Although we are far away from any satisfy-
ing general result, see the hypotheses of Theorem 3.5, which involve explicit
constants. Note that Theorem 3.5 is formulated in terms of a rather general
potential Ψ that is later in this work (in Section 3.4) related to the particular
ψ under consideration.

The main result can be stated as follows.

Theorem 2.2. For ε > 0 small enough, let the even function ψ = ψε ∈ C2(R)
be such that ψ′ε(x) = sgn(x) for |x| ≥ ε and |ψ′′ε (x)| ≤ 2ε−1 for |x| < ε. Let
k0 be given by (7), α be given by (8). Then there exists a range of subsonic
velocities c close to 1 such that for these velocities, there exists a heteroclinic
solution to (4).

We remark that one of the conditions imposed on closeness of c to 1 is
c2 ∈ [0.83, 1] as only in this case we can build on the existence result The-
orem 2.1. The existence result Theorem 2.1 provides a one-transition wave
which we expect to persist under small perturbations only.

Theorem 2.2 is proved in the next section.

3 Proof of Theorem 2.2

3.1 Preliminaries

We now turn to the proof of Theorem 2.2. We seek a solution to (4),

c2u′′ −∆Du+ αu− αψ′(u) = 0.

By assumption, ψ ∈ C2(R) is even and for its derivative it holds that ψ′ = sgn
outside a bounded set. We split the solution u sought to (4) as

u = up + βuo + γ sin(k0·)− r, (13)

where the profile function up ∈ H2
loc(R) is odd and satisfies properties (11)

and (12). Further, γ ∈ R is assumed to be sufficiently close to 0, and uo ∈
H2

loc(R) is an odd function such that for each l = 0, 1, 2,

(1 + x2)
dl

dxl
(uo(x)− sgn(x) cos(k0x)) ∈ L2(R\[−1, 1]). (14)
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For example, one can choose uo to agree with sgn(x) cos(k0x) outside a bounded
interval. It is not hard to give an explicit representation for uo, whereas up is the
solution given by Theorem 2.1; the task is then to find the corrector r ∈ H2

odd(R)
such that u as in (13) solves (4). The periodic term γ sin(k0·) is separated from
up for mere convenience; obviously this term could be added to up and then
ũp := up + γ sin(k0·) satisfies (11) and (12) if sgn(ũp) = sgn(up), and could
replace up.

With this notation, we can now restate Theorem 2.2 in a more detailed form
we are going to establish.

Theorem 3.1. For ε > 0, let the even function ψ = ψε ∈ C2(R) be such that
ψ′ε(x) = sgn(x) for |x| ≥ ε and |ψ′′ε (x)| ≤ 2ε−1 for |x| < ε. Let k0 be given by (7),
α be given by (8). Then there exists a range of subsonic velocities c close to 1
such that a heteroclinic solution to (4) exists, in the following sense. Let the
odd function up ∈ H2

loc(R) be the solution to the equation c2u′′ −∆Du + αu −
αsgn(u) = 0 of Theorem 2.1, and let the odd function uo ∈ H2

loc(R) satisfy (14).
Then for all |γ| and ρ > 0 small enough, there exists ε0 > 0 satisfying the

following property. For every ε ∈ (0, ε0), there exists r ∈ H2
odd(R) and β ∈ R

such that ‖r‖H2(R) < ρ and u := up + βuo + γ sin(k0·)− r is a solution to (4),

c2(up + βuo + γ sin(k0·)− r)′′ −∆D(up + βuo + γ sin(k0·)− r)
+ α(up + βuo + γ sin(k0·)− r)− αψ′ε(up + βuo + γ sin(k0·)− r) = 0. (15)

Theorem 2.2 follows immediately once Theorem 3.1 is established, and the
rest of the article is devoted to the proof of Theorem 3.1.

We start the proof by considering the linear operator L of (5) with α as in (8)
and c being slightly subsonic. Specifically, we first study the equation Lr = Q
under the hypothesis

∫
RQ(x) sin(k0x)dx = 0, with k0 = π/2. Roughly speaking,

in the equation Lr = Q, the right-hand side is replaced by a new expression Q
depending on uo and a real parameter β chosen so that

∫
RQ(x) sin(k0x)dx = 0.

Lemma 3.2. Let up be the solution to the special case ψ′(x) = sgn(x) recalled

in Theorem 2.1. There exists ρ > 0 such that, for all r in the ball B(0, ρ) ⊂
H2

odd(R), sgn(up(x)− r(x)) = sgn(x) on R.

Proof. Recall the Sobolev estimates

‖r‖L∞(R) ≤
1√
2π

∫
R

1

1 + k2
(1 + k2) |r̂| dk

≤ 1√
2π

√∫
R

1

(1 + k2)2
dk ‖r‖H2(R) =

1

2
‖r‖H2(R)

and

‖r′‖L∞(R) ≤
1√
2π

∫
R

|k|
1 + k2

(1 + k2) |r̂| dk

≤ 1√
2π

√∫
R

k2

(1 + k2)2
dk ‖r‖H2(R) =

1

2
‖r‖H2(R) .
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By symmetry, it suffices to consider positive x. Hence it suffices to choose ρ0 > 0
such that there is a point x0 ∈ (0, 1) such that

up(x) > ρ0/2 for x > x0 and u′p(x) > ρ0/2 for every x ∈ [0, x0). (16)

Since up satisfies this property for some ρ0, so the claim follows for any ρ ∈
(0, ρ0).

Throughout this article, we will assume ρ ∈ (0, ρ0). We also assume that
ε < ρ0/6, so that ψ′(s) = sgn(s) for all |s| ≥ ρ0/6.

If we add the requirement on β, γ and r that the condition

|βuo(x) + γ sin(k0x)− r(x)| ≤ 2

3
|up(x)| (17)

is fulfilled for all x ∈ R, then solving (4) with the ansatz (13) is equivalent to
finding a solution of a problem with a relaxed nonlinearity Ψ(u, x)

c2u′′ −∆Du+ αu− α∂1Ψ(u, x) = 0 with u = up + βuo + γ sin(k0·)− r, (18)

where Ψ: R2 → R is the specific embedding of the original interaction force{
Ψ(u, x) = ψ(u) for |x| < 1,

Ψ(u, x) = sgn(x)u for |x| ≥ 1.
(19)

A suitable constant could be added to sgn(x)u in the definition of Ψ, but such
a constant is irrelevant, as only ∂1Ψ matters in what follows. We prove the
existence of a solution using Schauder’s fixed point theorem. Note that the
ansatz (17) for u means that if a solution is found the transition between wells
is found well within the interval x ∈ (−1, 1), so that ∂1Ψ will coincide with the
original ψ′ for all x ∈ R. Indeed, by (16) and (17), we get for all |x| > x0 that

|u(x)| = |up(x) + βuo(x) + γ sin(k0x)− r(x)| ≥ 1

3
|up(x)| > ρ0

6
> ε

and
ψ′(u(x)) = sgn(x) = ∂1Ψ(u(x), x).

3.2 Application of Schauder’s fixed point theorem

In this section, we prove the existence of a solution of a slightly relaxed problem,
Equation (26) below, under fairly abstract assumptions, notably (C1), (C2) in
Theorem 3.5 below. The following sections then establish that the original
problem can be cast in the setting studied here.

Specifically, consider the following modification of (15) for r ∈ H2
odd(R) and

β ∈ R, and recall ψ′(u(x)) = ∂1Ψ(u(x), x) for the function u we have in mind,

c2(up + βuo + γ sin(k0·)− r)′′ −∆D(up + βuo + γ sin(k0·)− r)
+ α(up + βuo + γ sin(k0·)− r)− α∂1Ψ(up + ξ(β)uo + γ sin(k0·)− r, x) = 0;

(20)

9



here the new ingredient is a function ξ ∈ C1(R) with

‖ξ‖L∞(R) + ‖ξ′‖L∞(R) <∞.

Thus, in a first step, we replaced β by ξ(β) in the nonlinear term. As ξ and ξ′

are assumed to be bounded, the function ξ allows us to control the nonlinear
term without restrictions on the size of β. In a second step, we shall assume that
ξ is the identity near 0 and show that the relevant values of β are sufficiently
close to 0, so that ξ(β) = β for these values of β.

The assumptions in this Subsection are as follows (they will be used in the
abstract Theorem 3.5 below). We recall k0 is given by (7), α is given by (8),
and c is close to 1. We have seen that then the dispersion function in (6) has
exactly two simple roots ±k0. Furthermore, for the linear operator given in (5),
L sin(k0·) = 0. Let Ψ: R2 → R be of class C2 with respect to the first variable,
Ψ, ∂1Ψ and ∂211Ψ be measurable with respect to the second variable, ∂1Ψ be
odd and ∣∣∂211Ψ(s, x)

∣∣ ≤ µ

(1 + x2)3/2
(21)

for some constant µ > 0. Note that

(1 + x2)
1

(1 + x2)3/2
∈ L2(R).

The size of µ does not matter in what follows (in particular, it is not assumed
to be small).

We recall that the parameter γ is real-valued, and that up is a given odd
function in H2

loc(R) satisfying

sup
β∈R

∥∥∥(1 + x2)3/2
(
c2u′′p −∆Dup + αup

−α∂1Ψ
(
up + ξ(β)uo + γ sin(k0x), x

))∥∥∥
L∞(R)

<∞. (22)

The odd function uo ∈ H2
loc(R) satisfies (14). Thus, since L cos(k0·) = 0,

(1 + x2)Luo = (1 + x2)(c2u′′o −∆Duo + αuo) ∈ L2
odd(R).

It follows that the map

(r, β)→ Γ(r, β) = (1 + x2)
(
c2u′′p −∆Dup + αup

− α∂1Ψ
(
up + ξ(β)uo + γ sin(k0x)− r, x

))
∈ L2

odd(R)

is well-defined on H2
odd(R)× R and of class C1. Note that it can be written as

Γ(r, β) = (1 + x2)
(
c2u′′p −∆Dup +αup −α∂1Ψ

(
up + ξ(β)uo + γ sin(k0x), x

))
+ α(1 + x2)

∫ 1

0

∂211Ψ
(
up + ξ(β)uo + γ sin(k0x)− sr, x

)
r ds, (23)

which is the sum of two terms in L2
odd(R) (see (21) and (22)).
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Lemma 3.3. The map Γ: H2
odd(R)× R→ L2

odd(R) is compact.

Proof. Let {(rn, βn)} ⊂ H2
odd(R) × R be a bounded sequence. We verify that

{Γ(rn, βn)} has a Cauchy subsequence in L2
odd(R). Let ε > 0.

Since ξ is continuous on R, the sequence {ξn} := {ξ(βn)} is bounded. Taking
a convergent subsequence {ξnk

}, equation (22) and the dominated convergence
theorem ensure that the first term of Γ(rnk

, βnk
) converges as k → ∞. Hence,

for k, l large enough,∥∥∥(1 + x2)
(
c2u′′p −∆Dup + αup − α∂1Ψ

(
up + ξ(βnk

)uo + γ sin(k0x), x
))

−(1+x2)
(
c2u′′p−∆Dup+αup−α∂1Ψ

(
up+ξ(βnl

)uo+γ sin(k0x), x
))∥∥∥

L2(R)
<
ε

2
.

To deal with the second term, we split R in two parts, namely Iε := [−xε, xε]
and its complement in R, where xε > 0 is large. The motivation for this split is
that many Sobolev embeddings are compact on an bounded interval, whereas
the second term can be assumed as small as needed when restricted to the
complement of Iε. More precisely, given ε > 0, choose xε large enough so that
for all k

α

∥∥∥∥(1 + x2)

∫ 1

0

∂211Ψ
(
up + ξnk

uo + γ sin(k0x)− srnk
, x
)
rnk

ds

∥∥∥∥
L2(R\Iε)

<
ε

8

(see (21)). Using the compact embedding H2(−xε, xε) ⊂ C[−xε, xε], by tak-
ing a further subsequence if necessary, we can assume that {rnk

} converges in
C[−xε, xε]. It follows, again from the dominated convergence theorem, that

α(1 + x2)

∫ 1

0

∂211Ψ
(
up + ξnk

uo + γ sin(k0x)− srnk
, x
)
rnk

ds

converges in L2(−xε, xε). Hence, for k, l large enough,∥∥∥α(1 + x2)

∫ 1

0

∂211Ψ
(
up + ξnk

uo + γ sin(k0x)− srnk
, x
)
rnk

ds

− α(1 + x2)

∫ 1

0

∂211Ψ
(
up + ξnl

uo + γ sin(k0x)− srnl
, x
)
rnl

ds
∥∥∥
L2(R)

< ε/2.

Thus {Γ(rnk
, βnk

)} is a Cauchy subsequence.

By (33) of Proposition A.2 in the Appendix,∫
R

(
c2u′′o −∆Duo + αuo

)
sin(k0·)dx = −2c2k0 + 2 < 0

if c > k
−1/2
0 . Assume that, for all r in some subset of H2

odd(R) and all β ∈ R,∣∣∣∣∫
R
α∂211Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, ·

)
ξ′(β)uo sin(k0·)dx

∣∣∣∣
≤ C

∣∣∣∣∫
R

(
c2u′′o −∆Duo + αuo

)
sin(k0·)dx

∣∣∣∣ = C 2(c2k0 − 1)
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for some constant C ∈ [0, 1). Then for fixed r in the given subset, the equation∫
R

(
c2
(
up+βuo+γ sin(k0·)

)′′−∆D

(
up+βuo+γ sin(k0·)

)
+α
(
up+βuo+γ sin(k0·)

)
− α∂1Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, x

))
sin(k0·)dx = 0

can uniquely be solved for β as a C1-function of r, β = β(r), thanks to Banach’s
fixed point theorem and the implicit function theorem.

Lemma 3.4. The map r → β(r) is bounded on bounded sets.

Proof. The splitting (23) and the hypothesis that ξ is bounded show an ad-
ditional property, namely that the map (r, β) → Γ(r, β) is bounded on every
set on which the r-component is bounded. As a consequence, by definition of
β = β(r),

2(c2k0 − 1)β = −β
∫
R

(c2uo −∆Duo + αuo) sin(k0x)dx =∫
R

[
c2u′′p −∆Dup + αup − α∂1Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, ·

)]
sin(k0x)dx

and

β =

∫
R
[
c2u′′p −∆Dup + αup − α∂1Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, ·

)]
sin(k0x)dx

2(c2k0 − 1)
.

(24)
The map r → β(r) = 1

2 (c2k0 − 1)−1
∫
R Γ(r, β(r))(1 + x2)−1 sin(k0x)dx is thus

bounded on bounded sets.

Hence the problem can be written as c2r′′ −∆Dr + αr = Q, with

Q = c2
(
up + β(r)uo + γ sin(k0·)

)′′ −∆D

(
up + β(r)uo + γ sin(k0·)

)
+ α

(
up + β(r)uo + γ sin(k0·)

)
− α∂1Ψ

(
up + ξ(β(r))uo + γ sin(k0·)− r, ·

)
= β(r)

(
c2u′′o −∆Duo + αuo

)
+ (1 + x2)−1Γ(r, β(r)) ∈ L2

odd(R) (25)

and
∫
RQ(x) sin(k0x)dx = 0 by definition of β(r). On the other hand, if Q ∈

L2(R) is odd with

(1 + x2)Q ∈ L2(R) and

∫
R
Q(x) sin(k0x)dx = 0,

and by Proposition A.1 in Appendix A, there exists a unique odd r = L−1Q ∈
H2(R) such that Lr = c2r′′ −∆Dr + αr = Q. Moreover∥∥L−1Q∥∥

H2(R) = ‖r‖H2(R) ≤ {C1 + ((4 + α)C1 + 1)/c2}
∥∥(1 + x2)Q

∥∥
L2(R)

for some constant C1 > 0.
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The problem (20) studied in this Subsection can be written as

r = L−1Q = L−1
(
c2(up + βuo + γ sin(k0·))′′ −∆D(up + βuo + γ sin(k0·))

+ α(up + βuo + γ sin(k0·))− α∂1Ψ
(
up + ξ(β)uo + γ sin(k0·)− r, x

))
(26)

with β = β(r).

Theorem 3.5. Let ξ be in C1(R) with ‖ξ‖L∞(R) + ‖ξ′‖L∞(R) < ∞. Let k0 be

as in (7) and α given by (8). Let Ψ: R2 → R be of class C2 with respect to
the first variable, let Ψ, ∂1Ψ and ∂211Ψ be measurable with respect to the second
variable, and ∂1Ψ be odd. Assume that the hypotheses (14), (21) and (22) hold.
Suppose that there exists an open ball B(0, ρ) ⊂ H2

odd(R) such that

sup
r∈B(0,ρ), β∈R

∣∣∣∣∫
R
α∂211Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, ·

)
ξ′(β)uo sin(k0·)dx

∣∣∣∣
< 2(c2k0 − 1) (C1)

and

sup
r∈B(0,ρ)

∥∥(1 + x2)Q(r)
∥∥
L2(R) < {C1 + ((4 + α)C1 + 1)/c2}−1 ρ, (C2)

here the notation Q = Q(r) insists on the fact that Q defined in (25) depends
on r. Then there exists a solution r ∈ B(0, ρ) to (26).

Proof. For all r ∈ B(0, ρ), Q = Q(r) is well defined with values in

Z =

{
f ∈ L2

odd(R) : (1 + x2)f ∈ L2(R),

∫
R
f(x) sin(k0x)dx = 0

}
and completely continuous in r (that is, continuous and compact; see (25),
Lemma 3.3 and Lemma 3.4). The map r → L−1Q(r) sends B(0, ρ) into B(0, ρ)
and is completely continuous. The Schauder fixed point theorem gives a solution
r ∈ B(0, ρ) to the equation r = L−1Q(r), and in fact r ∈ B(0, ρ).

3.3 On the verification of condition (C2)

In this section, we establish one condition, (C2’) below, for the verification of
condition (C2) in Theorem 3.5. This simpler condition will then be shown in
Subsection 3.4 to hold under the assumptions of Theorem 3.1.

By the formula (24) for β = β(r) and

Q = (c2u′′o −∆Duo + αuo)β + c2u′′p −∆Dup + αup

− α∂1Ψ(up + ξ(β)uo + γ sin(k0·)− r, ·),
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one has∥∥(1 + x2)Q
∥∥
L2(R) ≤

∥∥(1 + x2)
(
c2u′′o −∆Duo + αuo

)∥∥
L2(R)

×

∣∣∣∫R {c2u′′p −∆Dup + αup − α∂1Ψ(up + ξ(β)uo + γ sin(k0·)− r, ·)
}

sin(k0x)dx
∣∣∣

2(c2k0 − 1)

+
∥∥(1 + x2)(c2u′′p −∆Dup + αup − α∂1Ψ(up + ξ(β)uo + γ sin(k0·)− r, ·))

∥∥
L2(R) .

Hence condition (C2) is ensured by the following condition

sup
r∈B(0,ρ)

{∥∥(1 + x2)
(
c2u′′o −∆Duo + αuo

)∥∥
L2(R)

∥∥(1 + x2)−1 sin(k0·)
∥∥
L2(R)

2(c2k0 − 1)
+ 1

}
×
∥∥∥(1 + x2)

(
c2u′′p −∆Dup + αup − α∂1Ψ

(
up + ξ(β)uo + γ sin(k0·)− r, ·

))∥∥∥
L2(R)

<
1

C1 + ((4 + α)C1 + 1)/c2
ρ,

which in turn is ensured by the condition

sup
r∈B(0,ρ)

∥∥∥(1 + x2)
(
c2u′′p −∆Dup + αup

−α∂1Ψ
(
up + ξ(β)uo + γ sin(k0·)− r, ·

))∥∥∥
L2(R)

<
{C1 + ((4 + α)C1 + 1)/c2}−1ρ

‖(1 + x2)(c2u′′o −∆Duo + αuo)‖L2(R)
√
π/8(c2k0 − 1)−1 + 1

.

If up is a particular solution to the “unperturbed” equation c2u′′p −∆Dup +
αup − αS(up, ·) = 0 for some function S, if∥∥(1 + x2)(αS(up, ·)− α∂1Ψ(up, ·))

∥∥
L2(R)

+ sup
r∈B(0,ρ)

∥∥∥(1 + x2)
(
α∂1Ψ(up, ·)

− α∂1Ψ
(
up + ξ(β(r))uo + γ sin(k0·)− r, ·

))∥∥∥
L2(R)

<

(
C1 + ((4 + α)C1 + 1)/c2

)−1
ρ

‖(1 + x2)(c2u′′o −∆Duo + αuo)‖L2(R)
√
π/8(c2k0 − 1)−1 + 1

(C2’)

and if the condition (C1) holds true, then the “perturbed” problem, in which
S is replaced by ∂1Ψ and the parameter γ can be chosen in R, has a solution
r ∈ B(0, ρ).

3.4 Verification of the conditions in Theorem 3.5

In this section, we prove Theorem 3.1. We have to show that the assumptions
made there imply those of Theorem 3.5, and show that ξ can be chosen to be
the identity in the region of interest.
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We make the same assumptions on k0, α, uo and up as in Theorem 3.1. In
particular, the chosen up is such that u′p(0) > 0,∫

R

(
c2u′′p −∆Dup + αup − αsgn(up)

)
sin(k0·)dx = 0,

and ∥∥∥(1 + x2)3/2
(
c2u′′p −∆Dup + αup − αsgn(up)

)∥∥∥
L∞(R)

<∞

(indeed c2u′′p − ∆Dup + αup − αsgn(up) = 0). Let ρ0 > 0 satisfy (16); then
|up(x)| > ρ0/2 for all |x| ≥ 1.

Lemma 3.6. In the setting of this subsection, ξ can be chosen such that the
solution given by Theorem 3.5 solves (15).

Proof. In Equation (20), we choose ξ such that it is the identity function in a
neighbourhood of β = 0 and

‖ξ‖L∞(R) |uo(x)| ≤ 1

3
|up(x)| for all x ∈ R .

If |γ| and ‖r‖H2(R) are small enough, then for every x ∈ R

|up(x) + ξ(β)uo(x) + γ sin(k0x)− r(x)| ≥ 1

3
|up(x)| (27)

and thus

∂1Ψ
(
up + ξ(β)uo + γ sin(k0·)− r , x

)
= ψ′

(
up + ξ(β)uo + γ sin(k0·)− r

)
.

Hence, we will obtain the solution u = up + βuo + γ sin(k0·)− r to

c2u′′ −∆Du+ αu− αψ′(u) = 0

if, in addition, ξ(β) = β.

Lemma 3.7. Under the assumptions of Theorem 3.1, assumption (21) of The-
orem 3.5 holds.

Proof. This is immediate because, by (19), ∂211Ψ(s, x) = 0 if |x| ≥ 1, ∂211Ψ(s, x) =
ψ′′(s) = 0 if |x| < 1 and |s| ≥ ε, and |∂211Ψ(s, x)| = |ψ′′(s)| ≤ 2ε−1 if |x| < 1
and |s| < ε.

Lemma 3.8. Under the assumptions of Theorem 3.1, the assumptions (22), (C1)
and (C2’) hold.

Proof. We first establish the claim for (C1). Let us recall that ψ is such that
|ψ′′(s)| ≤ 2ε−1 for |s| < ε and ψ′′(s) = 0 otherwise, where ε > 0. If ε is small
enough and |x| = 6ε/u′p(0), then

|up(x)| = u′p(0) |x| (1 + o(x)) ≥ 1

2
u′p(0) |x| ≥ 3ε
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and thus |up(x)| ≥ 3ε for all |x| ≥ 6ε/u′p(0) if ε is small enough. Hence

ψ′′ (up(x) + ξ(β)uo(x) + γ sin(k0x)− r(x)) = 0

for all |x| ≥ 6ε/u′p(0) if |γ|, ‖r‖H2(R) and ε are small enough (see (27)). Therefore

∣∣∣∣∫
R
αψ′′(up + ξ(β)uo + γ sin(k0·)− r)ξ′(β)uo sin(k0·)dx

∣∣∣∣
≤
∫ 6ε/u′

p(0)

−6ε/u′
p(0)

α2ε−1 |ξ′(β)uo sin(k0·)| dx

≤ α2ε−1 ‖ξ′(β)uo‖L∞(R)

∫ 6ε/u′
p(0)

−6ε/u′
p(0)

|k0x| dx

≤ α2ε−1 ‖ξ′(β)uo‖L∞(R) k0(6ε/u′p(0))2 → 0

as ε→ 0, uniformly in β ∈ R and r ∈ B(0, ρ) if |γ| and ρ > 0 are small enough.
Hence (C1) holds true. Assumption (22) can be verified similarly.

We now show that (C2’) is satisfied. We choose for up the solution of the
degenerate problem c2u′′ − ∆Du + αu − αsgn(u) = 0, see Theorem 2.1, and
choose ε > 0 small enough so that∥∥(1 + x2) (αsgn(up)− α∂1Ψ(up, ·))

∥∥
L2(R)

<

(
C1 + ((4 + α)C1 + 1)/c2

)−1
ρ

2
(
‖(1 + x2)(c2u′′o −∆Duo + αuo)‖L2(R)

√
π/8(c2k0 − 1)−1 + 1

) .
Then observe that, for all r ∈ B(0, ρ),∥∥(1 + x2) (α∂1Ψ(up, ·)− α∂1Ψ(up + ξ(β(r))uo + γ sin(k0·)− r, ·))

∥∥
L2(R)

≤

∥∥∥∥∥(1 + x2)α sup
λ∈[0,1]

∣∣∂211Ψ(up + λξ(β(r))uo + λγ sin(k0·)− λr, ·)
∣∣

× |ξ(β(r))uo + γ sin(k0·)− r|

∥∥∥∥∥
L2(R)

.

Arguing as above,∥∥(1 + x2)(α∂1Ψ(up, ·)− α∂1Ψ(up + ξ(β(r))uo + γ sin(k0·)− r, ·))
∥∥
L2(R)

≤ α2ε−1
∥∥(1 + x2)(ξ(β(r))uo + γ sin(k0·)− r)

∥∥
L2([−6ε/u′

p(0),6ε/u
′
p(0)])

→ 0

as ε→ 0, uniformly in r ∈ B(0, ρ) if |γ| and ρ > 0 are small enough.
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3.5 Proof of Theorem 3.1

By Theorem 3.5, there exists r ∈ H2
odd(R) such that ‖r‖H2(R) < ρ and

c2(up + β(r)uo + γ sin(k0·)− r)′′ −∆D(up + β(r)uo + γ sin(k0·)− r)
+α(up + β(r)uo + γ sin(k0·)− r)−αψ′(up + ξ(β(r))uo + γ sin(k0·)− r) = 0 .

(28)

We also get that β(r) belongs to the neighbourhood of 0 on which ξ is the
identity if |γ| , ρ, ε are small enough. Indeed, by (24),

|β(r)| ≤

∣∣∣∫R {αsgn(up)− α∂1Ψ(up + ξ(β)uo + γ sin(k0·)− r, ·)
}

sin(k0x)dx
∣∣∣

2(c2k0 − 1)

≤ 1

2(c2k0 − 1)

∫ 6ε/u′
p(0)

−6ε/u′
p(0)

α

(
1 +

2

ε
|up + ξ(β)uo + γ sin(k0·)− r|

)
k0 |x| dx

= O(1)

∫ 6ε/u′
p(0)

−6ε/u′
p(0)

|x| dx = O(ε2).

Since ξ is the identity near the origin, and there is a solution to (28), this
solution is also a solution to (15).

Since Theorem 2.2 is an immediate consequence of Theorem 3.1, the main
claim of the paper is proved.

4 Two-transition solutions

To demonstrate the flexibility of our method, we show in this section how it
can be used to obtain two-transition solutions, that is, travelling waves starting
in one well of the on-site potential, making a transition to another well before
returning to the first well. Again we focus on the on-site potential to be taken
as a piecewise quadratic, ψ′(x) = sgn(x), as in [13]. Also, we consider the same
velocity regime c2 ∈ [0.83, 1] as in that paper. However, in contrast to the per-
turbation of the potential studied in Sections 2 and 3, we now keep the special
potential, but prove the existence of solutions representing two transitions be-
tween the two wells. We construct the solution similarly as in (13) for the case
of a single transition, where the odd profile function up will be replaced by an
even profile function vp, and similarly the odd function uo will be replaced by
an even function ue. That is, we use a decomposition of the form

u(x) = vp(x) + βeue(x) + γ̃ cos(k0x)− r̃(x). (29)

Here vp is the primary profile, βe a small coefficient scaling the contribution
from ue, γ̃ a coefficient to be chosen later, and r̃ a (small) remainder.

We first turn the attention to vp.
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Figure 2: An approximation to the two-transition profile vp.

Lemma 4.1. Let x0 ∈ (π/k0)Z = 2Z be positive. Then there exist an even
profile vp ∈ H2

loc(R) such that vp vanishes exactly at the two points ±x0. Fur-
thermore, ∥∥(1 + x2) (Lvp − αsgn(vp))

∥∥
L2(R) → 0 (30)

as x0 →∞.

Proof. The odd solution x→ upa(x)− r(x) in [13] (see (9) and (10)) converges
in H2(z − 2, z + 2) as |z| → ∞ to the function

sgn(x)
(
A+B −B cos(k0x)

)
, where A+B = 1 and B =

c2k20 − 2

c2k20 − k0
,

where the expression for B makes use of (7) and (8). More precisely,∥∥∥upa − r − sgn(·)
(
A+B −B cos(k0·)

)∥∥∥
H2(z−2,z+2)

→ 0

as |z| → ∞.
It is straightforward to see that −upa+r is also a single-transition solution to

the solution to the problem with piecewise quadratic on-site potential studied.
We now introduce a two-transition profile vp by combining these two single-
transition solutions. Namely, for positive x0 ∈ 2Z, we define vp as

vp(x) :=

(
1

2
+ λ(x)

)
(upa(x− x0)− r(x− x0)

−
(

1

2
− λ(x)

)
(upa(x+ x0)− r(x+ x0)) ,

where the step function λ ∈ C∞(R,R) is odd and non-decreasing with λ(x) :=
−1/2 for x ≤ −1 and λ(x) := 1/2 for x ≥ 1; see Figure 2 for an approximation
of vp.
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Obviously vp is even, piecewise C2, and satisfies Lvp − αsgn(vp) = 0 on
R\[−2, 2]. To show (30), we thus only have to show that ‖Lvp − αsgn(vp)‖L2(−2,2)
tends to 0 as x0 →∞ with x0 ∈ 2Z. We first deal with x0 ∈ 4Z. For x ∈ (−2, 2),
we find that as x0 →∞

vp(x)→
(

1

2
+ λ(x)

)
sgn(x− x0) {1−B cos(k0(x− x0))}

−
(

1

2
− λ(x)

)
sgn(x+ x0) {1−B cos(k0(x+ x0))}

=−
(

1

2
+ λ(x)

)
{1−B cos(k0(x− x0))}

−
(

1

2
− λ(x)

)
{1−B cos(k0(x+ x0))}

=− 1 +B ·

{(
1

2
+ λ(x)

)
cos(k0(x− x0))

+

(
1

2
− λ(x)

)
cos(k0(x+ x0))

}
= −1 +B · {cos(k0x) cos(k0x0) + 2λ(x) sin(k0x) sin(k0x0)}
= −1 +B · cos(k0x) cos(k0x0) =: v∞p (x),

as sin(k0x0) = 0 and cos(k0x0) = 1 is independent of x0 ∈ 4Z.
On (−2, 2), this limit function v∞p solves Lv∞p −αsgn(v∞p ) = 0, since cos(k0x0) =

1 and B =
c2k20−2
c2k20−k0

= 1− 2−k0
c2k20−k0

< 1 gives

v∞p (x) = −1 +B · cos(k0x) cos(k0x0) < 0

for all x ∈ (−2, 2). Hence

Lv∞p − αsgn(v∞p ) = B cos(k0x0)L cos(k0·) = 0.

As a consequence, ‖Lvp − αsgn(vp)‖L2(−2,2) → 0 as x0 ∈ 4Z tends to ∞.

The same argument works for x0 → ∞ with x0 ∈ 2Z\4Z, but this time
cos(k0x0) = −1.

Let us now turn to the even function ue. For example, one can choose
ue to agree with sgn(x) sin(k0x) outside a fixed bounded interval. The essential
property used is that such a function will satisfy the condition in Proposition A.2
in Appendix A.

For any choice of the parameter βe ∈ R and any r̃ ∈ H2
e (R), we can choose

the remaining parameter γ̃ to ensure that u of (29) inherits the two zeros ±x0
from vp. That is, we set

γ̃ := {r̃(x0)− βeue(x0)} cos(k0x0)−1,
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where we note that cos(k0x0) = ±1 for x0 ∈ 2Z.
To motivate the definition of r̃, let us assume for the moment that ±x0 are

the only zeros of u. In other words, let us assume for now that the sign condition

sgn (vp + βeue + γ̃ cos(k0·)− r̃) = sgn(vp) (31)

holds. In analogy to (15) as an equation for the remainder r in Section 3, we
now consider the equation

Lr̃ = βeLue + Lvp − αsgn(vp) (32)

for r̃ ∈ H2
e (R), where the subscript e stands for even functions. Note that

if (32) has a solution r̃, then the function u, with the decomposition (29) will
be a solution to (4) provided the sign condition (31) holds.

The solvability of (32) is addressed in the following lemma.

Lemma 4.2. Define

βe :=
1

2(c2k0 − 1)

∫
R

[−Lvp + α sgn(vp)] cos(k0·)dx.

Then equation (32) has an even solution r̃ ∈ H2
e (R). In particular, we have the

estimate

‖r̃‖H2(R) ≤ C
(
|βe|+

∥∥(1 + x2) (Lvp − αsgn(vp))
∥∥
L2(R)

)
.

Proof. By the choice of βe and Proposition A.2,∫
R

(
βeLue + Lvp − αsgn(vp)

)
cos(k0·)dx = 0.

The expression L−1Q given by Proposition A.1 in Appendix A can be applied
to the right hand side of (32),

Q := βeLue + Lvp − αsgn(vp),

because (1 + x2)Q ∈ L2(R) and
∫
RQ(x) sin(k0x)dx =

∫
RQ(x) cos(k0x)dx = 0.

Hence
r̃ := L−1 (βeLue + Lvp − αsgn(vp))

is well-defined. It is immediate that r̃ is even.

Theorem 4.3. Under the assumptions of Theorem 2.1 (in particular, for a
piecewise quadratic on-site potential, ψ′(x) = sgn(x)), there exists a family of
even solutions

u = vp + βeue + γ̃ cos(k0·)− r̃

to (4), parametrised by the choice of sufficiently large x0 ∈ 2Z in Lemma 4.1.
Each of these solutions making two transitions between the wells of the on-

site potential, located at −x0 and +x0, so that they remain in the well around
−1 only on a large but finite interval (−x0, x0).
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Proof. Lemma 4.1 provides vp. Further, ue is as discussed above. In addition,
Lemma 4.2 defines βe and r̃.

As

βe =
1

2(c2k0 − 1)

∫
R

[−Lvp + αsgn(vp)] cos(k0·)dx,

we obtain by estimate (30)

|βe| ≤ C
∥∥(1 + x2) (Lvp − αsgn(vp))

∥∥
L2(R) ·

∥∥∥∥cos(k0x)

1 + x2

∥∥∥∥
L2(R)

→ 0

for a sequence of points x0 ∈ 2Z with x0 →∞.
It remains to verify the sign condition (31) for u, i.e., to show that ±x0 are

the only roots of
u = vp + βeue + γ̃ cos(k0·)− r̃.

Recall that the choice

γ̃ = {r̃(x0)− βeue(x0)} cos(k0x0)−1

was made so that u vanishes at ±x0. The bounded embedding H2(R) ⊂ L∞(R)
and Lemma 4.2 show that r̃(x0) is small. Moreover, smallness of βe and r̃(x0)
imply that γ̃ is small itself.

As vp changes sign at precisely ±x0, we now use that the derivative v′p(±x0)
is bounded below independently of large x0. Thus, uniform smallness of the
additional term βeue + γ̃ cos(k0·) − r̃ and its derivative establishes the sign
condition for all sufficiently large x0.

A Appendix

We first state an auxiliary statement for the equation Lr = Q. This result is
used after Lemma 3.4 and in the proof of Lemma 4.2.

Proposition A.1. Let Q ∈ L2(R) with (1 + x2)Q ∈ L2(R). We assume that
either Q is odd and satisfies∫

R
Q(x) sin(k0x)dx = 0,

or that Q is even and satisfies∫
R
Q(x) cos(k0x)dx = 0.

Then, for all c near enough to 1, there exists a unique function r ∈ H2
odd(R)

such that Lr = c2r′′ −∆Dr + αr = Q. Moreover

‖r‖H2(R) :=
∥∥(1 + k2)r̂

∥∥
L2(R) ≤ {C1 + ((4 + α)C1 + 1)/c2}

∥∥(1 + x2)Q
∥∥
L2(R)

for some constant C1 > 0 (independent of c near 1).

21



Proof. The assumptions imply that Q̂ ∈ H2(R,C), Q̂(±k0) = 0 and that there
exists a unique r ∈ H2

odd(R) such that c2r′′ −∆Dr + αr = Q, namely

r̂(k) =
Q̂(k)

D(k)
, for k ∈ R.

If Q is odd and real-valued, iQ̂ is odd and real-valued, therefore so are ir̂ and
r. Analogously, when Q is even, and real-valued, then Q̂, r̂ and r are even and
real-valued. Moreover, the derivative of the Fourier transform of Q satisfies

∥∥∥Q̂ ′∥∥∥
L∞(R)

≤ 1√
2π

∫
R

|x|
1 + x2

(1 + x2) |Q(x)| dx

≤ 1√
2π

(∫
R

x2

(1 + x2)2
dx
)1/2 ∥∥(1 + x2)Q

∥∥
L2(R) =

1

2

∥∥(1 + x2)Q
∥∥
L2(R) ,

(note that (1/2) arctanx− (1/2)x/(1 + x2) is a primitive of x2(1 + x2)−2).
Consider for a while c = 1. For |k| ∈ [k0/2, 3k0/2]\{k0}, one gets by Cauchy’s

mean value theorem applied to the real-valued functions iQ̂ and D∣∣∣∣∣ Q̂(k)

D(k)

∣∣∣∣∣ ≤ sup
|s|∈[k0/2,3k0/2]\{k0}

∣∣∣∣∣ Q̂ ′(s)D′(s)

∣∣∣∣∣ ≤ |D′(k0/2)|−1 1

2

∥∥(1 + x2)Q
∥∥
L2(R) .

For |k| 6∈ [k0/2, 3k0/2], one gets |D(k)| ≥ min{|D(k0/2)| , |D(3k0/2)|}. Hence

∫
R

∣∣∣∣∣ Q̂(k)

D(k)

∣∣∣∣∣
2

dk ≤ max{|D(k0/2)|−2 , |D(3k0/2)|−2}
∫
|k|6∈[k0/2,3k0/2]

∣∣∣Q̂(k)
∣∣∣2 dk

+ 2k0 |D′(k0/2)|−2 1

4

∥∥(1 + x2)Q
∥∥2
L2(R)

≤
(

max{|D(k0/2)|−2 , |D(3k0/2)|−2}+
1

2
k0 |D′(k0/2)|−2

)∥∥(1 + x2)Q
∥∥2
L2(R)

= C2
1

∥∥(1 + x2)Q
∥∥2
L2(R) .

This estimate remains valid for all c close to 1 if we first increase slightly C1.
As a consequence

c2 ‖r′′‖L2(R) ≤ (4+α) ‖r‖L2(R)+‖Q‖L2(R) ≤ ((4+α)C1+1)
∥∥(1 + x2)Q

∥∥
L2(R)

and

‖r‖H2(R) =
∥∥(1 + k2)r̂

∥∥
L2(R) ≤ ‖r‖L2(R) + ‖r′′‖L2(R)

≤ {C1 + ((4 + α)C1 + 1)/c2}
∥∥(1 + x2)Q

∥∥
L2(R) .
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The following proposition establishes orthogonality relations and estimates
for the Fourier mode associated with k0 for L applied to even and odd functions.
The estimate (33) is used just after the compactness proof (Lemma 3.3).

Proposition A.2. Consider the odd function uo ∈ H2
loc(R) satisfying (14). In

addition, let ue ∈ H2
loc(R) be an even function such that

(1 + x2)
dl

dxl
(ue(x)− sgn(x) sin(k0x)) ∈ L2(R\[−1, 1])

for l = 0, 1, 2, analogously to (14). If c > k
−1/2
0 , then∫

R
sin(k0·)(c2u′′o −∆Duo + αuo)dx = −2c2k0 + 2 < 0, (33)∫

R
cos(k0·)(c2u′′e −∆Due + αue)dx = 2c2k0 − 2 > 0,∫

R
cos(k0·)(c2u′′o −∆Duo + αuo)dx = 0

and ∫
R

sin(k0·)(c2u′′e −∆Due + αue)dx = 0.

Proof. The two last integrals vanish because the integrands are odd functions of
x. For the first integral, two integrations by parts and the identity L sin(k0·) = 0
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give

lim
z→∞

∫ z

−z
sin(k0·)

(
c2u′′o −∆Duo + αuo

)
dx

= lim
z→∞

∫ z

−z

[
c2
d2

dx2
sin(k0·)−∆D sin(k0·) + α sin(k0·)

]
uo dx

+ lim
z→∞

c2 [sin(k0z)u
′
0(z)− k0 cos(k0z)uo(z)

− sin(−k0z)u′0(−z) + k0 cos(−k0z)uo(−z)]

− lim
z→∞

(∫ z+1

−z+1

−
∫ z

−z

)
sin(k0(x− 1))uo(x)dx

− lim
z→∞

(∫ z−1

−z−1
−
∫ z

−z

)
sin(k0(x+ 1))uo(x)dx

(14)
= lim

z→∞
c2
(
−k0 sin2(k0z)− k0 cos2(k0z)− k0 sin2(−k0z)− k0 cos2(−k0z)

)
− lim
z→∞

∫ z+1

z

sin(k0(x− 1)) cos(k0x)dx− lim
z→∞

∫ −z+1

−z
sin(k0(x− 1)) cos(k0x)dx

+ lim
z→∞

∫ −z
−z−1

sin(k0(x+ 1)) cos(k0x)dx+ lim
z→∞

∫ z

z−1
sin(k0(x+ 1)) cos(k0x)dx

= −2c2k0 + lim
z→∞

∫ z+1

z−1
cos2(k0x)dx+ lim

z→∞

∫ −z+1

−z−1
cos2(k0x)dx

= −2c2k0 + 2 < 0.

Analogously,∫
R

cos(k0·)(c2u′′e −∆Due + αue)dx =

∫
R

sin(k0 ·+k0)(c2u′′e −∆Due + αue)dx

= lim
z→∞

c2 (−k0 sin(k0z + k0) sin(k0z − k0)− k0 cos(k0z + k0) cos(k0z − k0)

−k0 sin(−k0z + k0) sin(−k0z − k0)− k0 cos(−k0z + k0) cos(−k0z − k0))

− lim
z→∞

∫ z+1

z

sin(k0(x− 1) + k0) cos(k0x− k0)dx

− lim
z→∞

∫ −z+1

−z
sin(k0(x− 1) + k0) cos(k0x− k0)dx

+ lim
z→∞

∫ −z
−z−1

sin(k0(x+ 1) + k0) cos(k0x− k0)dx

+ lim
z→∞

∫ z

z−1
sin(k0(x+ 1) + k0) cos(k0x− k0)dx

= 2c2k0 − 2 > 0.
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