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USE OF STATISTICAL PARAMETRIC MAPPING TO REVEAL NOVEL ATHLETE-
SPECIFIC KINETIC DETERMINANTS OF SPRINT START PERFORMANCE

Steffi L. Colyer1,2 and Aki I.T. Salo1,2

Department for Health, University of Bath, Bath, United Kingdom1

CAMERA - Centre for the Analysis of Motion, Entertainment Research and 
Applications, University of Bath, United Kingdom2 

The powerful development of force largely determines sprint start performance. However, 
to date, block phase kinetics have only been examined using discrete (0D) variables.
One male sprinter completed 16 sprint starts whilst the ground reaction forces applied by 
each limb were measured. Kinetic predictors of horizontal external power were identified 
using Pearson r for 0D variables and statistical parametric mapping (SPM) to assess 
entire force curves. Pearson’s correlations revealed fast horizontal force production to 
result in better performance, but maximum forces appeared important only for the rear 
leg. Conversely, SPM results suggested that horizontal forces in the early push phase 
(initial 15-30%) were important for both legs. Testing entire force curves using SPM can
supplement 0D analysis to identify kinetic factors which would otherwise be undetected. 

KEY WORDS: 1D analysis, forces, power, sprinting, within-athlete

INTRODUCTION: Elite sprint start performances are realised through the generation of high 
horizontal power, which is determined by an athlete’s ability to produce high forces across 
very short time frames. Many studies have attempted to unpick the force-time variables 
which differentiate elite from sub-elite or novice performers during the sprint start, with the 
intention to inform coaching practices and ultimately improve performance. To date, this 
research has involved the identification of discrete (0-dimensional, 0D) determinants either 
through correlations with performance (Willwacher et al., 2013) or by assessing differences 
between sprinters of varying abilities (Mero et al., 1983). Additionally, the effects of training 
or experimental block modifications on performance are typically evaluated using these 0D
variables (Fortier et al., 2005; Mero et al., 2006). Utilising instrumented blocks (Willwacher et 
al., 2013) or starting blocks placed on separate force plates (Salo et al., 2016), studies have 
assessed the forces applied by each leg during the sprint start. Comparisons across 
sprinters of varying abilities have revealed higher rear block peak forces for elite vs. sub-elite 
performers with similar (or even lower in some cases which involved elite athletes) front 
block peak forces reported (van Coppenolle et al., 1989; Fortier et al., 2005). Thus, it seems 
to be that force production of the rear leg better differentiates the level of athletes compared 
with that of the front leg. 
Whilst these studies have contributed substantially to our understanding, the use of discrete 
force-time variables could potentially neglect important information. Moreover, it is plausible 
that force production strategies differ between athletes and important information may be
masked by group-based analyses. Statistical parametric mapping (SPM) allows entire one-
dimensional (1D) data sets to be analysed; preserving the dimensionality of the data and 
overcoming aforementioned problems with data reduction (Friston et al., 1994). This 
technique can be used to assess for differences between sets of curves and/or associations 
between these curves and a discrete outcome measure (either within one athlete or across 
multiple athletes). The aim of this study was to demonstrate the potential for SPM analyses 
to identify novel kinetic determinants of sprint start performance within an individual athlete.

METHODS: One university-level male sprinter (age: 21 years, height: 1.82 m, mass: 74.6 kg, 
100-m PB: 10.84 s) provided informed consent to participate in two data collection sessions 
separated by four weeks. Four force plates (900 mm x 600 mm, sampling at 1000 Hz, model 
9287BA; Kistler Instruments Ltd, Switzerland) positioned in a 2-by-2 formation were covered 
with synthetic rubber mats. To allow forces from each leg to be collected separately, 
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competition blocks were set as described in Salo et al. (2016) whereby two separate spines 
were used; one on each force plate with the foot plates positioned so that the lateral space 
between them equalled the width of the spine. The remaining two force plates captured hand 
force production. The athlete conducted a brief warm-up including some practice starts. 
Preferred block settings were used and spikes were worn throughout. At each session, eight 
maximal-effort sprint starts were performed with a four-minute recovery between each trial. 
An experienced starter provided normal starting commands followed by an electronic beep, 
which synchronously triggered the force plate data collection and provided a starting signal.
The force data were analysed using a custom-written Matlab script (The MathWorks, USA), 
which firstly filtered the data using a fourth-order Butterworth filter (103 Hz cut-off frequency 
based on residual analysis). Ground reaction forces from the four platforms were summed in 
the vertical and anterior-posterior directions. The average and standard deviation of vertical 
force was then calculated across the first 50 ms from the starting signal. Onset of movement 
was defined as the instant when vertical force exceeded a two standard deviation threshold 
above the average. Block exit was set at the instant vertical force fell below 20 N. The 
impulse-momentum relationship was then used to calculate vertical and horizontal block exit 
velocities. The time between onset of movement and block exit was defined as total push 
duration and combined with horizontal block exit velocity to provide horizontal external power 
as the criterion (Bezodis et al., 2010). Subsequently, average horizontal and total (resultant) 
forces were calculated across the push duration and used to calculate ratio of forces (Morin 
et al., 2011). Maximum forces (horizontal and vertical) were also computed for each leg (front 
and rear). Finally, peak rate of horizontal force development for each leg was calculated 
across the first 150 ms of force production using a 30-ms moving window. 
Statistical analysis took a two-part approach: discrete tests were firstly conducted whereby 
Pearson correlations assessed the relationships between the above discrete variables and 
horizontal external power. A 0.1 threshold was set for the smallest practically important 
correlation (Hopkins et al., 2009) through which clear (positive or negative) and unclear 
relationships were defined using 90% confidence intervals (CI). Open-source SPM software 
(Pataky, 2012) was then used to assess the relationship between force curves and horizontal 
external power. Force traces were temporally normalised from 0 to 100% of total push 
duration before linear regression models were applied to each of the 101 nodes resulting in a
SPM{t} curve. Using random field theory, which describes probabilistic behaviour of random 
curves and accounts for the smoothness of the data, a critical threshold was set ( = 0.05). If 
the SPM{t} curve exceeded this critical threshold, force was deemed to be significantly 
related to the discrete outcome measure (horizontal external power) at these specific nodes.

RESULTS: The athlete exited the block with a horizontal velocity of 3.32 ± 0.04 m·s-1 (mean 
± SD) after pushing against the block for 0.399 ± 0.023 s. Consequently, a mean body mass-
normalised horizontal external power of 13.81 ± 0.69 W·kg-1 was achieved. Vertical velocity
at block exit was 0.66 ± 0.07 m·s-1. Recorded values for the other discrete variables, along 
with their associations with horizontal external power, are presented in Table 1.

Table 1. Discrete kinetic variables and associations (Pearson r) with horizontal external power
Mean SD r ±90% CI

Average total force (N) 1085 22 0.84* 0.14
Average horizontal force (N) 621 32 0.95* 0.05
Ratio of forces (%) 57 2 0.96* 0.04
Maximum horizontal force rear leg (N) 727 36 0.35* 0.38
Maximum vertical force rear leg (N) 671 39 0.25 0.40
Maximum horizontal force front leg (N) 843 26 0.09 0.42
Maximum vertical force front leg (N) 986 29 -0.13 0.42
Peak rate of horizontal force production rear leg (N·s-1) 15980 2262 0.78* 0.19
Peak rate of horizontal force production front leg (N·s-1) 7250 967 0.53* 0.32

CI = confidence intervals. *denotes clear association between variable and horizontal external power.
Correlations can be considered statistically significant (p < 0.05) if the 90% CI of r do not cross zero.
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The relationships between horizontal external power and horizontal force production of the 
rear and front leg (1D analysis) are provided in Figure 1. The SPM{t} curves (bottom panels) 
indicate statistically significant relationships (p < 0.001) between horizontal force production 
in the early phases of force production for both legs (between 15 and 22% of the block phase 
for rear leg and between 16 and 30% of the block phase for the front leg). For vertical forces, 
the SPM{t} curves did not reach statistical significance.  

Figure 1. Horizontal force production for 16 sprint start trials from the same athlete (upper left: 
rear leg, upper right: front leg) and SPM results (t curves) depicting the relationships between 
force curves (lower left: rear leg, lower right: front leg) and horizontal external power across 
the block phase. Grey shaded areas indicate a significant relationship between force and 
horizontal external power at those time nodes.

DISCUSSION: This study used SPM to assess kinetic determinants of sprint start 
performance and make comparisons with those obtained using conventional discrete (0D) 
analysis. Pearson correlations (0D force variables) revealed statistically significant and clear, 
positive associations (r ± 90% CI) between horizontal external power and average total force 
(0.84 ± 0.14), average horizontal force (0.95 ± 0.05) and the ratio of forces (0.96 ± 0.04). 
Thus, block performance seems to be associated with the ability to orientate the force vector 
horizontally, as observed in the acceleration phase (Morin et al., 2011). The SPM results 
provide further support for this as horizontal force production was positively associated with 
horizontal external power, whereas, vertical force production was not (either positively or 
negatively). Additionally and as in Willwacher et al. (2013), the ability to rapidly generate
horizontal force in the initial push phase seems to be important to this sprinter’s overall block 
performance (r ± 90% CI = 0.78 ± 0.19 for the rear leg and 0.53 ± 0.32 for the front leg).
When maximum forces were extracted for each leg, the only variable which was clearly 
associated with block performance was maximum horizontal force of the rear leg (r ± 90% CI 
= 0.35 ± 0.38). This appears to support previous studies (van Coppenolle et al., 1989; Fortier 
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et al., 2005), which have shown faster sprint starters to generate greater maximum horizontal 
forces on the rear block but not on the front. However, when data were analysed using the 
1D SPM approach, horizontal force production on both blocks was found to be significantly (p
< 0.001) related to horizontal external power from 15-30% of the push phase (Figure 1). At 
these points in time, front leg forces were considerably less than maximum and this perhaps 
explains the apparent discrepancy between 0D and 1D results. Only when the force data 
were analysed using 1D SPM, did it become apparent that it is important for this sprinter to 
increase horizontal force production on both blocks in the initial push phase. 
This study highlights the potential utility of SPM to analyse sprint start performance alongside 
the more conventional discrete tests. Further 1D analyses, which have potential in this 
setting, include t tests and ANOVA to assess for differences between curves (either inter- or 
intra-athlete) in response to training or technique intervention, for example. An ongoing 
consideration with SPM, however, is the requirement to time-normalise, which may
temporally distort the data and analysis. Nonetheless, variation in push duration was small in 
the current study (SD = 0.023 s), and thus, this was not anticipated to be problematic.

CONCLUSION: Traditional discrete 0D analyses of the sprint start can certainly provide 
important insight regarding a sprinter’s start performance. However, by focussing on
maximum forces or similar scalar variables, practitioners and coaches may overlook 
meaningful information, which can potentially be detected using 1D SPM. We encourage 
researchers to assess the variation in push duration before conducting SPM and perhaps 
combine 0D and 1D analyses to fully characterise and examine sprint start performance.
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