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Recent nonlinear elastic wave spectroscopy experiments have shown that the nonlinear ultrasonic

response of damaged composite materials can be enhanced by higher vibrations at the local damage

resonance. In this paper, the mathematical formulation for the generation of nonlinear wave effects

associated with continuous periodic excitation and the concept of local defect resonance is pro-

vided. Under the assumption of both quadratic and cubic approximation, the existence of higher

harmonics of the excitation frequency, superharmonics of the damage resonance frequency and

nonlinear wave effects, here named as nonlinear damage resonance intermodulation, which corre-

spond to the nonlinear intermodulation between the driving and the damage resonance frequencies,

is proved. All these nonlinear elastic effects are caused by the interaction of propagating ultrasonic

waves with the local damage resonance and can be measured at locations different from the mate-

rial defect one. The proposed analytical model is confirmed and validated through experimental

transducer-based measurements of the steady-state nonlinear resonance response on a damaged

composite sample. These results will provide opportunities for early detection and imaging of mate-

rial flaws. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4979256]

[JFL] Pages: 2364–2374

I. INTRODUCTION

The major difficulty in the characterisation of a material

degradation process is due to the fact that the medium, either

metallic or multi-layered composite, exhibits very few mea-

surable signs of damage prior to the onset of micro-cracks or

delamination, which often precede catastrophic failures. Most

of current inspections are performed using conventional linear

ultrasonic (LU) non-destructive evaluation (NDE) and struc-

tural health monitoring (SHM) techniques, which measure

either the reflection and scattering of primary waves at the

material heterogeneities and discontinuities (e.g., wave speed,

damping variations, etc.) or the impedance contrasts from

open interfaces such as holes, voids, and free surfaces.1

However, these techniques are not able to detect small defects

before they grow to a critical size of few millimetres, as the

contribution on the total structural stiffness and the elastic

scattering from flaws originating at incipient stages of damage

development is negligible. Nonlinear elastic wave spectros-

copy (NEWS) methods are an alternative to traditional LU

techniques for early stage and micro-damage detection, as

they explicitly interrogate the material nonlinear elastic

behaviour and its effect on the wave propagation caused by

the presence of defects. Examples of NEWS methods are

higher harmonics features extraction (HH),2 nonlinear elastic

wave modulation (NEWM),3 scaling subtraction (SSM),4 and

phase symmetry analysis (PSA).5,6 These techniques have

shown an extreme sensitivity in diagnosing manufacturing

defects such as porosity, component assembly contact condi-

tions, and incipient damage in the form of micro-cracks,

delaminations, clapping areas, and adhesive bond weaken-

ing.7 Indeed, nonlinearities, discontinuities and hysteresis in

the microscopic stress-strain relation of tiny cracks may result

in a variety of nonlinear ultrasonic phenomena, which become

measurable at the macroscopic (structural) level in the form

of higher harmonics of the monochromatic input tone, as well

as modulation of multiple excitation frequencies.8 Such har-

monics can be attributed either to the “clapping/rubbing”

motion of the region normal to the damage interface or to the

nonlinear friction between the defect surfaces, which are

excited by small tangential stresses produced by the elastic

waves propagating through the medium.9,10 In terms of strain

amplitude, second order harmonic is principally used a signa-

ture for damage characterisation of materials that manifest

“classical” or “anharmonic” nonlinear behaviour at the

atomic/molecular scale (i.e., in the sense of Landau11). In

addition to “classical” nonlinear elastic effects, a new family

of nonlinear material features known as “non-classical” was

experimentally observed for structural flaws,12,13 including

the nonlinear local defect resonance (LDR) effect.14 This last

elastic phenomenon has gained considerable attention in the

past few years as it allows selective ultrasonic activation and

higher sensitivity to the presence of structural flaws. LDR

shall be referred as the interaction of acoustic/ultrasonic

waves with the damaged area at a frequency matching the

defect resonance, which results in a substantial enhancement

of the vibration amplitude only in the localised damaged

region. Indeed, using wide-band excitation, LDR exhibits

transitions from linear to nonlinear regime with the effect of

generating higher and sub-harmonics of the input frequency.

Although recent studies have demonstrated the capabilities of

fully non-contact linear and nonlinear LDR to detect dynamica)Electronic mail: m.meo@bath.ac.uk
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frequency shifts in nonlinear resonant ultrasonic spectroscopy

(NRUS),15 near-surface and in-depth delamination in digital

shearography,16 and laser vibrometry imaging,17 its use in

fully contact applications with continuous periodic excitation

is still limited. Indeed, using tone burst excitation, the nonlin-

ear LDR response is enhanced by higher vibration amplitudes

measured only at its local resonance and zero elsewhere. This

implies that these material nonlinear effects can be sensed

exclusively at the defect location.

In this paper, we provide a two-dimensional (2D) mathe-

matical description and an experimental validation of the gen-

eration of both “classical” and “non-classical” nonlinear

elastic effects associated with fully contact nonlinear LDR and

harmonic input measured at all points of the medium’s surface.

Beside higher harmonics and superharmonics, novel nonlinear

elastic wave phenomena, here named as nonlinear damage
resonance intermodulation (NDRI), which corresponds to a

nonlinear intermodulation between the driving frequency, f0,

and the frequency of the LDR, fd , were found. A perturbation

theory applied to the equation of motion governing bending

deflection was used to describe the nonlinear structural

response on a damaged composite plate. Transducer-based

contact tests were carried out on a composite laminate with

controlled delamination. Both analytical and experimental

results showed the generation of nonlinear elastic effects,

including NDRI, related to the interaction of the flexural waves

with the steady-state nonlinear LDR response.

II. THEORETICAL MODEL OF NONLINEAR LDR

When the frequency f0 of the driving flexural wave is

matched to the LDR frequency, fd, of the damaged compos-

ite plate of thickness h, the vibration amplitude of the portion

of volume with depth d below the defect dramatically

increases (Fig. 1). This is due to a local decrease in stiffness

for a certain structural mass in the damaged region, which

manifests in a particular characteristic frequency fd.

Assuming that the internal structural flaw such as

delamination in a composite laminate is represented by a flat

bottom hole (FBH), i.e., a thin circular defect of radius r and

thickness s, the expression of the LDR frequency becomes18

fd ffi
1:6d

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12q 1� t2ð Þ

s
; (1)

where E and t are the effective elastic modulus and

Poisson’s ratio of the composite laminate, respectively, and

q is the density. Equation (1) corresponds to the first bending

mode of a circular plate with clamped boundaries and can be

also used to evaluate LDR in other structural flaws and mate-

rials such as laminar defects in rolled sheets metals.17

Since the local resonance vibration of cracks enhances

the generation of nonlinear material phenomena, an efficient

energy pumping of nonlinear ultrasonic waves can be

achieved, thus leading to higher sensitivity to the presence of

the damage. Solodov19 proposed a 1D model based on a non-

linear damped oscillator in order to describe the generation

of higher harmonics (superharmonics) and subharmonics

effects of the LDR frequency. However, this model assumed

that these material nonlinear effects could be sensed exclu-

sively at the LDR location.

This research confirms the results obtained by Solodov,

and provides a 2D mathematical model for the generation of

nonlinear elastic effects associated to the LDR, which can be

features not only at the damage location, but at all points of

the medium’s surface simply using harmonic excitation. In

other words, this paper demonstrates that the nonlinear LDR

is not just a local effect, and the interaction of propagating

waves with the LDR generates nonlinear elastic wave phe-

nomena, including the newly found NDRI, which can also

be sensed at locations different from the damage resonance.

In the proposed theoretical model, a quadratic and cubic

nonlinear approximation of the force qNL associated to the

out-of-plane (bending) displacement w0 in classical laminate

plate theory is used to describe the nonlinear elastic effects

of LDR. Assuming a thickness-to-width ratio smaller than

0.1 (i.e., neglecting the rotator inertia) and zero in-plane and

thermal forces, the nonlinear equation of motion governing

bending deflection for a symmetric composite plate is

D11

@4w0 x; y; tð Þ
@x4

þ 2 D12 þ 2D66ð Þ @
4w0 x; y; tð Þ
@x2@y2

þ D22

@4w0 x; y; tð Þ
@y4

þ I0

@2w0 x; y; tð Þ
@t2

�q x; y; tð Þ þ qNL n; g; x; y; tð Þ ¼ 0: (2)

In Eq. (2), qðx; y; tÞ is the applied sinusoidal transverse force,

qNLðn; g; x; y; tÞ is the nonlinear force containing the qua-

dratic and cubic terms associated with the nonlinear LDR,

qIIðn; x; y; tÞ, and qIIIðg; x; y; tÞ, respectively, with n and g the

second and third order nonlinear coefficients (constants), and

D11, D12, and D66 are the component of the bending stiffness

matrix Dij defined in terms of the plane stress-reduced stiff-

nesses for the kth orthotropic lamina �Q
ðkÞ
ij .20 This is

expressed as follows:

Dij ¼
1

3

XL

k¼1

�Q
kð Þ

ij z3
kþ1
� z3

k

� �
: (3)

The kth layer in Eq. (3) is located between the points z ¼ zk

and z ¼ zkþ1 in the thickness direction. Finally, I0 in Eq. (2)

is the mass moment defined as

I0 ¼
XL

k¼1

qðkÞðzkþ1 � zkÞ: (4)

FIG. 1. Illustration of the nonlinear LDR effect for the case of a flat bottom

hole (FBH) using the quadratic and cubic approximation of the nonlinear

force qNL associated to the bending displacement w0ðx; y; tÞ. In this figure, h
is the thickness of the damaged composite plate, d is the depth of the portion

of volume below the defect of radius r.
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Equation (2) is a nonlinear, non-homogeneous ordinary dif-

ferential equations (ODE) associated with the following

boundary conditions for a simply supported plate:

w0ðx; 0; tÞ ¼ 0; w0ðx; b; tÞ ¼ 0; w0ð0; y; tÞ ¼ 0;

w0ða; y; tÞ ¼ 0 for t � 0; (5a)

Mxxð0; y; tÞ ¼ 0; Mxxða; y; tÞ ¼ 0; Myyðx; 0; tÞ ¼ 0;

Myyðx; b; tÞ ¼ 0 for t � 0; (5b)

with a and b are the length and width of the plate along the

x- and y-axis, respectively, and Mxx, Myy, and Mzz the

moments in the x, y, and z coordinates. The initial conditions

associated with Eq. (2) at t ¼ 0 are w0ðx; y; 0Þ ¼ 0 and

@w0ðx; y; 0Þ=@t ¼ 0 for all x and y. Assuming that the second

and third order nonlinear responses originated from the non-

linear term qIIðn; x; y; tÞ and qIIIðg; x; y; tÞ are much smaller

than the fundamental one, a first order perturbation theory

can be used to solve Eq. (2):

w0ðx; y; tÞ ¼ wð1Þ
0
ðx; y; tÞ þ nwð2Þ

0
ðx; y; tÞ

þ gwð3Þ
0
ðx; y; tÞ þ Oðn2; g2Þ: (6)

Substituting Eq. (6) into Eq. (2) and neglecting the quadratic

terms Oðn2; g2Þ, the following equation can be obtained:

D11

@4 w 1ð Þ
0

x; y; tð Þ þ nw 2ð Þ
0

x; y; tð Þ þ gw 3ð Þ
0

x; y; tð Þ
h i

@x4
þ 2 D12 þ 2D66ð Þ

@4 w 1ð Þ
0

x; y; tð Þ þ nw 2ð Þ
0

x; y; tð Þ þ gw 3ð Þ
0

x; y; tð Þ
h i

@x2@y2

þD22

@4 w 1ð Þ
0

x; y; tð Þ þ nw 2ð Þ
0

x; y; tð Þ þ gw 3ð Þ
0

x; y; tð Þ
h i

@y4
þ I0

@2 w 1ð Þ
0

x; y; tð Þ þ nw 2ð Þ
0

x; y; tð Þ þ gw 3ð Þ
0

x; y; tð Þ
h i

@t2

� q x; y; tð Þ þ qII n; x; y; tð Þ þ qIII g; x; y; tð Þ ¼ 0: (7)

A. Linear solution

The solution of the linear inhomogeneous problem asso-

ciated with Eq. (2) is obtained by posing qIIðn; x; y; tÞ
¼ qIIIðg; x; y; tÞ ¼ 0. The determination of the linear solution

w
ð1Þ
0 ðx; y; tÞ, for all times t � 0 under any applied load

qðx; y; tÞ, is obtained through an expansion of the transverse

deflection that satisfies the boundary conditions (5) as

follows:

wð1Þ
0
ðx; y; tÞ ¼

X1
n¼1

X1
m¼1

WmnðtÞ sin ðaxÞ sin ðbyÞ; (8)

where a ¼ mp=a, b ¼ np=b, and WmnðtÞ are coefficients to

be determined such that the governing Eq. (2) is satisfied

everywhere in the domain of the plate for m; n ¼ 1; 2; 3;….

The transverse load, initial displacement and initial velocity

can also be expanded in the series form as

qðx; y; tÞ ¼
X1
n¼1

X1
m¼1

QmnðtÞ sin ðaxÞ sin ðbyÞ; (9)

d0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

DmnðtÞ sin ðaxÞ sin ðbyÞ; (10)

v0ðx; y; tÞ ¼
X1
n¼1

X1
m¼1

VmnðtÞ sin ðaxÞ sin ðbyÞ; (11)

where for a point source harmonic load f ðtÞ ¼ cos ð2pf0tÞ of

amplitude Q0 located at ðx0; y0Þ, the load coefficients QmnðtÞ
are given by

Qmn tð Þ ¼ 4

ab
cos x0tð Þ

ðb

0

ða

0

Q0d x� x0; y� y0ð Þ

� sin axð Þ sin byð Þdx dy

¼ 4Q0

ab
sin ax0ð Þsin by0ð Þcos 2pf0tð Þ: (12)

Substitution of Eqs. (8), (9), and (12) into Eq. (7) leads to

KmnWmn tð Þ þ I0

@2Wmn tð Þ
@t2

¼ Qmn tð Þ; (13)

where Kmn¼½D11a4þ2ðD12þ2D66Þa2b2þD22b
4�. Equation

(13) is valid for every point (x, y) of the domain 0<x<a
and 0<y<b and can be rewritten as

@2Wmn tð Þ
@t2

þ Kmn

I0

� �
Wmn tð Þ ¼ �Qmn tð Þ; (14)

with �QmnðtÞ ¼ QmnðtÞ=I0. The solution of the above equation

is given by

WmnðtÞ ¼ C1u1ðtÞ þ C2u2ðtÞ þWp
mnðtÞ

¼ C1ek1t þ C2ek2t þWp
mnðtÞ; (15)

where C1 an C2 are constants to be determined using the ini-

tial conditions and Wp
mnðtÞ is the particular solution given

by20
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Wp
mn tð Þ ¼

ð
t

u1 sð Þu2 tð Þ � u1 tð Þu2 sð Þ
u1 sð Þ _u2 sð Þ � _u1 sð Þu2 sð Þ

�Qmn sð Þds; (16)

where k1 ¼ �i2pfmn and k2 ¼ i2pfmn are the roots of equa-

tion k2
i þ ð2pfmnÞ2 ¼ 0 and fmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kmn=I0

p
=2p is the natural

frequency of the fully supported composite laminate.

The general solution of the linear non-homogeneous ODE

(14) is

Wmn tð Þ ¼ C1 cos 2pfmntð Þ þ C2 sin 2pfmntð Þ

þ
�Qmn

4p2 f 2
mn
� f 2

0

� � cos 2pf0tð Þ: (17)

The particular solution of Eq. (17) corresponds to the steady-

state oscillation of the exciting force at frequency f0.

Assuming that the displacement and velocity in Eqs. (10)

and (11) are equal to zero at t¼ 0, the linear bending deflec-

tion becomes

w
ð1Þ
0 ðx; y; tÞ ¼

X1
n¼1

X1
m¼1

AI cos ð2pf0tÞ � cos ð2pfmntÞ½ �

� sin ðaxÞ sin ðbyÞ (18)

with AI ¼ �Qmn=½4p2ðf 2
mn
� f 2

0 Þ�. If fd is the frequency associ-

ated with the LDR located at coordinates x ¼ xd and y ¼ yd

[analytically obtained using Eq. (1)], it can be seen from Eq.

(18) that the maximum linear amplitude vibration is obtained

when fmn ¼ fd ¼ f0, i.e., when the driving frequency matches

the LDR frequency. Equation (18) confirms the results

obtained by Solodov19 using wide-band excitation and opens

new scenarios for novel nonlinear elastic effects that will be

analysed in Secs. II B and II C.

B. Quadratic nonlinear approximation

The second order nonlinear elastic effect generated at

the LDR location ðxd; ydÞ is here considered by defining the

second order nonlinear transverse load FII
mnðn; tÞ through the

quadratic nonlinear approximation as follows:

FII
mn n; tð Þ ¼ n

�Qmn

4p2 f 2
d � f 2

0

� � cos 2pf0tð Þ � cos 2pfdtð Þ½ �sin axdð Þsin bydð Þ
" #2

¼ nAII cos 2pf0tð Þ � cos 2pfdtð Þ½ �2;

(19)

where AII ¼ ½ �Qmn=½4p2ðf 2
d � f 2

0 Þ� sin ðaxdÞ sin ðbydÞ�2. The

second order nonlinear transverse load in Eq. (2) can be

rewritten as

qIIðn; x; y; tÞ ¼
X1
m¼1

X1
n¼1

FII
mnðn; tÞ sin ðaxÞ sin ðbyÞ; (20)

and assuming an expansion of the transverse deflection satis-

fying the homogeneous boundary conditions of the simply

supported plate, we obtain

wð2Þ
0
ðx; y; tÞ ¼

X1
n¼1

X1
m¼1

YmnðtÞ sin ax sin by: (21)

Substituting Eqs. (20) and (21) into Eq. (7) yields

nYmn D11a
4 þ 2ðD12 þ 2D66Þa2b2 þ D22b

4
	 

þ nI0

€Ymn ¼ �FII
mn ; (22)

which becomes

4p2Ymnf 2
mn þ €Ymn ¼ � �A

II
cos ð2pf0tÞ � cos ð2pfdtÞ½ �2;

(23)

with �A
II ¼ AII=I0.

The general solution of Eq. (22) is

YmnðtÞ ¼ C1y1 þ C2y2 þ Yp
mnðtÞ

¼ C1e�i2pfmnt þ C2ei2pfmnt þ Yp
mnðtÞ; (24)

where y1 ¼ e�i2pfmnt and y2 ¼ ei2pfmnt are the solution for the

homogeneous counterpart. The particular solution Yp
mnðtÞ can

be found using the method of variation of parameters for

non-homogeneous linear ODEs, which is, for the sake of

clarity, reported in the Appendix. The solution of Eq. (23) is

obtained by substituting Eq. (A8) into Eq. (21):

w 2ð Þ
0

x; y; tð Þ ¼
X1
n¼1

X1
m¼1

�
�A

II
�

1� cos 2pfmntð Þ
4p2f 2

mn

þ cos 2pfmntð Þ � cos 4pf0tð Þ
4p2 4f 2

0 � f 2
mn

� �
þ cos 2pfmntð Þ � cos 4pfdtð Þ

4p2 4f 2
d
� f 2

mn

� � þ cos 2p f06fdð Þt½ � � cos 2pfmntð Þ
½ 2pf062pfdð Þ2 � 4p2f 2

mn�

�
sin ax sin by: (25)

J. Acoust. Soc. Am. 141 (4), April 2017 Ciampa et al. 2367



C. Cubic nonlinear approximation

The third order nonlinear elastic effect generated at the LDR location ðxd; ydÞ is obtained by defining the third order non-

linear transverse load FIII
mn ðg; tÞ through the following cubic nonlinear approximation:

FIII
mn g; tð Þ ¼ g

�Qmn

4p2 f 2
d � f 2

0

� � sin axdð Þsin bydð Þ cos 2pf0tð Þ � cos 2pfdtð Þ½ �
" #3

¼ gAIII cos 2pf0tð Þ � cos 2pfdtð Þ½ �3; (26)

where AIII ¼ ½ �Qmn=½4p2ðf 2
d � f 2

0 Þ� sin ðaxdÞ sin ðbydÞ�3. The third order nonlinear transverse load in Eq. (2) can be rewritten as

qIIIðn; x; y; tÞ ¼
X1
m¼1

X1
n¼1

FIII
mn ðn; tÞ sin ðaxÞ sin ðbyÞ: (27)

Similarly to the second order nonlinear case, assuming an expansion of the transverse deflection satisfying the homogeneous

boundary conditions of the simply supported plate, yields

wð3Þ
0
ðx; y; tÞ ¼

X1
n¼1

X1
m¼1

WmnðtÞ sin ðaxÞ sin ðbyÞ: (28)

Substituting Eqs. (27) and (28) into Eq. (2) yields

gWmn D11a
4 þ 2ðD12 þ 2D66Þa2b2 þ D22b

4
	 


þ gI0
€Wmn ¼ �FIII (29)

or

4p2Wmnf 2
mn þ €Wmn ¼ � �A

III
cos ð2pf0tÞ � cos ð2pfdtÞ½ �3; (30)

with �A
III ¼ AIII=I0. Again, since the displacement and velocity are equal to zero for t¼ 0, the total solution of Eq. (30)

becomes

Wmn tð Þ ¼
�A

III

4

"
9 cos 2pfmntð Þ � cos 2pf0tð Þ½ �

4p2 f 2
0 � f 2

mn

� � þ cos 2pfmntð Þ � cos 6pf0tð Þ
4p2 9f 2

0 � f 2
mn

� � þ 9 cos 2pfdtð Þ � cos 2pfmntð Þ½ �
4p2 fd

2 � f 2
mn

� �
þ cos 6pfdtð Þ � cos 2pfmntð Þ

4p2 9fd
2 � f 2

mn

� � þ 3 cos 2p 2f06fdð Þt½ � � cos 2pfmntð Þ½ �
4pf062pfdð Þ2 � 4p2f 2

mn

h i

þ 3 cos 2pfmntð Þ � cos 2p f062fdð Þt½ �½ �
2pf064pfdð Þ2 � 4p2f 2

mn

h i
#
: (31)

Substituting Eq. (31) into Eq. (28), yields

w 3ð Þ
0

x; y; tð Þ ¼
X1
n¼1

X1
m¼1

(
�A

III

4

"
9 cos 2pfmntð Þ � cos 2pf0tð Þ½ �

4p2 f 2
0 � f 2

mn

� � þ cos 2pfmntð Þ � cos 6pf0tð Þ
4p2 9f 2

0 � f 2
mn

� �
þ 9 cos 2pfdtð Þ � cos 2pfmntð Þ½ �

4p2 fd
2 � f 2

mn

� � þ cos 6pfdtð Þ � cos 2pfmntð Þ
4p2 9fd

2 � f 2
mn

� �
þ 3 cos 2p 2f06fdð Þt½ � � cos 2pfmntð Þ½ �

4pf062pfdð Þ2 � 4p2f 2
mn

h i

þ 3 cos 2pfmntð Þ � cos 2p f062fdð Þt½ �½ �
½ 2pf064pfdð Þ2 � 4p2f 2

mn�

#)
sin ax sin by: (32)

Substituting Eqs. (18), (25), and (32) into Eq. (6), the total solution of the differential problem (2) is
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w0 x; y; tð Þ ¼ w 1ð Þ
0

x; y; tð Þ þ nw 2ð Þ
0

x; y; tð Þ þ gw 3ð Þ
0

x; y; tð Þ

¼
X1
n¼1

X1
m¼1

AI cos 2pf0tð Þ � cos 2pfmntð Þ½ �sin axð Þsin byð Þ

þn
X1
n¼1

X1
m¼1

�A
II

2
S1 þ S2 þ S3 þ S4 þ S5ð Þ

� 
sin axð Þsin byð Þ

þg
X1
n¼1

X1
m¼1

�A
III

4
T1 þ T2 þ T3 þ T4 þ T5 þ T6 þ T7 þ T8ð Þ

� 
sin axð Þsin byð Þ; (33)

with,

S1 ¼
1� cos 2pfmntð Þ½ �

4p2f 2
mn

; S2 ¼
cos 2pfmntð Þ � cos 4pf0tð Þ

4p2 4f 2
0 � f 2

mn

� � ; S3 ¼
cos 2pfmntð Þ � cos 4pfdtð Þ

4p2 4f 2
d
� f 2

mn

� � ;

S4;5 ¼
2 cos 2p f06fdð Þt½ � � cos 2pfmntð Þ
� �

2pf062pfdð Þ2 � 4p2f 2
mn

h i ; T1 ¼
9 cos 2pfmntð Þ � cos 2pf0tð Þ½ �

4p2 f 2
0 � f 2

mn

� � ; T2 ¼
cos 2pfmntð Þ � cos 6pf0tð Þ

4p2 9f 2
0 � f 2

mn

� � ;

T3 ¼
9 cos 2pfdtð Þ � cos 2pfmntð Þ½ �

4p2 fd
2 � f 2

mn

� � ; T4 ¼
cos 6pfdtð Þ � cos 2pfmntð Þ

4p2 9fd
2 � f 2

mn

� � ; T5;6 ¼
3 cos 2p 2f06fdð Þt½ � � cos 2pfmntð Þ
� �

4pf062pfdð Þ2 � 4p2f 2
mn

h i and

T7;8 ¼
3 cos 2pfmntð Þ � cos 2p f062fdð Þt½ �
� �

2pf064pfdð Þ2 � 4p2f 2
mn

h i :

From the results of Eq. (33), the generation of “classical”

nonlinear and “non-classical” nonlinear LDR effects falls

into two main conditions. In the first condition, material non-

linear phenomena can occur if the amplitude terms AII and

AIII in Eq. (33) tend to infinity, i.e., when the excitation fre-

quency, f0, is equal of the LDR frequency, fd. Under this con-

dition, Eq. (33) features a number of nonlinear elastic

phenomena for the resonant defect. Beside the dc terms S1,

T1 and T3, “classical” nonlinear second and third harmonic

terms of the fundamental frequency S2 and T2 and the “non-

classical” nonlinear second and third superharmonic terms

of the LDR frequency S3 and T4 can be generated. Moreover,

further “non-classical” nonlinear elastic features obtained as

a combination of frequencies f0 and fd, here named as NDRI

(expressed by the terms S4, S5, T5, T6, T7, and T8), can also

occur. These NDRI effects are different from “classical”

nonlinear modulation frequencies, as they are not generated

by the use of a dual harmonic excitation and occur only

under specific combinations of frequencies f0, fd, and the res-

onance modes fmn of the plate. All these spectral responses

can open to novel scenarios of nonlinear resonance phenom-

ena for the damage characterisation.

The second condition is that nonlinear LDR effects are

not limited to the case when f0¼ fd, but they can also be gen-

erated when the denominator of each term Sn and Tn in Eq.

(33) is zero, i.e., when specific combinations of frequencies

f0, fd, and the resonance modes of the plate fmn are met. This

further condition broadens the occurrence of these nonlinear

LDR phenomena to other driving frequencies, which can be

summarised in Table I.

As an example from Table I, Fig. 2 shows that for the S3

term the highest nonlinear resonance effect is achieved when

one of the resonance modes at the damage location is double

of the LDR frequency, i.e., when fmn¼ 2fd. It should be noted

that the use of nonlinear anharmonic resonator to describe

non-classical nonlinear material phenomena is not new. As an

example, the 1D analytical model of classical nonlinear

anharmonic oscillator from Landau11 is able to describe non-

classical effects such as the asymmetrical variations of oscil-

lation amplitudes (also known as “fold-over effect”).

III. EXPERIMENTAL SETUP

The nonlinear elastic effects associated to LDR were first

analytically studied on a composite carbon fibre reinforced

plastic (CFRP) plate with dimensions 180� 180� 1.6 mm

and stacking sequence of [0/90/45/–45/90/0]s (Fig. 3). The

elastic moduli of the lamina are E11 � 136 GPa, E22

� 18.5 GPa, and G12 � 5.8 GPa, whilst the Poisson’s ratio is

�12 � 0.29 and the density is q � 1546 kg/m3. The location of

TABLE I. Summary of the generation of nonlinear LDR effects for each

term in Eq. (33) as a function of the frequencies f0, fd, and fmn.

Nonlinear Terms Nonlinear effects Conditions on driving frequency

S2 Second harmonic 4pf0 f0 ¼ fmn=2

S3 Superharmonic 4pfd fd ¼ fmn=2

S4 NDRI 2pðf0 þ fdÞ f0 ¼ fmn � fd ) ðfmn > fdÞ
S5 NDRI 2pðf0 � fdÞ f0 ¼ fd � fmn ) ðfmn < fdÞ
T2 Third harmonic 6pf0 f0 ¼ fmn=3

T4 Superharmonic 6pfd fd ¼ fmn=3

T5 NDRI 2pð2f0 þ fdÞ f0 ¼ 1
2

fmn � fdð Þ ) fmn > fdð Þ
T6 NDRI 2pð2f0 � fdÞ f0 ¼ 1

2
fd � fmnð Þ ) fmn < fdð Þ

T7 NDRI 2pðf0 þ 2fdÞ f0 ¼ fmn � 2fd ) ðfmn > 2fdÞ
T8 NDRI 2pðf0 � 2fdÞ f0 ¼ fd � 2fmn ) ðfmn < 2fdÞ
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the damage was at coordinate xd¼ 125 mm and yd¼ 60 mm

with the origin at the bottom left corner of the plate. The most

well-known technique to introduce artificial in-plane delami-

nation in composites is the inclusion of Teflon inserts in

between the laminate plies with different shapes, dimensions,

and thickness.21,22 By assuming a 24 mm in diameter Teflon

(double layer) patch located below the fourth layer from the

top surface, the LDR frequency was obtained at 11.2 kHz.

Such a frequency value was also revealed experimentally as

the maximum amplitude response over a sweep signal from 1

to 100 kHz. In order to transmit the input source and measure

the material nonlinear response, two surface bonded

broadband APC transducers with diameter of 6.35 mm and

thickness of 2.55 mm were used both as transmitter and

receiver. The transmitter transducer was located at coordi-

nates x0¼ 30 mm and y0¼ 30 mm and it was linked to a sig-

nal amplifier and connected to an arbitrarily waveform

generator (TTi-TGA12104) in order to generate continuous

sinusoidal waveforms at four different fundamental frequen-

cies, i.e., f0 ¼ fd=3 (3.733 kHz), f0 ¼ fd=2 (5.6 kHz), f0 ¼ fd,

and f0 ¼ 2fd (22.4 kHz). These excitation values were

selected to provide a direct proof of the higher harmonic,

superharmonic resonances and NDRI effects as in accordance

with Sec. II. The receiver transducer was placed at coordi-

nates xr¼ 150 mm and yr¼ 150 mm and it was instrumented

with an oscilloscope (Picoscope 4224) with a sampling rate of

FIG. 2. Analytical result of the normalised amplitude of the S3 term in Eq.

(33). The highest nonlinear resonance effect is achieved when one of the res-

onance modes at the damage location is double of the LDR frequency, i.e.,

when fmn¼ 2fd (dashed line).

FIG. 3. (Color online) Composite test sample and piezoelectric transducers

used during the experimental tests.

FIG. 4. (Color online) (a)�(c) Analytical spectral result of nonlinear LDR effects obtained at different fundamental frequencies, i.e., 3.733 kHz (a), 5.6 kHz

(b), and 22.4 kHz (c) using the Sn and Tn terms in Eq. (33). Each spectrum is measured at location (xr, yr) with the damage located at (xd, yd) and the transmitter

at (xt, yt).
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100 kHz and an acquisition window of s ¼ 200 ms. The time

histories were averaged 20 times in order to improve the

signal-to-noise ratio of the measured signals. Additionally,

the tested specimen was positioned along the edges on four

foam pieces in order to reduce the environmental noise and to

simulate fully supported boundary conditions.

IV. ANALYTICAL RESULTS OF NONLINEAR LDR

The analytical results of the nonlinear LDR terms con-

tained in the structural response from Eq. (33) are reported

in Fig. 4 for three fundamental frequencies, i.e., f0 ¼ fd=3,

f0 ¼ fd=2, and f0 ¼ 2fd. These excitation values were

selected to provide a direct proof of the generation of higher

harmonics, superharmonic resonances, and NDRI effects in

accordance with the results of Sec. II. Only the nonlinear

response associated to f0 ¼ fd could not be analysed as it rep-

resents the particular case in which both nonlinear second

and third order out-of-plane displacements tend to infinity.

In all the analytical calculations, the same values of the input

amplitude Q0 ¼ 1� 104 Pa and n ¼ g ¼ 10 were used.

Figure 4(a) illustrates the nonlinear LDR bending deflection

obtained from the nonlinear cubic approximation of the non-

linear second order transverse load for a harmonic frequency

equal to one third of the LDR response (3.733 kHz). The fre-

quency spectrum reveals the presence of the nonlinear

“classical” third order harmonic term 3f0, the superharmonic

term 3fd and the NDRI responses ð2f0 þ fdÞ, ðf0 þ 2fdÞ, and

j2f0 � fdj at the location far away from the damaged area at

coordinates xr¼ 150 mm and yr¼ 150 mm. By increasing the

FIG. 5. (Color online) (a)�(f) Analytical linear and nonlinear LDR vibration patterns for 3.733 kHz (a) and (b), 5.6 kHz (c) and (d), and 22.4 kHz (e) and (f).
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periodic excitation to 5.6 kHz, similarly to the cubic approxi-

mation, also the nonlinear quadratic term allowed the gener-

ation of the nonlinear second order harmonic term 2f0, the

superharmonic term 2fd and the NDRI responses jf0 � fdj
and ðf0 þ fdÞ [Fig. 4(b)]. Finally, the input frequency was

changed to the second harmonic frequency range of the LDR

(22.4 kHz). In this particular case the NDRI term ðf0 � fdÞ
corresponded to the subharmonic resonance of the LDR

[Fig. 4(c)]. However, the maximum vibration amplitude

(out-of-plane displacement) of the nonlinear LDR over the

entire structure is achieved at the damage location [see the

linear solution (18)]. This is analytically illustrated in Fig. 5,

which shows both linear and nonlinear flexural vibrations

patterns on the composite laminate for the three different

input frequencies.

From Figs. 5(a)�5(c), it can be seen that the nonlinear

vibration pattern at f0 ¼ fd=3, due to the cubic approxima-

tion, is able to reveal a local strong enhancement of the

transverse nonlinear displacement at the damage location.

Similar considerations can be made for the quadratic approx-

imation associated to the frequencies f0 ¼ fd=2 and f0 ¼ 2fd
[Figs. 5(c) and 5(d) and 5(e) and 5(f)].

V. EXPERIMENTAL VALIDATION

Fully contact experimental tests were also carried out to

validate the results of the theoretical model. The nonlinear

structural responses were measured by the surface bonded

PZT receiver sensor and the acquired signals for the above

mentioned excitation frequencies (including the case of

f0 ¼ fd) at the input voltage of 70 V are reported in Fig. 6.

This voltage value was chosen as the minimum one for the

generation of “classical” and “non-classical” nonlinear elastic

phenomena with different driving frequencies. Indeed, as it

can be seen in Fig. 6, higher harmonics, superharmonics, and

NDRI effects are clearly visible in the measured signals spec-

trum. Such nonlinear frequencies can be attributed either to

the “clapping” motion of the region normal to the damage

interface or to the nonlinear friction between the delamination

surfaces, which are excited by small tangential stresses pro-

duced by the elastic waves propagating through the medium.

Therefore, the theoretical model here developed was able

to predict the generation of nonlinear elastic effects, including

NDRI, in the steady-state nonlinear LDR response. The

experimental tests confirmed these predictions and showed

that using continuous periodic excitation, the nonlinear struc-

tural phenomena could be also featured at locations different

from the damage resonance. These results would provide

opportunities for fully contact early detection and imaging of

structural flaws. In addition, unlike standard nonlinear wave

mixing and vibro-modulation techniques,23 NDRI requires a

single input frequency, which allows reducing electronic com-

plexity for the disclosure of the nonlinear signatures.

VI. CONCLUSIONS

This paper aimed at developing a 2D theoretical model

able to predict the generation of nonlinear elastic effects asso-

ciated to the interaction of ultrasonic waves with the steady-

state nonlinear response of LDR. LDR is used in nonlinear

FIG. 6. (Color online) (a)�(c) Experimental nonlinear LDR effects measured at different input frequencies: 3.733 kHz (a), 5.6 kHz (b), 11.2 kHz (c), and

22.4 kHz (d). Each spectrum is measured at location (xr, yr) with the damage located at (xd, yd) and the transmitter at (xt, yt). The input voltage is 70 V.
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elastic wave spectroscopy to enhance the excitation of the

material damage at its local resonance. However, non-contact

ultrasonic experiments have shown that, using wide-band exci-

tation, the nonlinear damage response of the medium is con-

fined exclusively at the defect location. The main result of this

work was to prove both analytically and experimentally the

generation of novel nonlinear elastic wave phenomena, here

named as nonlinear damage resonance intermodulation, which

correspond to a nonlinear intermodulation between the driving

frequency and the defect resonance one. Beside these effects,

also other nonlinear elastic wave phenomena such as higher

harmonics and superharmonics were found. Transducer-based

contact tests on a damaged composite laminate confirmed and

validated these predictions and showed that using continuous

periodic excitation, the nonlinear structural phenomena associ-

ated to LDR could be also featured at locations different from

the damage resonance. These results can be used for multi-

layered media and will provide opportunities for fully contact

early detection and imaging of structural flaws.
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APPENDIX

In order to solve Eq. (23), we seek for a solution Yp
mnðtÞ

of the form

Yp
mnðtÞ ¼ Yp1

mnðtÞ þ Yp2
mnðtÞ ¼ rðtÞy1ðtÞ þ sðtÞy2ðtÞ; (A1)

where rðtÞ and sðtÞ are unknown functions. As Eq. (A1)

should satisfy Eq. (23), first we find

Y0
p
mnðtÞ ¼ r0ðtÞy1ðtÞ þ s0ðtÞy2ðtÞ þ rðtÞy01ðtÞ þ sðtÞy02ðtÞ:

(A2)

And assuming that rðtÞ and sðtÞ satisfy the following equation:

r0ðtÞy1ðtÞ þ s0ðtÞy2ðtÞ ¼ 0 (A3)

we obtain

Y00
p
mnðtÞ ¼ r0ðtÞy01ðtÞ þ s0ðtÞy02ðtÞ þ rðtÞy001ðtÞ

þ sðtÞy002ðtÞ: (A4)

Substituting Eqs. (A4), (A2), and (A1) into Eq. (23) and con-

sidering that y1 and y2 are the solutions of the homogenous

part, we obtain

r0ðtÞy01ðtÞ þ s0ðtÞy02ðtÞ ¼ � �F
II

mn
: (A5)

Solving the systems of equations (A5) and (A3) for the

unknown functions rðtÞ and sðtÞ yields

r tð Þ ¼
ð

t

y2 sð Þ �FII

mn

y1 sð Þy02 sð Þ � y2 sð Þy01 sð Þ
ds;

s tð Þ ¼ �
ð

t

y1 sð Þ �FII

mn

y1 sð Þy02 sð Þ � y2 sð Þy01 sð Þ
ds: (A6)

Substituting Eq. (A6) into Eq. (A1) with the use of Eq. (19)

yields

Yp1
mn tð Þ¼

�A
II

ei2pfmnt

4ipfmn

ð
t

e�i2pfmns cos 2pf0sð Þ�cos 2pfdsð Þ½ �2ds;

(A7a)

Yp2
mn tð Þ ¼ �

�A
II

e�i2pfmnt

4ipfmn

�
ð

t

ei2pfmns cos 2pf0sð Þ � cos 2pfdsð Þ½ �2ds:

(A7b)

Therefore, assuming the displacement and velocity are equal

to zero for t¼ 0, the final solution of the problem (23)

becomes

Ymn tð Þ ¼ �A
II

"
1� cos 2pfmntð Þ

4p2f 2
mn

þ cos 2pfmntð Þ � cos 4pf0tð Þ
4p2 4f 2

0 � f 2
mn

� � þ cos 2pfmntð Þ � cos 4pfdtð Þ
4p2 4f 2

d
� f 2

mn

� �
þ cos 2p f06fdð Þt½ � � cos 2pfmntð Þ

2pf062pfdð Þ2 � 4p2f 2
mn

h i
#
: (A8)

The same analytical approach can be used to solve the third

order problem [Eq. (30)].
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