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Comparing Oncology Clinical Programs by Use of Innovative Designs and Expected Net Present 

Value Optimization: Which Adaptive Approach Leads to the Best Result? 

ABSTRACT 

Designing an oncology clinical program is more challenging than designing a single study. The 

standard approaches have been proven to be not very successful during the last decade; the 

failure rate of Phase 2 and Phase 3 trials in oncology remains high. Improving a development 

strategy by applying innovative statistical methods is one of the major objectives of a drug 

development process. The oncology sub-team on Adaptive Program under the Drug Information 

Association Adaptive Design Scientific Working Group (DIA ADSWG) evaluated hypothetical 

oncology programs with two competing treatments and published the work in the Therapeutic 

Innovation and Regulatory Science journal in January, 2014. Five oncology development 

programs based on different Phase 2 designs, including adaptive designs, and a standard two 

parallel arm Phase 3 design were simulated and compared in terms of the probability of clinical 

program success and expected Net Present Value (eNPV). In this article we consider eight 

Phase2/Phase3 development programs based on selected combinations of five Phase 2 study 

designs and three Phase 3 study designs. We again used the probability of program success and 

eNPV to compare simulated programs. For the development strategies we considered, the eNPV 

showed robust improvement for each successive strategy, with the highest being for a three-arm 

response adaptive randomization design in Phase 2 and a group sequential design with 5 analyses 

in Phase 3. 

 

Key Words: program optimization, eNPV, probability of success, adaptive design, group 

sequential design, simulations. 
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1. INTRODUCTION 

Oncology drug development presents unique challenges with many of the studies failing in the 

Phase 2 and Phase 3 stages, despite increasing costs of research and development.   The reasons 

for such failures are multi-dimensional, including both clinical and statistical aspects, such as the 

lack of a well-defined disease target, uncertainty about mechanisms of action of the 

investigational drug, insufficient correlation between surrogate and clinical endpoints and 

inefficient choices for clinical trial designs. In this paper we attempt to address the latter, aiming 

to formally optimize a clinical program on the basis of its Net Present Value (NPV). We look at 

various trial design choices for the clinical program and evaluate their expected NPV (eNPV) 

using simulations.  This work is built on the efforts of  Adaptive Program Oncology sub-team 

(under DIA ADSWG)  and it extends the framework of  Marchenko et al. (2013) who utilized 

eNPV to optimize study design choices in a hypothetical oncology clinical development 

program. Their work, in turn, originated from a larger effort undertaken by Adaptive Program 

Working Group under DIA ADSWG who first introduced the concept of optimizing a clinical 

program design on the basis of NPV. Examples of the application of that strategy to case studies 

in diabetes and neuropathic pain can be found in Antonijevic et al. (2013) and Patel et al. (2012), 

respectively.      

 Adaptive designs present particularly attractive options for such an exercise.  Not only do they 

allow dynamic learning about accumulating treatment information without compromising the 

integrity of the trial, but they also promote usage of formal quantitative approaches to evaluate 

tradeoffs between the quality of information accumulated in a clinical trial and its cost, thus 

promoting more efficient trial design choices. While there has been extensive work done on 
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application of adaptive designs at the individual trial level, particularly in oncology, evaluation 

of their usage on the clinical program level remains challenging.  The primary reason is that 

evaluating design choices for multiple stages of a clinical program  introduces additional 

complexity, e.g., competing designs need to be compared on the basis of Type I error, power, 

precision, cost and duration; and some of these metrics may push the decision making  in 

different directions. Furthermore, the comparison between designs also depends heavily on   

assumptions made about the treatment effect. Choosing NPV as a unified metric incorporating all 

these factors helps to alleviate some of the complexity. Another aspect-dependency of the NPV 

on the unknown treatment effect can be dealt with by taking an expectation of NPV (i.e., eNPV) 

over a possible range of treatment effect values with probability weights assigned according to 

some reasonable scenarios.  

The original simulation project of Marchenko et.al (2013) considered 5 hypothetical clinical 

development programs in pancreatic cancer with two competing candidate investigational 

treatments.  The objective of the Phase 2 trial was to pick the best treatment to take forward; 

Phase 3 then further evaluated the selected compound. The design of Phase 3 was a single stage 

design, while Phase 2 designs consisted of single and multi-stage designs with adaptive features 

of increasing complexity.  The programs were compared using the eNPV. The key finding was 

that additional investment in the complexity of Phase 2 almost always paid off in terms of the 

eNPV and the most notable increase in the eNPV was in moving from the program evaluating 2 

candidate compounds via separate trials in Phase 2 to the program using a 3-arm Phase 2 trial of 

both compounds with a shared control.  This paper takes a more in-depth look into this 

comparison, adding an adaptive design option for Phase 3, similar to the approach of Jennison 

(2011). We consider five Phase 2 designs as in Marchenko et.al (2013) and add Phase 3 designs 
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with 2 and 5 analyses. We also use the Phase 2 results to compute the sample size for the Phase 3 

trial and optimize design parameters for the Phase 3 (e.g., Go/No-Go decision criteria, and 

timing of the first interim analysis).  The comparison is carried out on the basis of the probability 

of program success, measured by the power of the Phase 3 study, and the eNPV, which is 

calculated using simulations. As in Marchenko et.al (2013) we consider a pancreatic cancer 

indication with overall survival (OS) as the primary endpoint and use the same scenarios for 

enrollment rates and treatment effects. Our objectives were to understand how the addition of 

adaptive features to the Phase 3 trial affects the best choice of design for the Phase 2 trial and to 

identify the best Phase 2/Phase 3 development program.  

2. METHODS 

Simulation of Phase 2 

The simulation framework consisted of a Phase 2 simulator (FACTS), which was used to 

generate 5,000 simulated trials for each scenario, for each type of Phase 2 trial design evaluated, 

at each Phase 2 sample size investigated. A particular development program was then simulated 

by loading the corresponding set of Phase 2 results into R and simulating the post Phase 2 

decision and the subsequent Phase 3 trial. The post Phase 2 decisions were limited to a) whether 

to proceed to Phase 3 or not, b) if so which treatment to take to Phase 3 (if 2 had been tested), 

and c) what the size of the Phase 3 trial should be. 

Simulation of Phase 3 

Possible designs for Phase 3 included a single stage design and group sequential designs (GSDs) 

with either 1 or 4 interim analyses (i.e., 2 or 5 analyses including the final analysis).  
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Efficacy Scenarios 

The primary endpoint was overall survival.  We express the efficacy of a new drug (ND) in terms 

of its hazard ratio (HR) relative to control (e.g., the standard of care). We considered 5 scenarios 

for each ND, where the possible “true” values for the HR were: 1, 0.9, 0.8, 0.7, and 0.6. We gave 

prior weights to how likely these scenarios were to occur. The weights were based on raising the 

assumed HR to a power and re-normalizing. We selected a power that gave a combined 

probability that the treatment was ineffective (HR of 1 or 0.9) of ~80% which yielded 

probabilities of 52.9%, 27%, 12.7%, 5.4% and 2% respectively for the HRs 1, 0.9, 0.8, 0.7 and 

0.6. When a second treatment was included in the program we retained the above probabilities 

for the HR of the first treatment but selected a power that gave a probability of ~90% that the 

second treatment was ineffective, yielding probabilities of 66.4%, 23.7%, 7.5%, 2% and 0.4% 

respectively; in weighting scenarios with two new treatments, we assumed the values of HR for 

the first and second treatments to be independent. Thus for programs where one treatment arm 

was being tested, there were five scenarios simulated, and where two treatment arms were being 

tested, 25 scenarios were simulated. 

Formula for Net Present Value 

The value and commercial viability of a drug are measured by NPV which is computed as the 

total revenue from the drug minus the total cost of getting the drug to the market. As mentioned 

in Marchenko et al. (2013), total revenue depends on price, market share, population size, and 

years of revenue. We compute NPV as:  

NPV = discounted total revenue – cost of Ph2 – discounted cost of Ph3, 

where Ph2 and Ph3 denote Phase 2 and Phase 3, respectively. In turn, 
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Cost of a Ph2 or Ph3 clinical trial = number of subjects  cost per subject + trial-duration  

development overhead costs (per unit time). 

Total revenue and cost of Phase 3 were discounted using an annual compound Discount Rate 

(DR) of 9%1. For simplicity just the discount to the start time of the revenue or cost was used. 

We assume that 12 years of effective patent2 life remain at the beginning of Phase 2.   Some 

duration terms will now be defined: 

T1 = Ph2 duration = Ph2 accrual time + 6 months follow-up,  

T2 = time from end of Ph2 to beginning of Ph3 = 6 months,  

T3 = Ph3 duration = Ph3 accrual time + 6 months follow-up,  

T4 = time from end of Ph3 to product launch =12 months.   

The revenue that would be likely to be achieved should the drug development be successful was 

calculated assuming that the maximum annual revenue for the current treatment in this setting 

was $204M. We supposed the current treatment had increased median expected life expectancy 

by 1.15 months from 4.76 to 5.91 months and the maximum annual revenue for a new drug 

would be proportional to the increase in median lifetime over 4.76 months, with earnings being 

50% more than those of the current treatment if it were twice as effective, i.e., if the median life 

                                                 

1 This was used because it is typical of discount rates used in industry for project planning; subsequently it was 

realised that this includes an element for “risk of project failure”, as our calculations have expressly addressed the 

principal risk of failure in the decision tree this rate should probably be lower, closer to the “risk free cost of 

capital”, which at the time of writing is ~2.5% (US 20 year treasury rate). A change to the discount rate would apply 

to all the designs and it seems extremely unlikely that it would change the final ranking. 

2 The full patent life for a drug is 20 years, in using a time of 12 years we are taking into account firstly the time that 

will already have elapsed between taking out the patent and getting to the start of the execution of the phase 2 trial, 

and secondly the likelihood of significantly diminished revenue in the last years of the drug’s patent life from the 

introduction of competing compounds with the same method of action (“me-too” drugs). 
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expectancy were extended to 4.67 + 2  1.15 = 6.97 months3. For our scenarios with HRs of 1, 

0.9, 0.8, 0.7 and 0.6 this gives peak revenues of $153M, $240M, $350M, $490M and $677M 

respectively. Note that the Null scenario (HR of 1) has a positive potential peak revenue equal to 

75% of that of the current treatment. This reflects the expectation that a new drug comparable to 

the current treatment would get some revenue, but not as much. However, our phase 3 trial is 

designed to test superiority in comparison with the standard treatment, so the probability of being 

licensed and achieving this revenue is very low (one-sided Type 1 error is set to 0.025). 

We make the further assumption that the average annual revenue over the effective patent 

lifetime after the launch of a new treatment is one half of the peak annual revenue. Under these 

assumptions, a successful Phase 3 trial will lead to 

Total revenue = [($204M  (0.75)  (S-4.76)/(1.15))  (T-D)/2]  (1-DR)D, where 

S = true median survival time for the new drug, in months,  

T = time to patent expiry from beginning of Ph2 (12 years),  

DR = discount rate (0.09),  

D = development time from beginning of Phase II to launch = T1+T2+T3+T4. 

Also, we have 

Total Ph2 cost = N2C1+T1C2, where 

                                                 

3 There are huge uncertainties inherent in estimating future revenue even assuming successful registration, it is 

important to remember that the primary concern here is to develop a yardstick for comparing development strategies 

with different time, cost and risk trade-offs, and not financial forecasting.  
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N2 = number of subjects in Ph2,  

C1 = cost per subject ($20,000),  

C2 = development overhead ($10M yearly), and 

Total Ph3 cost = [N3C1+(T2+T3) C2]  (1-DR)T1+T2, where 

N3 = number of subjects in Ph3.   

It is assumed that Phase 2 patients can be enrolled at the rate of 10 per month and Phase 3 

patients at the rate of 20 per month. 

To use the revenue and cost formulas, all durations (except for S, true median survival time, in 

months) are converted to years. 

For the adaptive program, based on experience in the working group, an additional time of three 

months for trial planning and design, and further costs of $0.5M for additional operational 

logistics and $0.5M for additional materials were added to the Phase 2 time and costs. 

The expected NPV is a probability-weighted average of the associated costs and revenues, taking 

into account the probability distribution of the underlying degree of efficacy of the new drugs 

and the probabilities of reaching each stage of clinical development and product approval 

(conditional on the degree of efficacy). 

Thus, in all five programs explored here, if positive results are obtained in Phase 2, the selected 

treatment will be further investigated in a single4 two-arm Phase 3 clinical trial.  If the Phase 3 

                                                 

4 With pancreatic cancer the burden of unmet medical need is so high, that it is believed that a single phase 3 trial 

will be acceptable to regulatory authorities 
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trial uses a group sequential design, then a fixed number of interim analyses occur at pre-

specified intervals based on the number of deaths that have been observed. If the p-value meets 

the success or futility criteria for that interim analysis, the trial stops with the appropriate 

decision. Otherwise, patients are followed up until the maximum target number of deaths is 

observed and the final p-value is compared to the final success threshold. 

The interim stopping boundaries and final success threshold were set to control the overall one-

sided Type 1 error rate at the level of 0.0255.  We have assumed that once statistical significance 

is attained in Phase 3, a new-drug application will be submitted for regulatory review and 

approval to market the drug − and sales of the new drug will commence 12 months later. 

The Phase 2 Statistics 

In the Phase 2 designs the decision criteria were based on a Bayesian calculation of the 

probability that the HR of the treatment compared to the control was < 1. This calculation was 

made under a Bayesian exponential model in which the prior distribution for λ, the weekly 

hazard rate (h) on the control arm, was assumed to be a gamma distribution with mean 0.027 and 

weight of 1 (a weak prior with a mean corresponding to a median survival time of 4.76 months 

with an effective sample size of 1 observation). The hazard rate for each new drug was assumed 

to be of the form h = λe, where the log hazard ratio  has an independent prior distribution for 

each new drug, assumed to be a normal distribution with mean 0 and standard deviation 5. 

In designs with an option to drop an arm at an interim analysis, either treatment arm was dropped 

if the posterior probability that the hazard ratio was less than one was below some preset 

                                                 

5 Note the stopping boundaries were set assuming that the futility stopping boundary was non-binding, it is believed 

that the FDA prefers this more conservative assumption.  
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threshold: Pr(HR<1) < CDrop . Values for CDrop were used, capped to limit the ‘erroneous drops’ 

to less than 1 percentage point when the treatment had a HR of 0.7. This cap was determined by 

simulation. The post Phase 2 decision logic was expanded to accommodate the arm dropping. If 

both arms were dropped, then the Phase 2 was futile and no Phase 3 was run. If one arm was 

dropped, the trial continued as a single arm Phase 2 trial.  If neither arm was dropped, then at the 

end of the trial the arm with the smallest estimated HR was selected and its estimated HR and 

posterior probability Pr(HR<1) were used for the post Phase 2 decisions. 

In designs with adaptive allocation, at each interim analysis the probability of each treatment 

being the best was calculated. Posterior estimates of λ, ND1 and ND2 , where ND1 and ND2 

denotes the two doses of a new drug, were calculated using an MCMC Metropolis Hastings 

algorithm and the posterior probability of ND1 being best was estimated by the proportion of 

MCMC samples with hND1 < hND2 . After an initial fixed allocation of 24 patients to the control 

arm and 20 patients to each treatment arm, five out of every eight patients were randomized to 

ND1 and ND2 in proportion to the square root of the posterior probability that the drug had the 

better efficacy, weighted by the expected reduction in variance from adding one more subject to 

that arm. Thus, the randomization weighting for dose x at an interim analysis was given by 

𝜔𝑥 ∝ √
𝑃(𝑁𝐷𝑥 𝑖𝑠 𝑏𝑒𝑠𝑡) ∗ 𝑉𝐴𝑅(𝜃𝑥)

𝑛𝑁𝐷𝑥 + 1
  

and these weights were updated at each interim analysis. The remaining 3 subjects were 

randomized to the control arm. 

At the end of the trial the treatment with the smallest estimated HR was selected and its 

estimated HR and the posterior probability Pr(HR<1) were used for the post Phase 2 decisions. 
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The 5 Different Phase 2 Designs 

We simulated Phase 2 trials with 5 different designs: 

P2.2a.f A 2 arm (control and 1 treatment) Phase 2 trial with fixed, equal allocation to each 

arm. At the end of the trial the Bayesian posterior probability that the HR of OS on 

the treatment arm compared to control was less than 1 was calculated. If this 

probability was greater than a predetermined threshold, then the trial was successful 

and ND1 was investigated in a Phase 3 trial with the sample size based on the 

estimate of the HR. We simulated 5 HR scenarios: 1, 0.9, 0.8, 0.7 and 0.6. 

P2.3a.f A 3-arm (control and 2 treatments) Phase 2 trial with fixed, equal allocation to each 

arm. At the end of the trial, we calculated for each arm the posterior probability that 

the HR of OS of the new drug compared to control was less than 1. If at least one of 

these probabilities exceeded a predetermined threshold, then the trial was deemed to 

be successful and the treatment with the lower estimated HR was investigated in a 

Phase 3 trial with the sample size based on the estimate of the HR. We simulated all 

25 combinations of the 5 HRs for each treatment.  

P2.3a.1i A 3-arm Phase 2 trial with one interim analysis at which either or both ND1and ND2 

can be dropped (if both are dropped the trial stops for futility) or the trial can be 

stopped early for success. If a treatment is dropped, the overall trial size is decreased 

(any future subjects that would have been recruited into the dropped arm are no 

longer recruited). Simulations were run with different timings for the interim analysis 

(in terms of number of events) in order to be able to select the optimal timing. The 

decision to drop either treatment was based on whether the Bayesian posterior 
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probability that the HR of OS on the treatment arm compared to control was less than 

1, was below a threshold. 

P2.3a.mi Same as P2.3a.1i but with multiple interim analyses (every 20 events) at which the 

trial could stop for success or futility or drop an arm. 

P2.3a.ad Same as P2.3a.mi but at each interim analysis response adaptive randomization 

(RAR) was used, modifying the allocation proportion between the two treatment 

arms (ND1 and ND2) to favor the apparently more effective arm, if the trial had not 

already stopped for success or futility. 

The Phase 3 Designs 

Three Phase 3 designs were evaluated in various combinations with the Phase 2 designs. 

P3.0i A single stage two arm study with the sample size based on the estimated HR of the 

treatment arm to be tested. 

P3.1i A Group Sequential two arm study with 1 interim analysis at which the trial could 

stop for success or futility. 

P3.4i  A Group Sequential two arm study with 4 interim analyses at which the trial could 

stop for success or futility. 

In each case, following Phase 2, the required sample size for the Phase 3 was calculated using 

ssizeCT.default() from the R powerSurvEpi package. The maximum sample size for the Phase 3 

trial was calculated based on the estimate of HR from Phase 2 limited by a minimum expected 

HR (to avoid dangerously small Phase 3 trials when the random fluctuation in events occurring 

in the Phase 2 trial had dramatically favoured the new treatment), and a maximum permitted HR 
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above which the treatment’s efficacy was deemed too poor to be worth continued development 

and would have required either an unfeasibly large Phase 3 trial or an underpowered one.  

The minimum expected HR was a design parameter that we optimized, the maximum HR was 

fixed at 0.9 for all the programs. 

For the group sequential Phase 3 trial design we calculated Phase 3 boundaries based on the 

maximum expected number of events. The maximum expected number of events was based on 

the maximum trial size and the proportion of subjects for which events would be observed, this 

latter being a tuning parameter for the design of the program. 

Interim analyses would be equally spaced (in terms of number of events observed) after the first 

interim analysis, the timing of which (as a proportion of the maximum expected number of 

events) was a tuning parameter for the design of the program. 

We used an error-spending group-sequential design (Jennison and Turnbull, 2000, Ch. 7). The 

stopping boundary is chosen so that the cumulative Type 1 error rate at analysis k (under 

log(HR)=0) is α (I
k
 / I

max
)

2

. Here I
max

 is a target maximum amount of information – one quarter 

of the maximum number of subjects in the sample population that we expect to have events 

during the trial, since the information for a log(HR) is Number-of-events/4. Similarly the 

cumulative Type 2 error at analysis k (under log(HR)=δ) is β (I
k
 / I

max
)
2

.  At the end of the trial, 

the number of observed events may not be exactly equal to the planned maximum: in this case, 

the final boundary point is calculated (separately for each individual simulated trial) to give total 

cumulative Type 1 error equal to α (see Jennison and Turnbull, 2000, Sec. 7.3.a). For each 
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simulated Phase 2 trial the subsequent Phase 3 trial is designed based on the estimated HR at the 

end of Phase 2 and the following program design parameters: 

 The minimum expected HR, 

 The target maximum information – one quarter of the expected number of 

subjects for whom events will be observed, 

 The minimum information – the fraction of the maximum information that must 

be observed for the first interim analysis to be carried out, the remaining interim 

analyses being equally spaced up to the maximum information, 

 The required Phase 3 Type 2 error β (power = 1 – β) at the observed HR. 

These parameters were selected independently for each development program, optimized to 

maximize the expected NPV over the different treatment effect scenarios. 

Two parameters were fixed for all programs:  

 The maximum HR for which a Phase 3 trial will be run = 0.9, 

 The required one sided α for the Phase 3 trial = 0.025. 

The Programs Evaluated 

Not all combinations of Phase 2 and Phase 3 design were evaluated:  

 The only combination of Phase 2 with P3.0i was P2.2a.f. This combination of the two 

simplest trial designs (which still represent a very common program design, possibly a 

majority of program designs) forms a baseline against which the others can be compared, 

and in particular a reference point for the program that combines the two most complex 
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trial designs to show how much overall value could be generated by deploying 

sophisticated types of trial design. 

 P2.2a.f and P2.3a.f were evaluated combined with both P3.1i and P3.4i. 

 P2.3a.1i, P2.3a.mi and P2.3a.ad (the more complex types of Phase 2 design) were only 

combined with P3.4i, after earlier evaluations confirmed that P3.4i was always superior 

to P3.1i. 

Thus we evaluated the following programs: 

R0: P2.2a.f+P3.0i Two-arm fixed phase 2, no interim analyses in Phase 3 

R1: P2.2a.f+P3.1i Two-arm fixed phase 2, 1 interim analysis in Phase 3 

R2: P2.2a.f+P3.4i Two-arm fixed phase 2, 4 interim analyses in Phase 3 

R3: P2.3a.f+P3.1i Three-arm fixed phase 2, 1 interim analysis in Phase 3 

R4: P2.3a.f+P3.4i Three-arm fixed phase 2, 4 interim analyses in Phase 3 

R5: P2.3a.1i+P3.4i Three-arm phase 2 with one interim analysis, 4 interim analyses in 

Phase 3 

R6: P2.3a.mi+P3.4i Three-arm phase 2 with many interim analyses, 4 interim analyses in 

Phase 3 

R7: P3.3a.ad+P3.4i Three-arm phase 2 with many interim analyses and Response 

Adaptive Randomization (RAR), 4 interim analyses in Phase 3. 

Optimization of Program Parameters 
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The aim of the exercise is to compare the notional value of each program design so we can both 

rank them and also have a benchmark for addressing the question “is the additional complexity 

of this design over that one likely to be worthwhile?”. There are a number of risks to this 

exercise of comparing designs that we try to mitigate by this optimization stage. Firstly it is 

unlikely that one set of parameter settings would be suitable for all designs, and using just one 

set could unfairly penalize some designs compared to others. Secondly, if we decide to manually 

set the parameters individually for each design, it is not clear how we should set these parameters 

− and it is difficult to judge whether we have set them fairly. How do we avoid consciously or 

unconsciously favoring a design we might prefer? And how do we demonstrate that we have not 

favored one? There can also be interplay between the phases, for instance, a design that uses a 

larger phase 2 should provide a better estimate of the effect size for use in the phase 3 sample 

size calculation, leading to a more efficient phase 3requiring less conservative parameters for the 

design of phase 3. An automatic process of optimizing the parameters for each design to 

maximize the eNPV for that design appears to be the best solution. This is the most relevant form 

of optimization as the eNPV will be the “score” by which we judge the programs. The advantage 

of eNPV is that it allows us to combine into a single figure the various operating characteristics 

of a drug development program – its cost, the time it takes, its probability of success and the 

value of the treatment selected and taken to market. 

There was a third and unexpected benefit of the automated optimization, the optimized parameter 

values shed light on the consequences of the design assumptions and eNPV parameters 

(essentially helping us to “debug” them) and differences in the optimized parameter values from 

one design to another, shed light on the different characteristics of the designs. 
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Some of the parameters required to calculate the eNPV may have large uncertainty, e.g., the 

expected peak revenue and phase 3 accrual rate. For the purposes of this paper we only use 

eNPV as a tool to evaluate design options, optimizing the program design parameters to ensure a 

level playing field. We note though that the same approach could be extended, using further 

simulation over the uncertainties in the assumptions to understand the range of eNPV and the 

robustness of different program design parameter choices. 

Each program was optimized as follows 

 First a set of simulation results were generated for the Phase 2 trials, by running 

simulations over the different scenarios with HRs of 1, 0.9, 0.8, 0.7 and 0.6 if one 

treatment is being developed, or the 25 combinations of these HRs for the two treatments 

if two are being developed. For each Phase 2 design, simulations were run for each 

combination of sample size and timing of the interim analysis (or the first of 4 interim 

analyses) to be evaluated. (In some cases simulations were run at additional values to 

ensure that parameters giving a maximum eNPV had been evaluated).  

 Each set of simulation results was then evaluated for a set of specific values of the Phase 

3 design parameters: the Phase 2 success threshold, the Minimum expected HR6 

(equivalent to specifying a minimum Phase 3 size), the Maximum information (the Phase 

3 sample size multiplied by the proportion of subjects who have events and divided by 4), 

the Minimum information (the timing of the first interim analysis) and the required Type 

2 error rate for the Phase 3 trial. 

                                                 

6 Low HRs are good, and the purpose of the “Minimum Expected Hazard Rate” was to set a floor on the estimate of 

the HR from phase 2 that was used to calculate the phase 3 sample size. This corresponds to a caution in the clinical 

team when designing the phase 3 when the phase 2 results look “too good to be true”. 
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 Given the Phase 2 simulation results and the Phase 3 design parameters it is possible to 

calculate (1) whether Phase 2 was a success (and thus we “go” to Phase 3), (2) the 

appropriate Phase 3 trial size (which involves the observed HR), (3) the Phase 3 stopping 

boundaries, and (4) the actual probability of futility or success at each interim analysis or 

the final analysis in Phase 3, based on the “true” HR of the selected treatment in the 

scenario being simulated. The timing of the interim analyses of the Phase 3 trial was 

sampled based on stochastic models of patient recruitment and closed-form expressions 

for predicting counts of events (Anisimov, 2011) and this helped reduce the time of 

computations very substantially.   

 The above computations allow us to calculate the cost, expected revenue and probability 

of each possible outcome:  

 

Figure 1. The simulated decision tree 

 

Phase 2 Phase 3 

Failure in Phase 2 
Failure at an interim 

analysis in Phase 3 

Failure at the 

end of Phase 3 

Success at an interim 

analysis in Phase 3 Success at the 

end of Phase 3 
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 These results are then averaged over all the simulations for each scenario and then 

averaged over all the scenarios, weighting the values by the probability of each scenario. 

 Finally the eNPV is adjusted to penalize “reckless” programs that are willing to proceed 

to Phase 3 even when the likelihood of success is low. This occurs because in this model 

with these assumptions the size of the expected revenue is much greater than the cost of 

Phase 3. So in addition to maximizing the eNPV we set an additional constraint that the 

desired average probability of success in Phase 3 across all the scenarios should be 50%7. 

In our first attempt we set the eNPV of any program that failed to meet this criteria to 

zero, but this interfered with the optimizers search for the best parameters. It created a 

‘cliff’ in the eNPV values and large “flat” area of value zero. So instead we penalized any 

design with a success rate in phase 3 of less than 50% by the ratio of successful to 

unsuccessful Phase 3 divided by 50%. Thus we scaled the program eNVP by min(1, 

P3_success_ratio/0.5). This was a sufficiently strong penalty that programs with a 

success ratio less than 50% were rarely optimal, and programs with a success ratio much 

less than 50% never were.  

 Conventional optimisation methods for multi-parameter models either assume a 

derivative is available or that evaluation of the function is not too expensive (in time or 

computing capacity). Here neither is true, but we only had a small number of parameters 

to explore and the eNPV changes quite slowly – the surface is smooth − thus the 

                                                 

7 This was a somewhat arbitrary target, and might be too high, in particular in an indication of high, unmet medical 

need. In the context of a large pharmaceutical company it might represent a threshold required to justify investment 

in this development program rather than in an alternative drug that could be developed, or it might represent a 

corporate risk aversion. We think that if this number were adjusted up or down to 60% or 40% while changing he 

absolute eNPV figures, it would be unlikely to change the ranking of the designs.  
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parameter space could be searched by a relative unsophisticated “binary chop” method 

(see the Appendix for details). 

Optimizing the adaptive programs R5-7 was trickier because there were now additional Phase 2 

trial design parameters, and the effect of these could not be evaluated without re-running the 

simulations of the Phase 2 trials, so the exploration of effect of these parameters was less 

comprehensive. 

R5: Introduced an interim analysis in the Phase 2 trial with the possibility of dropping one or 

both arms at the interim analysis or stopping for success, so the additional parameters 

were the timing of the interim analysis in the Phase 2 trial and the threshold at which to 

drop an arm or declare success and go to Phase 3. 

R6: Introduced multiple interim analyses (every 20 events observed) at which one or both 

arms could be dropped. The additional parameters were the timing of the first interim 

analysis in the Phase 2 trial and the threshold at which to drop an arm (at the first or any 

subsequent interim analysis) or to declare success and go to Phase 3. 

R7:  Used multiple interim analyses, but rather than dropping an arm, adjusted the 

randomization ratio to favor the better performing treatment until the trial stopped for 

futility or success. The additional parameters were the timing of the first interim analysis 

in the Phase 2 trial and the threshold at which to stop for futility or declare success and go 

to Phase 3. 

Rather than devote a large amount of computational effort to exploring combinations of values 

for the 4 design parameters for the Phase 2 trial (sample size, timing of interim analyses or first 

interim analysis, threshold to stop for futility or drop an arm, threshold to stop for success), we 
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derived the values for the thresholds simply on the basis of the Type 1 error and power in Phase 

2 and we then explored combinations of interim analysis timing with sample sizes that had been 

optimal for the similar fixed trial (R4). 

The stopping decisions were based on the posterior probability of the HR of the best performing 

treatment being less than 0.9. The Type 1 error in the scenario where the HR was 1 varied 

between 11% and 26% and the typical decision threshold after optimization was 65-75%. That is, 

if the posterior probability that the HR of the treatment arm versus control (or best treatment arm 

if two were being tested) being better than 0.9 was 65-75% or better, then the Phase 2 trial was 

judged a success and the program proceeded to Phase 3. For revenue, one of the most important 

scenarios was the scenario where one treatment had a HR of 1 and the other a HR of 0.7. For 

simplicity we focused on the power of this scenario which in the fixed programs was typically 

around 78%. 

By a little trial and error we determined that if the final Phase 2 success threshold was Pr(HR < 

1) > 0.75 we could use an early stopping threshold of Pr(HR < 1) < 0.25 for futility or arm 

dropping and Pr(HR < 1) > 0.9 for early success and preserve the Type 1 error and power 

characteristics of the fixed programs. We then explored a small set of combinations of sample 

size and timing of the first interim analysis.  

Table 1. Table of optimized eNPV for Program R5 at different Phase 2 sample sizes and 

different timings of the interim analysis 

Phase 2 

Sample 

Size 

Time of first interim analysis 

(events) 

100 120 140 

240 244 244 245 
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270 244 244 245 

300 245 244 245 

 

Table 1 shows the eNPV at the optimized parameter values for program R5 at different Phase 2 

sample sizes and different possible timings (in terms of events observed) of the interim analysis. 

What is striking is how the eNPV does not vary. There is clearly enough flexibility in the choices 

of the Phase3 parameters that they can compensate for slight differences in the operating 

characteristics of the Phase 2 trial. For the sake of comparison with the other designs we select 

the smaller of the sample sizes and the later time for the interim analysis. 

For programs R6 & R7, because of the many interim analyses compared to program R5’s single 

interim analysis, the thresholds for deciding early futility and success need to be more 

conservative, but both designs take a lot longer to simulate. In order to determine reasonable 

initial values for the early stopping thresholds, the Phase 2 trials for programs R6 and R7 were 

simulated without early stopping and the results analyzed to predict the consequences of 

different possible stopping thresholds. 

The FACTS software we used to simulate the Phase 2 trial has a built in graphing facility that 

calculates contours of equal proportions of successful simulations for combinations of early and 

final success threshold (see Figures 2 & 3). 

Null scenario - contours of equal Type 1 error HR = 0.7 scenario - contours of equal power  
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Figure 2. Setting the success thresholds 

 

We select the Phase 2 success thresholds for which the Type 1 error rate is similar to that 

demonstrated through simulation – here declaring success in the null scenario – to roughly those 

levels that we saw in the optimized fixed programs, about 16%. As this is in Phase 2, analytical 

control of Type 1 error is not required, nor do the levels of control need to be as stringent as 

those used when testing the null hypothesis in a confirmatory trial. 

Superimposing the contour of 16% success rate in the Null scenario on the scenario with HRs 1 

and 0.7 (a key alternative scenario) we see it crosses the contours of the highest probability of 

success at the left hand end – where the threshold for early stopping for success is 0.9375 and the 

threshold for success at the end (if the trial has not stopped early) is 0.75.  

On the graphs, plotting contours of equal proportions of simulations that are futile, we look at the 

futility rate (Type 2 error) in our representative alternate scenario when the final threshold is 0.75 

~0.16 Type 1 error contour 

Increasing 

power 
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(final futility is the opposite of final success, so the same threshold is used, but futility is when 

the posterior probability the HR < 0.9 is below the threshold).  

Null scenario - contours of equal Type 1 error HR = 0.7 scenario - contours of equal power  

  

Figure 3. Setting the futility thresholds 

 

It appears that we can use an early stopping for futility threshold of about 0.2 without 

significantly increasing the futility rate in this alternate scenario, but we would expect to see the 

futility rate rise if the threshold were much higher.  

This then gives the early stopping thresholds: 0.9375 for success, 0.2 for futility. 

Table 2. Optimized parameter values for programs R5-R7 at Phase 2 sample sizes that 

maximize eNPV 

Program 

  

eNPV 

$M 

Parameter Values 

P2 

Sample 

Size 

First 

Interim 

analysis 

P2 Go P3 Beta 
Min 

Exp HR 

Max 

Factor 

Min 

Factor 

Futility rate when final 

threshold is 0.75 starts 

to increase  
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R5: P2.3a.1i+P3.4i 240 140 245 0.75 0.26 0.72 0.58 0.13 

R6: P2.3a.mi+P3.4i 270 120 250 0.75 0.54 0.74 0.58 0.13 

R7: P3.3a.ad+P3.4i 330 120 276 0.75 0.54 0.74 0.58 0.13 

 

Conventional Sample-Size Perspective 

As a point of reference, from a conventional-sample-size perspective, suppose no program-wide 

criteria (such as eNPV) and no adaptations had been applied in the design of the clinical 

program, so the scheme is like our program R1. Then, in order to have a statistical power of 80% 

in Phase 2 and 90% in Phase 3, assuming exponentially-distributed deaths, a median OS of 5.91 

months in the control arm, and an HR of 0.7, a sample size of 180 patients (90 per arm) would 

have been needed in Phase 2 and 400 patients (200 per arm) in Phase 3. 

3. RESULTS 

Programs with Fixed Phase 2 trials 

The comparison of programs R0-R4 was relatively straight forward, the 2 types of fixed Phase 2 

trial (with one or two treatments arms) were simulated with sample sizes in the range of 80 to 

320, and the optimal program parameters were derived for each one, and the probability was 

weighted, and the net present value was calculated for each one. 
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Figure 4. Expected Net Present Value for Programs R0-R4 at different Phase 2 sample 

sizes 

 

It can be seen that having a group sequential Phase 3 is clearly better (~$40M) than a fixed Phase 

3 (R0) and having more interim analyses (R3 & R4) is somewhat better (~$15M) than having 

just 1 (R1 & R2).  

Table 3. Scenario weighted eNPV at the optimized parameter settings for different sizes of 

fixed Phase 2 trial for programs (testing a single treatment) R0, R1 & R2. 

Program 

Weighted eNPV $M at different Phase 2 Sample Sizes 

80 100 120 140 160 180 200 140 280 320 

R0: 

P2.2a.f+P3.0i 
137 145 152 159 163 166 166 157 144 129 

R1: 

P2.2a.f+P3.1i 
173 180 194 204 199 204 206 199 186 171 

R2: 

P2.2a.f+P3.4i 
187 195 209 216 215 219 222 216 203 188 
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Optimal eNPV at different P2 sizes for 
different programs

R4:P2.3a.f+P3.4i

R3:P2.3a.f+P3.1i

R2:P2.2a.f+P3.4i

R1:P2.2a.f+P3.1i

R0:P2.2a.f+P3.0i
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Table 4. Scenario weighted eNPV at the optimized parameter settings for different sizes of 

fixed Phase 2 trial for programs (testing two treatments) R3 & R4. 

Program 

Weighted eNPV $M at different Phase 2 Sample 

Sizes 

150 180 210 240 270 300 330 

R3: 

P2.3a.f+P3.1i 
192 201 210 207 205   

R4: 

P2.3a.f+P3.4i 
209 217 225 224 221 221 218 

 

Unlike in the previous paper of Marchenko et al. (2013), at this point we see no advantage in 

testing 2 treatments in Phase 2 compared to testing just one. This was a consequence of having 

reduced the weightings for the second treatment’s successful scenarios so the expectation of 

success is less than that for the lead compound. The reduced weightings not only make it less 

likely to be successful but also less likely to be very successful. As a result, in the programs that 

test 2 treatments in fixed Phase 2 trials the advantage of “having a second shot at goal” is almost 

exactly offset by the additional time and cost of testing the second compound. 

Some observations on these results: 

 The eNPV at the optimized parameter values varies very smoothly with Phase 2 sample 

size when the Phase 3 is fixed (R0), but fluctuates more when the Phase 3 trial is group 

sequential. This is because the interim analyses in the Phase 3 acts somewhat like the 

go/no-go decision after Phase 2, thus changes in the Phase 2 sample size can be 

compensated for with the other parameters. 

 The eNPV at the optimized parameter values varies smoothly when 2 treatments are 

being tested, presumably because the power to correctly select between the two 
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treatments relies solely on the Phase 2 trial data and adjusting the Phase 3 parameters can 

no longer compensate for changes in Phase 2 sample size. 

 The variability in the eNPV from unimodal curve is however quite small – $2-4M. 

 There is nevertheless a clear “maximal eNPV” region for the Phase 2 sample size, below 

which smaller trials loose power faster than they gain value by being faster and above 

which larger trials loose more value by taking longer than they gain by the increase in 

power or accuracy of determining the treatment effect in order to make a better choice of 

sample size for Phase 3. 

 While there is a region of quite similar eNPV for different Phase 2 sample sizes, the 

expected performance of the program differs with the different sample sizes. With the 

smaller sample sizes, the program is quicker so the NPV if the program is successful is 

higher, but compared to the program with larger Phase 2 the chance of success is lower.  

 The optimal Phase 2 size of 180-200 when testing 1 treatment, or 210-240 when testing 2 

treatments, was surprisingly independent of whether the Phase 3 was fixed or group 

sequential, or how many interim analyses the group sequential Phase 3 design used. 

Table 5.  Probability of Success and eNPV for all eight programs. 

Program 

Results 

eNPV $M Pr(Success) 
P2 Type 1 

error 

R0: 

P2.2a.f+P3.0i 
167 11.4% 11.4% 

R1: 

P2.2a.f+P3.1i 
207 14.6% 11.6% 

R2: 

P2.2a.f+P3.4i 
210 15.0% 11.6% 
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R3: 

P2.3a.f+P3.1i 
222 16.8% 18.3% 

R4: 

P2.3a.f+P3.4i 
225 19.7% 26.4% 

R5: 

P2.3a.1i+P3.4i 
245 18.3% 17.2% 

R6: 

P2.3a.mi+P3.4i 
250 18.3% 17.6% 

R7: 

P3.3a.ad+P3.4i 
271 19.4% 15.5% 

 

We see a steady increase in eNPV as the complexity of the program increases and, while at each 

step the increment is relatively modest, the final design R7 has an eNPV ~65% greater than that 

of the simplest program: testing 1 arm in a fixed Phase 2 trial, followed by a fixed Phase 3 trial. 

Lastly we performed a relatively simple robustness test on these results. We re-evaluated each of 

the programs adjusting one of the values used in the assumptions. From other work we expected 

that the parameters to which the eNPV would be most sensitive would be the expected peak 

value (PV) and the Phase 3 recruitment rate (P3RR). We simply re-evaluated each of the 

programs varying these parameters by +/- 20%.  

 

Table 6. The eNPV of the various programs as we vary the value of 2 of the key 

assumptions, the expected peak value and the recruitment rate during Phase 3. 

Program 

eNPV $M 

Median P3RR+ P3RR- PV+ 
PV+, 

P3RR+ 

PV+, 

P3RR- 
PV- 

PV-, 

P3RR+ 

PV-, 

P3RR- 
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R0: 

P2.2a.f+P3.0i 
167 180 145 201 219 176 130 142 114 

R1: 

P2.2a.f+P3.1i 
207 222 185 250 269 224 163 175 145 

R2: 

P2.2a.f+P3.4i 
210 226 187 254 274 227 165 179 147 

R3: 

P2.3a.f+P3.1i 
222 238 199 269 289 242 175 188 157 

R4: 

P2.3a.f+P3.4i 
225 241 204 273 292 247 178 191 161 

R5: 

P2.3a.1i+P3.4i 
245 263 221 297 318 268 193 207 174 

R6: 

P2.3a.mi+P3.4i 
250 266 227 302 322 275 197 210 179 

R7: 

P3.3a.ad+P3.4i 
271 290 244 328 351 296 214 229 192 

 

Our key conclusion from these results is that the rankings of the different programs do not 

change as we vary these key assumptions. For the scenarios we considered, Program R7 was the 

best choice. It had the highest eNPV and the second highest probability of success. Program R4 

had slightly higher probability of success, but lower eNPV.  Program R0 was the worst, in terms 

of probability of success as well as the eNPV. Overall, the eNPV increased as the complexity of 

designs increased. It has been seen that having a group sequential Phase 3 trial was clearly better 

than a fixed Phase 3 trial and having more interim analyses was somewhat better than having just 

one. A Phase 3 GSD can help reduce Phase 2 sample size because we do not have to rely on an 

accurate estimate of the true HR when choosing the Phase 3 sample size – but we do still need to 

select the correct treatment in Phase 2. 
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In practice there are further areas of robustness checking that should be carried out, in particular: 

 The choice of early stopping thresholds in designs R6 and R7 

 The choice of the actual phase 3 parameters optimized not for specific values of the 

eNPV parameters as here, but over the potential range of their values. 

4. CONCLUSION 

Traditionally, optimization of the clinical development program has been done at an individual-

study level. Though extremely useful, optimization at an individual-study level does not always 

lead to an optimal clinical program or improved chance of success for the compound under 

investigation. Therefore, in our work, we aimed to optimize a clinical program part that includes 

both Phase 2 and Phase 3 studies. This is a second paper written by the oncology sub-team on 

Adaptive Program in which we evaluate hypothetical oncology programs and compare them 

using probability of program success and eNPV. As in Marchenko et al (2013), we assumed that 

there are two compounds which have graduated from Phase 1 and ready for further development 

in advanced pancreatic cancer. In this paper we explored the impact of using Group Sequential 

design in phase 3 and less optimistic expectations that the two compounds would be successful. 

In this setting the value of using a Group Sequential design in phase 3 was clear (a roughly 35% 

increase in eNPV) and the advantage of using an Adaptive phase 2 design slightly reduced (only 

about 15% further increase in eNPV). However, there was almost no benefit from 

simultaneously testing this poor second best treatment in the phase 2 unless the phase 2 was 

adaptive. We note that the benefit of the adaptive phase 2 increased the more adaptive it was and 

that the benefit was robust across changes of assumptions regarding market value and phase 3 

recruitment rate. We also note that the adaptive phase 2 was able to deliver this increase in value 

despite minimizing its opportunities to do so through having an adaptive phase 3, only two 
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treatments to choose between and a reduced expectation that the second treatment would be 

effective. 

It has been suggested to us that in this setting – with the same endpoint being used in phase 2 and 

phase 3 – exploring a seamless design would be interesting design option to explore. The 

additional revenue from savings in time between phase 2 and 3 would almost certainly exceed 

any additional cost of development, and the cost of having to invest in phase 3 ahead of phase 2. 

It would be interesting to see how low the initial expectation of success (in the terminology of 

this paper the relative weighting of the scenarios with treatment ratio < 0.9) could go before the 

eNPV of the seamless design was no greater than that of the equivalent separate stages. While 

such an investigation is beyond the scope of this paper, it could well be the basis of an interesting 

paper in its own right. 

High performance computers have facilitated widespread advances in the development of 

computational algorithms, statistical modeling, and simulations. These advancements helped to 

increase the use of Bayesian and hybrid designs in clinical trials that add to flexibility and 

interim decision making based on accumulated data in the trial and knowledge from outside the 

trial.  Computer simulations are widely used to facilitate decision making under uncertainty and 

to compare different designs under consideration.  When comparing individual study designs, 

typical metrics include sample size, power (or probability of success), duration of study, etc. 

under different scenarios. To make comparisons simple, we decided to use eNPV that allows one 

to combine various operating characteristics and understand the investment and gain better. The 

NPV formula given in the Methods section was derived from consultation with our marketing 

colleagues. In addition to eNPV, we also reported the probability of program success. We feel 
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this evaluation technique might become increasingly important as the industry moves to more 

quantitative decision making methods. 

Compared to the paper of Marchenko et al (2013), we found reduced advantage in Phase 2 

adaptive designs testing two experimental treatments rather than one because we significantly 

reduced the weightings of the scenarios where the second drug was effective. This leads to an 

important conclusion that investigators need to consider carefully what they know and what they 

expect if they are to gain the most from process optimization. For simplicity, we considered 

discrete treatment effects in terms of hazard ratios. The idea can be easily generalized to use a 

distribution of the treatment effect. Such distribution can be derived from available data, 

preclinical or clinical. Also, time and space limited us to eight designs; there are certainly many 

other candidate programs that one could compare and the framework we have put together can 

easily accommodate that.  
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Appendix: An example of the Optimization Method 

Tables A1, A2 and A3 show the search for Program R2 when just treatment ND1 is tested in a 

fixed Phase 2 trial with N=200, followed by a group sequential Phase 3 trial with 4 interim 

analyses. For the optimisation initial values were chosen that were thought to represent values a 

clinical team might plausibly choose. The parameters being optimized are: 

P2 Go The required threshold for the posterior probability Pr(HR <1). 

If Pr(HR <1) > P2, we go to phase 3. Initial value: 0.8 

P3 Beta When calculating the sample size for the phase 3 trial, the required power is (1 – 

P3_Beta). When the phase 3 used a group sequential design, the P3 Beta is also 

used in deriving the stopping boundaries. Initial value: 0.2 

http://people.bath.ac.uk/mascj/talks_2011/cj_ADAPT.pdf
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Min Exp HR The phase 3 sample size was calculated using the point estimate for the Hazard 

Ratio from the phase 2. This parameter sets a floor on how low that value was 

allowed to be. Thus for the expected effect size in the sample size calculation we 

used max(HR estimate from phase 2, Min Exp HR). Initial value: 0.6 

Max Factor This for the purposes of phase 3 sample size calculation and Group Sequential 

boundary calculation is the proportion of subjects in phase 3 that are expected to 

have events. Initial value: 0.8 

Min Factor This was used to allow the timing of the interim analysis if only one, or the first 

interim analysis if more than one, in the Group Sequential trial. Conventionally 

in Group Sequential trials the interim analyses are equally spaced, in terms of 

information, through the trial. But it was not clear to us that that was necessarily 

optimal and we thought it would be interesting to include this as a parameter to 

be optimised. Initial value: 0.5. 

The Maximum HR parameter was not optimised, it was fixed at 0.9: a point estimate of above 

0.9 meant not running a phase 3. This was justified on the grounds that the resulting phase 3 

would be so large that the expected revenue was inevitably very small. The required Alpha (type 

I error) for phase 3 was also fixed, in this case at 0.025 (one-sided) as is typically required by 

regulators. 

The scheme is based on the idea of a multi-dimensional “binary chop”. Upper and Lower 

boundaries are set for each parameter, and at each step we check parameter values half way 

between the current value and the boundaries yielding “High” and “Low” alternatives to the 

current value of the parameter. The eNPV of the design is tested with each parameter set in turn 
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to its High and Low values. A new set of parameter values is then chosen by replacing the 

current value with the “High” or “Low” alternative if that gave a higher eNPV than the current 

parameter values. If changing all the parameters in one step yields an eNPV that is lower than 

that at the current value then that new set of parameter values is rejected and just a single 

parameter is changed – the one yielding the greatest increase in the eNPV over that of the current 

parameters. If none of the High or Low alternative values yields an increase in eNPV then the 

Upper and Lower boundaries are temporarily brought in to half the distance from the current 

value and the process repeated until either a maximum number of reductions has been tried or a 

set of parameter values yielding a higher eNPV was found. More sophisticated optimisation 

packages exist but when they yielded bizarre results it was difficult to determine why, hence the 

development of a simple method that could be debugged, that exploits the fact that our 

parameters have boundary values, minimises the number of evaluations required, but relies on 

eNPV as a function of these parameters being broadly smooth – which it seems to be. 

In the following tables that show an example of optimization, we show the values of the 

parameters “current” at the start of the step, and below them the program eNPV at those 

parameters. Either side of the “current” values we show the “Low” and “High” alternate values 

of that parameter to be tested and in the columns outside those, the program eNPV if that 

parameter were to takes its low or high value and the other parameters kept their current values. 

The new values for the next step are obtained by replacing the current values by their low or high 

value if that lead to a higher program eNPV8.  

                                                 

8 Unless that particular combination gave a lower program eNPV, in which case the single substitution that gave the 

highest eNPV is used. If there was no such value the size of the steps to the higher and lower parameter were 

reduced until they were within some delta of the current value and then the optimization search stops. 
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Table A1. First step in the optimization of the program parameters 

Parameter 

eNPV at the 

Low value $M 

Parameter Values 

eNPV at the 

High value $M Low Current High 

P2 Go 190 0.65 0.80 0.90 111 

P3 Beta 164 0.10 0.20 0.225 150 

Min Exp HR 148 0.35 0.60 0.80 168 

Max Factor 154 0.65 0.80 0.90 153 

Min Factor 153 0.25 0.50 0.75 149 

 

eNPV at the current parameter 

values $M 153 

   

Table A2. Second step in the optimization of the program parameters 

Parameter 

eNPV at the 

Low value $M 

Parameter Values 

eNPV at the 

High value $M Low Current High 

P2 Go 201 0.58 0.65 0.83 167 

P3 Beta 203 0.05 0.10 0.18 220 

Min Exp HR 202 0.45 0.80 0.90 76 

Max Factor 214 0.58 0.65 0.83 213 

Min Factor 217 0.13 0.25 0.63 169 

 

eNPV at the current parameter 

values $M 213 
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Table A3. Seventh and final step in the optimization of the program parameters 

Parameter 

eNPV at the 

Low value $M 

Parameter Values 

eNPV at the 

High value $M Low Current High 

P2 Go 221 0.58 0.65 0.83 220 

P3 Beta 222 0.05 0.175 0.18 222 

Min Exp HR 222 0.45 0.80 0.90 221 

Max Factor 222 0.58 0.575 0.83 222 

Min Factor 222 0.13 0.125 0.63 222 

 

eNPV at the current parameter 

values $M 222 

   

In program R2, the Phase 3 sample size depends on Phase 2 data, in particular, the posterior 

expectation of HR after Phase 2. Table A4 shows the Phase 3 sample sizes for various expected 

HRs that result from the optimized parameters shown in Table A3. Note that it has been 

determined that it is optimal to set a floor on the value of the expected HR (Min Exp HR) of 0.8. 

Table A4. Example Phase 3 Sample sizes in program R2 for different expected HRs 

 

Expected HR 

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 

P3 Sample 

Size 
1096 1228 1382 1566 1788 2056 2386 2796 3316 3990 4878 

 

Figures A1 and A2 show the stopping boundaries for the 4 interim analyses of the Phase 3 trial 

when the expected HR is 0.8 (or less) and the probabilities of crossing the success boundaries for 

different true HRs. 
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Figure A1. The Phase 3 stopping boundaries for the N=1096 case 

 

 

Figure A2. The probability of stopping at the interim analyses for different true HRs 
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Table A5 shows the summary probability, cost and revenue figures for this program with these 

parameters. The columns are “Pr P2 fail”, “Pr P3 fail” “Pr P3 succ” are the probabilities of the 3 

program outcomes – failing at the end of phase 2, failing at the end of phase 3 and succeeding at 

the end of phase 3. “P2 Cost”, “P3 (fail) Cost” and “P3 (succ) Cost” are the average costs of 

phase2, phase when phase 3 fails and phase 3 when phase 3 is successful. “Rev” is the average 

revenue if successful, “eNPV” is the expected Net Present Value, “Scen wt” is the scenario 

weighting and “Wt’d eNPV” is the eNPV after scaling by the scenario weighting. Table A6 

shows the different optimized parameter values for R2 with different Phase 2 sample sizes.  

Table A5. Table of operating characteristics of R2 for the different scenarios 

Scenario 

HR 

Pr P2 

fail 

Pr P3 

fail 

Pr P3 

succ 
P2 Cost 

P3 

(fail) 

Cost 

P3 

(succ) 

Cost 

Rev eNPV 
Scen 

wt 

Wt’d 

eNPV 

1 0.88 0.11 0.00 7 17 19 411 -8 0.529 -4 

0.9 0.68 0.22 0.09 7 19 19 663 46 0.27 13 

0.8 0.38 0.11 0.51 7 20 18 1,125 549 0.127 70 

0.7 0.13 0.01 0.87 7 18 16 1,887 1,614 0.054 87 

0.6 0.02 0.00 0.98 7 12 14 2,936 2,862 0.02 57 

Sum          222 

 

 

 

Table A6. Optimized parameter values for different Phase 2 sample sizes for program R2 

Phase 2 
eNPV $M Parameter Values 
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sample size 
P2 Go P3 Beta 

Min Exp 

HR 
Max Factor Min Factor 

80 187 0.65 0.24 0.80 0.58 0.125 

100 195 0.70 0.18 0.80 0.57 0.125 

120 209 0.67 0.21 0.80 0.54 0.125 

140 216 0.65 0.21 0.80 0.54 0.125 

160 215 0.70 0.18 0.80 0.57 0.125 

180 219 0.67 0.18 0.80 0.57 0.180 

200 222 0.65 0.18 0.80 0.58 0.125 

240 216 0.63 0.22 0.80 0.53 0.125 

280 203 0.60 0.22 0.80 0.54 0.125 

320 188 0.58 0.21 0.80 0.54 0.125 

 

Table A7. Optimized parameter values for programs R0-R4 at Phase 2 sample sizes that 

maximize eNPV 

Program 

 

eNPV 

$M 

Parameter Values 

P2 Sample 

Size 
P2 Go P3 Beta 

Min Exp 

HR 

Max 

Factor 

Min 

Factor 

R0: P2.2a.f+P3.0i 180 166 0.67 0.22 0.74 0.99 0.13 

R1: P2.2a.f+P3.1i 200 206 0.65 0.23 0.78 0.65 0.40 

R2: P2.2a.f+P3.4i 200 222 0.65 0.18 0.80 0.58 0.13 

R3: P2.3a.f+P3.1i 210 210 0.75 0.23 0.80 0.61 0.38 

R4: P2.3a.f+P3.4i 210 225 0.65 0.23 0.80 0.65 0.25 
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Table A7 shows the optimized parameter values for each of the programs using a fixed Phase 2 

design at the optimal Phase 2 sample size for that program. 

Here we have just illustrated the method by its application to R2. The same method was applied 

to optimize all the designs, with the number of parameters to optimize varying between designs. 

However, some adaptive designs had parameters that impacted the execution of the phase 2 part, 

and these could only be explored by running simulations at different values and optimizing the 

remaining “phase 3” parameters for each set. Since these phase 2 parameters were much more 

expensive to optimize, the optimization was performed at a small set of discrete values and the 

parameter space explored manually, whilst the exploration of the phase 3 parameters could be 

performed automatically. 

However it must be stressed that the purpose of the optimization was to allow fair comparison of 

the different designs, not to produce actual optimal parameters for the design itself. In deriving 

such optimal designs, one would need to allow for the enormous uncertainty in some of the 

parameters of the eNPV model – particularly those around expected revenue and phase 3 accrual 

– and this is another, different, though equally interesting, problem from the one of choosing 

between different design strategies. 

 


