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Abstract

We study efficiency and information aggregation in common value elections with con-

tinuous private signals and informative priors. We show that small elections are not

generally efficient and that there are equilibria where some voters vote against their pri-

vate signal even if it provides useful information and abstention is allowed. This is not the

case in large elections, where the fraction of voters who vote against their private signal

tends to zero. In an experiment, we then study how informativeness of priors and private

signals impact efficiency and information aggregation in small elections. We find that

there is a substantial amount of voting against the private signal. Moreover, while most

experimental elections are efficient, voting behaviour reveals little about voter’s private

information.
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1 Introduction

Consider a meeting of the executive board of a business where a decision by voting is due

on to which of two foreign markets to expand. All members of the executive board have

the same target, to increase the profits of the business, yet they may have different opinions

about which market will be best for their company. Assume all board members have access

to a report detailing which market is likely to be the most profitable one. On top of that,

board members may have their own private information based on their past experience, their

discussions with other colleagues, etc. The question we ask in this paper is this twofold:

can it be rational for board members to ignore their private information and vote following

the report even when private information is informative and abstention is allowed? Will the

committee arrive at the best possible decision given the information they have available?

To answer these questions we consider a common value election between two candidates

where voters are not perfectly informed about who is the best candidate. Instead, each voter

receives information about the identity of the best candidate from two sources, one public

and one private. The public source of information is a common prior shared by all voters.

The private source of information consists of an idiosyncratic signal of a certain quality,

which could for example reflect the voter’s expertise. Each voter knows the quality of his

own signal but not the quality of the signals others receive nor these signals themselves. In

this setting it may happen that some voters decide to abstain because they believe that their

vote is going to harm the chances of the best candidate winning the election. This is known

as strategic abstention (see for instance McMurray (2010, 2013); Feddersen and Pesendorfer

(1996)), which can occur if the signal quality of these voters is low, so that they prefer leaving

the decision of selecting a candidate to other, possibly better informed, voters (self-selected

experts). In this paper we ask under which conditions a voter may even vote against his signal

and what are the implications of such behaviour for efficiency and information aggregation.

From our theoretical analysis we obtain three main results: first, we find that a significant

amount of voting against the signal can be observed in equilibrium. Voting against the signal

can be rational if the voter deems the signal of too low quality compared to the information

contained in the asymmetric (and hence informative) prior. Second, we find that voting does

not generally aggregate information efficiently. This is due to a mis-coordination problem

that appears as a result of equilibrium multiplicity. Third, for elections with a large number

of voters we prove that the effect of an asymmetric common prior vanishes to zero and the

election resembles one where the common prior is non-informative.

Our analysis is closely related to McMurray (2013), who studies Condorcet (1785)’s classic

common value environment with symmetric priors. The main difference between McMurray

2



(2013) and the present paper is that we allow for the common prior to be asymmetric: i.e. not

all candidates are equally likely to be the best one a priori. This gives rise to a phenomenon

not present in McMurray (2013): voters can vote against their own signal. With symmetric

priors any signal is at least as good as the prior in predicting the best candidate. This

means that no voter has incentives to vote against his signal and their decision then reduces

to whether to abstain or not. In our paper the fact that a signal may be less informative

than the common prior means that some voters will choose to vote against their private

signal. Contrary to previous literature, voting against the private signal is not the result of

the different biases voters may have (Feddersen and Pesendorfer, 1996; Rivas and Rodŕıguez-

Álvarez, 2012).

Our experiments test both the predictions of the symmetric case studied in McMurray

(2013) as well as the predictions of the asymmetric case introduced here for small elections.

As expected from the theoretical analysis, few voters (< 10%) vote against their signal with

uninformative (symmetric) priors, but 40 − 80%, depending on signal accuracy, do so in

the case with informative (asymmetric) priors. Turnout is higher in the asymmetric case

(83−86%) than in the symmetric case (78%) and slightly higher than theoretically expected.

The experiments deliver a surprising result in terms of efficiency. While as expected more

informative priors lead to higher efficiency, more informative signals do not. This is because in

the experiments voters trust moderately precise signals too much, which leads to an inefficient

use of information. A consequence of this, efficiency is higher with less informative signals.

Our research contributes to the literature on common value elections and strategic ab-

stention. The classic paper of Austen-Smith and Banks (1996) raised serious questions about

Condorcet’s implicit assumption that all voters will vote naively, i.e. vote as if they were the

only voter. They showed that voting against the signal can arise if abstention is not allowed

and all voters have the same signal quality. In Feddersen and Pesendorfer (1996) voters are

of three types: partisans, fully informed and uninformed. Partisans support a certain can-

didate irrespective of the information available while fully informed and uninformed voters

prefer the best candidate. Fully informed voters know for certain who is the best candidate

while uninformed voters have no information about the best candidate other than the com-

mon prior. They show that a positive fraction of uninformed voters abstain even when they

strictly prefer one candidate over the other (swingers voter’s curse). Battaglini et al. (2010)

experimentally tested this model and found results in terms of efficiency, turnout and the

margin of victory that are in line with theory. We find theoretically and experimentally that

being uninformed is not a requirement for the swingers voter’s curse (see also McMurray

(2013)). Indeed, the fact that voters posses information of different qualities leads to a self

selection in abstention; those with lower quality signals abstain, even if their signal is more
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informative than the prior, and even if based on the information they have they strictly prefer

one candidate over the other.

In Feddersen and Pesendorfer (1997) voters receive information from different sources,

where each source may provide information of different qualities. However, they do not allow

for abstention, which is a crucial difference to our model. Feddersen and Pesendorfer (1998)

allow voters to abstain. However, all voters receive information of the same quality. The

results in Feddersen and Pesendorfer (1998) are similar to ours except for the fact that in

their article the reason behind what each voter chooses given his signal is how biased towards

either candidate he is. In our paper, no voter is biased and the driving force behind what

each voter chooses given his signal is the quality of the signal. Our paper hence identifies

a new mechanism of why voting behaviour can differ across players: differences in behavior

might be due either to differences in preferences, as in Feddersen and Pesendorfer (1998), or

due to differences in the perceived quality of the information, as in our case.

Also related are Ben-Yashar and Milchtaich (2007) who study voters with homogeneous

preferences and private signals of different qualities. However, they do not consider the

possibility of abstention; their focus is on computing the best monotone voting rule. Krishna

and Morgan (2012) investigate the welfare effects of introducing voluntary voting when all

voters have the same signal quality. Oliveros (2013) presents a model where voters can buy

information of different qualities and studies the effects of different ideologies on information

acquisition.

A technical difference between our paper and some of the previous theoretical literature

(McMurray (2013), Feddersen and Pesendorfer (1996, 1997, 1999) among others) is that we

do not consider an uncertain number of voters, i.e. Poisson games (Myerson, 1998), to prove

our results. In elections with a small number of voters, as it is the case in the example in

our starting paragraph, this assumption may seem hard to justify. The fact that we do not

consider Poisson games does not lead to different results when the number of voters is large.

In this case, our results mirror those of McMurray (2013).

Finally, our research also contributes to the experimental literature on the Condorcet Jury

paradigm. The first published experiment on behaviour in voting games was conducted by

Guarnaschelli et al. (2000) who base their experiment on Feddersen and Pesendorfer (1998)’s

analysis of strategic voting with the unanimity rule. Closer to our setting are Battaglini et al.

(2008) and Battaglini et al. (2010) as described above, and also Morton and Tyran (2011)

who extend the Battaglini et al. (2008) setting by exploring an environment where poorly

informed voters are not completely uninformed - they simply receive lower quality signals.

This can lead to equilibria where all voters vote and to equilibria where the poorly informed

voters abstain. However, as priors are symmetric, there should not be any voting against the
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signal in this setting.

Studying experimentally whether participants would be willing to vote against their signal

when it is rational to do so raises interesting questions in itself. Violations of Bayesian

updating are widely documented in experimental research and there are two types of biases

which would lead to opposite results in terms of participants voting against their signal. The

well documented phenomenon of base-rate neglect (Kahnemann and Tversky, 1972; Grether,

1980; Erev et al., 2008) will lead agents to overweight sample information and hence would

imply that voting against the signal is not commonly observed in the experiment. However,

there is also the opposing phenomenon of conservatism (Ward, 1982) which implies that

participants overweight the prior and hence would reinforce the strategic incentives to vote

against the signal. By studying for the first time common value elections with informative

priors our experiment can shed some light on the role of these two opposing biases in strategic

voting.

The rest of the paper is organized as follows. In section 2 we introduce the model and

present the main theoretical results. In section 3 we describe the design of the experiments

and present the experimental results. In section 4 present further theoretical results where

we consider the limit case then the number of voters grows large. Finally, section 5 concludes.

2 Theory

2.1 The Model

Consider a setting where N + 1 ≥ 2 voters have to decide between candidate R(ed) or

candidate B(lue) by simultaneously casting a vote for either candidate or abstaining. The

candidate that the receives the most votes wins the election. In case of a tie each candidate

wins with equal probability.

Each voter derives one unit of utility if the candidate who wins coincides with the state of

nature and zero units of utility otherwise. The state of nature is a random variable s ∈ {R,B}
where without loss of generality we assume that the probability that the state is R is given

by p ≥ 1
2 .

1 We restrict our attention to situations where p ∈
[
1
2 , 1

)
as if p = 1 then all

voters agree that R is the best candidate and thus will vote for him regardless on any other

information they may have available. The value of p is common knowledge and we refer to

it as the common prior.

1The assumption p ≥ 1
2
is without loss of generality as if p < 1

2
then a relabeling of R to B and vice-versa

makes the analysis that follows still valid.
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Before the election, each voter i receives a signal σi ∈ {R,B} with quality qi ∈
[
1
2 , 1

]

where

P (σi = s|s) = qi.

Given the state of nature, signals of different voters are conditional independent. Both

the signal received by each voter as well as the quality of such signal are private information.

The distribution of signal qualities for each voter in the population is common knowledge,

identical, independently distributed and given by the strictly increasing cumulative density

function F :
[
1
2 , 1

]
→ [0, 1] and integrable probability density function f :

[
1
2 , 1

]
→ R+.

Define the average signal quality as µ =
∫ 1

1
2
qf(q)dq and consider µ ∈

(
1
2 , 1

)
to avoid the

trivial cases where all voters receive a useless signal or when all voters receive a perfectly

informative signal.

Thus, before the election each voter knows the common prior, his own signal and the

quality of such signal, as well as the distribution of the quality of other voters’ signals.

However, he ignores the state of nature, the signals received by other voters, and the quality

of such signals.

A strategy for each voter is a map v : {R,B} ×
[
1
2 , 1

]
→ {∅, R,B} where v(σi, qi) is the

action of voter i who receives signal σi of quality qi, and ∅ stands for the action of abstaining.

Note that we focus on symmetric strategies: voters that are the same (same signal and

quality) behave the same. The fact that we only consider symmetric equilibria does not

undermine our main findings: if voting against the signal is possible in an equilibrium with

symmetric strategies then it is also possible in an equilibrium when asymmetric strategies

are considered. Moreover, as we argue later on in section 4.1, when there is a large number

of voters considering symmetric strategies is without loss of generality.

Note that unlike most recent papers on voting and information sharing we do not assume

a Poisson distribution for the number of voters (see the seminal work by Myerson (1998) and

Myerson (2000) and more recent references by Myatt (2012) and Nunez (2010) among others).

This assumption is often employed given its technical conveniences, namely, independent

common public information and independence of actions. However, a drawback of assuming

a Poisson distribution for the number of voters is that voters are uncertain of how many other

voters there are in the population. While this seems a suitable assumption in large elections,

with small elections (committees, for example), which are the focus of this paper, it seems

unreasonable to assume that voters ignore how many other voters there are.

Given that we focus on a small number of voters, one may be interested in knowing how

allowing voters to deliberate would affect our setting. However, since we are dealing with a

common value election, the addition of a deliberation stage in the form of a straw poll a la
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Coughlan (2000) does not affect the strategic incentives of voters and, hence, will not affect

our results.

2.2 Analysis

When a voter decides whether to vote for R, B or to abstain, he compares the payoff he

obtains under these three actions given the actions of all other voters. However, a voter can

influence his own payoff only when his vote can change the outcome of the election (i.e. he

is pivotal). This can happen if and only if candidates R and B are at most one vote apart

when counting the votes of the other N voters. Thus, let πt(v, s) be the probability that

candidate R receives the same number of votes as candidate B (i.e. there is tie) when N

voters use strategy v and the state is s. Similarly, let πR(v, s) be the probability candidate R

receives exactly one vote less than candidate B when N voters use strategy v and the state

is s. Finally, let πB(v, s) be the probability candidate B receives exactly one vote less than

candidate R when N voters use strategy v and the state is s.

Before we write down the payoff each voter obtains from playing the three different actions,

it is useful to understand how likely each state is when a voter only considers his available

information (i.e. ignoring strategic considerations). We have the following:

P (s = R|σi = R, qi) =
pqi

pqi + (1− p)(1− qi)
,

P (s = B|σi = R, qi) =
(1− p)(1− qi)

pqi + (1− p)(1− qi)
,

P (s = R|σi = B, qi) =
p(1− qi)

p(1− qi) + (1− p)qi
,

P (s = B|σi = B, qi) =
(1− p)qi

p(1− qi) + (1− p)qi
.

Notice that the private signal of voter i is more informative than the prior, P (s|σi = s, qi) ≥
1
2 for all s ∈ {R,B}, if and only if qi ≥ p.

The expected utility voter i derives from voting for R compared to voting for B when the

other N voters use strategy v is then given by

ui(R,B, v) = P (s = R|σi, qi)
[
πt(v,R) +

1

2
πB(v,R) +

1

2
πR(v,R)

]

−P (s = B|σi, qi)
[
πt(v,B) +

1

2
πB(v,B) +

1

2
πR(v,B)

]
. (1)

In words, if the state is R then the increase in payoff from voting R instead of B is: 1

if there is a tie when counting all other N votes (the best candidate wins), 1
2 if B is one

vote behind (the best candidate is chosen as opposed to forcing a tie), and 1
2 if R is one vote
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behind (a tie is forced as opposed to not having the best candidate win). On the other hand,

if the state is B then the increase in payoff from voting R instead of B is: −1 if there is a

tie when counting all other N votes (the best candidate does not win), −1
2 if B is one vote

behind (the best candidate is not chosen as opposed to forcing a tie), and −1
2 if R is one vote

behind (a tie is forced as opposed to having the best candidate win).

Similarly, the expected utility voter i derives from voting for R or B compared to ab-

staining when the other N voters use strategy v is given respectively by

ui(R, ∅, v) = P (s = R|σi, qi)
[
1

2
πt(v,R) +

1

2
πR(v,R)

]

−P (s = B|σi, qi)
[
1

2
πt(v,B) +

1

2
πR(v,B)

]
, (2)

ui(B, ∅, v) = P (s = B|σi, qi)
[
1

2
πt(v,B) +

1

2
πB(v,B)

]

−P (s = R|σi, qi)
[
1

2
πt(v,R) +

1

2
πB(v,R)

]
. (3)

To simplify the exposition, we assume that if voters are indifferent between the two can-

didates they prefer the one that coincides with their signal. Similarly, if voters are indifferent

between voting for a certain candidate or abstaining, they follow their signal. As it will be

clear later on, the fact that f is integrable means that the probability that a voter is indiffer-

ent between two options (voting to one candidate or the other, or voting to either candidate

or abstaining) is zero. As such, the way indifference ties are broken has no effect in our results

and it also allows us to ignore mixed strategies.

A voter who receives signal R votes for R if and only if ui(R,B, v) ≥ 0 and ui(R, ∅, v) ≥ 0.

Such voter abstains if and only if ui(R, ∅, v) < 0 and ui(B, ∅, v) ≤ 0, and votes for B if and

only if ui(R,B, v) < 0 and ui(B, ∅, v) > 0. Thus, expressions (1), (2) and (3) are what

determines how a voter behaves given how the other voters behave.

We have the following characterization of all symmetric equilibria (all mathematical proofs

are presented in the appendix):

Theorem 1. There exists an equilibrium. The equilibrium is either of two types:

- Type 1, characterized by two cutpoints 1
2 ≤ q−B ≤ q+B ≤ 1 with q−B ≤ p such that

v(σi, qi) =





R if either σi = R or σi = B and qi < q−B ,

B if σi = B and qi ≥ q+B ,

∅ otherwise.
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- Type 2, characterized by two cutpoints 1
2 ≤ q+R ≤ q+B ≤ 1 such that

v(σi, qi) =





R if σi = R and qi ≥ q+R ,

B if σi = B and qi ≥ q+B ,

∅ otherwise.

In equilibrium of Type 1 all voters who receive signal R vote and they do so for candidate

R. These are the voters who receive a signal that agrees with the common prior. On the other

hand, voters who receive a signal against the common prior, i.e. signal B, behave as follows:

those with a low quality signal ignore their signal and vote according to the common prior,

those with a moderately informative signal abstain, and those with a sufficiently informative

signal vote according to their signal.

In equilibrium of Type 2 no voter votes against his signal. Note that q+R ≤ q+B implies

that those voters who receive a signal that agrees with the common prior are less likely to

abstain than those who receive a signal against. This is the case because p ≥ 1
2 and, thus, if

a voter receives signal R the common prior makes him trust is signal more whereas if voter

receives signal B he is less convinced about candidate B than his signal quality suggests as

the common prior goes against B.

The reason why there is not an equilibrium where voters who receive signal R vote for B

is that p ≥ 1
2 and, thus, a voter whose signal agrees with the common prior believes that R is

the best candidate so he either abstains or votes for R. Figures 1 and 2 present a graphical

representation of both types of equilibria.

Figure 1: Equilibrium of Type 1

σi = R

Vote for R

qi1
2

1

σi = B

Vote for R Abstain Vote for B

qi1
2

1q−B q+B
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Figure 2: Equilibrium of Type 2

σi = R

Abstain Vote for R

qi1
2

1q+R

σi = B

Abstain Vote for B

qi1
2

1q+B

The expected fraction of voters who vote against their signal in equilibrium of Type

1 is given by
∫ q−B

1
2

f(q)dq which, as we shall see with examples, can be a strictly positive

number. The fraction of voters who abstain is given by
∫ q+B
q−B

f(q)dq in equilibrium of Type

1 and
∫ q+B

1
2

f(q)dq +
∫ q+R

1
2

f(q)dq in equilibrium of Type 2. This is the so-called strategic

abstention (and swing voters curse), found for instance in McMurray (2013) and Feddersen

and Pesendorfer (1996) (see McMurray (2010) for an empirical reference).

The reason why some voters vote against their signal is the following. Consider a very

simple example where there are only two voters. In this case a voter is always pivotal and

thus learns very little from the fact that he is pivotal (he still does learn some information, as

there are three different possibilities for a voter to be pivotal). In this case if a voter receives

a low quality signal against the common prior, given that he does not learn much from being

pivotal, he may still prefer to vote for what the common prior suggests if the common prior

is informative enough. This reasoning extends to more than just two voters. Assume that a

voter receives a low quality signal supporting the candidate that goes against the common

prior. If such voter is pivotal, he knows that there are mixed signals in the population, which

suggests that the common prior may be wrong. However, his information may still support

the same candidate as the common prior given that his updated belief stills put a significant

probability on such candidate because the voter’s signal is of low quality. Thus, the voter

may have incentives to disobey his signal and vote against it.

The reason why strategic abstention is possible is that if a voter receives a signal of

moderate quality and the common prior is not very informative (or he receives a signal of

high quality against an informative the common prior, but not of sufficiently high quality),

then if the voter is pivotal he may prefer to abstain and leave the decision to those who

are presumably better informed. This is because if the voter is pivotal there is a significant

chance that the best candidate is ahead by one vote as opposed to the other candidate ahead

by one vote or there being a tie. Hence, by voting the voter runs the risk of contradicting
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the opinion of most other voters who do not abstain and who have a better signal quality

than himself. In this situation the voter is better off by abstaining, even if he prefers one

candidate over the other, and leaving the decision of electing a candidate to the other more

informative voters.

Note that from the information revelation point, voting against the voter’s signal is worse

than abstaining. When a voter abstains he reveals that his signal is not very informative.

However, in an equilibrium where voters may vote against their signal, if a voter votes for R

it is not clear whether such voter received signal R or B. That is, voting against the signal

harms the chances of the best candidate winning the election more than abstention.

Theorem 1 states that in an equilibrium of Type 1, q−B ≤ p. Numerical examples shows

that this inequality can be strict. If instead of a group of voters a single voter (dictator)

chose the winning candidate, straightforward calculations show that this voter will choose to

follow his signal if and only if his signal points at candidate R or if it points at candidate B

and the signal quality is at least p. In the language of the model, if N+1 = 1 then the unique

equilibrium is Type 1 with q−B = q+B = p. Thus, the fact that the group of voters includes

more than just one voter means that voters are less likely to vote against their signal. That

is, more voters means that each of them has more incentives to share their signal even if such

signal is of a quality lower than the prior. Later in the paper we show that the fraction of

voters who vote against their signal converges to zero as the number of voters increases to

infinity.

As discussed in the introduction, McMurray (2013) considers a setting very similar to

ours where the main difference is that he assumes p = 1
2 . The consequence of this is that in

his setting the only possible equilibria is Type 2 with q+R = q+B . The fact that p > 1
2 is what

allows the existence of an equilibrium of Type 1 with q−B > 1
2 and an equilibrium of Type 2

with q+R < q+B . The comparison of our results to McMurray (2013) is explored in more detail

later on when we consider elections with a large number of voters.

It is worth pointing out the similarities between our result in Theorem 1 and Proposition 1

in Feddersen and Pesendorfer (1998) (particularly striking is the resemblance between figures

1 and 2 and figure 1 in Feddersen and Pesendorfer (1998)). However, both results originate

from very different sources. In our paper, voters’ behavior depends on the signal they receive,

but also on the quality of such signal. In Feddersen and Pesendorfer (1998), voters’ behavior

depends on the signal they receive and on their bias towards each of the candidates. Thus, the

fact that unbiased voters receive signals of different qualities mimics the behavior observed

when biased voters receive information of equal quality. A fundamental difference between

these two situations is that a voter who is biased takes such bias as given while an unbiased

voter is aware of the fact that his signal may or may not be very accurate.
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2.2.1 Numerical Examples

Next we present some examples that illustrate the results of Theorem 1. In tables 1 and 2

we calculate some of the possible equilibria when there are 4 and 5 voters respectively and

signal qualities are distributed uniformly. The parameter constellations in table 1 are the

ones used in the experiments.

Table 1: Equilibria, N + 1 = 4

p = 0.5, q ∼ U
[
1
2 , 1

]
p = 0.95, q ∼ U

[
1
2 , 1

]
p = 0.95, q ∼ U

[
1
2 ,

3
4

]

q+R = 0.67 q−B = 0.54 q−B = 0.57

q+B = 0.67 q+B = 0.86 q+B = 0.76

Table 2: Equilibria, N + 1 = 5

p = 0.5, q ∼ U
[
1
2 , 1

]
p = 0.8, q ∼ U

[
1
2 , 1

]
p = 0.95, q ∼ U

[
1
2 , 1

]

q+R = 0.5 q+R = 0.68 q+R = 0.60 q−B = 0.59 q+R = 0.51 q−B = 0.68

q+B = 0.5 q+B = 0.68 q+B = 0.75 q+B = 0.59 q+B = 0.82 q+B = 0.68

Numerical results suggest that the equilibrium is unique if and only if N + 1 is even and

that if N + 1 is odd then there are exactly two equilibria. However, we have been unable

to prove this formally. The problem of uniqueness of equilibrium in voting models such as

this far from trivial (McMurray (2013)) and is often ignored (Feddersen and Pesendorfer

(1996, 1997, 1999)). Nevertheless, uniqueness of equilibrium is not necessary for our results.

Our characterization in Theorem 1 together with the examples above already illustrate one

of the points of this paper: the possibility for rational voters voting against their signal

when such signal is informative and abstention is allowed. On top of that, uniqueness of

equilibrium is also not required for the experimental results; we are not interested in making

point-wise prediction but in understanding whether the behavior of subjects responds the

way the theoretical results predict when we change the parameters of the model.

With respect to whether or not information is used efficiently in equilibrium, the examples

in Table 2 already tell us that this is not necessarily the case. For instance, if N + 1 = 5

and p = 0.8 then the probability with which the best candidate wins is 0.92 in Equilibrium

of Type 1 and 0.93 in the equilibrium of Type 2. Numerical results show that this difference

tends to increase if there are fewer voters. However, as we shall show in the section 4.1, for

elections with a large number of voters the best candidate wins the election with probability

one.
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2.3 Testable Predictions and Empirical Questions

In this section we describe some key qualitative properties that we are interested in testing

in the laboratory. One of the new findings in this paper is that, unlike in the symmetric

prior case studied in McMurray (2013), participants may vote against their signal if it is not

accurate enough. As discussed above, this can have important consequences for information

aggregation. We ask the following question:

Voting against one’s signal How is the propensity to vote against the signal affected by

changes in the prior p and the signal accuracy q?

From theory we would expect to see voting against the prior only if priors are asymmetric

and if signal accuracy is “low enough”. Empirically, whether this prediction holds depends

crucially on how people update their prior on the basis of the information they received.

Two different failures of Bayesian updating have been robustly documented in the literature:

(i) base-rate neglect, which leads to overweighting sampled information (Kahnemann and

Tversky (1972); Grether (1980); Erev et al. (2008)) and (ii) conservatism, which leads to

underweighting or even ignoring the sample (Ward (1982)).

Base rate neglect is not important if priors are symmetric (p = 0.5). With asymmetric

priors, however, it could potentially play an important role. Under base-rate neglect partic-

ipants would vote with their signal more often, leading to more information being revealed,

but possibly worse outcomes in terms of the efficiency of the majority decision. Conservatism

would lead to the opposite prediction. Participants would vote with the prior too often lead-

ing to both worse information aggregation and lower efficiency. Hence, while theory might be

a good predictor of behavior for symmetric priors, its predictive accuracy could be far worse

in the case of asymmetric priors if base-rate neglect or conservatism play important roles in

this setting. If participants vote too often or too seldom against their signal, information

revelation and efficiency are impacted as well. We hence ask:

Information Revelation How is information revelation affected by changes in the prior p

and the signal accuracy q?

Efficiency How is the efficiency of voting outcomes affected by changes in the prior p and

the signal accuracy q?

We would expect efficiency to increase both as priors become more asymmetric (hence

containing more information) and as signals become more accurate. However, in the presence
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of biases, such as base-rate neglect or conservatism, this may not necessarily be the case. Our

experiments will provide an empirical test of how the symmetric and asymmetric settings

differ with regard to these issues and how potential biases affect the explanatory power of

the theory in both these two settings.

3 Experiments

3.1 Design of the Experiments

Our experiment implements the setting described in the theoretical section for N+1 = 4, i.e.

four voters. In all treatments participants played a voting game for 30 rounds. After each

round they were randomly re-matched in a new group of four voters. Each round proceeded

as follows. First, participants were reminded of the value of p. They were then shown their

private signal and informed about the accuracy of their signal qi. They were afterwards asked

to vote for either RED, BLUE or to ABSTAIN, where the order of the first two options was

randomized. At the end of each round they were informed about their own vote, the majority

vote in the group, the realized state and their payoff. Participants received 10 experimental

tokens if the majority vote matched the state and 2 tokens if it did not. At the end of the

experiment one round was randomly drawn and participants were paid for that round only

plus a show up fee of 3 tokens. Tokens were converted into GBP at a rate of 1:1.

To answer our questions regarding information revelation and efficiency we systemati-

cally vary p and q. Treatment SYM implements the symmetric setting analyzed by Mc-

Murray (2013). Both states are equally likely and signal accuracy is distributed uniformly

in [0.5, 1]. In treatment ASYM an asymmetric prior of 0.95 is implemented. Treatment

ASYM-COARSE coincides with treatment ASYM, but the signal accuracy is lower:

q ∼ U [0.5, 0.75]. In each treatment we had 24 participants organized in three matching

groups (clusters) of size 8. Theoretical predictions for these different cases can be found in

Section 2.2.1 Table 1.

The experiments were conducted in May 2015 at EssexLab at the University of Essex.

Participants earned either 13 GBP or 5 GBP depending on whether, in the round randomly

drawn for payment, the majority vote matched the state or not.2 The experiment lasted

around 45min, it was programmed in z-tree (Fischbacher, 2007) and participants were re-

cruited using hroot.

2In May 2015, 13 GBP equalled about 20.50 US dollars and 5 GBP around 7.90 US dollars.
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3.2 Experimental Results

We first look at overall outcomes in terms of efficiency and information revelation and then

look at the individual behaviour underlying these aggregate effects.

3.2.1 Aggregate Outcomes

We start with the efficiency of voting outcomes. We would expect efficiency to increase

both as priors become more asymmetric (hence containing more information) and as signals

become more accurate. In terms of our treatments we would hence expect higher efficiency in

ASYM compared to SYM and higher efficiency inASYM compared toASYM-COARSE.

(a) Efficiency over Time (b) Voting with Signal over Time

Figure 3: Efficiency: Panel (a) shows the percentage of time the majority vote agreed with

the state over time across the three treatments. Panel (b) shows the percentage of times

participants vote with their signal over time across the three treatments.

Figure 3 (Panel (a)) shows efficiency over time across the three treatments. As expected,

efficiency is higher in ASYM compared to SYM, even though they are converging over

time and across the last 5 periods they are no longer statistically different (Table 3). By

contrast, efficiency is higher in ASYM-COARSE compared to ASYM, which is not what

we expected. The difference is not statistically significant across the first five periods (col-

umn (1) in Table 3), but it is significant across all rounds (column (2)) and significant and

substantial across the last five rounds (column (3)). In fact, in ASYM-COARSE the vote

is almost always efficient. We will explore the reasons for this effect below. There are also

some interesting time trends. While in ASYM efficiency decreases over time (OLS coeffi-

cient −0.0039∗∗∗), in SYM efficiency increases over time (0.0064∗∗∗) stabilizing at around 80

percent efficient votes.3

3OLS coefficients in brackets are from random effects OLS regressions (including a constant) where the
efficiency measure is regressed on period. Standard errors are clustered by matching group.
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(1) (2) (3)

VARIABLES All periods periods 1-5 periods 26-30

ASYM 0.169*** 0.317*** 0.0417

(0.0160) (0.0434) (0.0440)

ASYM-COARSE 0.231*** 0.325*** 0.183***

(0.0160) (0.0434) (0.0440)

Constant 0.751*** 0.625*** 0.783***

(0.0113) (0.0307) (0.0311)

Observations 2,160 360 360

Participants 72 72 72

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3: Random effects OLS regression of efficiency on treatment dummies. Note: (***)

significant at 1% level, (**) at 5% level and (*) at 10% level. Standard errors are clustered

by matching group.

Result 1 Voting outcomes are most efficient in ASYM-COARSE followed by ASYM and

SYM.

Information Revelation Next, we study information revelation, i.e. how much about

participants’ signals (and hence the state) is revealed via their voting behavior. Panel (b) in

Figure 3 shows that the share of participants who vote with their signal is roughly constant

across time and about the same across treatments. This, however, does not tell us much about

how much information is revealed since it is important to understand who votes against their

signal, i.e. is it participants whose signal coincides with the prior or those whose signal differs

from the prior? and how accurate is the signal of those who vote against it?

One can either study information revelation by making inference based on the theoretical

benchmark or in a purely empirical manner. We will discuss both in turn. As mentioned

above, in all the equilibria in ASYM and ASYM-COARSE only participants with a signal

that goes against the prior would ever abstain. Hence, if we make inference based on the

theoretical benchmark, the decision to abstain reveals the signal as does the decision to vote

against the prior. The decision to vote with the prior, by contrast, does not reveal (in a

deterministic sense) the signal. Can we make inference on votes that follow the prior? The

problem with such inference is that it depends on assumptions about specific equilibria being

played. In particular, the conditional probability Pr(σ|vi = BLUE) will vary depending on

the equilibrium under question. Hence, any theoretical inference be conditional on particular

equilibria. For this reason we focus on a purely empirical measure of information revelation.
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In particular, we use the ratio of post- to pre-voting Shannon entropy:

IR =
−
∑

s∈{R,B} p̂(s) log p̂(s)

−(p log p+ (1− p) log(1− p))
,

where p̂(s) denotes an outside observer’s belief on the state after observing the distribution

of votes (but without knowledge of the signals received by voters). In particular p̂(s) denotes

the probability that an outside observer (endowed with an uninformative prior), who knows

the empirical frequencies Pr(σi, qi|vi), attaches to state s after seeing the vote. If IR < 1,

then this outside observer will be more informed about s compared to someone who just

knows the prior and if IR > 1, then the prior reveals more information about s than the

vote.

RED state BLUE state

Votes σ = RED Votes σ = BLUE

SYM

RED 0.57 0.95 (0.76) RED 0.23 0.18 (0.63)

BLUE 0.15 0.26 (0.70) BLUE 0.57 0.86 (0.74)

abstain 0.28 0.57 (0.59) abstain 0.20 0.45 (0.59)

ASYM

RED 0.66 1 (0.85) RED 0.23 0.20 (0.67)

BLUE 0.33 0.5 (0.6) BLUE 0.57 0.80 (0.74)

abstain - - abstain 0.20 0.33 (0.62)

ASYM-COARSE

RED 0.40 0.85 (0.61) RED 0.04 0.52 (0.63)

BLUE 0.40 0.60 (0.61) BLUE 0.81 0.79 (0.62)

abstain 0.20 0.60 (0.59) abstain 0.15 0.57 (0.61)

Table 4: Vote Distribution and share of participants voting (RED, BLUE or abstaining)

overall and conditional on observing a RED signal (in brackets average signal accuracy) for

each of the three treatments and the two states.

Table 4 gives an overview of voting behaviour. In SYM, participants tend to vote RED or

BLUE with about equal frequencies. However, there is also a substantial share of abstentions.

Consistently with theory, voters rarely vote against their signal in this condition. Since the

setting is symmetric, there are, as expected, no differences between RED and BLUE signals.

Let us compute the population posterior for RED, i.e. p̂(RED). In the red state, observing

someone vote RED is indicative of a signal RED with probability 0.95 with average accuracy

of 0.76, observing an abstention reveals RED with probability 0.57 (average accuracy 0.59)

and observing BLUE indicates RED with probability 0.26 (average accuracy 0.70). The

population posterior p̂(RED) is hence 0.533 in the red state and 0.46 in the blue state,

implying IRSYM < 1. Hence knowledge of the empirical frequencies Pr(σi, qi|vi) as well as

the vote distribution is informative about the state, as in the RED state p̂(RED) > 0.5

and in the BLUE state p̂(RED) < 0.5. The population posterior reveals marginally more

information about the state than the uninformative prior.
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In treatment ASYM most voters vote with BLUE, but there is also a substantial share

of abstention and a significant share of voting for RED. Observing someone vote RED is

indicative of a signal RED with probability 1 with average accuracy of 0.85 while observing

BLUE indicates RED with probability 0.33 (average accuracy 0.6). Two problems with

information revelation become apparent. First, since as predicted by theory a substantial

share of participants who vote for BLUE actually saw a RED signal, it is harder to make

inference from observing BLUE votes. Second, and this goes against theoretical insights, 15

percent of those voting for RED did actually see a BLUE signal. The population posterior

p̂(RED) is 0.76 in the red state and p̂(RED) = 0.41 in the blue state implying IRASYM >

1. The population posterior reveals less information compared to the prior, but both are

informative in this case.4 In treatment ASYM-COARSE patterns are similar to those in

ASYM, but lower signal quality means worse inference compared to treatment ASYM, but

still information is lost via voting. The population posterior is p̂(RED) = 0.61 in the red

state and p̂(RED) = 0.46 in the blue state

As we expected from theory, the setting with asymmetric priors is problematic in terms of

information revelation. An outside observer, who knows the empirical frequencies Pr(σi, qi|vi)
as well as the vote distribution, will have a less accurate idea of the state s compared to

someone just relying on the prior in both treatments ASYM and ASYM-COARSE. It

should be noted, though, that in all treatments voting is informative with p̂(RED) > 0.5 in

the RED state and p̂(RED) < 0.5 in the BLUE state.

Result 2 Voting outcomes are informative in all treatments. Voting reveals more informa-

tion than the (uninformative) prior in SYM, but less information than the prior in

ASYM and ASYM-COARSE.

3.2.2 Individual Behaviour

In this subsection we turn our attention to individual voting strategies to get a better under-

standing for what underlies our aggregate findings.

Figure 4 illustrates how voters with RED (left panel) and BLUE (right panel) signals

vote in treatment SYM. As expected, we don’t see substantial differences between the two

cases. Irrespective of the signal received, only very few participants vote against their signal.

The share of abstentions is high (around 60%) if the signal is uninformative and decreases

sharply around q ≈ 0.6 in line with theoretical predictions. The fact that voters largely vote

4Note that there are only few instances where the state is RED in treatments ASYM and ASYM-

COARSE. If we aggregate across both states results are very similar.
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(a) RED signal (b) BLUE signal

Figure 4: The figure shows the vote distribution (red, abstain, blue) conditional on signal

accuracy as well as theoretical threshold (vertical line). Treatment SYM.

with their signal if signal accuracy is good enough is what underlies the comparatively good

information revelation properties highlighted earlier.

(a) RED signal (b) BLUE signal

Figure 5: The figure shows the vote distribution (red, abstain, blue) conditional on signal

accuracy as well as theoretical thresholds (vertical lines) in equilibrium of type II. Treatment

ASYM

Figure 5 shows how participants vote depending on their signal in treatment ASYM. In

line with the symmetric equilibrium prediction, if participants receive a BLUE signal they

essentially always vote BLUE (panel (b)). There is some abstention for low signal accuracy

(below 0.65) and a few votes for RED. Despite the fact that only a small proportion of those

receiving a BLUE signal vote RED, this small amount of noise can have a big impact on

information revelation as seen above. The reason is that, many more participants do receive

a BLUE signal than a RED signal.
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(a) RED signal (b) BLUE signal

Figure 6: The figure shows the vote distribution (red, abstain, blue) conditional on signal

accuracy as well as theoretical thresholds (vertical lines) in equilibrium of type II. Treatment

ASYM-COARSE.

Conditional on receiving a RED signal the majority of participants do not vote RED

(between 90% if q = 0.5 and around 60% if q = 0.9). Around 40-50% of participants vote

against their signal, i.e. vote BLUE when their signal was RED. This share is pretty stable

across levels of accuracy q (see also columns (1) and (3) in Table 7). The share of participants

abstaining is around 30% for low signal accuracy and decreasing as signal accuracy increases

with participants starting to vote RED. Hence, participants with a RED signal vote according

to their signal too much if signal accuracy is bad and too little if signal accuracy is good.

Hence, rather than a general tendency towards conservatism or base-rate neglect we find that

participants do not react enough to the accuracy of their signal.

Figure 6 shows the analogous graph for treatment ASYM-COARSE, where signals are

less accurate. Behavior conditional on a BLUE signal is very similar to treatment ASYM

with most participants voting BLUE. Conditional on receiving a RED signal, participants

now are even more likely to vote against the signal with almost 80% voting BLUE if q = 0.5,

i.e. if the signal is uninformative. The percentage shrinks for higher levels of q, but remains

substantial at 60% even if q = 0.9.

Table 5 shows how odds ratios (exponentiated coefficients) from multinomial logit regres-

sion on voting outcomes (categorized as “voting with the signal”, “abstaining” or “voting

against the signal”) change with the signal accuracy separately for the case where a RED

(columns (1)-(3)) or a BLUE (columns (4)-(6)) signal was received. The baseline category is

to vote with the signal.5

5Tables 8 and 7 in Appendix C show OLS regressions on binary outcomes of “Abstention” and “Voting

against the signal”, respectively.
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(1) (2) (3) (4) (5) (6)

RED signal BLUE signal

SYM ASYM ASYM SYM ASYM ASYM

COARSE COARSE

Vote with signal

Abstain

q 0.000*** 74.460*** 53.360 0.005*** 0.001 0.097

(0.000) (103.500) (192.800) (0.000) (0.002) (0.189)

Constant 135.100*** 0.024*** 0.010** 123.700*** 0.754** 0.525

(101.100) (0.023) (0.023) (104.200) (0.660) (0.633)

Vote against signal

q 0.044*** 0.887 5.681 0.001*** 0.025 0.016

(0.051) (1.076) (12.700) (0.001) (0.057) (0.058)

Constant 1.816 0.799 0.133 9.781** 0.347 0.703

(1.507) (0.624) (0.177) (11.270) (0.538) (0.350)

Observations 385 243 181 335 477 539

Standard Errors Eform in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Odds Ratios (exponentiated coefficients) from multinomial logit regression on voting

outcomes categorized as “voting with the signal”, “abstaining” or “voting against the signal”.

Note: (***) significant at 1% level, (**) at 5% level and (*) at 10% level.

The table shows that conditional on receiving a BLUE signal (columns (4)-(6)), a one-

unit increase in q leads to relative odds to vote against the signal or to abstain that are

substantially lower than what they were before. This decline is observed across all treatments,

most dramatic in SYM (with odds ratios as low as 0.005∗∗∗ and 0.001∗∗∗) and least strong

and not statistically significant in ASYM-COARSE.

Conditional on receiving a RED signal (columns (1)-(3)) the same pattern can be observed

in treatment SYM: a one-unit increase in q leads to a substantial decrease in relative odds to

vote against the signal or to abstain (relative to voting with the signal). This is not the case

in treatment ASYM, though. While participants become less likely to vote against RED as

signal accuracy increases (exp coefficient 0.088), they do not vote with the signal more, but

instead decide to abstain (exp coefficient 74.46∗∗∗).

To sum up, behaviour in the experiment is largely in line with what we expected from

theory. Participants are not hesitant to vote against their signal if its quality is low, but they

do not react enough to signal accuracy. More informative priors lead to higher efficiency, as

expected, but against our expectations, more informative signals do not.
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4 Further Theoretical Results

4.1 Large Elections

In this section we extend our theoretical results by focusing on elections where the number

of voters tends to infinite. Our first result is that in large elections the fraction of voters who

vote against their signal converges to zero and, moreover, the difference in behavior between

those who receive different signals of the same quality also converges to zero.

Theorem 2. The equilibrium in a large election is either Type 1 with
∫ q+B

1
2

f(q)dq → 0 or

Type 2 with
∫ q+B
q+R

f(q)dq → 0.

The first part of the theorem states that in equilibrium of Type 1 we have
∫ q+B

1
2

f(q)dq → 0.

Since in such equilibrium q−B ≤ q+B , we have then that
∫ q−B

1
2

f(q)dq → 0. Therefore, the

proportion of voters that vote against their signal converges to zero. Note that it may happen

that the number of voters who vote against their signal is bounded away from zero, that is, it

could be that limN→∞(N +1)
∫ q−B

1
2

f(q)dq > ε for some ε > 0. However, the number of voters

voting against their signal in the population is insignificant compared with the number of

voters who vote according to their signal.

Another implication of first part of the theorem is that the difference in behavior between

those who receive signal R or B converges to zero. A voter who receives signal R always

votes for R while the fraction of voters who do not vote for B when they receive signal B is
∫ q+B

1
2

f(q)dq, which converges to zero.

The second part of the theorem states that in equilibrium of Type 2 we have
∫ q+B
q+R

f(q)dq →
0. Again this implies that the difference in behavior between those who receive signal R or

B converges to zero. Therefore, Theorem 2 implies that when the number of voters tends

to infinity the fraction of voters who vote against their signal (
∫ q−B

1
2

f(q)dq) and the fraction

of voters whose behavior depend on the specific signal received (
∫ q+B
q+R

f(q)dq) vanishes in the

limit. That is, as the number of voters increases the effect of an asymmetric common prior

(p > 1
2) vanishes in the limit and the results in McMurray (2013) apply. (i.e. the equilibrium

is characterized by a cut-point q that determines who abstains and who votes for his signal

independently on the particular signal received).

The reason behind the result in Theorem 2 is the following. Assume that
∫ q+B

1
2

f(q)dq does

not converge to zero. In this case if a voter is pivotal then it must be that in proportion more

voters received signal B than R: as
∫ q+B

1
2

f(q)dq does not converge to zero, not all voters who

receive signal B vote for B yet all voters who receive signal R vote for R. If more voters
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receive signal B than R then since the average signal quality µ is greater than 1
2 by law of

large numbers the state of nature is B with probability one. This implies that all voters

should vote for B, contradicting the fact that all voters who receive signal R prefer to vote

for R.

A similar argument shows that as the number of voters grows large in equilibrium of Type

2 we must have
∫ q+B
q+R

f(q)dq → 0. If
∫ q+B
q+R

f(q)dq does not converge to zero then if a voter is

pivotal it must be that a greater proportion of voters receive signal B than signal R. This is

because a higher fraction of those voters who receive signal B compared to those who receive

signal R abstain. Law of large number then means that the state is B with probability

one, which implies that all voters should vote for B. This represents a contradiction to the

characterization of equilibrium of Type 2.

In this paper we consider only symmetric strategies. The fact that an equilibrium where

some voters vote against their signal exists in symmetric strategies implies that it also exists

when non-symmetric strategies are considered. Moreover, the fact that we consider only

symmetric strategies is without loss of generality in case there is a large number of voters.

This is because in large elections the probability that the vote of an specific voter determines

the outcome is zero. Thus, all voters face the same distribution of strategies played by

other voters. Given that voters are never (with probability zero) indifferent between the

available options (voting for either candidate and abstaining), all voters chose the same

strategy conditional on the signal received and its quality. That is, voters follow symmetric

strategies. For more on this see McMurray (2013).

Our final result states that in large elections the best candidate wins with probability one.

This result is in line with the Condorcet Jury Theorem and the findings in previous literature

(see for instance Feddersen and Pesendorfer (1996, 1997, 1999) and McMurray (2013)).

Proposition 1. The equilibrium in a large election is such that the best candidate wins with

probability one.

Given the result in Theorem 2, whether a voter chooses to vote or to abstain depends on

the quality of his signal, not on the value of the signal itself. Thus, for a given state of nature

and given level of abstention, the best candidate is expected to receive a share µ of the votes

while the other candidate is expected to receive a share 1− µ of the votes. Since µ > 1
2 law

of large numbers implies that the best candidate wins with probability one.
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5 Conclusions

We presented a common value election setting where voters have private information of

different qualities. We showed both theoretically and experimentally that voters may have

incentives to vote against their private information, even if such private information is useful,

all have the same preferences, and abstention is allowed. Moreover, we found that elections

do not generally aggregate information efficiently. On top of that, experimental subjects used

their private information more than what is rational. This produced the unexpected result

that lower quality of information is better; the reduction in the quality of private information

made subjects trust their information less, which reduced the efficiency loss due to subjects

following their private information too often.

We also found that the behavior of voters when they receive information of different

qualities resembles the behavior of voters who receive information of the same quality but that

have different preferences (i.e. they may be biased towards either candidate). This suggest

that the observed different biases towards candidates need not be the result of different

preferences and it could be the result of different rational beliefs about who is the best

candidate.
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A Appendix: Proofs

The following lemma is used in the proof of Theorem 1.

Lemma 1. The best response of any voter i against any strategy v played by the other N

voters is given v′, which is characterized by four cutpoints q−R , q
+
R , q

−
B and q+B in

[
1
2 , 1

]
such

that

v′(θi, qi) =





R if either σi = R and qi ≥ q+R or σi = B and qi < q−B ,

B if either σi = R and qi < q−R or σi = B and qi ≥ q+B ,

∅ otherwise.

Proof. Take any arbitrary voter i and assume all voters except i use strategy v. Consider

equations (1), (2) and (3) and assume that σi = R. We have that both Eu(R, v)−Eu(B, v)

and Eu(R, v) − Eu(∅, v) are increasing in qi. Therefore, there exists a x ∈ [0, 1] such that

both equations are positive and voter i votes for R whenever qi ≥ x. Since qi ∈
[
1
2 , 1

]
if we

define q+R = max
{
1
2 , x

}
we have that voter i votes for R whenever qi ≥ q+R .

Moreover, both Eu(B, v)−Eu(R, v) and Eu(B, v)−Eu(∅, v) are decreasing in qi. There-

fore, there exists a y with 0 ≤ y ≤ x such that both equations are positive and voter i

votes for B whenever qi < y. If we define q−R = max
{
1
2 , y

}
we have that voter i votes for R

whenever qi < q−R .

The final possibility is that both Eu(R, v)−Eu(∅, v) and Eu(B, v)−Eu(∅, v) are negative,
which can happen if and only if qi ∈ [y, x) or, in other words, qi ∈ [q−R , q

+
R). In this case,

voter i prefers to abstain.

A similar reasoning when σi = B leads to the conclusion in the lemma.

Proof of Theorem 1. An Equilibrium Exists

First we demonstrate existence. Given the result in Lemma 1, we know that for any

strategy v employed by the other N voters every voter employs a strategy that is charac-

terized by four cutpoints q−R , q
+
R , q

−
B and q+B . Define the function φ :

[
1
2 , 1

]4 →
[
1
2 , 1

]4
where

φ(q−R , q
+
R , q

−
B , q

+
B) is the best response of any voter to a situation where all other N voters

employ an strategy characterized the four cutpoints q−R , q
+
R , q

−
B , q

+
B . We have to prove that φ

has a fixed point. By the fixed point theorem, since the set
[
1
2 , 1

]4
is convex and compact in

the Euclidean space we are left to show that φ is continuous.

When N voters are using strategy v characterized by the four cutpoints q−R , q
+
R , q

−
B and
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q+B we have that

πt(v,R) =

�N
2 �∑

sR(R)=0

�N
2 �−sR(R)∑

sB(R)=0

N−2(sR(R)+sB(R))∑

sR(∅)=0

sR(R)+sB(R)∑

sR(B)=0

N !

sR(R)!sB(R)!sR(∅)!sR(B)!(sR(R) + sB(R)− sR(B))!(N − 2(sR(R) + sB(R))− sR(∅))!

×

[∫ 1

q+R

qf(q)dq

]sR(R) [∫ q−B

1
2

(1− q)f(q)dq

]sB(R)

×

[∫ q+R

q−R

qf(q)dq

]sR(∅) [∫ q−R

1
2

qf(q)dq

]sR(B)

×

[∫ 1

q+B

(1− q)f(q)dq

]sR(R)+sB(R)−sR(B) [∫ q+B

q−B

(1− q)f(q)dq

]N−2(sR(R)+sB(R))−sR(∅)

(4)

Since F (q) =
∫ q

1
2

f(q)dq we have that F is continuous and, because it is a cumulative

density function, it is bounded in [0, 1]. Therefore, F is integrable and moreover continuous

with respect to the integration limits. Thus,
∫
qf(q)d(q) = qF (q) −

∫
F (q)dq is continuous

with respect to the integration limits. As a result, πt(v,R) is continuous with respect to the

cutpoints q−R , q
+
R , q

−
B and q+B .

It can be shown in a similar fashion that πt(v, s), πB(v, s) and πR(v, s) are continuous

with respect to the cutpoints q−R , q
+
R , q

−
B and q+B for all s ∈ {R,B}. Hence, we have that

Eu(R, v)−Eu(B, v), Eu(R, v)−Eu(∅, v) and Eu(R, v)−Eu(∅, v) are continuous with respect

to the cutpoints q−R , q
+
R , q

−
B and q+B . Thus, φ is continuous as we wanted to show.

Equilibrium is of Two Types

Given the result in Lemma 1, any equilibrium is characterized by the four threshold

values q−R , q
+
R , q

−
B and q+B . Assume that q−B > 1

2 , then we have that Eu(R, v)− Eu(B, v) > 0

and Eu(R, v) − Eu(∅, v) > 0 for all i with σi = B and qi ∈
[
1
2 , q

−
B

)
, which implies that

Eu(R, v)−Eu(B, v) > 0 and Eu(R, v)−Eu(∅, v) > 0 for all i with σi = R and qi ∈
[
1
2 , q

−
B

)
.

This means that q−R , q
+
R = 1

2 , which leads to equilibrium of Type 1 in the proposition.

Assume now that q−B = 1
2 and q+B > 1

2 . In this case we have that Eu(B, v)−Eu(∅, v) < 0

for all i with σi = B and qi ∈
[
1
2 , q

+
B

)
, which implies that Eu(B, v) − Eu(∅, v) < 0 for all i

with σi = R and qi ∈
[
1
2 , q

+
B

)
. This means that q−R = 1

2 , which leads to equilibrium of type 2

in the proposition.

Finally, assume that q−B = q+B = 1
2 . We proceed by showing that πt(v,R) + πB(v,R) ≥

πt(v,B)+πB(v,B). If this were true, and since q+B = 1
2 implies that Eu(B, v)−Eu(∅, v) ≥ 0

for all i with σi = B and qi ∈
[
1
2 , 1

]
, equation (3) together with the fact that p ≥ 1

2 implies
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that πt(v,B)+πB(v,B) ≥ πt(v,R)+πB(v,R), which would represent a contradiction (unless

q−B = q+B = q−R = q+R = p = 1
2 , which is an equilibrium of either Type in the proposition).

First we show that πt(v,R)− πt(v,B) ≥ 0 for all 1
2 ≤ q−R ≤ q+R ≤ 1. Note that

πt(v,R) =

�N
2 �∑

j=0

j∑

r=0

N !

j!(j − r)!r!(N − 2j)!

[∫ 1

q+R

qf(q)dq

]j [∫ q−R

1
2

qf(q)dq

]j−r [∫ 1

1
2

(1− q)f(q)dq

]r [∫ q+R

q−R

qf(q)dq

]N−2j

,

πt(v,B) =

�N
2 �∑

j=0

j∑

r=0

N !

j!(j − r)!r!(N − 2j)!

[∫ 1

q+R

(1− q)f(q)dq

]j [∫ q−R

1
2

(1− q)f(q)dq

]j−r [∫ 1

1
2

qf(q)dq

]r [∫ q+R

q−R

(1− q)f(q)dq

]N−2j

.

Given that qi ≥ 1
2 for all voter i we have that

πt(v,R)− πt(v,B) ≥
�N

2 �∑

j=0

j∑

r=0

N !

j!(j − r)!r!(N − 2j)!


[∫ 1

q+R

qf(q)dq

]j [∫ 1

1
2

(1− q)f(q)dq

]r

−

[∫ 1

q+R

(1− q)f(q)dq

]j [∫ 1

1
2

qf(q)dq

]r

 .

Thus, if q+R = 1
2 or q+R = 1 then πt(v,R)−πt(v,B) ≥ 0. Consider now the cases where q+R ∈

(
1
2 , 1

)
. Using once more that qi ≥ 1

2 for all i, a necessary condition for πt(v,R)−πt(v,B) ≥ 0

is that
[∫ 1

q+R

qf(q)dq

]r [∫ 1

1
2

(1− q)f(q)dq

]r

≥

[∫ 1

q+R

(1− q)f(q)dq

]r [∫ 1

1
2

qf(q)dq

]r

.

This can be written as
[∫ 1

q+R

qf(q)dq

][∫ 1

q+R

(1− q)f(q)dq +

∫ q+R

1
2

(1− q)f(q)dq

]
≥

[∫ 1

q+R

(1− q)f(q)dq

][∫ 1

q+R

qf(q)dq +

∫ q+R

1
2

qf(q)dq

]
.
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In other words,

∫ q+R
1
2

(1− q)f(q)dq
∫ 1
q+R
(1− q)f(q)dq

≥

∫ q+R
1
2

qf(q)dq
∫ 1
q+R

qf(q)dq
,

∫ q+R
1
2

(1− q)f(q)dq

∫ q+R
1
2

qf(q)dq
≥

∫ 1
q+R
(1− q)f(q)dq
∫ 1
q+R

qf(q)dq
,

∫ q+R
1
2

f(q)dq

∫ q+R
1
2

qf(q)dq
≥

∫ 1
q+R

f(q)dq
∫ 1
q+R

qf(q)dq
,

∫ 1
q+R

qf(q)dq

∫ q+R
1
2

qf(q)dq
≥

∫ 1
q+R

f(q)dq

∫ q+R
1
2

f(q)dq
.

Since it is true that

∫ 1
q+R

qf(q)dq

∫ q+R
1
2

qf(q)dq
≥

∫ 1
q+R

q+Rf(q)dq

∫ q+R
1
2

q+Rf(q)dq

=

∫ 1
q+R

f(q)dq

∫ q+R
1
2

f(q)dq
,

we have that πt(v,R)− πt(v,B) ≥ 0.

Proceeding in a similar fashion, it can be shown that πB(v,R)− πB(v,B) ≥ 0. Thus, we

have that πt(v,R)− πB(v,R) ≥ πi(v,B)− πB(v,B) as required.

In Equilibrium of Type 1 q−B ≤ p

We can use the algebra from the previous part of the proof to show that in equilibrium of

Type 1 πt(v,R)− πt(v,B) ≤ 0 and πR(v,B)− πR(v,R) ≥ 0 for all 1
2 ≤ q−B ≤ q+B ≤ 1. Hence,

equation (2) together with the definition of q−B implies p(1− q−B) ≥ (1− p)q−B , which in turn

implies q−B ≤ p.

In Equilibrium of Type 2 q+B ≥ q+R

Next we prove that in any equilibrium of type 2 it must be that q+B ≥ q+R . Assume the
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opposite, q+R > q+B . Note that in any Type 2 equilibrium we have that

πt(v,R) =

�N
2 �∑

j=0

[∫ 1

q+R

qf(q)dq

]j [∫ 1

q+B

(1− q)f(q)dq

]j

×
N−2j∑

r=0

N !

j!j!r!(N − 2j − r)!

×

[∫ q+R

1
2

qf(q)dq

]r [∫ q+B

1
2

(1− q)f(q)dq

]N−2j−r

.

Thus, it is true that

πt(v,R) =

�N
2 �∑

j=0

[∫ 1

q+R

qf(q)dq

]j [∫ 1

q+B

(1− q)f(q)dq

]j

×
�N−2j

2 �∑

k=0

N !

j!j!k!(N − 2j − k)!

×

[∫ q+R

1
2

qf(q)dq

]k [∫ q+B

1
2

(1− q)f(q)dq

]k

×



[∫ q+R

1
2

qf(q)dq

]N−2j−2k

+

[∫ q+B

1
2

(1− q)f(q)dq

]N−2j−2k

 , (5)

πt(v,B) =

�N
2 �∑

j=0

[∫ 1

q+R

(1− q)f(q)dq

]j [∫ 1

q+B

qf(q)dq

]j

×
�N−2j

2 �∑

k=0

N !

j!j!k!(N − 2j − k)!

×

[∫ q+R

1
2

(1− q)f(q)dq

]k [∫ q+B

1
2

qf(q)dq

]k

×



[∫ q+R

1
2

(1− q)f(q)dq

]N−2j−2k

+

[∫ q+B

1
2

qf(q)dq

]N−2j−2k

 . (6)

We now show that πt(v,R) − πt(v,B) ≥ 0 in three steps. First, we have that q+R > q+B

implies

[∫ 1

q+R

qf(q)dq

]j [∫ 1

q+B

(1− q)f(q)dq

]j

≥

[∫ 1

q+R

(1− q)f(q)dq

]j [∫ 1

q+B

qf(q)dq

]j

(7)
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for all j ∈ {0, 1, . . .} if and only if

∫ 1

q+R

qf(q)dq

[∫ 1

q+R

(1− q)f(q)dq +

∫ q+R

q+B

(1− q)f(q)dq

]
≥

∫ 1

q+R

(1− q)f(q)dq

[∫ 1

q+R

qf(q)dq +

∫ q+R

q+B

qf(q)dq

]
.

which can be rewritten as

∫ 1

q+R

qf(q)dq

∫ q+R

q+B

(1− q)f(q)dq ≥
∫ 1

q+R

(1− q)f(q)dq

∫ q+R

q+B

qf(q)dq,

∫ q+R
q+B

(1− q)f(q)dq

∫ q+R
q+B

qf(q)dq
≥

∫ 1
q+R
(1− q)f(q)dq
∫ 1
q+R

qf(q)dq
,

∫ q+R
q+B

f(q)dq

∫ q+R
q+B

qf(q)dq
≥

∫ 1
q+R

f(q)dq
∫ 1
q+R

qf(q)dq
,

∫ 1
q+R

qf(q)dq

∫ q+R
q+B

qf(q)dq
≥

∫ 1
q+R

f(q)dq

∫ q+R
q+B

f(q)dq
,

which given that

∫ 1
q+R

qf(q)dq

∫ q+R
q+B

qf(q)dq
≥

∫ 1
q+R

q+Rf(q)dq

∫ q+R
q+B

q+Rf(q)dq
,

=

∫ 1
q+R

f(q)dq

∫ q+R
q+B

f(q)dq
,

proves that equation (7) holds true when q+R > q+B .

Second, we have that q+R > q+B implies

[∫ q+R

1
2

qf(q)dq

]k [∫ q+B

1
2

(1− q)f(q)dq

]k

≥

[∫ q+R

1
2

(1− q)f(q)dq

]k [∫ q+B

1
2

qf(q)dq

]k

(8)
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for all k ∈ {0, 1, . . .} if and only if

∫ q+B
1
2

f(q)dq

∫ q+R
1
2

f(q)dq
≥

∫ q+B
1
2

qf(q)dq

∫ q+R
1
2

qf(q)dq
,

∫ q+R
1
2

qf(q)dq

∫ q+B
1
2

qf(q)dq
≥

∫ q+R
1
2

f(q)dq

∫ q+B
1
2

f(q)dq
,

∫ q+R
q+B

qf(q)dq

∫ q+B
1
2

qf(q)dq
≥

∫ q+R
q+B

f(q)dq

∫ q+B
1
2

f(q)dq
,

which given that

∫ q+R
q+B

qf(q)dq

∫ q+B
1
2

qf(q)dq
≥

∫ q+R
q+B

q+Bf(q)dq

∫ q+B
1
2

q+Bf(q)dq
,

=

∫ q+R
q+B

f(q)dq

∫ q+B
1
2

f(q)dq
,

proves that equation (8) holds true when q+R > q+B .

Third, we have that q+R > q+B implies

[∫ q+R

1
2

qf(q)dq

]m

+

[∫ q+B

1
2

(1− q)f(q)dq

]m

≥
[∫ q+R

1
2

(1− q)f(q)dq

]m

+

[∫ q+B

1
2

qf(q)dq

]m

(9)

for all m ∈ {0, 1, . . .} if and only if

[∫ q+B

1
2

qf(q)dq +

∫ q+R

q+B

qf(q)dq

]m

−

[∫ q+B

1
2

qf(q)dq

]m

≥
[∫ q+B

1
2

(1− q)f(q)dq +

∫ q+R

q+B

(1− q)f(q)dq

]m

−

[∫ q+B

1
2

(1− q)f(q)dq

]m

which is always true for m = 0 and true for m ∈ {1, 2, . . .} if and only if

m∑

l=1

(
m

l

)[∫ q+B

1
2

qf(q)dq

]m−l [∫ q+R

q+B

qf(q)dq

]l

≥

m∑

l=1

(
m

l

)[∫ q+B

1
2

(1− q)f(q)dq

]m−l [∫ q+R

q+B

(1− q)f(q)dq

]l

.
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Since the expression above is true we have that q+R > q+B implies equation (9) as required.

Therefore, we have shown that q+R > q+B implies equations (7), (8) and (9) are true. Hence,

from equations (5) and (6) we have that q+R > q+B implies πt(v,R)− πt(v,B) ≥ 0.

Equations (2) and (3) together with the fact that q+R > q+B and p ≥ 1
2 imply that

q+R (πt(v,R) + πR(v,R)) ≤ (1− q+R) (πt(v,B) + πR(v,B)) ,

q+R (πt(v,B) + πB(v,B)) > (1− q+R) (πt(v,R) + πB(v,R)) .

Given that, as we have just shown, q+R > q+B implies πt(v,R) − πt(v,B) ≥ 0, the two

expressions above imply

(1− q+R) (πR(v,B)− πB(v,R)) > q+R (πR(v,R)− πB(v,B)) . (10)

Note now that

πB(v,R) =

�N
2 �∑

j=1

[∫ 1

q+R

qf(q)dq

]j [∫ 1

q+B

(1− q)f(q)dq

]j−1

×
�N−2j+1

2 �∑

k=0

N !

j!j!k!(N − 2j + 1− k)!

×

[∫ q+R

1
2

qf(q)dq

]k [∫ q+B

1
2

(1− q)f(q)dq

]k

×



[∫ q+R

1
2

qf(q)dq

]N−2j+1−2k

+

[∫ q+B

1
2

(1− q)f(q)dq

]N−2j+1−2k

 ,

πR(v,B) =

�N
2 �∑

j=1

[∫ 1

q+R

(1− q)f(q)dq

]j−1 [∫ 1

q+B

qf(q)dq

]j

×
�N−2j+1

2 �∑

k=0

N !

j!j!k!(N − 2j + 1− k)!

×

[∫ q+R

1
2

(1− q)f(q)dq

]k [∫ q+B

1
2

qf(q)dq

]k

×



[∫ q+R

1
2

(1− q)f(q)dq

]N−2j+1−2k

+

[∫ q+B

1
2

qf(q)dq

]N−2j+1−2k

 ,
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and similarly for πR(v,R) and πB(v,B). Define

KR =

�N−2j+1
2 �∑

k=0

N !

j!j!k!(N − 2j − k + 1)!

×

[∫ q+R

1
2

qf(q)dq

]k [∫ q+B

1
2

(1− q)f(q)dq

]k

×



[∫ q+R

1
2

qf(q)dq

]N−2j+1−2k

+

[∫ q+B

1
2

(1− q)f(q)dq

]N−2j+1−2k

 ,

KB =

�N−2j+1
2 �∑

k=0

N !

j!j!k!(N − 2j − k + 1)!

×

[∫ q+R

1
2

(1− q)f(q)dq

]k [∫ q+B

1
2

qf(q)dq

]k

×



[∫ q+R

1
2

(1− q)f(q)dq

]N−2j+1−2k

+

[∫ q+B

1
2

qf(q)dq

]N−2j+1−2k

 .

Then, equations (8) and (9) imply KR ≥ KB. Moreover, as q+R > q+B implies equation (7),

we have that

(1− q+R) (πR(v,B)− πB(v,R)) ≤ (1− q+R)

(∫ 1

q+B

qf(q)dq −
∫ 1

q+R

qf(q)dq

)
KB,

q+R (πR(v,R)− πB(v,B)) ≥ q+R

(∫ 1

q+B

(1− q)f(q)dq −
∫ 1

q+R

(1− q)f(q)dq

)
KR.

This means that equation (10) holds only if

(1− q+R)

(∫ 1

q+B

qf(q)dq −
∫ 1

q+R

qf(q)dq

)
KB ≥ q+R

(∫ 1

q+B

(1− q)f(q)dq −
∫ 1

q+R

(1− q)f(q)dq

)
KR,

(1− q+R)

(∫ q+R

q+B

qf(q)dq

)
≥ q+R

(∫ q+R

q+B

(1− q)f(q)dq

)
,

(∫ q+R

q+B

qf(q)dq

)
≥

(∫ q+R

q+B

q+Rf(q)dq

)
,

holds. However, given that q+R > q+B the expression above is false. This leads to a contradic-

tion, which means that the claim q+R > q+B is false as required.

The following Lemma from Feddersen and Pessendorfer (1996) is used in the proof of the

Theorem 2.
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Lemma 2 (Lemma 0 in Feddersen and Pessendorfer (1996)). Let (aN , bN , cN )∞N=1 a sequence

that satisfies (aN , bN , cN ) ∈ [0, 1]3 and aN < bN − δ and δ < cN for all N and some δ > 0.

Then, for i = 0, 1 as N → ∞

∑N
2
−i

j=0
N !

(j+i)!j!(N−2j−i)!c
N−2j−i
N ajN

∑N
2
−i

j=0
N !

(j+i)!j!(N−2j−i)!c
N−2j−i
N bjN

→ 0.

Proof of Theorem 2. Equilibrium of Type 1

First we show that as N → ∞ the equilibrium of Type 1 is such that
∫ q+B

1
2

f(q)dq → 0.

Assume for now that there exists a ρ > 0 such that
∫ 1
q+B

f(q)dq > ρ for all N and consider an

equilibrium of Type 1 and assume that there exists a ε > 0 such that either
∫ q−B

1
2

f(q)dq ≥ ε or

∫ q+B
q−B

f(q)dq ≥ ε for allN . We have that there exists a δ1 > 0 such that σQQσAQ−δ1 > σAAσQA

if and only if

∫ 1

q+B

qf(q)dq

(∫ 1

1
2

(1− q)f(q)dq +

∫ q−B

1
2

qf(q)dq

)
− δ1 >

∫ 1

q+B

(1− q)f(q)dq

(∫ 1

1
2

qf(q)dq +

∫ q−B

1
2

(1− q)f(q)dq

)
,

∫ 1

q+B

qf(q)dq

(∫ 1

q−B

(1− q)f(q)dq +

∫ q−B

1
2

f(q)dq

)
− δ1 >

∫ 1

q+B

(1− q)f(q)dq

(∫ 1

q−B

qf(q)dq +

∫ q−B

1
2

f(q)dq

)
,

∫ 1

q+B

qf(q)dq

(∫ q+B

q−B

(1− q)f(q)dq +

∫ q−B

1
2

f(q)dq

)
− δ1 >

∫ 1

q+B

(1− q)f(q)dq

(∫ q+B

q−B

qf(q)dq +

∫ q−B

1
2

f(q)dq

)
.

R necessary condition for this is

∫ 1

q+B

(q − q+B)f(q)dq

∫ q+B

q−B

f(q)dq +

∫ 1

q+B

(2q − 1)f(q)dq

∫ q−B

1
2

f(q)dq − δ1 > 0,

∫ 1

q+B

(q − q+B)f(q)dq

∫ q+B

q−B

f(q)dq + (2q−B − 1)

∫ 1

q+B

f(q)dq

∫ q−B

1
2

f(q)dq − δ1 > 0.

By assumption
∫ 1
q+B

f(q)dq > ρ for some ρ > 0. Therefore, if
∫ q−B

1
2

f(q)dq ≥ ε then

q−B ≥ F−1(ε) and the expression above is true for any δ1 ∈ (0, (2F−1(ε)− 1)ρε).6

6F−1 exists because f is integrable and, hence, F is continuous.
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Assume
∫ q−B

1
2

f(q)dq < ε, which implies that
∫ q+B
q−B

f(q)dq ≥ ε. Note that
∫ 1
q+B

f(q)dq > ρ for

some ρ > 0 implies that for all ρ̄ ∈ (0, ρ) there exists a β > 0 such that
∫ 1
q+B+β f(q)dq > ρ̄,

fix such ρ and consider its corresponding β. Thus, a necessary condition for σQQσAQ − δ1 >

σAAσQA is

∫ 1

q+B

(q − q+B)f(q)dq

∫ q+B

q−B

f(q)dq − δ1 > 0,

∫ 1

q+B+β
βf(q)dq

∫ q+B

q−B

f(q)dq − δ1 > 0,

βρ̄

∫ q+B

q−B

f(q)dq − δ1 > 0,

βρ̄ε− δ1 > 0.

Hence, for any δ1 ∈ (0,min{(2F−1(ε)−1)ρε, βρ̄ε}) we have that σQQσAQ−δ1 > σAAσQA.

If
∫ q+B
q−B

f(q)dq < ε for all ε > 0 then σ∅s → 0. Since σQQσAQ − δ1 > σAAσQA implies

lim
N→∞

(σAAσQA)
N
2
−i

(σQQσAQ)
N
2
−i

→ 0

for i = 0, 1, we have πt(v,R)
πt(v,B) → 0 and, if

∫ q+B
q−B

f(q)dq �= 0, also that πR(v,R)
πR(v,B) → 0 and πB(v,R)

πB(v,B) → 0.

If
∫ q+B
q−B

f(q)dq = 0 then πR(v,R) = πR(v,B) = πB(v,R) = πB(v,B) = 0.

On the other hand, if
∫ q+B
q−B

f(q)dq ≥ ε then there exists a δ2 > 0 such that σ∅s > δ2. Define

δ = min {δ1, δ2}. By Lemma 2 we have that as N grows large πt(v,R)
πt(v,B) → 0, πR(v,R)

πR(v,B) → 0 and
πB(v,R)
πB(v,B) → 0.

Therefore, equations (2) and (3) then imply q−B → 1
2 and q+B → 1

2 which in turn implies
∫ q−B

1
2

f(q)dq → 0 and
∫ q+B
q−B

f(q)dq → 0, which contradicts the fact that either
∫ q−B

1
2

f(q)dq ≥ ε

or
∫ q+B
q−B

f(q)dq ≥ ε for a fixed ε.

Assume now that for all ρ > 0 there exists an N̄ such that for all N ≥ N̄ , we have
∫ 1
q+B

f(q)dq ≤ ρ. Fix a ρ ∈
(
0, 12

)
and the corresponding N̄ . This means that at most a

fraction ρ of voters vote for B for any N ≥ N̄ . In equilibrium of Type 1, q+R = 1
2 and all

voters who receive signal R vote for R. Hence, if a voter is pivotal it must be that at most

a fraction ρ of voters plus one received signal R. Since ρ can be chosen as small as desired

and N as large as desired, we have that if a voter is pivotal then the fraction of voters who

received signal R is negligible compared to the fraction of voters who received signal B and,

hence, the probability that the state of nature is B converges to one when a voter is pivotal
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by law of large numbers. By equation (3) this implies q+B → 1
2 which contradicts the fact that

∫ 1
q+B

f(q)dq ≤ ρ.

Equilibrium of Type 2

We prove next that in an equilibrium of Type 2 we must have
∫ q+B
q+R

f(q)dq → 0. Assume

for now that there exists a ρ > 0 such that
∫ 1
q+B

f(q)dq > ρ for all N . Consider an equilibrium

of Type 2 and suppose there exists a ε > 0 such that
∫ q+B
q+R

f(q)dq ≥ ε for all N . We have that

a necessary condition for there to be a δ1 > 0 such that σQQσAQ − δ1 > σAAσQA is

∫ 1

q+R

qf(q)dq

∫ 1

q+B

(1− q)f(q)dq − δ1 >

∫ 1

q+R

(1− q)f(q)dq

∫ 1

q+B

qf(q)dq,

∫ 1

q+R

qf(q)dq

∫ 1

q+B

f(q)dq − δ1 >

∫ 1

q+R

f(q)dq

∫ 1

q+B

qf(q)dq,

∫ 1

q+B

qf(q)dq

∫ q+B

q+R

f(q)dq − δ1 >

∫ 1

q+B

f(q)dq

∫ q+B

q+R

qf(q)dq,

∫ 1

q+B

(q − q+B)f(q)dq

∫ q+B

q+R

f(q)dq > δ1.

Since
∫ 1
q+B

f(q)dq > ρ for some ρ > 0 then for all ρ̄ ∈ (0, ρ) there exists a β > 0 such

that
∫ 1
q+B+β f(q)dq > ρ̄, fix such ρ and consider its corresponding β. Moreover, by assumption

∫ q+B
q+R

f(q)dq ≥ ε. Thus, if we choose any δ1 ∈ (0, βρ̂ε) then σQQσAQ − δ1 > σAAσQA.

Given that
∫ q+B
q+R

f(q)dq ≥ ε it is true that
∫ q+B

1
2

f(q)dq ≥ ε and, hence, there exists a δ2 > 0

such that σ∅s > δ2. Define δ = min {δ1, δ2}. Then by Lemma 2 we have then that as N grows

large πt(v,R)
πt(v,B) → 0, πR(v,R)

πR(v,B) → 0 and πB(v,R)
πB(v,B) → 0. Equations (2) and (3) then imply q+B → 1

2

which in turn implies
∫ q+B
q+R

f(q)dq → 0, this contradicts the fact that
∫ q+B
q+R

f(q)dq > ε for a

fixed ε.

Assume now that for all ρ > 0 there exists an N̄ such that for all N ≥ N̄ , we have
∫ 1
q+B

f(q)dq ≤ ρ. Fix a ρ ∈
(
0, 12

)
and the corresponding N̄ . This means that at most a

fraction ρ of voters vote for B for any N ≥ N̄ . In equilibrium of Type 2, q−B = 1
2 and we

have two possibilities. If for all ρ > 0 there exists an N such that for all N ≥ N̄ we have
∫ 1
q+R

f(q)dq ≤ ρ, then
∫ q+B
q+R

f(q)dq ≤ ρ which is what the result in the Theorem states. If,

on the other hand, there exists a ε > 0 such that
∫ 1
q+R

f(q)dq ≥ ε for all N , then at least a

fraction ε of voters who receive signal R vote for R. If a voter is pivotal, it must be because

at most a fraction ρ of voters plus one receive signal R. However, since ρ can be chosen as

small as desired and N + 1 as large as desired, the fraction of voters who receive signal R

must be arbitrarily small as otherwise a fraction ε of them vote for R against the fraction

ρ that vote for B and the voter is not pivotal. Therefore, the probability that the state of
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nature is B converges to one when a voter is pivotal by law of large numbers. By equation

(3) this implies q+B → 1
2 which contradicts the fact that

∫ 1
q+B

f(q)dq ≤ ρ.

Proof of Proposition 1. Using the proof of Theorem 2 we have that either
∫ q+B

1
2

f(q)dq → 0 or

∫ q+B
q+R

f(q)dq → 0. Assume first that
∫ q+B

1
2

f(q)dq → 0. In this case almost all voters vote for

the candidate that coincides with their signal (for all δ > 0 there exists a N for which the

proportion of voters who do not is smaller than δ). Therefore, by law of large numbers the

proportion of voters who vote for the candidate that coincides with the state of nature is µ

while the proportion of voters who vote for the other candidate is 1−µ. Since µ > 1
2 implies

that there exists a ε > 0 such that µ−ε > 1
2 , we have that most voters vote for the candidate

that coincides with the state of nature which gives the desired result.

Assume now
∫ q+B
q+R

f(q)dq → 0. In this case all voters who do not abstain vote for the

candidate that coincides with their signal and, furthermore, the decision on whether to vote

or not is independent on the signal received (for all δ > 0 there exists a N for which the

number of voters choose whether to abstain or not depending on their signal is smaller than

δ). Therefore, by law of large numbers the proportion of voters who vote for the candidate

that coincides with the state of nature is (N + 1)
∫ 1
q+B

qf(q)dq while the proportion of voters

who vote for the other candidate is (N + 1)
∫ 1
q+B
(1 − q)f(q)dq. If there exists a ρ > 0 such

that
∫ 1
q+B

f(q)dq > ρ for all N + 1 then for all ρ̄ ∈ (0, ρ) there exists a β > 0 such that
∫ 1
q+B+β f(q)dq > ρ̄ we have

∫ 1

q+B

qf(q)dq −
∫ 1

q+B

(1− q)f(q)dq =

∫ 1

q+B

(2q − 1)f(q)dq

≥
∫ 1

q+B+β
(2q − 1)f(q)dq

≥ 2β

∫ 1

q+B+β
f(q)dq

> 2βρ̄.

Thus, most voters vote for the candidate that coincides with the state of nature as we wanted

to show.

Consider now the case where for all ρ > 0 there exists a N̄ such that
∫ 1
q+B

f(q)dq ≤ ρ for

all n > N̄ . By monotonicity of F and the fact that
∫ q+B
q+R

f(q)dq → 0 we have q+R → q+B → 1.
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Moreover,

lim
q+B→1

σAQ

σQQ
= lim

q+B→1

∫ 1
q+B
(1− q)f(q)dq
∫ 1
q+B

qf(q)dq
,

= lim
q+B→1

(1− q+B)f(q
+
B)

q+Bf(q
+
B)

,

= lim
q+B→1

1

q+B
− 1,

= 0,

and similarly limq+R→1
σQA

σAA
= 0, where we have used L’Hôpital’s rule for computing the limit

above. That is, the probability that a random voter votes for the candidate that does not

match the state of nature is insignificant compared to the probability that a random voter

votes for the candidate that does, which implies P (V = S) → 1.
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B Appendix: Experimental Instructions

Welcome! You are about to participate in a decision making experiment. If you follow

the instructions carefully, you can earn a considerable amount of money depending on your

decisions and the decisions of the other participants. Your earnings will be paid to you in

cash at the end of the experiment

This set of instructions is for your private use only. During the experiment you are not

allowed to communicate with anybody. In case of questions, please raise your hand. Then

we will come to your seat and answer your questions. Any violation of this rule excludes you

immediately from the experiment and all payments.

For your participation you will receive a show-up fee 3 pounds. You can earn additional

amounts of money. Below we will describe how. All your decisions will be treated confiden-

tially both during the experiment and after the experiment. This means that none of the

other participants will know which decisions you made.

Experimental Instructions The experiment will last for 30 rounds. In each round you

will be matched randomly in groups of four participants. Remember that the groups change

in each round, so the participants you play with in one round are most likely different from

those you played with the round before. At the beginning of each round of the experiment

the computer randomly draws one of two colours RED or BLUE. We call the colour that was

drawn “the state”. BLUE is much more likely than RED to be drawn. In particular there

is a 95% chance that BLUE is drawn and only a 5% chance that RED is drawn. Remember

that the state is drawn anew in each round, i.e. it can be different in each round. The state

is the same, though, for all group members in each round.

Figure 7: The state is BLUE with a 95% chance, i.e. a chance of 95 in 100.
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Goal of the experiment: You will be asked to guess whether the state is RED or BLUE.

Your goal is to guess correctly as a group. Hence it will not matter whether you guess

correctly yourself. The only thing that matters is whether the majority of your group guesses

correctly. We will explain now what additional information each group member gets before

making a guess, what guesses you can make and how your payments are computed.

Information you receive: Each group member receives a “signal” about whether the

state is BLUE or RED before they submit their guess. A signal is a ball drawn randomly

from a box containing RED and BLUE balls. All balls in a box are equally likely to be drawn.

There are however, two boxes for each player and you don’t know which one the ball is

drawn from. If the state is BLUE the ball will be drawn from your BLUE box. (Remember

that this is the case with a 95% chance). If the state is RED, the ball will be drawn from

your RED box. (This is the case with a 5% chance). Hence if you knew the box you would

know the state. This is true for all participants.

There are always at least as many BLUE balls in your BLUE box as there are in your

RED box. Hence, if both boxes were equally likely, a BLUE ball is more likely to come from

a BLUE box and a RED ball is more likely to come from a RED box.

How much more likely will depend on the exact composition of the boxes. In each round

you will be shown the composition of your boxes. You will also be shown the colour of the

ball drawn.

It is important to note that the composition of boxes can be different for different group

members. In particular, for each participant, the number of BLUE balls in their BLUE box is

randomly drawn from anything between half the balls being BLUE to all balls being BLUE.

The number of RED balls in a participant’s RED box always equals the number of BLUE

balls in their BLUE box

Things to remember about signals:

• You will see a ball drawn from either your RED or your BLUE box.

• If the state is BLUE the ball will be drawn from the BLUE box. If the state is RED it

will be drawn from the RED box.

• You will also see how many RED and BLUE balls your RED and BLUE boxes contain.

• All other group members will also see a ball drawn from one of their boxes.

• Remember, though, that their boxes can have a different composition.

• Boxes change in each round for each participant.
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Making a guess: After all group members have received their signals, all will make a guess

simultaneously. You have three options. You either guess RED, BLUE or you can ABSTAIN.

Remember that the goal is to guess correctly as a group.

Your payment: Apart from the show up fee you receive, one round is drawn for payment

and you receive

• 10 additional pounds if the group guesses correctly in that round and

• 2 additional pounds if the group is not correct in that round.

When is the group correct? The group is correct if the majority of group members who

do not abstain indicate the correct state.

Hence, if the state is BLUE then the group is correct if

• at least 3 group members vote BLUE,

• at least 2 group members vote BLUE and at least one abstains,

• at least 1 group member votes BLUE and all others abstain.

Similarly, if the state is RED then the group is correct if

• at least 3 group members vote RED,

• at least 2 group members vote RED and at least one abstains,

• at least 1 group member votes RED and all others abstain.

If the same number of group members vote RED and BLUE, then there is a tie and

whether the group’s guess is considered correct is determined by the flip of a coin.

Control Questions: Are the following statements TRUE or FALSE? If you have any

questions please raise your hand.

1. My group members change from round to round.

2. All group members receive a ball from the same box.

3. The composition of the box of my group members can be different from the composition

of my box.
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4. If I vote RED, one group member abstains and two vote BLUE, I receive 2 pounds if

the state is RED and 10 pounds if the state is BLUE.

5. If I vote BLUE, one group member abstains and two vote BLUE, I receive 2 pounds if

the state is RED and 10 pounds if the state is BLUE.

6. Only one round is randomly drawn for payment.

ENJOY THE EXPERIMENT !!
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C Appendix: Additional Tables

This Appendix collects additional tables. Table 6 shows the distribution of votes with/against

the signal and abstentions depending on treatment and signal. In the asymmetric treatments

participants usually vote with their signal if it is BLUE. If their signal is RED, by contrast,

the modal action is to vote against the signal. There is a substantial share of abstentions as

well among voters with a RED signal.

SYM ASYM ASYM-COARSE

RED BLUE Overall RED BLUE Overall RED BLUE Overall

with signal 0.65 0.72 0.69 0.19 0.90 0.66 0.09 0.89 0.69

abstain 0.23 0.21 0.22 0.34 0.08 0.17 0.24 0.10 0.17

against signal 0.12 0.07 0.09 0.46 0.02 0.17 0.67 0.01 0.17

Table 6: Share of votes with/against the signal as well as abstentions depending on treatment

and signal.

(1) (2) (3) (4)

Vote against signal if it is: RED BLUE RED 15-30 BLUE 15-30

q -0.0698 -0.243*** -0.149 -0.192**

(0.122) (0.0586) (0.147) (0.0864)

ASYM 0.434** -0.172*** 0.547*** -0.183**

(0.171) (0.0600) (0.200) (0.0846)

ASYM-COARSE 0.900*** -0.192** 0.688** -0.184*

(0.239) (0.0751) (0.290) (0.104)

ASYM × q -0.137 0.178** -0.267 0.153

(0.223) (0.0789) (0.261) (0.114)

ASYM-COARSE × q -0.619* 0.171 -0.191 0.138

(0.369) (0.112) (0.461) (0.155)

Constant 0.169 0.243*** 0.194 0.224***

(0.105) (0.0434) (0.125) (0.0619)

Observations 809 1,351 435 645

Groups 72 72 72 72

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 7: Random Effects OLS regressions: Voting against one’s signal when it indicates the

low prior (column (1)) or high prior (column (2)) state. Columns (3) and (4) only consider

data from the last 15 periods.
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yit = αi + β0qit + β1ASYM+ β2ASYM-COARSE (11)

+ β10 ∗ (qit ∗ASYM) + β20 ∗ (qit ∗ASYM-COARSE) + εit

Table 7 shows the results of running regression (11) in our sample using as binary outcome

yit whether or not a participant i abstained in period t. Columns (1) and (2) include the

whole sample, columns (3) and (4) only the second half of the experiment after potentially

some learning has occurred. Columns (1) and (3) focus on participants who received a RED

signal. The estimates show that in the baseline (treatment SYM) participants rarely vote

against their signal. They do so more often in ASYM and ASYM-COARSE if the signal

is RED, i.e. goes against the prior and less often if it is BLUE, i.e. consistent with the prior.

Signal accuracy decreases the propensity to vote against the signal across all treatments,

albeit not always significantly so.

(1) (2) (3) (4)

Abstain if signal is RED BLUE RED 15-30 BLUE 15-30

q -1.171*** -1.148*** -1.258*** -1.174***

(0.125) (0.106) (0.169) (0.143)

ASYM -0.396** -0.527*** -0.610*** -0.697***

(0.173) (0.112) (0.223) (0.145)

ASYM-COARSE -1.065*** -0.731*** -1.004*** -0.890***

(0.242) (0.138) (0.328) (0.175)

ASYM × q 0.636*** 0.627*** 1.064*** 0.751***

(0.228) (0.142) (0.301) (0.188)

ASYM-COARSE × q 1.600*** 0.896*** 1.528*** 1.061***

(0.378) (0.201) (0.528) (0.257)

Constant 1.060*** 0.997*** 1.123*** 1.056***

(0.105) (0.0811) (0.138) (0.106)

Observations 809 1,351 435 645

Number of id 72 72 72 72

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 8: Random Effects OLS regressions: Abstaining when the signal indicates the low prior

(column (1)) or high prior (column (2)) state. Columns (3) and (4) only consider data from

the last 15 periods.

Table 8 shows the results of running regression (11) in our sample using as binary outcome

yit whether or not a participant i abstained in period t. Irrespective of the signal, participants

abstain less often in ASYM and ASYM-COARSE compared to SYM. An increased
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signal accuracy increases the propensity to abstain in ASYM and ASYM-COARSE,

where participants decide to abstain rather than voting against the signal, but decreases it

in SYM, where participants decide to vote with the signal instead of abstaining.
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