

Citation for published version:
Dolgov, S & Stoll, M 2017, 'Low-rank solution to an optimization problem constrained by the Navier-Stokes
equations', SIAM Journal on Scientific Computing, vol. 39, no. 1, pp. A255-A280.
https://doi.org/10.1137/15M1040414

DOI:
10.1137/15M1040414

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1137/15M1040414
https://researchportal.bath.ac.uk/en/publications/lowrank-solution-to-an-optimization-problem-constrained-by-the-navierstokes-equations(ce553e51-34d4-460b-95e3-bb3570537207).html

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. A255–A280

LOW-RANK SOLUTION TO AN OPTIMIZATION PROBLEM
CONSTRAINED BY THE NAVIER–STOKES EQUATIONS∗

SERGEY DOLGOV† AND MARTIN STOLL‡

Abstract. The numerical solution of PDE-constrained optimization problems subject to the
nonstationary Navier–Stokes equation is a challenging task. While space-time approaches often
show favorable convergence properties, they often suffer from storage problems. Here we propose to
approximate the solution to the optimization problem in a low-rank form, which is similar to the
model order reduction (MOR) approach. However, in contrast to classical MOR schemes we do not
compress the full solution at the end of the algorithm but start our algorithm with low-rank data
and maintain this form throughout the iteration. Numerical experiments indicate that this approach
reduces the computational costs by two orders of magnitude.

Key words. PDE-constrained optimization, low-rank methods, iterative solvers, model reduc-
tion, preconditioning, alternating solvers

AMS subject classifications. Primary, 65F10, 65N22, 65F50; Secondary, 76D07

DOI. 10.1137/15M1040414

1. Introduction. Optimization subject to constraints given by PDEs is an ac-
tive field of research [57, 28]. Much progress has been made in recent years concerning
the analysis of problems and the development of efficient numerical schemes to solve
the linear and nonlinear optimization problems. In almost all scenarios one arrives at
the solution of a large-scale linear system that either represents the first order (KKT)
conditions [43] or is part of some nonlinear scheme such as an SQP or interior point
approach [25, 58].

The development of iterative solvers and especially preconditioners for these lin-
ear systems, which often have a saddle-point form, has been a key research area in
numerical linear algebra [15, 41, 22]. For parabolic problems, space-time methods
have shown great promise [50, 54] regarding robustness with respect to dependence
on both mesh- and regularization parameters. Multigrid methods [10] are also used
for parabolic problems, as are methods using stationary iterations [29].

Our approach in this paper follows recent work presented in [53], where the space-
time system is solved using a low-rank decomposition. This schemes replaces the
space-time solution, which can be written as a matrix, by an approximation that only
needs minimal information from the space and time domains. We will make this more
precise in section 2.1. The goal is to reduce the storage amount to a small multiple of
that of the stationary problem. The work in [53] only considered linear problems, and
here we present how this approach can be carried over to the case when we consider
the optimization subject to the Navier–Stokes equations. The control of the Navier–
Stokes equations has been an active research topic in recent years, and we refer the

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section Septem-
ber 18, 2015; accepted for publication (in revised form) October 11, 2016; published electronically
February 8, 2017.

http://www.siam.org/journals/sisc/39-1/M104041.html
Funding: The first author acknowledges the support of the EPSRC Postdoctoral Fellowship

EP/M019004/1.
†Department of Mathematical Sciences, University of Bath, Claverton Down, BA2 7AY Bath,

United Kingdom (S.Dolgov@bath.ac.uk).
‡Numerical Linear Algebra for Dynamical Systems, Max Planck Institute for Dynamics of Com-

plex Technical Systems, 39106 Magdeburg, Germany (stollm@mpi-magdeburg.mpg.de).

A255

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/39-1/M104041.html
mailto:S.Dolgov@bath.ac.uk
mailto:stollm@mpi-magdeburg.mpg.de

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A256 SERGEY DOLGOV AND MARTIN STOLL

reader to [23, 18] and the references therein.
Low-rank approximations have become state-of-the-art methods for data-sparse

solution of high-dimensional problems [34, 17, 19]. This approach is based on the idea
of separation of variables and approximates a large multidimensional array (tensor) by
a polylinear combination of smaller tensors. Some of the most powerful of such com-
binations are the tensor train (TT) [46] and hierarchical Tucker (HT) [21] formats. A
tensor can be associated with a discretized operator or solution of a high-dimensional
PDE. To solve an equation, one needs an iterative algorithm, since elements of an
initial (large) tensor are never accessed directly. One can adapt classical algorithms,
such as GMRES [3, 27], or develop tailored methods for low-rank formats, such as
the alternating least squares [26].

TT and HT decompositions are based on a recurrent application of the matrix low-
rank factorization, for example, the singular value decomposition (SVD). Therefore,
their storage efficiency depends on the ranks of the corresponding matricizations of a
tensor. If all ranks are bounded by a moderate value for the given data, the storage
needed for a low-rank format is logarithmic compared to the cardinality of the initial
tensor. In an ultimate scenario, one can reshape any data to a tensor, the dimensions
of which are prescribed by the smallest (prime) factors of the number of elements.
The TT decomposition applied to such a tensor is called the quantized tensor train
(QTT) format [33, 45], and it has demonstrated impressive compression properties
for smooth solutions of PDEs, discretized on tensor product grids.

However, if a PDE is posed on a complicated spatial domain, an ultimate ten-
sorization is inapplicable. Nonetheless, there can still be several independent variables,
such as an aggregated spatial coordinate and time and auxiliary parameters. In this
paper we consider separation of space and time variables only, without further ten-
sorization. Hence, the proposed method can easily be used for unstructured grids in
space. In this case, the solution is reshaped to a matrix, and the classical low-rank
decomposition is sought. There exist many efficient algorithms for solution of matrix
equations in the low-rank form, such as the ADI and Krylov methods for Sylvester
equations [59, 4] (including high-dimensional generalizations [36, 40]). However, they
often require commutativity of (at least, dominant) low-rank factors of the operator.
Alternating low-rank tensor algorithms can be more efficient for problems such as the
Navier–Stokes equations, where the operator has a complicated structure.

Development of low-rank methods for nonlinear problems has been performed
in different communities in different ways. On one hand, the proper orthogonalized
decomposition (POD) is a mature technique in MOR, and it has been used intensively
for reducing the Navier–Stokes equations; see, e.g., [11, 2, 42]. However, the POD
requires solving the full problem first, which might be extremely computationally
demanding. On the other hand, tensor methods compute directly the low-rank factors,
but they are applied to only a few nonlinear problems. One can mention the Hartree–
Fock equation [31, 51] and some plasma models [13, 35]. More developed are methods
for Ricatti equations [6], but they rely explicitly on the form of the operator.

In this paper we generalize the alternating least squares algorithm to the saddle-
point structure of the optimality system, arising from the Lagrangian optimization,
and adapt it particularly to the Navier–Stokes equations as constraints. We compare it
with the traditional space-time optimization with the state-of-the-art preconditioners
[50] and show that the new algorithm provides a significant reduction of computational
time and storage.

Our paper is structured as follows. We first introduce the problem formulation for
both the Navier–Stokes forward problem and the corresponding optimization problem.
In section 2.1 we discuss the forward formulation and introduce an appropriate low-

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A257

rank formulation. This is followed by section 2.2, where a low-rank formulation for
the optimization problem is developed. We also show that this can be used with
various time-discretization schemes. In section 3.1 we propose an alternating linear
scheme (ALS) for the forward simulation which in section 3.2 is followed by a detailed
discussion of such an ALS method for the optimality system that sits at the heart
of the outer nonlinear Picard iteration. The particular case of carefully handling the
pressure degrees of freedom needed for the ALS method is discussed in section 3.3. We
propose efficient solvers for the linear systems in saddle-point form in section 3.4. A
discussion about the existence of solutions for the optimization problem is presented
in section 4. Our numerical experiments shown in section 5 illustrate that our method
performs very robustly. In particular we show that the storage amount needed for the
low-rank scheme is typically a fraction of the storage requirement for the full problem.
This is combined with a thorough parameter study, where all system parameters are
varied over orders of magnitude with only very benign rank growth observed.

2. Problem formulation. We start our discussion by introducing the formula-
tion of the Navier–Stokes equations that we are going to use throughout this paper:

yt − ν∆y + (y · ∇)y +∇p = u,(2.1)

∇ · y = 0,(2.2)

posed on domain Ω ∈ R2,3 with appropriate boundary and initial conditions (see
[15] and the references mentioned therein for more details). Often one is also inter-
ested in solving optimization problems where the Navier–Stokes equations appear as
a constraint [8, 9, 23]. For this we consider the following objective function:

J(y,u) =
1

2
‖y − yd‖2Q0

+
β

2
‖u‖2Qc ,(2.3)

where Qo = Ωo × [0, T] and Qc = Ωc × [0, T] are space-time cylinders. Here Ωo ⊆ Ω
is the observation domain and Ωc ⊆ Ω the control domain. For now we assume that
both are equal to Ω. The function yd is the desired state. For this case the right-
hand side of (2.1) represents the control u, which is computed in such a way that the
solution of the Navier–Stokes equation is close to the desired state.

Additionally, we also consider an objective function including a vorticity term [23],

J2(y,u) =
α1

2
‖y − yd‖2Q0

+
α2

2
‖curl(y)‖2Qc +

β

2
‖u‖2Qc .(2.4)

Many researchers have studied the numerical solution of the Navier–Stokes equations
and how they can be used as constraints in an optimization problem. Our goal here
is to discuss the possibility of extending the framework recently introduced for PDE
optimization problems [53] with linear constraints. This framework utilizes a low-
rank structure of the solution and hence enables efficient solvers for the optimization
problem.

Before discussing the Navier–Stokes case, we briefly want to introduce the idea
using the Stokes equations as an example. For this we consider the Stokes equations

yt − ν∆y +5p = u,(2.5)

5 · y = 0(2.6)

equipped with appropriate initial and boundary conditions. Employing a finite el-
ement discretization in space, an implicit Euler discretization for the temporal dis-
cretization of the PDE, and a trapezoidal rule for numerical integration of the ob-
jective function leads to a discretized optimization problem [54, 24]. The first order

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A258 SERGEY DOLGOV AND MARTIN STOLL

conditions using a Lagrangian with Lagrange multiplier λ then lead to the following
system:

 M1 0 KT
0 M2 −MT

3

K −M3 0




yh
ph
uh
λh
ξh

 =

 M1yd
0
d

 ,(2.7)

which we want to write in Kronecker notation utilizing the fact that the Stokes equa-
tions are discretized as

K
[

yh
ph

]
−M3uh = d,(2.8)

where

K = (In ⊗ L+ C ⊗M) , M3 = In ⊗
[
M
0

]
, d = e1 ⊗

[
My0

0

]
+ f,

where e1 ∈ Rn is the first unit vector (this term accounts for the initial state), and
f agglomerates the boundary conditions (this will be written in detail later). The
number n denotes the number of time steps, and C ∈ Rn,n is given by

C =
1

τ


1
−1 1

. . .
. . .

−1 1

 ,
where τ is the time step. As for the spatial matrices,

L =

[
L BT

B 0

]
represents an instance of a time-dependent Stokes problem with B the discrete diver-
gence and L the Laplacian (including viscosity ν); M is the mass matrix, associated
with the velocity space; and M = [M 0

0 0] is the mass matrix for the velocity-pressure
space. The matricesM1 = Θ⊗M and M2 = βΘ⊗M with Θ = τ ·diag(1

2 , 1, . . . , 1,
1
2)

denote the mass matrices coming from the discretization of the functional (2.3).
The goal then is to use the fact that the right-hand side of the optimality system

can be written in low-rank form, and this can be carried trough an iterative solver
like Minres [48] without a substantial increase in the rank of the solution [53].

2.1. Low-rank approximation of the Navier–Stokes forward problem.
The situation for the Navier–Stokes equations is more complex as the nonlinear con-
vection term does not allow for such an easy description of the problem. Typically
the Navier–Stokes equations are discretized in space followed by a discretization in
time. One then has to solve a nonlinear problem at every time step, for which both
Newton as well as Picard iterations have shown to be good candidates [15]. Here we
focus on the Picard iteration and follow the description in [15, Chapter 8.2] which
establishes that∫

ytv −
∫
ν∇y : ∇v + c(ȳ,y,v)−

∫
p(∇ · v) =

∫
uv ∀v ∈ H1(Ω),(2.9) ∫

q(∇ · y) = 0 ∀q ∈ L2(Ω)(2.10)

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A259

with the trilinear form

c(ȳ,y,v) :=

∫
(ȳ · ∇y) · v,

where ȳ denotes the previous iterate of the nonlinear Picard solver. Note that this
formulation is typically known as the Oseen equations and will be at the heart of this
paper.

The basis for the low-rank solution in the Stokes case is based on the fact that the
right-hand side of the linear system is of low rank or can be well approximated by a
low-rank function. We start by considering the forward problem with the right-hand
side u. We now assume that u is either given or approximated by

u =

ru∑
i=1

vi,u(t)wi,u(x),

which in discretized form is written as

uh =

ruh∑
i=1

vi,uh ⊗ wi,uh .

Using this for the first step of the Picard iteration, an implicit Euler discretization in
time and finite elements in space, we obtain the following discretized system:

(C ⊗M+ In ⊗ L)yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d.(2.11)

In our case, the spatial discretization is based on the well-known Taylor–Hood Q2/Q1

finite elements [15], which results in a stable discretization of the Oseen equations.
Note that our approach is also valid for other discretizations such as stabilized ones
but would typically require adjustments in the construction of the preconditioners
[15]. We now assume that at a step ` of our Picard iteration, the previous solution is
given by

(2.12) ȳh =

rȳh∑
i=1

vi,ȳh ⊗ wi,ȳh ,

and we want to compute the next (i.e., (` + 1)th) Picard iteration. Notice that the
trilinear form in (2.9) is linear in ȳ and hence preserves the low-rank form of ȳh. Let
us assume that finite elements {φ1(x), . . . ,φm(x)} are used for the discretization of
the velocity in space. Then ȳ(tl, x) is constructed from ȳh by interpolation:

ȳ(tl, x) =

m∑
k=1

ȳh,k(tl)φk(x) =

m∑
k=1

rȳh∑
i=1

vi,ȳh,l ⊗ wi,ȳh,kφk(x),

where l = 1, . . . , n is the time step. Plugging this into c(ȳ,y,v), we obtain

(2.13) c(ȳ(tl),φj′ ,φj) =

rȳh∑
i=1

vi,ȳh,l ⊗ (Ni)j,j′ , j, j′ = 1, . . . ,m,

where Ni ≡ N(wi,ȳh) ∈ Rm×m is defined by its elements:

(2.14) (Ni)j,j′ =

∫
φj

(
m∑
k=1

wi,ȳh,kφk

)
∇φj′ .

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A260 SERGEY DOLGOV AND MARTIN STOLL

Since φk(x) are finitely supported, most of the triple products of φ above are zeros,
and Ni can be assembled in O(m) operations.

Now, for the fully discretized problem, we have(
C ⊗M+ In ⊗ L+

rȳh∑
i=1

Di ⊗Ni
)
yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d̄,(2.15)

where Ni = blkdiag(Ni, 0) and Di = diag(vi,ȳh). Note that d̄ consists of the contribu-
tions coming from the boundary conditions at the previous step due to the changing
matrix Ni. The Picard iteration is now continued until convergence. The main advan-
tage of the nonlinear solver, i.e., Picard iteration in this case, as the outer iteration
is that we can reduce the storage amount for the inner space-time problem. This is
true if the ranks ryh are kept small and hence the amount of storage is kept small
and only a few matrices Ni have to be assembled.

Although we employ the implicit Euler scheme in practical computations, our
method can also be used with other temporal discretizations [15],

1

τ

(
y(l+1) − y(l)

)
+ (ȳ∗ · ∇)y(l+ 1

2) − ν∆y(l+ 1
2) +∇p(l+ 1

2) = u(l+ 1
2),(2.16)

∇ · y(l+ 1
2) = 0,(2.17)

where y(l+ 1
2) := 1

2 (y(l+1) + y(l)) and similarly for u and p. The choice ȳ∗ = y(l+ 1
2)

represents the Crank–Nicolson scheme and ȳ∗ = 3
2y

(l) − 1
2y

(l−1) the Simo–Amero
scheme (cf. [15] for more details and further references). Note that as we approximate
the space-time solution in a low-rank form, we do not proceed sequentially in time and
these schemes need to be rewritten for our purposes. Hence we consider an all-at-once
semidiscretized system for which the state can then be written as

y :=


y(1)

y(2)

...
y(n)

 .(2.18)

For this we need the two matrices

(2.19) C =
1

τ


1
−1 1

. . .
. . .

−1 1

 and C̃ =
1

2


1
1 1

. . .
. . .

1 1

 ,

Cy − ν∆C̃y + N(ȳ)C̃y +∇C̃p = C̃u,(2.20)

∇ · C̃y = 0,(2.21)

where for the Crank–Nicolson scheme the semidiscretized part is given by

N(ȳ)C̃y =
(
Ĉȳ
)T

blkdiag(·∇, . . . , ·∇)C̃y,(2.22)

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A261

where Ĉ = C̃ represents a Crank–Nicolson scheme or the Simo–Amero scheme via

Ĉ =
1

2


1
0 1
−1 3 0

. . .
. . .

. . .

−1 3 0

 .

This is then followed by a spatial discretization where the discretization of most terms
in (2.20) is straightforward and we focus on the term N(ȳ)C̃y, which using (2.14) is
discretized as

rȳh∑
i=1

diag(Ĉvi,ȳh)C̃ ⊗N(wi,ȳh) =

rȳh∑
i=1

D̃i ⊗N(wi,ȳh),

where D̃i = diag(Ĉvi,ȳh)C̃. This leaves us with the overall space-time discretization(
C ⊗M+ C̃ ⊗ L+

rȳh∑
i=1

D̃i ⊗Ni
)
yh =

ruh∑
i=1

vi,uh ⊗ wi,uh + d̄.(2.23)

2.2. Low-rank approximation of the optimization problem. We now con-
sider the case when the Navier–Stokes equations represent a constraint for a misfit
functional such as the one given in (2.3). There are now two approaches that one
can take to solve the optimization. The first discretizes the objective function first
and then optimizes the discrete problem, while the second approach first derives the
optimality system and then discretizes the resulting system. As we are only concerned
with the efficient solution of a discretized problem, we believe that our approach can
be used in both cases, but we focus on the optimize-then-discretize case. This means
that we first build an infinite-dimensional Lagrangian and then consider its variation
with respect to state, pressure, control, and two Lagrange multipliers that can be
identified as the adjoint state and adjoint pressure [57, 28, 23]. Here we simply state
the optimality system as derived in [23, Example 3.1],

yt −∆y + (y · ∇)y +5p = u on [0, T]× Ω,

∇ · y = 0 on [0, T]× Ω,(2.24)

y(0, .) = y0 on Ω,

y = yΓ on Γ,

−λt −∆λ− (y · ∇)λ + (∇y)
T
λ +5ξ = −(y − yd) on [0, T]× Ω,

∇ · λ = 0 on [0, T]× Ω,(2.25)

λ(T, .) = −(y(T)− yd(T)) on Ω,

λ = 0 on Γ,

βu + λ = 0 on [0, T]× Ω.(2.26)

Now it is easily seen that this is a nonlinear problem due to the nonlinearity com-
ing from the Navier–Stokes equation. Additional nonlinearities could come into this

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A262 SERGEY DOLGOV AND MARTIN STOLL

equation if more complicated objective functions were considered. Note that the ques-
tions of existence and uniqueness are answered in [23]. Once again this equation has
to be treated using a nonlinear solver, and we again propose the use of an Oseen
(Picard-type) iteration [49] to give

yt −∆y + (ȳ · ∇)y +5p = u,

∇ · y = 0,

−λt −∆λ− (ȳ · ∇)λ + (∇ȳ)
T
λ +5ξ = −(y − yd),

∇ · λ = 0,

βu + λ = 0,

where for brevity we omitted initial/final and boundary conditions. After that, we
update ȳ = y and proceed with the next iteration. We are now proposing the same
solution as in the forward simulation. Additionally, we assume that all quantities are
discretized in time and space. This means at each step of the algorithm we assume
the states, adjoint states, and control are given by

yh =

ryh∑
i=1

vi,yh ⊗ wi,yh , ph =

rλh∑
i=1

vi,ph ⊗ wi,ph ,(2.27)

λh =

rλh∑
i=1

vi,λh ⊗ wi,λh , ξh =

rξh∑
i=1

vi,ξh ⊗ wi,ξh ,(2.28)

uh =

ruh∑
i=1

vi,uh ⊗ wi,uh .(2.29)

The Oseen equation that we have to solve is then of the following form:

(2.30)

 Θ⊗M 0 K∗
0 Θ⊗ βM −M>3
K −M3 0




yh
ph
uh
λh
ξh

 = b,

where b represents the right-hand side and K describes the forward operator for the
space-time Navier–Stokes equations,

(2.31) K = C ⊗M+ In ⊗ L+

rȳh∑
i=1

Di ⊗Ni.

The adjoint PDE represented by K∗ contains more terms than the forward equation
due to the terms (y · ∇)λ + (∇y)

T
λ. As in the forward problem, we assume (2.12),

so that (ȳ · ∇)λ is discretized as
∑rȳh
i=1Di ⊗ Ni. The term (∇ȳ)

T
λ now becomes∑rȳ

i=1Di⊗Hi(ȳh) with Hi(ȳh) being a matrix of entries
∫
φj ·∇ (

∑m
k=1 wi,ȳh,kφk)·φj′

for j, j′ = 1, . . . ,m. The adjoint matrix is then given by

K∗ = C> ⊗M+ In ⊗ L−
rȳh∑
i=1

Di ⊗Ni +

rȳh∑
i=1

Di ⊗Hi,

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A263

Algorithm 1. Picard iteration for the Navier-Stokes optimization problem.

Require: Desired state yd, initial state y0, initial guess ȳ.
1: for ` = 1 to Lmax do
2: Compute Di,Ni,Hi for i = 1, . . . , rȳh
3: Update the right-hand side d̄
4: Solve the system (2.33)
5: if Error ‖yh − ȳh‖ is small then
6: Stop
7: else
8: Replace ȳh = yh and continue
9: end if

10: end for
11: return [yh,uh,λh]

where Hi = blkdiag(Hi, 0).
We have now seen that we can perform an outer Picard iteration and then proceed

in a low-rank fashion with the inner Oseen problem. Algorithm 1 depicts a pseudocode
of our proposed scheme. In the following we will discuss the numerical solver for the
low-rank solution of the linear system (2.30). We also want to discuss the case when
the objective function is changed to include the vorticity term (2.4) following results
in a different formulation of the adjoint equation [30, 38],

−λt −∆λ− (y · ∇)λ + (∇y)
T
λ +5ξ = −α1(y − yd)− α2curl(curl(y)).(2.32)

We now get the following system at every nonlinear step:
(2.33) Θ⊗ (α1M+ α2L0) 0 K∗

0 Θ⊗ βM −M>3
K −M3 0



yh
ph
uh
λh
ξh

 =


(Θ⊗ α1M)yd

0
0
d̄
0

 =


b1
0
b2
b3
0

 ,
where L0 = [L 0

0 0] represents the discretized version of curl(curl(y)), which is just the
Laplacian operator, since the velocity is divergence-free.

3. Solution algorithms. We focus now on the efficient solution of the system
(2.30) in low-rank form. Having solved the full KKT system (2.30), the low-rank
format of the solution (2.27)–(2.28) can be computed by the SVD. This is called an
offline stage in model reduction methods [39]. Our goal is to avoid this expensive
offline stage and compute the low-rank factors of the solution directly. One of the
best tools for this task is the alternating iteration.

3.1. Alternating low-rank methods for the forward problem. First, we
start from a single linear system Ay = b, where A ∈ Rnm×nm and b ∈ Rnm are given,
and the solution is sought in the low-rank form

A =

rA∑
i=1

Fi,A ⊗Gi,A, b =

rb∑
i=1

vi,b ⊗ wi,b, y =

ry∑
i=1

vi,y ⊗ wi,y.

As a motivating example, consider the case A = A> > 0. Then solving the linear
system is equivalent to the minimization of the energy functional, y = arg miny J(y),

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A264 SERGEY DOLGOV AND MARTIN STOLL

where J(y) = y>Ay − 2y>b. Now, plug the low-rank decomposition of y into J , and
optimize it sequentially (or alternating, hence the name) over vy and wy:

(3.1) vy = arg min
vy∈Rnry

J

(
ry∑
i=1

vi,y ⊗ wi,y
)
, wy = arg min

wy∈Rmry
J

(
ry∑
i=1

vi,y ⊗ wi,y
)
,

where vy and wy denote vertically stacked vi,y and wi,y. Differentiating J with respect
to the elements of v and w, we can find that they are defined by reduced linear systems.
To describe the latter, we introduce Vy ∈ Rn×ry and Wy ∈ Rm×ry , which are matrices
of horizontally stacked vi,y and wi,y, respectively. Then (3.1) is satisfied by solving[

(In ⊗Wy)
>
A (In ⊗Wy)

]
vy = (In ⊗Wy)

>
b,[

(Vy ⊗ Im)
>
A (Vy ⊗ Im)

]
wy = (Vy ⊗ Im)

>
b,

(3.2)

or, in abbreviated form, Âvy = b̂, Ǎwy = b̌.
These two systems are solved one after another until convergence. Minimization

of (3.1) is equivalent to minimization of the squared A-norm of the error; hence the
method is called alternating least squares [37]. Since the restricted optimization is a
linear problem (3.2), it is also called alternating linear scheme [26], abbreviated by
ALS in both cases. Although it is difficult to prove theoretical convergence (it is
essentially local [52]), in practice this method often converges rapidly, provided the
rank ry is high enough.

However, it is inconvenient to guess the rank a priori. One can start from a rank-
1 initial guess and increase it during the course of the computations until a desired
error threshold is reached. Hence one needs a procedure for adding new vectors to
the low-rank factors Vy and Wy. It is reasonable to select the new vectors related
to the current residual, as it allows one to relate the scheme to gradient descent
methods. For example, ADI methods [59] solve shifted linear systems and expand,
e.g., Vy by (FA − sI)−1VR, where VR is a low-rank factor of the residual, and greedy
methods [56, 1, 44] compute rank-1 factors Vz,Wz of the solution to Az = b−Ay and
pad Vy with Vz. However, simply augmenting the solution may give a suboptimal
representation. An advantage of the variational formulation (3.1) is that the low-rank
factors deliver a locally minimal A-norm error in each step. Orthogonal greedy [44]
and alternating minimal energy [12] algorithms combine the steps that insert new
vectors into a low-rank factor of the solution with the steps that update the factor as
a whole via the Galerkin system (3.2). In this paper we use the latter technique.

These methods converge relatively well if the matrix is positive definite. However,
as was noticed in [5], even with orthogonal factors V and W , the Galerkin projection
(3.2) can become degenerate if A is a saddle-point system like (2.33). To avoid this
issue, we need to take the saddle-point structure into account explicitly.

3.2. Alternating methods for the inverse problem. Let us consider a block
system A11 A12 A13

A21 A22 A23

A31 A32 A33

y1

y2

y3

 =

b1b2
b3

 ,
where each submatrix of A or subvector of b is presented in its own low-rank form, and
the sizes of all blocks coincide.1 However, the solution components will be factorized

1In practical computations, y1, y2, and y3 have the meanings of yh, uh, and λh, but here we
present the scheme in an abstract form; therefore we use more abstract notation than in section 2.
Later we will also show that the requirement to have all block sizes equal is not restrictive.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A265

with one of the blocks shared : we suppose that eithery1

y2

y3

 =

ry∑
i=1

vi,y,1vi,y,2
vi,y,3

⊗ ŵi,y or

y1

y2

y3

 =

ry∑
i=1

v̌i,y ⊗

wi,y,1wi,y,2
wi,y,3

 ,
where ŵi,y ∈ Rm, v̌i,y ∈ Rn, and agglomerated matrices are Ŵy ∈ Rm×ry and V̌y ∈
Rn×ry . Now, we can write two ALS steps in the block formÂ11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

vy,1vy,2
vy,3

 =

b̂1b̂2
b̂3

 , Âkl = (I ⊗ Ŵy)>Akl(I ⊗ Ŵy),

b̂k = (I ⊗ Ŵy)>bk,Ǎ11 Ǎ12 Ǎ13

Ǎ21 Ǎ22 Ǎ23

Ǎ31 Ǎ32 Ǎ33

wy,1wy,2
wy,3

 =

b̌1b̌2
b̌3

 , Ǎkl = (V̌y ⊗ I)>Akl(V̌y ⊗ I),

b̌k = (V̌y ⊗ I)>bk,

(3.3)

where k, l = 1, 2, 3. Note that the blocks Ŵy and V̌y do not contain the enumerator
k, i.e., they serve as common bases for the components yk. To compute this common
basis (e.g., V̌y), we can use the truncated SVD. Similarly to a single Vy in the previous
section, we consider each component as a matrix Vy,k ∈ Rn×ry . Having computed
Vy,k in the first step of (3.3), we factorize via SVD:[

Vy,1 Vy,1 Vy,3
]

= V̌ySP
> + E , such that ‖E‖F ≤ ε‖S‖F ,

where V̌ >y V̌y = Ir̂y , S is a diagonal matrix of r̂y dominant singular values, and P ∈
R3ry×r̂y is a matrix of right singular vectors. Left singular vectors V̌y ∈ Rn×r̂y give

the sought common basis. In the same way we derive Ŵy from Wy,k after the second
step of (3.3).

Notice that the new rank r̂y can be chosen from the range 1, . . . , 3ry. That is, the
blocked storage allows one to increase the rank without explicit insertion of additional
vectors.2 This is similar to the density matrix renormalization group (DMRG) method
[60], developed in quantum physics to solve high-dimensional eigenvalue problems in
low-rank formats. However, the DMRG method applied in our two-dimensional case
would require us to solve the whole problem without any reduction, whereas the
block ALS formulation (3.3) allows us to have both the rank adaptivity and moderate
complexity.

The block ALS method requires only submatrices Akl to be positive (semi)definite;
the whole matrix A needs only to be invertible. A drawback, however, is that the
submatrices should be square. Moreover, with the Navier–Stokes constraints, A31 = K
(2.31) and A13 = K∗ are themselves saddle-point matrices. To avoid this issue, we
will compute the pressures separately.

3.3. Alternating methods for the (Navier–)Stokes equation. Let us start
from the forward Navier–Stokes equation, which reads[

K In ⊗B>
In ⊗B

] [
yh
ph

]
=

[
d
0

]
, K = C ⊗M + In ⊗ L +

rȳh∑
i=1

Di ⊗Ni.

2A residual-based augmentation is still recommended to improve the convergence and accuracy.
This is not a bottleneck, however: even a very low rank approximation to the residual provides
sufficiently fast convergence [12].

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A266 SERGEY DOLGOV AND MARTIN STOLL

Suppose yh is presented in the low-rank form (2.27). If we are performing the second
ALS step in (3.3), the matrix remains invertible: the saddle-point structure is intro-
duced only in the spatial variable, and the ALS projection of the temporal variable
does not affect it. Then from the second row we have BWyh = 0. Returning to the
first ALS step, we project the first row by In ⊗W>yh , so we have

(In ⊗Wyh)>K(In ⊗Wyh)vyh + (In ⊗W>yhB>)ph = (In ⊗Wyh)>d.

However, the second term is zero irrespective of the pressure: W>yhB
> = (BWyh)> =

0. Therefore, the first ALS step is also well-posed in this scheme.
The problem is that the formulation above is valid only with zero boundary

conditions. With nonzero Dirichlet conditions enforced, we have either a different
matrix instead of B>, or a nonzero second component of the right-hand side. We
need to shift the velocity by some function, such that the sought solution is zero at
the boundary.

At this point, it is reasonable to assume that the boundary values, as any other
input data, are given in the low-rank form,

(3.4) yh|Γ =

rΓ∑
i=1

vΓ,i ⊗ wΓ,i,

where Γ denotes boundary degrees of freedom. This is a reasonable assumption as
with a particular look to control applications, a highly varying boundary condition
might be unlikely. We look for the solution in the form y = q + µ, where q|Γ = 0
and µ|Γ = y|Γ. We could reformulate the equation for q if we find a convenient
closed-form (and low-rank) expression for µ.

This can be done by solving a few stationary Stokes equations. Let us partition
the spatial degrees of freedom, and hence, the matrix elements, as follows:

L =

(
LΩΩ LΩΓ

LΓΩ LΓΓ

)
, M =

(
MΩΩ MΩΓ

MΓΩ MΓΓ

)
, B =

(
BΩ BΓ

)
,

where Ω corresponds to the inner points, and Γ denotes the boundary points. The
Stokes equation with nonzero boundary conditions can be written as follows:

(3.5)


(
LΩΩ

I

) (
B>Ω
0

)
(
BΩ BΓ

)
[wµh,i

ph,i

]
=

(−LΩΓwΓ,i

wΓ,i

)
0

 .
Since the Stokes equation is linear, it admits a superposition: solving (3.5) for all
i = 1, . . . , rΓ, we obtain exactly the low-rank factors for µ, and summing them up in

µh =

rΓ∑
i=1

vΓ,i ⊗ wµh,i,

we get the desired correction function.
The Navier–Stokes equation can now be rewritten for qh without the boundary

as

(3.6)

[
KΩΩ I ⊗B>Ω
I ⊗BΩ

] [
qh
ph

]
=

[
bΩ −KΩ:µh

0

]
, where

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A267

KΩΩ = C ⊗MΩΩ + I ⊗ LΩΩ +

rȳh∑
i=1

Di ⊗Ni,ΩΩ,

KΩ: = C ⊗
[
MΩΩ MΩΓ

]
+ I ⊗

[
LΩΩ LΩΓ

]
+

rȳh∑
i=1

Di ⊗
[
Ni,ΩΩ Ni,ΩΓ

]
,

(3.7)

and N = N(ȳh) = N(q̄h + µh) is computed as previously from the last iterate
ȳ = q̄+µ, which includes the correction µ together with the boundary nodes. Here,
the fixed right-hand side b carries only the initial state, b = e1 ⊗My0.

The presented ALS scheme computes only the velocity. To restore the pressure,
suppose that the velocity is known. Then the first row in (3.6) gives an equation,
which can be resolved by least squares:(

In ⊗BΩB
>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh).

The right-hand side is low-rank, since K,µh, and qh also are, and the matrix in the
left-hand side is a direct product, which can be inverted without changing the rank.

A single step of such a method may give only an approximate solution, so we
conduct several iterations of Chorin/Gauss–Seidel type:

[
K̂ΩΩ Irqh ⊗B

>
Ω

Irqh ⊗BΩ

] [
wqh

dph

]
=

[
(Vqh ⊗ Im)

>
(bΩ −KΩ:µh)− (V >qh ⊗B>Ω)ph

0

]
,

ǨΩΩvqh = (In ⊗Wqh)
>

(bΩ −KΩ:µh),(
In ⊗BΩB

>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh),

(3.8)

and so on from the first equation. Here, K̂ΩΩ = (Vqh ⊗ Im)
>
KΩΩ (Vqh ⊗ Im), and

ǨΩΩ = (In ⊗Wqh)
>
KΩΩ (In ⊗Wqh). Remember that Vqh and Wqh are orthogonal-

ized before they are used as projectors. A dummy variable dph in (3.8), imposing the
divergence-free condition, converges to zero and can be discarded after the calcula-
tion. In practice, it is sufficient to merge these inner iterations and the outer Picard
iterations: we update N in every step of (3.8).

The inverse problem is solved in a similar way; the only difference is that there
are two “pressure-like” variables. Since we neither control nor observe the boundary,
the Lagrange multiplier can have zero boundary condition. So, the final ALS iteration
for the inverse Navier–Stokes equation is written as follows.

1. In the first step, we compute all spatial blocks,
M̂1 0 0 K̂∗ΩΩ Ir ⊗B>Ω
0 0 0 Ir ⊗BΩ 0

0 0 M̂2 −M̂>3 0

K̂ΩΩ Ir ⊗B>Ω −M̂3 0 0
Ir ⊗BΩ 0 0 0 0



wqh

dph
wuh

wλh

dξh

(3.9)

=


b̂1 − (V̌ > ⊗B>Ω)ξh

0
0

b̂3 − (V̌ > ⊗B>Ω)ph
0

 ,D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A268 SERGEY DOLGOV AND MARTIN STOLL

where b̂1 = (V̌ >Θ⊗ α1MΩ:)yd, b̂3 = (V̌ ⊗ Im)>(bΩ −KΩ:µh),

M̂1 = (V̌ >ΘV̌)⊗ (α1MΩΩ + α2LΩΩ),

M̂2 = (V̌ >ΘV̌)⊗ βMΩΩ,

M̂3 = Ir ⊗MΩΩ,

K̂ΩΩ = V̌ >CV̌ ⊗MΩΩ + Ir ⊗ LΩΩ +

rȳh∑
i=1

V̌ >DiV̌ ⊗Ni,ΩΩ,

K̂∗ΩΩ = K̂>ΩΩ +

rȳh∑
i=1

V̌ >DiV̌ ⊗ (Hi,ΩΩ −Ni,ΩΩ −N>i,ΩΩ).

(3.10)

We compute the SVD
[
Wqh Wuh Wλh

]
≈ ŴSP> to derive the common

basis.
2. In the second step, we compute the temporal blocks of the velocities,

(3.11)

 M̌1 0 Ǩ∗ΩΩ

0 M̌2 −M̌>3
ǨΩΩ −M̌3 0

vqhvuh
vλh

 =

b̌10
b̌3

 ,
where b̌1 = (Θ⊗ α1Ŵ

>MΩ:)yd, b̌3 = (In ⊗ Ŵ)>(bΩ −KΩ:µh),

M̌1 = Θ⊗ Ŵ>(α1MΩΩ + α2LΩΩ)Ŵ ,

M̌2 = Θ⊗ βŴ>MΩΩŴ ,

M̌3 = In ⊗ Ŵ>MΩΩŴ ,

ǨΩΩ = C ⊗ Ŵ>MΩΩŴ + In ⊗ Ŵ>LΩΩŴ +

rȳh∑
i=1

Di ⊗ Ŵ>Ni,ΩΩŴ ,

Ǩ∗ΩΩ = Ǩ>ΩΩ +

rȳh∑
i=1

Di ⊗ Ŵ>(Hi,ΩΩ −Ni,ΩΩ −N>i,ΩΩ)Ŵ .

(3.12)

We compute the SVD
[
Vqh Vuh Vλh

]
≈ V̌ SP> to derive the common

basis.
3. In the third step, we update the pressures via standard low-rank algebra,(

In ⊗BΩB
>
Ω

)
ph = (In ⊗BΩ) (bΩ −KΩ:µh −KΩΩqh + M3uh),(

In ⊗BΩB
>
Ω

)
ξh = (In ⊗BΩ) (Θ⊗ α1Myd −K∗ΩΩλh −M1qh).

(3.13)

3.4. Preconditioning for the spatial system. The systems on the temporal
factor (3.11), (3.12) and pressure (3.13) have moderate sizes and are essentially sparse.
Our concern is now the spatial system (3.9), which can be too large for a direct solver
even for a rank-1 solution. We solve this system by a preconditioned GMRES method.
First, we use a block Jacobi approximation with respect to the rank dimension: the
preconditioner reads Ã = blkdiag(Ã1, . . . , Ãr), where

Ãi =


M̃1,i 0 0 K̃∗i,ΩΩ B>Ω

0 0 0 BΩ 0

0 0 M̃2,i −M> 0

K̃i,ΩΩ B>Ω −M 0 0
BΩ 0 0 0 0

 ,
M̃1,i = (v̌i ⊗ Im)>M1(v̌i ⊗ Im),

M̃2,i = (v̌i ⊗ Im)>M2(v̌i ⊗ Im),

K̃i,ΩΩ = (v̌i ⊗ Im)>KΩΩ(v̌i ⊗ Im),

K̃∗i,ΩΩ = (v̌i ⊗ Im)>K∗ΩΩ(v̌i ⊗ Im),

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A269

for i = 1, . . . , r. Solution of each of these systems is of the same complexity as solution
of the stationary problem. We precondition it by a block-triangular factor of the LU
decomposition, where the Schur complement is approximated in the factored form

using the matching argument [54]. Given the right-hand side f =
[
f1 f2 f3

]>
, the

inverse triangular factor can be applied as follows:
1. y1 = M̃−1

1,i f1,

2. y2 = M̃−1
2,i f2,

3.

y3 = S−1

(
K̃i,ΩΩy1 −

(
M
0

)
y2 − f3

)
,

followed by the assembly y =
[
y1 y2 y3

]>
, where the first matrix is augmented as

M̃1,i =

[
M̃1,i 0

0 τh2βI

]
and K̃i,ΩΩ =

[
K̃i,ΩΩ B>Ω
BΩ 0

]
.

Now, instead of the exact Schur complement, we use the factored approximation

(3.14) S−1 =

[
K̃i,ΩΩ + 1√

β
M B>Ω

BΩ 0

]−1

M̃1,i

[
K̃∗i,ΩΩ + 1√

β
M B>Ω

BΩ 0

]−1

.

The matrices in the last equation are of the form of the forward stationary Navier–
Stokes equation and, for moderate grids, can be treated by the direct linear solver.
The use of preconditioned iterative solvers allows applicability to large-scale systems
(see [7, 15, 54, 41] for preconditioning strategies).

4. Existence of low-rank solutions. Efficiency of low-rank decompositions
depends heavily on the particular values of the rank. However, it is difficult to estimate
the ranks of the solution of the forward Navier–Stokes equation; moreover, in a highly
turbulent regime they may actually reach the maximal values. We begin the analysis
with the Stokes equation, which is to be followed by the analysis of the inverse Navier–
Stokes equation. The ranks in the inverse problem can actually be smaller than the
ranks of the forward problem if the desired state is taken to be low-rank, for example,
as the Stokes solution.

Lemma 4.1. Given the Stokes system (2.5)–(2.6), after the discretization,

(4.1)

[
C ⊗M + I ⊗ L I ⊗B>

I ⊗B

] [
yh
ph

]
=

[
uh
0

]
,

where C is the time difference matrix (2.19) of size n, and L and M are the finite
element discretization of Laplace and mass operators, respectively. Suppose the right-
hand side is given in the low-rank form (2.29), the boundary condition is given in the
low-rank form (3.4), and the solution is approximated in the form[

yh
ph

]
≈

r∑
i=1

v̌i ⊗
[
wi,y
wi,p

]
up to an accuracy ε.

Then the rank of the solution is bounded by

r = O
((

log ε−1 + log h−1 + log τ−1
)2

(ruh + rΓ)
)
.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A270 SERGEY DOLGOV AND MARTIN STOLL

Proof. First, we exclude the boundary condition as described in the previous
section, and arrive at the Stokes system on qh,[

C ⊗MΩΩ + I ⊗ LΩΩ I ⊗B>Ω
I ⊗BΩ

] [
qh
ph

]
=

[
fΩ

0

]
,

with fΩ = uΩ − C ⊗
(
MΩΩ MΩΓ

)
µh − I ⊗

(
LΩΩ LΩΓ

)
µh.

Denoting by Φ the orthonormal basis of the kernel of BΩ, we conclude that qh ∈
span(I ⊗ Φ), or qh = (I ⊗ Φ)q̃h. The coefficients q̃h can be found by projecting the
velocity equation onto I ⊗ Φ>. Since Φ>B>I = (BIΦ)> = 0, we have

(4.2)
(
C ⊗ M̃ + I ⊗ L̃

)
q̃h =

(
I ⊗ Φ>

)
fΩ,

where
M̃ = Φ>MΩΩΦ, L̃ = Φ>LΩΩΦ.

Since both MΩΩ and LΩΩ are symmetric positive definite and Φ is orthogonal, it holds
that M̃ and L̃ are symmetric positive definite. We can premultiply (4.2) by (I⊗M̃)−1

to then get

q̃h =
(
C ⊗ Im + In ⊗ M̃−1L̃

)−1 ((
I ⊗ M̃−1Φ>

)
fΩ

)
.

The terms in the first brackets commute, and each of them is positive definite. The
inverse can be approximated in the low-rank form by the exponential quadrature
[16, 20]: for given R and k we introduce tk = exp(kπ/

√
R), ck = tkπ/

√
R; then

K̃−1 ≡
(
C ⊗ Im + In ⊗ M̃−1L̃

)−1

≈
R∑

k=−R
ck exp(−tkC)⊗ exp(−tkM̃−1L̃),

where the accuracy is estimated by O(‖K̃‖2e−π
√

2R), provided that ‖K̃−1‖ = O(1).
Therefore, the rank of K̃−1 is estimated by O((log ε−1 + log cond K̃)2).

Remember that the rank of uh, and, therefore, of uΩ, is bounded by ruh . The
solution qh in the initial finite element basis is restored without changing the rank, by
multiplying I ⊗ Φ by q̃h. Moreover, cond K̃ = O(h−2 + τ−1), where h is the spatial,
and τ is the time grid steps. Finally, rank(qh) ≤ (2R + 1)(ruh + 2rΓ), and the rank
of the velocity yh is estimated immediately, since the rank of µh is rΓ.

From (3.8) we see that the pressure rank is ruh + rank(KΩ:y), where now KΩ:

has rank 2, which concludes the lemma.

If the right-hand side and boundary conditions are sufficiently smooth functions,
it often holds that ruh and rΓ can be bounded by log ε−1 for the accuracy ε; see,
e.g., [32]. Moreover, space and time grid steps h and τ can be adjusted to deliver the
same discretization error ε. The Taylor–Hood finite elements have an approximation
order ε = O(h2), while the implicit Euler discretization in time provides ε = O(τ).
Plugging the corresponding h and τ into the rank estimate of Lemma 4.1, we obtain
the following.

Corollary 4.2. In the assumptions above, the rank of the ε-approximation of
the solution of the Stokes equation can be bounded as

r = O
(
log3 ε−1

)
.

The total number of degrees of freedom in the low-rank representation is

O(h−2 + τ−1)r = O(ε−1 log3 ε−1).

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A271

For comparison, the full solution requires

O(h−2 · τ−1) = O(ε−2)

degrees of freedom.

Remark 4.3. We can use the solution of the Stokes equation as a desired state
in the misfit optimization (2.3), constrained by the Navier–Stokes equation (with
smaller viscosity). This is reasonable if we want to get rid of turbulences. Under
certain conditions [55] it can be shown that the misfit decays with the regularization
parameter, ‖yh − yd‖ = O(

√
β). Therefore, if we select ε ∼ √β, Lemma 4.1 is also

valid for the solution of the inverse Navier–Stokes problem.

If the state can be approximated by a low-rank decomposition, the low-rankness
of the control comes straightforwardly, taking into account the Kronecker form of the
forward operator (2.31). It is enough to multiply (2.31) by a rank-ryh representation.

Corollary 4.4. Let the state be decomposed in a low-rank form (2.27) with the
rank ryh . Then the control admits a low-rank decomposition (2.29) with the rank
ruh ≤ r2

yh
+ 2ryh .

5. Numerical results. Our implementation is based on the IFISS package [14]
and the Tensor Train Toolbox [47], both of which are MATLAB-based packages.
Nevertheless, the methods presented here are usable in any other computational en-
vironment.

The benchmark problem for which we implemented our approach is the well-
known backward facing step as described in [15, 14]. The domain is set to have length
L = 5 (see Figure 11). The inflow condition y1|x1=−1 = x2(1 − x2)(1 − e−0.1t) is
imposed at the left boundary, the Neumann boundary condition at the right boundary
x1 = L, and the zero condition at other walls. Other default parameters are given in
Table 1. In the experiments below, we will vary each of them separately. The spatial
discretization performed within IFISS utilizes the well-known Taylor–Hood Q2/Q1

finite elements.

Table 1
Default simulation parameters.

n h T ε ν β α1 α2

211 1/32 200 10−4 10−3 10−3 1 0

We consider two types of the objective functional (2.4). First, we minimize only
the distance to the desired state (i.e., α1 = 1, α2 = 0), where the desired state is the
solution of the Stokes equation. Second, we minimize only the vorticity without any
desired state by setting α1 = 0 and α2 = 1. Both observation and control domains
coincide with the whole domain, Qo = Qc = Q.

There are three ways to estimate the error in the solution. First, we compute the
relative residual of the KKT system (2.33),

residual =

∥∥∥∥M1

[
yh
ph

]
+K∗

[
λh
ξh

]
− b1

∥∥∥∥
F

/‖b1‖F

+

∥∥∥∥M2uh −M>3
[
λh
ξ

]∥∥∥∥
F

/‖M2uh‖F

+

∥∥∥∥K [yhph
]
−M3u− b3

∥∥∥∥
F

/‖b3‖F .

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A272 SERGEY DOLGOV AND MARTIN STOLL

1 1.5 2 2.5 3 3.5 4 4.5 5

−8

−6

−4

−2

0

iteration

log10 errors

E(y, ȳ), ε = 10−4

E(y, ȳ), ε = 10−7

residual, ε = 10−4

residual, ε = 10−7

1 1.5 2 2.5 3 3.5 4 4.5 5

−8

−6

−4

−2

0

iteration

log10 errors

E(y, ȳ), ε = 10−4

E(y, ȳ), ε = 10−7

residual, ε = 10−4

residual, ε = 10−7

Fig. 1. Nonlinear convergence. Left: Misfit minimization (α1 = 1, α2 = 0). Right: Vorticity
minimization (α1 = 0, α2 = 1).

Second, we can solve the problem with two thresholds, e.g., ε and 0.1ε. Denoting,
e.g., the state velocity of the former as y, and of the latter as y?, we can compute

E(y,y?) = ‖y − y?‖F /‖y?‖F ,

and similarly for the control u and other quantities. Let us assume that the true error
‖y − yex‖ depends almost linearly on ε, ‖y − yex‖ = Cε+ o(ε). Justification of this
linear dependence is given by Figures 4 and 7. Then

‖y − yex‖ = Cε+ o(ε) ≤ ‖y − y?‖+ ‖y? − yex‖ = ‖y − y?‖+ C · 0.1ε+ o(ε),

and so ‖y − yex‖ ≤ 1
0.9‖y − y?‖+ o(ε).

Third, we can measure the distance between two Picard iterations, E(y, ȳ).

5.1. Convergence of the Picard iteration. In the first test, we check the
convergence of the residual with the Picard iteration in the low-rank scheme. We test
both distance and vorticity minimization and two accuracy thresholds, ε = 10−4 and
ε = 10−7. The results are presented in Figure 1.

We see that the convergence is very fast and attained in three iterations in both
lower-accuracy tests. The vorticity minimization converges faster than the misfit
minimization, since the Stokes solution might actually be more turbulent than the
one with the minimal vorticity.

5.2. Optimization of a tracking type functional.

5.2.1. Comparison with the full scheme. An important justification for a
new approach is a comparison with an established method. In our case, we compare
the low-rank scheme (LR) with the classical preconditioned GMRES for the full KKT
system without low-rank approximations. Since the full data do not fit into the
memory on fine grids, we perform two tests with h = 1/8 and h = 1/16, while for
the low-rank method we are able to compute the solution for much finer meshes. The
results are reported in Figures 2 and 3, respectively. In the horizontal axes, we vary
the number of time steps n. Note that the full scheme is unable to proceed with
n = 512 and h = 1/16, while it is still possible with h = 1/8.

We see that the residuals are almost the same in both schemes, although the
control error grows with the time grid refinement. Another interesting quantity is the

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A273

5 5.5 6 6.5 7 7.5 8 8.5 9

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

log2 n

log10 errors

residual (LR)

residual (full)

E(y,y?)

E(u,u?)

5 5.5 6 6.5 7 7.5 8 8.5 9
1

1.2

1.4

1.6

1.8

2

2.2

2.4

log2 n

log10 CPU time (sec.)

LR
full

0.1

0.2

0.3

0.4

MemR

40

50

60

70

80

90

100

Iterations

LR
full

Fig. 2. Tracking functional, LR versus full, h = 1/8. Left: Residual and errors with respect to
the reference solutions. Right: CPU time, total number of local iterations, rank.

5 5.5 6 6.5 7 7.5 8 8.5 9

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

log2 n

log10 errors

residual (LR)

residual (full)

E(y,y?)

E(u,u?)

5 5.5 6 6.5 7 7.5 8 8.5 9

1.6

1.8

2

2.2

2.4

2.6

2.8

3

log2 n

log10 CPU time (sec.)

LR
full

0.1

0.2

0.3

0.4

MemR

40

50

60

70

80

90

100

Iterations

LR
full

Fig. 3. Tracking functional, LR versus full, h = 1/16. Left: Residual and errors with respect
to the reference solutions. Right: CPU time, total number of local iterations, rank.

number of GMRES iterations. Both schemes perform the block Jacobi preconditioning
with respect to time. However, the low-rank method invokes the GMRES (for the
spatial factor) twice in each Picard iteration due to the ALS procedure. Moreover,
it is being perturbed by the SVD truncation. This results in a higher number of
iterations. However, the CPU time of the full scheme is at least equal to the time
of the low-rank scheme for the coarsest grid and becomes larger for finer grids. The
ratio of memory costs, needed for the low-rank and full solutions, is computed as

MemR = (n+m)r
nm . It decreases with the system size and falls below 10% when the

number of time steps exceeds several hundreds.

5.2.2. Experiment with the total accuracy. Now we investigate how the
scheme performs with simultaneous refinement of the time and spatial grid sizes and
the low-rank approximation accuracy. The corresponding errors are independent;
hence the total error in the solution is the sum of the three. To synchronize the
number of temporal and spatial degrees of freedom with the total accuracy, we first
set the low-rank truncation accuracy to ε = 10−6 and determine discretization errors
via log-linear fits; see Table 2. As the output quantities, we consider the squared total

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A274 SERGEY DOLGOV AND MARTIN STOLL

Table 2
Tracking functional, total vorticity ‖curly‖2, and mass ‖y‖2 versus discretization parameters.

Space Time

1/h ‖curly‖2 ‖y‖2 n ‖curly‖2 ‖y‖2

8 10.2315 1.81515 256 10.4985 1.82330
16 10.4201 1.81753 512 10.4902 1.82143
32 10.4842 1.82003 1024 10.4862 1.82050
64 10.5107 1.82115 2048 10.4842 1.82003

−1−1.5−2−2.5
−3

−2.5

−2

−1.5

−1

−0.5

1

log10 ε

log10 errors

residual

E(‖y‖2, ‖y?‖2)

−1−1.5−2−2.5

0.5

1

1.5

2

2.5

1

log10 ε

log10 CPU time

5

10

15

20

rank

10

20

30

40

50

60
Iterations

Fig. 4. Tracking functional, n and h vary together with ε. Left: Residual and error with respect
to the reference solution (computed with ε = 10−4, corresponding to n = 212, h = 2−8). Right:
CPU time, total number of local iterations, rank.

vorticity and the total mass of the solution.
Using Runge’s rule of estimating the error, as well as the least squares fit, we

obtain the following dependencies:

log2 h =
log2 ε+ 0.36

1.62
and log2 n =

log2 ε+ 0.604

−1.1
.

In Figure 4, we vary ε and the corresponding h and n accordingly.
We see that the actual error depends linearly on ε, which indicates that both

grid parameters are varied properly. The CPU time grows a bit faster than inversely
proportional to ε, since the spatial discretization order is less than 2, while the number
of spatial degrees of freedom grows as h−2. The lower discretization order in space is
due to the corner singularity at the point where the channel expands.

5.2.3. Experiment with β. In this test, we vary the control regularization
parameter. The results are shown in Figure 5. As an additional quantity, we report
the distance to the desired state, E(y,yd). This distance decays proportionally to√
β, until being contaminated by the SVD error of level ε.

The scheme is quite robust until β becomes too large. In the right panel of Figure
5, we also show the number of Picard iterations until convergence. We see that for
small β the scheme needs three Picard iterations (in agreement with Figure 1), but
for β ≥ 0.1 the convergence becomes slower. In particular, for β ≥ 0.1, we were out
of the CPU time due to the number of Picard iterations. In the future it might be
more appropriate to use Newton methods for strongly nonlinear systems. In general,
smaller values for β are more important as they allow the state to better approximate
the desired state.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A275

Figure 5.4: Tracking functional, n and h vary together with ε. Left: Residual and
error w.r.t. the reference solution (computed with ε = 10−4, corr. to n = 212,
h = 2−8). Right: CPU time, total number of local iterations, rank.

−1−1.5−2−2.5
−3

−2.5

−2

−1.5

−1

−0.5

1

log10 ε

log10 errors

residual

E(‖y‖2, ‖y?‖2)

−1−1.5−2−2.5

0.5

1

1.5

2

2.5

1

log10 ε

log10 CPU time

5

10

15

20

rank

10

20

30

40

50

60
Iterations

Figure 5.5: Tracking functional, β varies. Left: Residual and errors w.r.t. the refer-
ence solutions. Right: CPU time, total number of local iterations, rank.

−8 −7 −6 −5 −4 −3 −2 −1

−5

−4.5

−4

−3.5

−3

−2.5

−2

log10 β

log10 errors

residual

E(y,y?)

E(u,u?)

E(y,yd)

−8 −7 −6 −5 −4 −3 −2 −1

1,500

2,000

2,500

3,000

3,500

log10 β

CPU time (sec.)

10

15

20

25

30

rank

150

200

250

300

350

Iterations

0

2

4

6

8
Pic. It.

small β the scheme needs 3 Picard iterations (in agreement with Fig. 5.1), but for
β ≥ 0.1 the convergence becomes slower. In particular, for β ≥ 0.1, we were out of
the CPU time due to the number of Picard iterations. In future it might be more
appropriate to use Newton methods for strongly nonlinear systems. In general smaller
values for β are more important as they allow the state to better approximate the
desired state.

5.2.4. Experiment with ν. Another parameter to vary is the viscosity. The
results are shown in Fig 5.6. It is natural that all performance indicators improve with
larger viscosity, as the system becomes closer to the Stokes regime. Nonetheless, even
a convection dominated simulation with ν = 1/10000 is tractable. The justification
for the existence of low-rank solutions is given in the optimization problem as we
assume that the desired state, i.e., a dominating part of the right-hand-side of the
linear system, is of low-rank and hence the solution typically is. This is not necessarily

21

Fig. 5. Tracking functional, β varies. Left: Residual and errors with respect to the reference
solutions. Right: CPU time, total number of local iterations, rank.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−7

−6

−5

−4

log10 ν

log10 errors

residual

E(y,y?)

E(u,u?)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
200

400

600

800

1,000

1,200

log10 ν

CPU time (sec.)

10

15

20

25

30

rank

20

40

60

80

100

120

140

160

Iterations

Fig. 6. Tracking functional, ν varies. Left: Residual and errors with respect to the reference
solutions. Right: CPU time, total number of local iterations, rank.

5.2.4. Experiment with ν. Another parameter to vary is the viscosity. The
results are shown in Figure 6. It is natural that all performance indicators improve
with larger viscosity as the system becomes closer to the Stokes regime. Nonetheless,
even a convection dominated simulation with ν = 1/10000 is tractable. The justi-
fication for the existence of low-rank solutions is given in the optimization problem
as we assume that the desired state, i.e., a dominating part of the right-hand side of
the linear system, is of low rank and hence the solution typically is, too. This is not
necessarily true for the forward problem.

5.3. Optimization of a vorticity functional. In this section, we consider the
case of the vorticity minimization. The default parameters are the same as in the
previous section. The results are presented in the same layout. Table 3 and Figure
7 show the performance of the scheme with respect to the total space-time approxi-
mation error. In Figure 8 we vary the time interval T , in Figure 9 we investigate the
regularization parameter β, and in Figure 10 we show the role of the viscosity ν.

The behavior of the method for the vorticity minimization is highly similar to
the case of the misfit minimization. Here we outline the main differences. First, the

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A276 SERGEY DOLGOV AND MARTIN STOLL

Table 3
Vorticity functional, total vorticity ‖curly‖2 and mass ‖y‖2 versus discretization parameters.

Space Time

1/h ‖curly‖2 ‖y‖2 n ‖curly‖2 ‖y‖2

8 9.88707 1.85858 256 10.0755 1.87087
16 10.0043 1.86465 512 10.0648 1.86889
32 10.0569 1.86742 1024 10.0595 1.86791
64 10.0812 1.86859 2048 10.0569 1.86742

−1.5−2−2.5−3
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

1

log10 ε

log10 errors

residual

E(‖y‖, ‖y?‖)

−1.5−2−2.5−3

1

1.5

2

1

log10 ε

log10 CPU time

5

10

15

20

rank

10

15

20

25

30

35

40

Iterations

Fig. 7. Vorticity functional, h and m vary together with ε. Left: Residual and error with
respect to the reference solution (computed with n = 212, h = 2−8, ε = 10−4). Right: CPU time,
total number of local iterations, rank.

0 0.5 1 1.5 2 2.5

−7

−6

−5

−4

log10 T

log10 errors

residual

E(y,y?)

E(u,u?)

0 0.5 1 1.5 2 2.5

500

1,000

1,500

2,000

2,500

log10 T

CPU time (sec.)

5

10

15

20

rank

50

100

150

200

250

300

Iterations

Fig. 8. Vorticity functional, T varies. Left: Residual and errors with respect to the reference
solutions. Right: CPU time, total number of local iterations, rank.

solution with minimal vorticity exhibits smaller ranks than the Stokes solution: 10–
15 versus 20–30 in the previous section. This leads to smaller computational times.
However, the Laplace operator in the observation matrixM1 leads to higher condition
numbers of the KKT matrix, and hence higher numbers of GMRES iterations.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A277

−8 −7 −6 −5 −4 −3 −2 −1

−8

−7

−6

−5

−4

log10 β

log10 errors

residual

E(y,y?)

E(u,u?)

−8 −7 −6 −5 −4 −3 −2 −1

500

1,000

1,500

2,000

log10 β

CPU time (sec.)

5

10

15

20

rank

50

100

150

200

250

Iterations

Fig. 9. Vorticity functional, β varies. Left: Residual and errors with respect to the reference
solutions. Right: CPU time, total number of local iterations, rank.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−8

−7

−6

−5

−4

log10 ν

log10 errors

residual

E(y,y?)

E(u,u?)

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

300

350

400

450

500

log10 ν

CPU time (sec.)

5

10

15

20

rank

40

50

60

70

80
Iterations

Fig. 10. Vorticity functional, ν varies. Left: Residual and errors with respect to the reference
solutions. Right: CPU time, total number of local iterations, rank.

The velocity error is smaller than in the tracking optimization case. First, Runge’s
rule according to Table 3 gives a larger offset:

log2 h =
log2 ε+ 3.51

1.34
and log2 n =

log2 ε+ 0.474

−1.07
.

The total error in the velocity in Figure 7 demonstrates a smaller error scale: between
10−3 on average, compared to 10−2 in the previous experiment. The control errors
and the residuals follow the same trends.

Comparing Tables 2 and 3, we conclude that the optimized vorticity is indeed
smaller than the vorticity of the Stokes solution. To see how the vorticity minimization
influences the behavior of the fluid, we show the streamline plots in Figure 11. In
the left planes we show the snapshots of the solution of the forward Navier–Stokes
equations with the default parameters, taken at t = 12 and t = 200, and in the right
planes we show the solution of the optimal control problem at the same time steps.
We see that the flow becomes much less turbulent when the control is employed.

6. Conclusions. We have shown in this paper that a low-rank approach for
solving the optimal control problem subject to the Navier–Stokes equations is pos-

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A278 SERGEY DOLGOV AND MARTIN STOLL

-1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

-1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

-1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

-1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

Fig. 11. Vorticity plots at t = 12 (top) and t = 200 (bottom) for the forward (uncontrolled)
Navier–Stokes system (left), and the controlled system with the minimized vorticity (right).

sible. In order to achieve this we have established the low-rank formulation for two
different objective functions and then introduced a scheme that utilizes the low-rank
nature of the desired state to carry this low rank through an alternating iteration pro-
cedure. For this we had to rely on efficient low-rank techniques in combination with
sophisticated spatial preconditioners for Navier–Stokes systems. We further establish
existence results for the low-rank solutions to the Stokes equations. In our numerical
results we have performed a parameter study with respect to the convergence of our
proposed scheme. We have shown that our method is robust with respect to parameter
changes while maintaining a consistent low rank for even large-scale setups.

Acknowledgment. This work began when S. Dolgov was with MPI Magdeburg.

REFERENCES

[1] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some
classes of multidimensional partial differential equations encountered in kinetic theory
modeling of complex fluids, J. Non-Newtonian Fluid Mech., 139 (2006), pp. 153–176,
https://doi.org/10.1016/j.jnnfm.2006.07.007.

[2] M. J. Balajewicz, E. H. Dowell, and B. R. Noack, Low-dimensional modelling of high-
Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation,
J. Fluid Mech., 729 (2013), pp. 285–308, https://doi.org/10.1017/jfm.2013.278.

[3] J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor format,
Numer. Linear Algebra Appl., 20 (2013), pp. 27–43, https://doi.org/10.1002/nla.1818.

[4] P. Benner and T. Breiten, Low rank methods for a class of generalized Lyapunov equa-
tions and related issues, Numer. Math., 124 (2013), pp. 441–470, https://doi.org/10.1007/
s00211-013-0521-0.

[5] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Low-rank solvers for unsteady Stokes-
Brinkman optimal control problem with random data, Comput. Methods Appl. Mech. En-
grg., 304 (2016), pp. 26–54, https://doi.org/10.1016/j.cma.2016.02.004.

[6] P. Benner, J.-R. Li, and T. Penzl, Numerical solution of large-scale Lyapunov equations,
Riccati equations, and linear-quadratic optimal control problems, Numer. Linear Algebra
Appl., 15 (2008), pp. 755–777, https://doi.org/10.1002/nla.622.

[7] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta
Numer., 14 (2005), pp. 1–137.

[8] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, Large-
scale PDE-constrained optimization: An introduction, in Large-Scale PDE-Constrained
Optimization, Lect. Notes Comput. Sci. Eng. 30, Springer, Berlin, 2003, pp. 3–13.

[9] A. Borz̀ı and R. Griesse, Experiences with a space-time multigrid method for the optimal
control of a chemical turbulence model, Internat. J. Numer. Methods Fluids, 47 (2005),
pp. 879–885, https://doi.org/10.1002/fld.904.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1016/j.jnnfm.2006.07.007
https://doi.org/10.1017/jfm.2013.278
https://doi.org/10.1002/nla.1818
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1007/s00211-013-0521-0
https://doi.org/10.1016/j.cma.2016.02.004
https://doi.org/10.1002/nla.622
https://doi.org/10.1002/fld.904

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOW-RANK NAVIER–STOKES A279

[10] A. Borz̀ı and V. Schulz, Multigrid methods for PDE optimization., SIAM Rev., 51 (2009),
pp. 361–395, https://doi.org/10.1137/060671590.

[11] J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling
of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), pp. 337–355,
https://doi.org/10.1016/j.cma.2006.04.004.

[12] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear systems
in higher dimensions, SIAM J Sci. Comput., 36 (2014), pp. A2248–A2271, https://doi.org/
10.1137/140953289.

[13] S. V. Dolgov, A. P. Smirnov, and E. E. Tyrtyshnikov, Low-rank approximation in the
numerical modeling of the Farley-Buneman instability in ionospheric plasma, J. Comput.
Phys., 263 (2014), pp. 268–282, https://doi.org/10.1016/j.jcp.2014.01.029.

[14] H. C. Elman, A. Ramage, and D. J. Silvester, Algorithm 886: IFISS, a Matlab toolbox for
modelling incompressible flow, ACM Trans. Math. Software, 33 (2007), 14.

[15] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
With Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford,
UK, 2014.

[16] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large
systems in tensor product structure, Computing, 72 (2004), pp. 247–265.

[17] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitt., 36 (2013), pp. 53–78, https://doi.org/10.1002/gamm.
201310004.

[18] M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking
problem for Navier–Stokes flows with distributed control, SIAM J. Numer. Anal., 37 (2000),
pp. 1481–1512, https://doi.org/10.1137/S0036142997329414.

[19] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer–Verlag, Berlin, 2012.
[20] W. Hackbusch and B. N. Khoromskij, Low-rank Kronecker-product approximation to multi-

dimensional nonlocal operators. Part II. HKT representation of certain operators, Com-
puting, 76 (2006), pp. 203–225, https://doi.org/10.1007/s00607-005-0145-z.

[21] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.
Appl., 15 (2009), pp. 706–722, https://doi.org/10.1007/s00041-009-9094-9.

[22] R. Herzog and E. Sachs, Preconditioned conjugate gradient method for optimal control prob-
lems with control and state constraints, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2291–
2317, https://doi.org/10.1137/090779127.

[23] M. Hinze, Optimal and Instantaneous Control of the Instationary Navier-Stokes Equations,
Habilitation, TU Berlin, Berlin, Germany, 2000.

[24] M. Hinze, M. Köster, and S. Turek, A Hierarchical Space-Time Solver for Distributed
Control of the Stokes Equation, DFG Priority Programme 1253, Preprint SPP1253-16-01,
2008; available online at http://www.am.uni-erlangen.de/home/spp1253/wiki/images/6/
63/Preprint-spp1253-16-01.pdf.

[25] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints,
Math. Model. Theory Appl. 23, Springer-Verlag, New York, 2009.

[26] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor op-
timization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713,
https://doi.org/10.1137/100818893.

[27] T. Huckle and K. Waldherr, Subspace iteration method in terms of matrix product
states, Proc. Appl. Math. Mech., 12 (2012), pp. 641–642, https://doi.org/10.1002/pamm.
201210309.

[28] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Ap-
plications, Adv. Des. Control 15, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.
9780898718614.

[29] K. Ito, K. Kunisch, V. Schulz, and I. Gherman, Approximate nullspace iterations for KKT
systems, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1835–1847, https://doi.org/10.1137/
080724952.

[30] H. Kasumba and K. Kunisch, Vortex control in channel flows using translational invariant
cost functionals, Comput. Optim. Appl., 52 (2012), pp. 691–717.

[31] V. Khoromskaia, Black-box Hartree–Fock solver by tensor numerical methods, Comput. Meth-
ods Appl. Math., 14 (2014), pp. 89–111, https://doi.org/10.1515/cmam-2013-0023.

[32] B. N. Khoromskij, Structured rank-(r1, . . . , rd) decomposition of function-related operators in
Rd, Comput. Methods Appl. Math, 6 (2006), pp. 194–220.

[33] B. N. Khoromskij, O(d logN)-quantics approximation of N-d tensors in high-dimensional
numerical modeling, Constr. Approx., 34 (2011), pp. 257–280, https://doi.org/10.1007/
s00365-011-9131-1.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/060671590
https://doi.org/10.1016/j.cma.2006.04.004
https://doi.org/10.1137/140953289
https://doi.org/10.1137/140953289
https://doi.org/10.1016/j.jcp.2014.01.029
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1137/S0036142997329414
https://doi.org/10.1007/s00607-005-0145-z
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1137/090779127
http://www.am.uni-erlangen.de/home/spp1253/wiki/images/6/63/Preprint-spp1253-16-01.pdf
http://www.am.uni-erlangen.de/home/spp1253/wiki/images/6/63/Preprint-spp1253-16-01.pdf
https://doi.org/10.1137/100818893
https://doi.org/10.1002/pamm.201210309
https://doi.org/10.1002/pamm.201210309
https://doi.org/10.1137/1.9780898718614
https://doi.org/10.1137/1.9780898718614
https://doi.org/10.1137/080724952
https://doi.org/10.1137/080724952
https://doi.org/10.1515/cmam-2013-0023
https://doi.org/10.1007/s00365-011-9131-1
https://doi.org/10.1007/s00365-011-9131-1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A280 SERGEY DOLGOV AND MARTIN STOLL

[34] B. N. Khoromskij, Tensor numerical methods for multidimensional PDEs: Theoretical anal-
ysis and initial applications, ESAIM Proc., 48 (2015), pp. 1–28, https://doi.org/10.1051/
proc/201448001.

[35] K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput.,
37 (2015), pp. B613–B632, https://doi.org/10.1137/140971270.

[36] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product
structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688–1714, https://doi.org/10.1137/
090756843.

[37] P. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data by means
of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97.

[38] K. Kunisch and B. Vexler, Optimal vortex reduction for instationary flows based on trans-
lation invariant cost functionals, SIAM J. Control Optim., 46 (2007), pp. 1368–1397,
https://doi.org/10.1137/050632774.

[39] K. Kunisch and S. Volkwein, Galerkin POD methods for parabolic problems, Numer. Math.,
90 (2001), pp. 117–148.

[40] T. Mach and J. Saak, Towards an ADI Iteration for Tensor Structured Equations, MPI
Magdeburg Preprint 2011-12, Max Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg, Germany, 2011; available online at http://www.de.mpi-magdeburg.
mpg.de/preprints/2011/MPIMD11-12.pdf.

[41] K. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential
equations, Numer. Linear Algebra Appl., 18 (2011), pp. 1–40.

[42] B. R. Noack, P. Papas, and P. A. Monkewitz, The need for a pressure-term representation
in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523 (2005),
pp. 339–365, https://doi.org/10.1017/S0022112004002149.

[43] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer-
Verlag, New York, 1999.

[44] A. Nouy, Proper generalized decompositions and separated representations for the numerical
solution of high dimensional stochastic problems, Arch. Comput. Methods Eng., 17 (2010),
pp. 403–434, https://doi.org/10.1007/s11831-010-9054-1.

[45] I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J.
Matrix Anal. Appl., 31 (2010), pp. 2130–2145, https://doi.org/10.1137/090757861.

[46] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317,
https://doi.org/10.1137/090752286.

[47] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebedeva, P. Zhlobich,
T. Mach, and L. Song, TT-Toolbox, https://github.com/oseledets/TT-Toolbox.

[48] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629, https://doi.org/10.1137/0712047.

[49] J. W. Pearson, Preconditioned iterative methods for Navier–Stokes control problems, J. Com-
put. Phys., 292 (2015), pp. 194–207, https://doi.org/10.1016/j.jcp.2015.03.029.

[50] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for time-
dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl, 33 (2012),
pp. 1126–1152, https://doi.org/10.1137/110847949.

[51] M. V. Rakhuba and I. V. Oseledets, Grid-based electronic structure calculations: The tensor
decomposition approach, J. Comput. Phys., 312 (2016), pp. 19–30, https://doi.org/10.1016/
j.jcp.2016.02.023.

[52] T. Rohwedder and A. Uschmajew, On local convergence of alternating schemes for opti-
mization of convex problems in the tensor train format, SIAM J. Numer. Anal., 51 (2013),
pp. 1134–1162, https://doi.org/10.1137/110857520.

[53] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained optimization,
SIAM J. Sci. Comput., 37 (2015), pp. B1–B29, https://doi.org/10.1137/130926365.

[54] M. Stoll and A. Wathen, All-at-once solution of time-dependent Stokes control, J. Comput.
Phys., 232 (2013), pp. 498–515.

[55] U. Tautenhahn and Q.-n. Jin, Tikhonov regularization and a posteriori rules for solving
nonlinear ill posed problems, Inverse Problems, 19 (2003), pp. 1–21.

[56] V. Temlyakov, Greedy Approximation, Cambridge University Press, Cambridge, UK, 2011.
[57] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Ap-

plications, American Mathematical Society, Providence, RI, 2010.
[58] M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Op-

timization Problems in Function Spaces, SIAM, Philadelphia, 2011, https://doi.org/10.
1137/1.9781611970692.

[59] E. L. Wachspress, The ADI Model Problem, Springer, New York, 2013.
[60] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B,

48 (1993), pp. 10345–10356, https://doi.org/10.1103/PhysRevB.48.10345.

D
ow

nl
oa

de
d

10
/1

2/
17

 to
 1

38
.3

8.
54

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1051/proc/201448001
https://doi.org/10.1051/proc/201448001
https://doi.org/10.1137/140971270
https://doi.org/10.1137/090756843
https://doi.org/10.1137/090756843
https://doi.org/10.1137/050632774
http://www.de.mpi-magdeburg.mpg.de/preprints/2011/MPIMD11-12.pdf
http://www.de.mpi-magdeburg.mpg.de/preprints/2011/MPIMD11-12.pdf
https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1007/s11831-010-9054-1
https://doi.org/10.1137/090757861
https://doi.org/10.1137/090752286
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1137/0712047
https://doi.org/10.1016/j.jcp.2015.03.029
https://doi.org/10.1137/110847949
https://doi.org/10.1016/j.jcp.2016.02.023
https://doi.org/10.1016/j.jcp.2016.02.023
https://doi.org/10.1137/110857520
https://doi.org/10.1137/130926365
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1137/1.9781611970692
https://doi.org/10.1103/PhysRevB.48.10345

	Introduction
	Problem formulation
	Low-rank approximation of the Navier–Stokes forward problem
	Low-rank approximation of the optimization problem

	Solution algorithms
	Alternating low-rank methods for the forward problem
	Alternating methods for the inverse problem
	Alternating methods for the (Navier–)Stokes equation
	Preconditioning for the spatial system

	Existence of low-rank solutions
	Numerical results
	Convergence of the Picard iteration
	Optimization of a tracking type functional
	Comparison with the full scheme
	Experiment with the total accuracy
	Experiment with
	Experiment with

	Optimization of a vorticity functional

	Conclusions
	References

