

Citation for published version:
Wilson, P, Graham-Harper-Cater, J & Metcalfe, B 2017, A Reconfigurable Architecture for Real-Time Digital
Simulation of Neurons. in Intellisys.

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

Publisher Rights
Unspecified

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/a-reconfigurable-architecture-for-realtime-digital-simulation-of-neurons(18020d81-e6bf-4d83-a8d5-3e2b8f4d93f7).html

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

1 | P a g e

A Reconfigurable Architecture for Real-Time Digital
Simulation of Neurons

Abstract— A major problem in computational neuroscience is
that large scale biologically realistic neuron simulations require
massive amounts of computing resources, which in turn requires
large amounts of power. This poses a significant problem when
we look toward a potential future where machines have “silicon
brains”. In this paper we build on previous VHDL neuron work
by building a programmable neuron device housing 116 neurons
and 200 synapses to perform realistic, real-time simulations of
neuron networks in hardware. This flexible architecture is
loaded with the C. elegans locomotion system which
demonstrates that the behavior of the programmable
architecture is the same as the behavior of the design from
previous work.

Keywords— Neuron, Network, Hardware, Programmable,
Simulation

I. INTRODUCTION
Modeling and simulation pipelines have become

invaluable tools in the electronics industry. They allow
designs to be tested prior to fabrication, saving both time and
money. Neuron modeling is important when exploring the
nervous system. It complements existing ‘wet work’
techniques by allowing researchers to test theories of neuron
behavior or neuron connectivity and match them to results
obtained in biological experiments.

The uptake of any modelling or simulation tool is often
dictated by its accessibility. Using a hardware description
language (HDL) is an efficient, effective and well established
way to describe modular electronic models. However these
models often require those in the engineering or neuroscience
community to understand VHDL or Verilog before they may
utilize such tools.

A different approach is to give the user a system of un-
configured modeling blocks to which they must assign
parameters. This added level of abstraction hides the physical
implementation of the model from the end user whilst giving
them significant control over the systems structure and
operation. In this paper we show a programmable hardware
device for modeling neurons that is more accessible to both
engineers and non-engineers by providing an interface to a
higher level of abstraction. We demonstrate the system using
the locomotion system of the Caenorhabditis Elegans (C.
elegans) nematode and evaluate the performance of the
system.

II. PREVIOUS WORK

Research into hardware implementations of neuron models
includes a wide variety of approaches. These range from
analog equivalent circuit models that attempt to mimic the
real-time behavior of individual neurons to large scale
aggregates of simple spiking neurons with no physical
behavior other than timing. The work in this area can be
broadly divided into three general areas: pure analog
implementation; mixed-signal implementation; and pure
digital implementation.

There are a series of pure analog implementations of
neuron models on Field Programmable Analog Arrays
(FPAA), such as the simple model by Sekerli and Butera [4],
and Rocke et al. [5] which uses a spiking model, with
evolutionary algorithms for optimization. Whilst both run in
real-time they can only support a relatively low number of
neurons (< 10) and very simple neuron models such as the
Morris-Lecar model [4] or leaky integrate and fire models [5].
A third, mainly analog implementation, can be found in the
work by Koickal et al.[6] where a bespoke design of a

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

2 | P a g e

reconfigurable neuromorphic array is produced using an
analog VLSI 0.35um CMOS process. This system is able to
implement spike timing dependent plasticity (STDP) and
processes neuron signals in the analog domain, while
transmitting events (such as action potentials) asynchronously
as discrete-time events.

Mixed-signal designs are either implemented as VLSI
systems or a mixture of FPAAs and Field Programmable Gate
Arrays (FPGAs). Cardaralli et al [7] use a hierarchical
modular design with the perceptron model to build a multi-
layer feed forward network of neurons. These are built using a
bespoke VLSI architecture using D/A and A/D to construct
digitally programmed sigmoid synapses and neurons using the
perceptron model. Vogelstein et al. [8] also design a fully
integrated custom set of 2400 (60x40) integrate and fire
neurons in a mixed signal VLSI architecture. The work
describes a discrete-time model modeling a cell as a single
compartment. Harkin et al. [9] argue that FPGAs cannot
accommodate the high levels of inter-neuron connectivity and
that an implementation using analog synapses and a network
on a chip is a better approach.

Moreno et al [10] present a digital approach in which they
implement the perceptron model (a non-spiking, rate-code
model), using an FPGA platform. They design VHDL models
to implement tiny neural networks (TNN) for computer vision.
Ali et al [11] build a network based around the McCulloch &
Pitts neuron (M&P) in VHDL on an FPGA. The simple
neurons are used to build layered feed-forward neural
networks. Finally Morgan et al [12] build a digital version of
the EMBRACE (Emulating biologically-inspired architectures
in hardware) network on a chip architecture on an FPGA,
described as EMBRACE FPGA.

A. Analog vs. Digital Implementation
Analog systems are better suited to modeling real-time

neurons at biophysical levels, exhibiting fine-grained
resolution, such as seen with compartmental models [13] or
Hodgkin-Huxley models [14]. The trade-off with a pure
analog implementation is that very few nervous system
components (Neurons/Synapses) can be implemented in
practice. Integrated analog components take up far more
silicon real estate than their digital counterparts; therefore
fewer analog components are available. Cardaralli et al [7]
note that analog architectures have the inherent advantage that
they are fully parallel and work in real-time. However, full
analog architectures suffer from larger computational errors
and are far less efficient for reconfigurable neural networks.

Rocke et al [5] are able to directly drive small motors for
the control of robots from the output of the FPAA with very
little interfacing logic. In a digital design speed control of a
motor would require D/As or Pulse Width Modulated motor
control. Although digital implementations are poorly-suited to
detailed biophysical models unless power-hungry general
purpose CPUs are used, they are well-suited to simulating
massive networks using abstract models. If real-time
performance is needed then hardware multiplexing can be
used to increase the number of neurons.

Vogelstein et al [8] capture the advantages of both digital
and analog implementations with a mixed-signal approach.
This allows them to implement conductance based synapses, a
discrete time model of the neuron membrane dynamics and a
“virtually unlimited” number of synaptic connections.
Membrane dynamics are implemented in analog VLSI whilst
synaptic connectivity is implemented in dynamically
reconfigurable memory.

B. VHDL Neuron Model
This paper builds upon previous work on neuronal

modeling [1,2,[3] which itself builds upon the work by
Claverol et al [15-19] and the Message-Based Event Driven
(MBED) neuron model (originally written in C, MATLAB
and Yorick). This approach breaks down the functionality of
the neuron into a set of distinct, but interconnected, state
machines.

Fig 1: An overview of the MBED Neuron Model with
the individual component blocks labeled.

An overview of the MBED model is shown in Fig 1. Each
block (synapses, threshold, burst generation and oscillator)
capture the functionality of a different component of the
neuron [15, 16]: the threshold block captures the summing
behavior of the dendrites; while the burst generator captures
the behavior of the axon hillock and the active membrane of
the axon. The oscillator block allows the construction of
pattern generators to drive activity in the nervous system.
Communication between blocks is achieved through
unidirectional message passing channels which are depicted as
arrows in Fig 1. Some message channels originate and end in
the same block, others start and terminate in different blocks.
The model itself is computationally efficient since it is event-
driven and whilst abstract, contains a logical mapping between
substructures of biological neurons and an abstract computer
model. Secondly, the model is readily modularized [20],
allowing several different implementations of the same block
to co-exist within the same system, each with different
behaviours. Finally, the event-driven nature of the model
makes it well suited for implementation in digital hardware
with real-time simulation an attainable goal.

C. VHDL Neuron Model Detail
An overview of the MBED neuron model is shown in Fig

1: where each neuron can be constructed from a Threshold
Block, Burst Block and Oscillator Block. There are also
blocks that specifically model the operation of the synapse.

Threshold Block

Oscillator

Burst Block

Off

On

Ref

Synapses

Neuron

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

3 | P a g e

The Threshold Block sums the synaptic weights of the
synapses connected to the neuron and controls the Burst
Block. The Burst Block is responsible for generating action
potentials of the correct length, timing and separation. The
Oscillator Block is an alternative means of activating the
Burst Block and is a simple timer that activates the Burst Block
at a fixed frequency.

Fig 2: Neuron Block Diagram

Fig 3: Pattern Generator Block Diagram

Our implementation is used to create two network
components for different purposes. The first model, Neuron,
is built from a Threshold Block and Burst Block (see Fig 2).
This component encapsulates an abstract representation of
the biological neuron, receiving inputs from synapses,
summing them and firing action potentials when the sum of
the active synapses is above an excitatory threshold. The
second model, Pattern Generator (Fig 3), is built from an
Oscillator Block and a Burst Block. Lastly, the synapse
model is built from timers that time the synaptic delay and
synaptic duration, thus modeling the release of
neurotransmitter across the synapse. For a more detailed
description of the underlying implementation see [3]

III. DESIGNING THE PROGRAMMABLE NEURON ARRAY

A. Introduction
FPGAs are made up of logic blocks that may be

individually configured and then connected together to create
most types of digital logic devices. In FPGAs the basic
configurable elements are logic blocks and their connections.
We propose to borrow this concept but use neurons and
synapses as the fundamental configurable elements. The
Programmable VHDL Neuron Array (PVNA) shall have a set
of neuron and synapses in an un-configured state. The
parameters for each neuron/synapse can be loaded and
connected however the (end-)user wishes. The system can

then be run in real-time and the activity of the network can be
monitored or parameters modified by a PC.

One limitation with the conventional digital neuron models
[1-3] is that each neuron requires a dedicated connection to a
synapse block which in turn has a dedicated connection to
another neuron. This approach makes the placement of the
components on the FPGA and the routing (Place & Route
(P&R)) of connections between the components difficult. A
synthesis software tool would often fail to successfully place
and route large networks approaching the maximum size that
would fit on a suitable FPGA.

Our proposal is to have two shared buses over which
neuron/pattern generators communicate with synapses and
synapses communicate with neurons. This should solve some
of the complexity problems with routing dedicated
connections between neuron network components.

B. Internal Bus Design
In order to design a PVNA we require three buses. The

first bus connects neurons with synapses. The second bus is a
serial configuration bus to program the device. The third bus
is an external serial I/O that allows an external processor to
reconfigure neurons and read their output.

1) Neuron-Synapse Bus (NS-Bus)

It is important that the NS-Bus appears transparent to the
neurons and synapses on the bus (i.e., to appear that the
components are connected through a dedicated channel). To
keep the system simple, the internal buses were designed on a
circuit-switched Time Division Multiplexing (TDM)
principle. In essence this means that each is allocated a fixed-
width time slot on the bus to communicate with synapses,
although it appears to the neurons and synapses that they are
communicating simultaneously (The previous work [1-3] use a
1MHz clock).

To ensure the bus operation is transparent to the nervous
system components all bus transactions must take place after
the rising edge of the 1MHz clock and must be complete
before the next rising edge of the clock. This results in a
TDM frame length of 1µs, although in practice frame time is
actually, 1𝜇𝑠 − 𝑡!"#$% − 𝑡!!"#, such that setup and hold times
of the digital logic are not violated. The basic bus design is
shown in Fig 4, with a set of output units on the left, input
units on the right with the bus control unit at the top. The bus
control unit is essentially a counter that loops through the
addresses from address zero to the value given by the
max_address configuration parameter. For each output unit,
when the address on the address bus (shown by the dashed
line) is equal to the address parameter for the output unit then
the output of the unit moves from the high impedance state
and begins driving the data bus (solid black line).

For the input units when the address on the address bus is
equal to the address parameter the state of the data bus is
sampled by the input unit. Inputs and outputs can be
disabled by assigning them address zero which means the
output unit will never drive the bus and the input unit will never

Threshold Block Burst Block

Off

On

Ref

Oscillator

Burst Block

Off

On

Ref

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

4 | P a g e

sample the bus. In the example in Fig 4, Output A and Input B
are effectively disabled. It is very important to ensure that the
address on each output unit is unique (except for address 0)
since only a single output can drive the bus at any time. Note
however that there is no problem with having multiple inputs
with the same address assignment since multiple devices can
listen to the bus simultaneously.

Fig 4: Basic Neuron-Synapse Bus Design. Outputs A, B

and C represent any component of the system driving the
bus whilst Inputs A, B and C represent components

reading the bus.

This leads to a potential issue: neurons can drive multiple
synapses without problems, but multiple synapses can drive
only a single neuron, since multiple drivers are not possible on
the bus at the same time. Our solution to this issue, shown in
Fig 5, is to daisy-chain the synaptic outputs (dotted
connections in Fig 5) through adders so the multiple 8-bit
values are resolved into a single 8-bit value that can be driven
onto the bus. This link can be disabled if only one synapse is
connected to the input side of a neuron. The neuron is now the
single point where all inputs arrive and all outputs are
generated, which means the maximum address in the system is
relative to the number of neurons (and pattern generators) in
the system.

This first design is based around an 8-bit address bus
which allows for 255 neurons (address 0 is reserved).
Accordingly, in order to cycle through all the neurons within
the TDM frame time the address bus unit frequency should be
in excess of 255MHz (all bus transactions must be finished
soon enough so as not to violate the setup times of the digital
logic).

Fig 5: Linked Synapse Structure

2) Configuration Bus

The configuration bus is used to load new parameters into
the PVNA. It is a serial interface with clock and data lines.
Within the device, each component is linked serially. The
configuration data is loaded simultaneously. The configuration
can be loaded while the simulation is running. The clock can
be paused using the Clock Enable input, a new configuration
loaded, and then the clock can be restarted. This enables a
basic type of synaptic plasticity to be performed by
reprogramming the network during operation.

Fig 6: External Serial I/O Bus Structure

3) External Serial I/O Bus

The External Serial bus (shown in Fig 6) allows the
external processor to control which neurons are enabled (i.e.,
neurons can be virtually ablated during operation) and to read
the neuron activity from the network. It has its own clock
which is separate from both the main PVNA Internal bus
clock and main system clock of the PVNA.

The enable and activity registers are the same length since
each neuron has both an enable register and an activity
register. The output of the neurons is sampled on the falling
edge of the active low chip select signal (not shown in figure).
The data in the enable registers is written to the neurons on the
rising edge of the chip select signal.

Address
Control Unit

Output A
A = 0

Input A
A = 2

Output B
A = 1

Input B
A = 0

Output C
A = 2

Input C
A = 1

Synapse	 1

Synapse	 2

Synapse	 3

Synapse	 4

From	 Neuron	 Bus To	 Synapse	 Bus

PNVA

Neuron	 Control	 Registers

Neuron	 Activity	 Registers

Clock

Enable	 In

Activity	 Out

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

5 | P a g e

We have laid out the structures of the buses which will be
used in the construction of the PVNA. Now we shall go on to
discuss the construction of the individual components.

C. PNVA Components
The PNVA comprises several types of components,

including Neurons (previously called Neuron 1 [3]), Pattern
Generators (previously called Neuron 2 [3]), and synapse
components (described briefly in Section II.C). In addition
there are Control units for enabling/disabling individual
neurons, and Output Capture units that allow one to observe a

neuron’s output.

1) Neuron

This is the core of all nervous system models and is
intended to embody the behavior of a real biological neuron at
an abstract level. Referring to the block diagram in Fig 2, the
Neuron model consists of just the threshold and burst blocks.

Synapses connect to the threshold block which sums them
and compares them to the excitatory and inhibitory thresholds
to determine whether the burst block should fire action
potentials. The important difference between the PVNA and
our previous work [1-3] is that the summing is computed

implicitly by the PVNA synapse structure. Specific details on
the operation of the Neuron model can be found in our

previous work [1-3].

The layout of the modified Neuron component is
shown in Fig 7. The dashed lines show the connections for
the configuration system; the dotted line shows the
connection to the enable bus; and the solid lines show the
connections to and from the Synapse and Neuron Buses.
The Neuron model is shown in the middle of this diagram
with the additional logic to support the Neuron structure in
the PVNA. The input units copy the value from each of
the buses into the neuron structure when the address on

the bus matches the address programmed into the
controller.

The output unit drives the value from the output of the
Neuron unit onto the bus when the address on the bus
matches the address in the controller. The addresses from
the input and output units are the same and are unique for
each neuron. The controller for each neuron stores the
configuration data in a set of registers for each neuron.
Data is shifted in serially and the serial configuration out
signal allows the neurons to be daisy-chained together.
The configuration word for Neuron is 64 bits long and
should be presented MSB first. The assignments of

sections of the word are shown in Table I.

To	 Neuron	
BusNeuron	

Controller

Output	 UnitInput	 Unit	 	 1From	 Synapse	
Bus

Input	 Unit	 2From	 Enable	
Bus

Serial	 Configuration	 In	 Serial	 Configuration	 Out	

Fig 7: Modified Neuron Structure

To Neuron
Bus

Pattern
Generator

Controller

Output
UnitInput UnitFrom Enable

Bus

Serial Configuration In Serial Configuration Out

Fig 8: Modified Pattern Generator

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

6 | P a g e

This PVNA component can be used to provide patterns
of inputs to a network of neurons. Referring to the block
diagram in Fig 3, the Pattern Generator model consists of
oscillator and burst blocks. The oscillator sends regular
pulses to the burst block which causes an action potential
to be fired. The layout of the modified pattern generator
component is shown in Fig 8. The dashed lines show the
connections for the configuration system, the dotted line
shows the connection to the enable bus, and the solid lines
show the connections to and from the Synapse and Neuron
Buses. The pattern generator model is shown in the middle
of this diagram with the additional logic to support the
Neuron 2 structure in the PVNA.

Table I

Configuration word for Neuron 1

Bits Length Function
7 – 0 8 Address
15 – 8 8 Ex. Threshold
23 – 16 8 Inh. Threshold
32 – 24 8 Burst Length
47 – 32 16 AP. Time
63 - 48 16 Ref. Time

2) Pattern Generator

The controller, input unit and output unit function as
described for the Neuron model in the previous section.
The configuration word for Neuron 2 is 113 bits long and
the assignments of sections of the word are shown in
Table II. The configuration word should also be presented
MSB first.

Table II

Configuration word for Pattern Generator

Bit Number Length Function
7 – 0 8 Address
8 1 Enable Phase Offset
40 - 9 32 Period
72 - 41 32 Phase Offset
80 - 73 8 Burst Length
96 - 81 16 AP. Time
112 - 97 16 Ref. Time

3) Synapse

The synapse is the structure through which neurons
communicate. When an action potential arrives down the axon
of a biological nerve it triggers the release of a
neurotransmitter across the synapse. The time of transmission
down the axon and the neurotransmitter crossing the synapse
can be thought of as a delay. This is modeled as the parameter
tdel. Next the neurotransmitter affects the receiving neuron by
lowing or raising the membrane potential through the opening
of selective ion channels. The change in membrane potential
is defined by the parameter wsyn. This effect is temporary,
lasting for a duration defined by the parameter tdur. If
successive action potentials arrive at the synapse while it is

already in delay mode or is active then it should be possible
for it to be triggered again to release more neurotransmitter.

The synapse model in this work is closely based on the
synapse model in our previous work [1-3]. The layout of the
modified Synapse component is shown in Fig 9. The dashed
lines show connections between the controller for the synapse
and the solid lines show data connections. The synapse block

To Synapse
Bus

Synapse

M
UX

Adder

Synapse Output
Link In

Zero

Controller

Output Unit

Synapse Output Link
Out

M
UX

Input Unit
From Neuron

Bus

AND

Busy
Signal

Synapse Input
Link Out

Synapse Input
Link In

Serial
Configuration In

Serial
Configuration Out

Fig 9: Modified Synapse Design

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

7 | P a g e

is shown in the middle of the diagram surrounded by the
supporting logic which makes its integration into the PVNA
possible.

The input unit copies the value from the neuron bus when
the address on the bus is the same as the value specified by the
controller. The address value in the input and output unit will
be different unless the neuron synapses upon itself. Several
synapses may receive action potentials from a single neuron
and therefore the address in this unit need not be unique.

There are several modes of operation for the synapse. If
only a single synapse is connected to the input of a single
neuron then the output unit drives the synapse bus with the
value from the synapse block output. The address in the output
unit is unique on the synapse bus since only one neuron can
receive a value from the synapse at any one time. If several
synapses drive a single neuron then the Synapse output link
in/out is used to daisy chain synapses through the adder. In
this case only the last synapse in the chain is set to drive the
synapse bus, while all the other synapses have their output
unit address set to zero, ensuring they never drive the bus
themselves.

Several synapses may be arrayed together to support
multiple concurrent activations. The synapses only need to be
arrayed when the presynaptic neuron can activate the synapse
while the synapse is already active such that condition (1) is
met.

𝑇!" + 𝑇 !"# < 𝑇!"#$% + 𝑇!"# (1)

In this case multiple synapses can have their inputs
chained together through the synaptic input link in and
synaptic input link out connections. If the first synapse in the
chain is already processing a synaptic event then the action
potential is passed along to the next one in the chain and so
on. Only the first synapse in the chain will have an address
value other than zero set in the input unit.

An example of a configuration of several synapses is shown
in Fig 10. The first two synapses (1 & 2) are independent of
each other, and thus their input and output links are disabled.
Their outputs are connected to separate neurons that only have
a single input. Synapse 3 and 4 may be driven by different
neurons at their inputs but have their outputs tied together.
The output unit of synapse 3 is disabled by setting its address
to zero. Through the output link the synapse 3 output is added
to the synapse 4 output. Synapse 4’s output therefore
represents the total value of both 3 & 4. This mode is used
when a neuron receives inputs from several different neurons.
Synapse 5 & 6 are set up for concurrent activation by the same
neuron. Only the first input in the chain is enabled whilst the
rest have their addresses set to zero so never sample the bus
directly. The input link is enabled so if synapse 5 is already
active the activation is passed to synapse 6. The outputs of
synapse 5 & 6 are chained so that the outputs of all the
chained synapses are aggregated into a single value which is
passed to the neuron specified in the output unit. While the
synapses have to be physically adjacent this is transparent to
the neurons and synapses.

As with the Neuron and Pattern-Generator the controller
stores the configuration word for the synapse. The
configuration word for the Synapse is 90 bits long and the
assignments of sections of the word are shown in Table III. In
the Neuron and Pattern generator, the word should be
presented MSB first.

Table III

Configuration Word for Synapse

Bit
Number

Length Function

7 - 0 8 Input Address
15 – 8 8 Output Address
23 – 16 8 Synaptic Weight
55 – 24 32 Synaptic Delay
87 - 56 32 Synaptic Duration
88 1 Input Link
89 1 Output Link

1) Neuron Activity Capture

Thus far we have presented a programmable structure for
the neurons and synapses but as of yet there is no interface to
the external world that provides a method to observe activity
within the device. This function is performed by Neuron
Output Capture Units. The structure of this is built from
components we have seen before: a controller with a serial
interface provides the bus address to the input unit. The input
unit updates a 1-bit register when the neuron with the
matching address is driving the bus. A second serial bus
allows the user to scan out the current data in the 1-bit
register. There are as many capture units as Neurons and
Pattern Generators in the system to allow for the complete
system state to be read from the device. These units are daisy-
chained through the external bus so the user can scan out all
the neuron data in one go. This unit is configured with a single
8-bit value representing the input address.

1) Neuron Control Unit

In addition to being able to capture the current state of the
neuron outputs it is useful to be able to control the neurons
externally. The Neuron Control Unit allows the user to enable
or disable any neuron or pattern generator in the network on
the fly. A controller with a serial interface provides the bus
address to an output unit. When the address on the address bus
matches that provided by the controller, the output unit drives
the enable bus with the value held in the 1-bit register. This is
the received by the input unit at the neuron connected to the
enable bus. The content of the 1-bit register is shifted into the
neuron enable register via a serial external bus. The bus is
daisy-chained through all the Neuron Control Units. There are
as many capture units as Neurons and Pattern Generators in
the system to allow for the complete system state to be read
from the device. This chain is connected to the external bus so
the user can scan in all the neuron control data in one go. This

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

8 | P a g e

unit is also configured with a single 8-bit value representing
the input address.

1) Address Bus Control Unit

The address control unit is essentially a counter that moves
through all the addresses on the bus in sequence. The address
control unit begins the sequence after the rising edge of the
Neuron Clock, beginning at address zero (where nothing
happens, this also allows setup time for the logic). The address
controller continues through the address sequence until it
reaches the maximum address specified by the 8-bit
configuration word. The Configuration of an upper limit
means that the unit does not exhaustively run through the
address space when fewer neurons than the system maximum
are in use.

IV. TEST SET-UP
Here we design a test bench in which to test the PVNA

system as described above. The system was tested on a Xilinx
Virtex 5 110T FPGA on a Digilent ML505 development
board. Communication between the PC and the FPGA was
supervised by a Cypress CY7C76300 EZ-Host USB controller
which was integrated onto the development board.
Configuration data was downloaded from an ASCII file
containing hand-coded configuration data. Output data was
captured using a similar program. Every millisecond the
Cypress Controller processor would read the neuron activity
data (at the same time programming the enable data since it is
an SPI based system). The PVNA was configured with 100
Neuron, 16 Pattern Generators and 200 Synapses.

Fig 10: Synapse Configuration Example

V. DESIGN EXAMPLE: ROBO. C. ELEGANS
To demonstrate the operation of our model at a network

level we present simulations of the locomotory system of the
nematode C. elegans on the PVNA. The structure of the C.

elegans locomotory system is regular and there are very few
variations of its structure from animal to animal within the
species. We aim to reproduce the activity seen in our previous
work using the VHDL Neuron model and library [1-3] using
the PVNA that we have designed in this paper. In total there
are 86 neurons and 180 synapses in the circuit originally
devised by Claverol [19] and modified in our previous work
[3]. The circuit is based closely on the topology given in
White et al. [21, 22].There are six different types of neuron
and four different types of synapse within the model, each
with separate parameter sets. This will use 80 Neurons, 6
Pattern Generators, 180 Synapses and 86 Neuron Control and
Output Capture units. The C. elegans model was run for 5
seconds and the data was captured by the PC. The
configuration phase plot in Fig 12 shows a 1 millisecond time-
course of the configuration signals Config_Clock and
Config_In. The black rectangles represent activity on the
signal lines. Note that this activity was at high frequency
(approx. 100MHz for the clock line, SCLK) so the individual
transitions cannot be seen easily. We can clearly see the data
being transferred over the input line (SDI). The gaps where
the line is held low correspond to unused sections of the
PVNA (since the circuit did not use all the resources available
in the PVNA system).

The result of the 5 second simulation is shown in Fig 11.
For clarity we only display the muscle outputs, although the
outputs of each neuron in the system were available from the
test bench. The first 10 signals, labelled MD0 to MD9,
represent the dorsal muscle cells. The lower 10 signals,
labelled MV0 to MV9, represent the ventral muscle cells.
Vertical lines are drawn every 500 milliseconds on the x-axis.
Contraction of the muscle is shown by a train of pulses (each
pulse is a contraction event) on each trace.

Activity begins on the dorsal side at the head (MD0) and
propagates steady down through the dorsal muscles reaching
the tail end (MD9) in approximately 2900 milliseconds.

Fig 11: C. elegans Locomotion Simulation on the PVNA

When the wave of contraction reaches around halfway
down the dorsal side (at 1200ms) the foremost ventral muscle
(MV0) begins to contract. This contraction has the effect of
silencing the muscle MD0 on the opposite side of the body via
contralateral inhibition. Steadily the activity moves down the
ventral side. Each time an additional muscle becomes active it

From Neuron
Bus

To Synapse
Bus

Synapse 1

Synapse 2

Synapse 3

Synapse 4

Synapse 5

Synapse 6

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

9 | P a g e

has the effect of silencing the corresponding muscle on the
opposite side of the body,giving rise to the sinusoidal wave
pattern (much like the way a snake moves) moving down the
body driving muscles and generates a forward force to drive
the animal forward. After 2400ms activity is triggered again
on the dorsal side (MD0) which silences the corresponding
ventral muscle (MV0) on the opposite side of the body via the
contralateral inhibition. This activity matches up well with our
previous work with the VHDL neuron model [1-3] and with
the work by Claverol [15, 19] on which our model is based.

VI. DISCUSSION

This paper has shown that it is possible to modify the
original VHDL neuron model [1-3] to build a generic neuron
device that can be configured to behave in any way that the
user desires. Neurons in the network can be enabled or
disabled on demand therefore a user can virtually ablate
neurons while the system is running.

A. Device Logic Usage
In this paper we have designed a programmable VHDL

neuron device consisting of 100 neuron, 16 pattern generators,
200 synapses, 256 enable units, 256 neuron activity units and
an address bus width of 8 bits. Synthesis resulted in the
following device usage figures: 53,020 D-Type flip-flops and
46,506 LUTs. On a Virtex 5 110T device this represents
67.28% of the available LUTs used and 75.31% of the
available flip-flops used. Today’s technology provides devices
substantially larger than the Virtex 5 110T, but this device is
sufficient to illustrate our design with a meaningful example.
The PVNA architecture scales to any commercially available
allowing the simulation of larger networks on a larger device
however the maximum size is determined by the maximum
clock speeds as well as the physical limitations of the device.

Table IV

Synthesis O/P Max Clock Frequencies for each bus

Clock Signal Max. Frequency
System Clock (Neuron/Synapse

Clock) 9.884MHz

Internal Bus Clock 187.336MHz
Configuration Bus Clock 1162.791MHz

External Bus 1024.590MHz

B. Device Clock Limits
The data in Table IV shows the maximum clock

frequencies for the various buses in the PNA for the Virtex 5
platform. The external bus clocks can run at over 1 GHz,
subject to PCB and clock signals of sufficient quality. The
neuron clock is limited to 9.8 MHz; this is due to propagation

delay in the synapse input link. If all the synapse inputs were
linked together into a huge synapse then an activation signal
would have to propagate through all the synapse inputs to get
to the last one in the chain. If the number of synapses
connected to a single neuron is reasonable (e.g. 3-5 in the
C.elegans model) the actual possible neuron clock frequency
would be higher than those values reported in Table IV. For
example in the C. elegans design no synapses capable of
concurrent activation are required, so this delay is not a
problem and the neurons could be run at a much higher
frequency if a faster than real time performance was desired.
The Internal Neuron/Synapse bus can run much faster

therefore the system could support more neurons / synapses.

C. Comparison with Previous Work
The simulation results in Sec V. show that the PVNA is

functionally equivalent to the MBED neuron model [19] and
the VHDL Neuron Model [1-3] when tested on the C. elegans
locomotory behaviour. Claverol et al [13, 17] simulated the
piriform cortex comprising Ο 10! neurons, using a 350MHz
PC. These experiments randomly stimulated the network and
took 0.9s for each millisecond of simulation. We can
calculate the processing time per simulated second
(SS)(𝑆!"#$𝑆!"!!!)for the MBED piriform cortex model which is
900s (SS) 𝑆!"#$𝑆!"#!! . Next if we divide this figure by the
number of neurons in the network we get the processing time
per neuron per simulated second (SSN)
(𝑆!"#$𝑆!"#!! 𝑁!"#$%&'!!) for the simulator. The MBED
performance figure is thus 9.0mSSN. In our VHDL neuron C.
elegans we used a network with O(102) neurons in real-time at
a clock rate of 1MHz. Since our model runs in real time,
runtime is equal to simulation time & PVNA runs at 10mSSN.

This performance metric shows that the MBED platform
has a better simulation rate than our proposed VHDL
hardware platform. Two contributing factors are: 1) we use a
slower clock than the hardware is capable of; & 2) each
simulated neuron and synapse requires dedicated hardware.

However, although we chose to run our simulations in
real-time, this does not approach the limits of the hardware.
Specifically, as noted in Sec VI-B, the neuron clock could be
run at 9MHz under the most general synaptic constraints or
186MHz when synapse daisy-chaining unused so that the
device performance is then limited by the bus clock. At this
neuron clock frequency one second of simulated time would
take 5.4ms, and therefore gives 54uSSN. Bringing Claverol’s
MBED result up to date from the 350MHz processor used,
present processor clocks run at approximately 3GHz.
Assuming a linear increase in performance (which can be only
used as a rough guide since architecture improvements may
have increased performance beyond that of linear scaling) the

Fig 12: Configuration Phase

Intelligent Systems Conference 2017

7-8 September 2017 | London, UK

10 | P a g e

performance figures could be 8-9 times better. The PVNA
therefore operates approx.. 20x faster than the MBED model.

We used a medium-sized FPGA sufficient to simulate the
C. elegans locomotion network. Larger devices could support
larger networks (we estimate around 720 neurons and 1200
synapses on the largest Virtex 6 device). Our current design
uses a specific block of hardware for each simulated neuron
and synapse. This is akin to the way that an FPGA maps logic
functions onto a LUT. This mapping limits the size of network
that we can simulate.

However, as noted above the 1MHz frequency we used is
much slower than the frequency at which many of today's
digital systems run. Accordingly, one may pose the question:
is it possible to better utilise the processor time? With our
proposed design such an approach is entirely feasible: we can
load parameters into each neuron, process a single "clock
cycle", and write the result back to memory. Provided we do
not overload the system with neurons or synapses it can
provide simulation in real-time.

VII. CONCLUSION

In this paper we have demonstrated the steps required to
design and build a reprogrammable architecture suitable for
real-time simulation of neuronal aggregates. The system was
based on our existing VHDL neuron model and library [1,2,3].
A small programmable neuron device was designed in VHDL
and used to simulate the locomotion system of the nematode
C. elegans. Results were successfully validated against our
VHDL neuron model [1-3]. This architecture is much more
flexible than our previous fixed architecture [3] since it
require no working knowledge of VHDL is required, instead,
the user simply has to define the neuron and synapse
parameters to be loaded into the design. The simulation was a
post place and route timing model and so simulated all the
relevant propagation delays in the system.

VIII. REFERENCES

[1] J. A. Bailey, P. R. Wilson, A. D. Brown et al., “Behavioral
Simulation of Biological Neuron Systems using VHDL and
VHDL-AMS,” IEEE Behavioral modeling and simulation
conference proceedings 2007, September 2007, 2007.

[2] J. A. Bailey, P. R. Wilson, A. D. Brown et al., “Behavioural
Simulation and Synthesis of Biological Neuron Systems using
VHDL,” IEEE Behavioral modeling and simulation conference
proceedings 2008, 2008.

[3] J. A. Bailey, R. Wilcock, P. R. Wilson et al., “Behavioral
simulation and synthesis of biological neuron systems using
synthesizable VHDL,” Neurocomputing, vol. 74, no. 14-15, pp.
2392-2406, 2011.

[4] M. Sekerli, and R. J. Butera, "An implementation of a simple
neuron model in field programmable analog arrays." pp. 4564-
4567.

[5] P. Rocke, B. McGinley, F. Morgan et al., "Reconfigurable
Hardware Evolution Platform for a Spiking Neural Network
Robotics Controller Reconfigurable Computing: Architectures,
Tools and Applications," Lecture Notes in Computer Science P.

Diniz, E. Marques, K. Bertels et al., eds., pp. 373-378: Springer
Berlin / Heidelberg, 2007.

[6] T. J. Koickal, L. C. Gouveia, and A. Hamilton, “A programmable
spike-timing based circuit block for reconfigurable neuromorphic
computing,” Neurocomputing, vol. 72, no. 16-18, pp. 3609-3616,
2009.

[7] G. C. Cardarilli, C. D'Alessandro, P. Marinucci et al., "VLSI
implementation of a modular and programmable neural
architecture." pp. 218-225.

[8] R. J. Vogelstein, U. Mallik, J. T. Vogelstein et al., “Dynamically
Reconfigurable Silicon Array of Spiking Neurons With
Conductance-Based Synapses,” Neural Networks, IEEE
Transactions on, vol. 18, no. 1, pp. 253-265, 2007.

[9] J. Harkin, F. Morgan, S. Hall et al., "Reconfigurable platforms and
the challenges for large-scale implementations of spiking neural
networks." pp. 483-486.

[10] F. Moreno, J. Alarcon, R. Salvador et al., “Reconfigurable
Hardware Architecture of a Shape Recognition System Based on
Specialized Tiny Neural Networks With Online Training,”
Industrial Electronics, IEEE Transactions on, vol. 56, no. 8, pp.
3253-3263, 2009.

[11] E. Z. M. Haitham Kareem Ali, “Design Artificial Neural Network
Using FPGA,” International Journal of Computer Science and
Network Security, vol. 10, no. 8, pp. 88-92, August 2010, 2010.

[12] F. Morgan, S. Cawley, B. McGinley et al., "Exploring the
evolution of NoC-based Spiking Neural Networks on FPGAs." pp.
300-303.

[13] W. Rall, and H. Agmon-Snir, "Cable Theory for Dendritic
Neurons," Methods in Neuronal Modeling: From Ions to
Networks, C. Koch and I. Segev, pp. 27 - 92, MIT Press, 1998.

[14] A. L. Hodgkin, Ionic movements and electrical activity in giant
nerve fibres, 1958.

[15] E. T. Claverol, “An event-driven approach to biologically realistic
simulation of neural aggregates,” Electronics & Computer Science
Dept., University of Southampton, UK, Southampton, 2000.

[16] E. T. Claverol, A. D. Brown, and J. E. Chad, “Discrete simulation
of large aggregates of neurons,” Neurocomputing, vol. 47, pp. 277
- 297, 2002.

[17] E. T. Claverol, A. D. Brown, and J. E. Chad, “A Large-Scale
Simulation of the Piriform Cortex by a Cell Automaton-Based
Network Model,” IEEE Trans. on Biomedical Engineering, vol.
49, no. 9, pp. 921 - 934, September, 2002.

[18] E. T. Claverol, A. D. Brown, and J. E. Chad, “Scalable cortical
simulations on Beowulf architectures,” Neurocomputing, vol. 43,
pp. 307 - 315, 2002.

[19] E. T. Claverol, R. C. Cannon, J. E. Chad et al., Event based neuron
models for biological simulation. A model of the locomotion
circuitry of the nemotode C. elegans: World Scientific Engineering
Society Press., 1999.

[20] S. Modi, P. R. Wilson, A. D. Brown et al., "Behavioral Simulation
of Biological Neuron Systems in SystemC." pp. 31 - 36.

[21] J. G. White, E. Southgate, J. N. Thomson et al., “Structure of
Ventral Nerve Cord of Caenorhabditis-Elegans,” Philosophical
Transactions of the Royal Society of London Series B-Biological
Sciences, vol. 275, no. 938, pp. 327 - 348, 1976.

[22] J. G. White, E. Southgate, J. N. Thomson et al., “The Structure of
the Nervous System of the Nematode Caenorhabditis elegans,”
Philiosophical Transactions of the Royal Society of London., vol.
314, no. 1165, pp. 1 - 340, November, 1986.

