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A Reconfigurable Architecture for Real-Time Digital 
Simulation of Neurons 

Abstract— A major problem in computational neuroscience is 
that large scale biologically realistic neuron simulations require 
massive amounts of computing resources, which in turn requires 
large amounts of power.  This poses a significant problem when 
we look toward a potential future where machines have “silicon 
brains”. In this paper we build on previous VHDL neuron work 
by building a programmable neuron device housing 116 neurons 
and 200 synapses to perform realistic, real-time simulations of 
neuron networks in hardware. This flexible architecture is 
loaded with the C. elegans locomotion system which 
demonstrates that the behavior of the programmable 
architecture is the same as the behavior of the design from 
previous work. 

Keywords— Neuron, Network, Hardware, Programmable, 
Simulation 

I. INTRODUCTION 
Modeling and simulation pipelines have become 

invaluable tools in the electronics industry. They allow 
designs to be tested prior to fabrication, saving both time and 
money. Neuron modeling is important when exploring the 
nervous system. It complements existing ‘wet work’ 
techniques by allowing researchers to test theories of neuron 
behavior or neuron connectivity and match them to results 
obtained in biological experiments. 

The uptake of any modelling or simulation tool is often 
dictated by its accessibility. Using a hardware description 
language (HDL) is an efficient, effective and well established 
way to describe modular electronic models. However these 
models often require those in the engineering or neuroscience 
community to understand VHDL or Verilog before they may 
utilize such tools. 

A different approach is to give the user a system of un-
configured modeling blocks to which they must assign 
parameters. This added level of abstraction hides the physical 
implementation of the model from the end user whilst giving 
them significant control over the systems structure and 
operation. In this paper we show a programmable hardware 
device for modeling neurons that is more accessible to both 
engineers and non-engineers by providing an interface to a 
higher level of abstraction. We demonstrate the system using 
the locomotion system of the Caenorhabditis Elegans (C. 
elegans) nematode and evaluate the performance of the 
system.  

II. PREVIOUS WORK

Research into hardware implementations of neuron models 
includes a wide variety of approaches. These range from 
analog equivalent circuit models that attempt to mimic the 
real-time behavior of individual neurons to large scale 
aggregates of simple spiking neurons with no physical 
behavior other than timing. The work in this area can be 
broadly divided into three general areas: pure analog 
implementation; mixed-signal implementation; and pure 
digital implementation. 

There are a series of pure analog implementations of 
neuron models on Field Programmable Analog Arrays 
(FPAA), such as the simple model by Sekerli and Butera [4], 
and Rocke et al. [5] which uses a spiking model, with 
evolutionary algorithms for optimization. Whilst both run in 
real-time they can only support a relatively low number of 
neurons (< 10)  and very simple neuron models such as the 
Morris-Lecar model [4] or leaky integrate and fire models [5].  
A third, mainly analog implementation, can be found in the 
work by Koickal et al.[6] where a bespoke design of a 
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reconfigurable neuromorphic array is produced using an 
analog VLSI 0.35um CMOS process. This system is able to 
implement spike timing dependent plasticity (STDP) and 
processes neuron signals in the analog domain, while 
transmitting events (such as action potentials) asynchronously 
as discrete-time events. 

Mixed-signal designs are either implemented as VLSI 
systems or a mixture of FPAAs and Field Programmable Gate 
Arrays (FPGAs).  Cardaralli et al [7] use a hierarchical 
modular design with the perceptron model to build a multi-
layer feed forward network of neurons. These are built using a 
bespoke VLSI architecture using D/A and A/D to construct 
digitally programmed sigmoid synapses and neurons using the 
perceptron model.  Vogelstein et al. [8] also design a fully 
integrated custom set of 2400 (60x40) integrate and fire 
neurons in a mixed signal VLSI architecture. The work 
describes a discrete-time model modeling a cell as a single 
compartment. Harkin et al. [9] argue that FPGAs cannot 
accommodate the high levels of inter-neuron connectivity and 
that an implementation using analog synapses and a network 
on a chip is a better approach. 

Moreno et al [10] present a digital approach in which they 
implement the perceptron model (a non-spiking, rate-code 
model), using an FPGA platform. They design VHDL models 
to implement tiny neural networks (TNN) for computer vision. 
Ali et al [11] build a network based around the McCulloch & 
Pitts neuron (M&P) in VHDL on an FPGA. The simple 
neurons are used to build layered feed-forward neural 
networks.  Finally Morgan et al [12] build a digital version of 
the EMBRACE (Emulating biologically-inspired architectures 
in hardware) network on a chip architecture on an FPGA,  
described as EMBRACE FPGA.  

A. Analog vs. Digital Implementation 
Analog systems are better suited to modeling real-time 

neurons at biophysical levels, exhibiting fine-grained 
resolution, such as seen with compartmental models [13] or 
Hodgkin-Huxley models [14]. The trade-off with a pure 
analog implementation is that very few nervous system 
components (Neurons/Synapses) can be implemented in 
practice. Integrated analog components take up far more 
silicon real estate than their digital counterparts; therefore 
fewer analog components are available. Cardaralli et al [7] 
note that analog architectures have the inherent advantage that 
they are fully parallel and work in real-time. However, full 
analog architectures suffer from larger computational errors 
and are far less efficient for reconfigurable neural networks. 

Rocke et al [5] are able to directly drive small motors for 
the control of robots from the output of the FPAA with very 
little interfacing logic. In a digital design speed control of a 
motor would require D/As or Pulse Width Modulated motor 
control. Although digital implementations are poorly-suited to 
detailed biophysical models unless power-hungry general 
purpose CPUs are used, they are well-suited to simulating 
massive networks using abstract models. If real-time 
performance is needed then hardware multiplexing can be 
used to increase the number of neurons. 

Vogelstein et al [8] capture the advantages of both digital 
and analog implementations with a mixed-signal approach. 
This allows them to implement conductance based synapses, a 
discrete time model of the neuron membrane dynamics and a 
“virtually unlimited” number of synaptic connections. 
Membrane dynamics are implemented in analog VLSI whilst 
synaptic connectivity is implemented in dynamically 
reconfigurable memory. 

B. VHDL Neuron Model 
This paper builds upon previous work on neuronal 

modeling [1,2,[3] which itself builds upon the work by 
Claverol et al [15-19] and the Message-Based Event Driven 
(MBED) neuron model (originally written in C, MATLAB 
and Yorick).  This approach breaks down the functionality of 
the neuron into a set of distinct, but interconnected, state 
machines. 

Fig 1:  An overview of the MBED Neuron Model with 
the individual component blocks labeled. 

An overview of the MBED model is shown in Fig 1. Each 
block (synapses, threshold, burst generation and oscillator) 
capture the functionality of a different component of the 
neuron [15, 16]: the threshold block captures the summing 
behavior of the dendrites; while the burst generator captures 
the behavior of the axon hillock and the active membrane of 
the axon. The oscillator block allows the construction of 
pattern generators to drive activity in the nervous system. 
Communication between blocks is achieved through 
unidirectional message passing channels which are depicted as 
arrows in Fig 1. Some message channels originate and end in 
the same block, others start and terminate in different blocks. 
The model itself is computationally efficient since it is event-
driven and whilst abstract, contains a logical mapping between 
substructures of biological neurons and an abstract computer 
model. Secondly, the model is readily modularized [20], 
allowing several different implementations of the same block 
to co-exist within the same system, each with different 
behaviours. Finally, the event-driven nature of the model 
makes it well suited for implementation in digital hardware 
with real-time simulation an attainable goal. 

C. VHDL Neuron Model Detail 
An overview of the MBED neuron model is shown in Fig 

1: where each neuron can be constructed from a Threshold 
Block, Burst Block and Oscillator Block. There are also 
blocks that specifically model the operation of the synapse. 

Threshold Block

Oscillator

Burst Block

Off

On

Ref

Synapses

Neuron
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The Threshold Block sums the synaptic weights of the 
synapses connected to the neuron and controls the Burst 
Block. The Burst Block is responsible for generating action 
potentials of the correct length, timing and separation. The 
Oscillator Block is an alternative means of activating the 
Burst Block and is a simple timer that activates the Burst Block 
at a fixed frequency.   

 
Fig 2: Neuron Block Diagram 

 
Fig 3: Pattern Generator Block Diagram 

Our implementation is used to create two network 
components for different purposes. The first model, Neuron, 
is built from a Threshold Block and Burst Block (see Fig 2). 
This component encapsulates an abstract representation of 
the biological neuron, receiving inputs from synapses, 
summing them and firing action potentials when the sum of 
the active synapses is above an excitatory threshold. The 
second model, Pattern Generator (Fig 3), is built from an 
Oscillator Block and a Burst Block. Lastly, the synapse 
model is built from timers that time the synaptic delay and 
synaptic duration, thus modeling the release of 
neurotransmitter across the synapse. For a more detailed 
description of the underlying implementation see [3] 

III. DESIGNING THE PROGRAMMABLE NEURON ARRAY 

A. Introduction 
FPGAs are made up of logic blocks that may be 

individually configured and then connected together to create 
most types of digital logic devices. In FPGAs the basic 
configurable elements are logic blocks and their connections.  
We propose to borrow this concept but use neurons and 
synapses as the fundamental configurable elements. The 
Programmable VHDL Neuron Array (PVNA) shall have a set 
of neuron and synapses in an un-configured state. The 
parameters for each neuron/synapse can be loaded and 
connected however the (end-)user wishes. The system can 

then be run in real-time and the activity of the network can be 
monitored or parameters modified by a PC. 

One limitation with the conventional digital neuron models 
[1-3] is that each neuron requires a dedicated connection to a 
synapse block which in turn has a dedicated connection to 
another neuron. This approach makes the placement of the 
components on the FPGA and the routing (Place & Route 
(P&R)) of connections between the components difficult. A 
synthesis software tool would often fail to successfully place 
and route large networks approaching the maximum size that 
would fit on a suitable FPGA. 

Our proposal is to have two shared buses over which 
neuron/pattern generators communicate with synapses and 
synapses communicate with neurons. This should solve some 
of the complexity problems with routing dedicated 
connections between neuron network components.   

B. Internal Bus Design 
In order to design a PVNA we require three buses. The 

first bus connects neurons with synapses. The second bus is a 
serial configuration bus to program the device. The third bus 
is an external serial I/O that allows an external processor to 
reconfigure neurons and read their output. 

1) Neuron-Synapse Bus (NS-Bus) 

It is important that the NS-Bus appears transparent to the 
neurons and synapses on the bus (i.e., to appear that the 
components are connected through a dedicated channel). To 
keep the system simple, the internal buses were designed on a 
circuit-switched Time Division Multiplexing (TDM) 
principle. In essence this means that each is allocated a fixed-
width time slot on the bus to communicate with synapses, 
although it appears to the neurons and synapses that they are 
communicating simultaneously (The previous work [1-3] use a 
1MHz clock). 

To ensure the bus operation is transparent to the nervous 
system components all bus transactions must take place after 
the rising edge of the 1MHz clock and must be complete 
before the next rising edge of the clock.  This results in a 
TDM frame length of 1µs, although in practice frame time is 
actually,  1𝜇𝑠 − 𝑡!"#$% −   𝑡!!"#, such that setup and hold times 
of the digital logic are not violated. The basic bus design is 
shown in Fig 4, with a set of output units on the left, input 
units on the right with the bus control unit at the top. The bus 
control unit is essentially a counter that loops through the 
addresses from address zero to the value given by the 
max_address configuration parameter. For each output unit, 
when the address on the address bus (shown by the dashed 
line) is equal to the address parameter for the output unit then 
the output of the unit moves from the high impedance state 
and begins driving the data bus (solid black line). 

For the input units when the address on the address bus is 
equal to the address parameter the state of the data bus is 
sampled by the input unit.  Inputs and outputs can be 
disabled by assigning them address zero which means the 
output unit will never drive the bus and the input unit will never 
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sample the bus. In the example in Fig 4, Output A and Input B 
are effectively disabled. It is very important to ensure that the 
address on each output unit is unique (except for address 0) 
since only a single output can drive the bus at any time.  Note 
however that there is no problem with having multiple inputs 
with the same address assignment since multiple devices can 
listen to the bus simultaneously.  

 
Fig 4: Basic Neuron-Synapse Bus Design. Outputs A, B 

and C represent any component of the system driving the 
bus whilst Inputs A, B and C represent components 

reading the bus. 

This leads to a potential issue: neurons can drive multiple 
synapses without problems, but multiple synapses can drive 
only a single neuron, since multiple drivers are not possible on 
the bus at the same time. Our solution to this issue, shown in 
Fig 5, is to daisy-chain the synaptic outputs (dotted 
connections in Fig 5) through adders so the multiple 8-bit 
values are resolved into a single 8-bit value that can be driven 
onto the bus. This link can be disabled if only one synapse is 
connected to the input side of a neuron. The neuron is now the 
single point where all inputs arrive and all outputs are 
generated, which means the maximum address in the system is 
relative to the number of neurons (and pattern generators) in 
the system. 

This first design is based around an 8-bit address bus 
which allows for 255 neurons (address 0 is reserved). 
Accordingly, in order to cycle through all the neurons within 
the TDM frame time the address bus unit frequency should be 
in excess of 255MHz (all bus transactions must be finished 
soon enough so as not to violate the setup times of the digital 
logic).  

 
Fig 5: Linked Synapse Structure 

2) Configuration Bus 

The configuration bus is used to load new parameters into 
the PVNA. It is a serial interface with clock and data lines.  
Within the device, each component is linked serially. The 
configuration data is loaded simultaneously. The configuration 
can be loaded while the simulation is running. The clock can 
be paused using the Clock Enable input, a new configuration 
loaded, and then the clock can be restarted. This enables a 
basic type of synaptic plasticity to be performed by 
reprogramming the network during operation.   

 
Fig 6: External Serial I/O Bus Structure 

3) External Serial I/O Bus 

The External Serial bus (shown in Fig 6) allows the 
external processor to control which neurons are enabled (i.e., 
neurons can be virtually ablated during operation) and to read 
the neuron activity from the network. It has its own clock 
which is separate from both the main PVNA Internal bus 
clock and main system clock of the PVNA. 

The enable and activity registers are the same length since 
each neuron has both an enable register and an activity 
register. The output of the neurons is sampled on the falling 
edge of the active low chip select signal (not shown in figure). 
The data in the enable registers is written to the neurons on the 
rising edge of the chip select signal. 

Address 
Control Unit

Output A
A = 0

Input A
A = 2

Output B
A = 1

Input B
A = 0

Output C
A = 2

Input C
A = 1

Synapse	  1

Synapse	  2

Synapse	  3

Synapse	  4

From	  Neuron	  Bus To	  Synapse	  Bus
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Neuron	  Control	  Registers
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Clock

Enable	  In
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We have laid out the structures of the buses which will be 
used in the construction of the PVNA. Now we shall go on to 
discuss the construction of the individual components. 

C. PNVA Components 
The PNVA comprises several types of components, 

including Neurons (previously called Neuron 1 [3]), Pattern 
Generators (previously called Neuron 2 [3]), and synapse 
components (described briefly in Section II.C). In addition 
there are Control units for enabling/disabling individual 
neurons, and Output Capture units that allow one to observe a 

neuron’s output. 

1) Neuron 

This is the core of all nervous system models and is 
intended to embody the behavior of a real biological neuron at 
an abstract level. Referring to the block diagram in Fig 2, the 
Neuron model consists of just the threshold and burst blocks. 

Synapses connect to the threshold block which sums them 
and compares them to the excitatory and inhibitory thresholds 
to determine whether the burst block should fire action 
potentials.  The important difference between the PVNA and 
our previous work [1-3] is that the summing is computed 

implicitly by the PVNA synapse structure. Specific details on 
the operation of the Neuron model can be found in our 

previous work [1-3].  

The layout of the modified Neuron component is 
shown in Fig 7. The dashed lines show the connections for 
the configuration system; the dotted line shows the 
connection to the enable bus; and the solid lines show the 
connections to and from the Synapse and Neuron Buses. 
The Neuron model is shown in the middle of this diagram 
with the additional logic to support the Neuron structure in 
the PVNA. The input units copy the value from each of 
the buses into the neuron structure when the address on 

the bus matches the address programmed into the 
controller. 

The output unit drives the value from the output of the 
Neuron unit onto the bus when the address on the bus 
matches the address in the controller. The addresses from 
the input and output units are the same and are unique for 
each neuron. The controller for each neuron stores the 
configuration data in a set of registers for each neuron. 
Data is shifted in serially and the serial configuration out 
signal allows the neurons to be daisy-chained together. 
The configuration word for Neuron is 64 bits long and 
should be presented MSB first. The assignments of 

sections of the word are shown in Table I. 

To	  Neuron	  
BusNeuron	  

Controller

Output	  UnitInput	  Unit	  	  1From	  Synapse	  
Bus

Input	  Unit	  2From	  Enable	  
Bus

Serial	  Configuration	  In	   Serial	  Configuration	  Out	  

Fig 7: Modified Neuron Structure 

To Neuron 
Bus

Pattern 
Generator

Controller

Output 
UnitInput UnitFrom Enable 

Bus

Serial Configuration In Serial Configuration Out 

Fig 8: Modified Pattern Generator 
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This PVNA component can be used to provide patterns 
of inputs to a network of neurons. Referring to the block 
diagram in Fig 3, the Pattern Generator model consists of 
oscillator and burst blocks. The oscillator sends regular 
pulses to the burst block which causes an action potential 
to be fired. The layout of the modified pattern generator 
component is shown in Fig 8. The dashed lines show the 
connections for the configuration system, the dotted line 
shows the connection to the enable bus, and the solid lines 
show the connections to and from the Synapse and Neuron 
Buses. The pattern generator model is shown in the middle 
of this diagram with the additional logic to support the 
Neuron 2 structure in the PVNA. 

Table I 

Configuration word for Neuron 1 

Bits Length Function 
7 – 0 8 Address 
15 – 8 8 Ex. Threshold 
23 – 16 8 Inh. Threshold 
32 – 24 8 Burst Length 
47 – 32 16 AP. Time 
63 - 48 16 Ref. Time 

2) Pattern Generator 

The controller, input unit and output unit function as 
described for the Neuron model in the previous section. 
The configuration word for Neuron 2 is 113 bits long and 
the assignments of sections of the word are shown in 
Table II. The configuration word should also be presented 
MSB first. 

Table II 

Configuration word for Pattern Generator 

Bit Number Length Function 
7 – 0 8 Address 
8 1 Enable Phase Offset 
40 - 9 32 Period 
72 - 41 32 Phase Offset 
80 - 73 8 Burst Length 
96 - 81 16 AP. Time 
112 - 97 16 Ref. Time 

 

3)   Synapse 

The synapse is the structure through which neurons 
communicate. When an action potential arrives down the axon 
of a biological nerve it triggers the release of a 
neurotransmitter across the synapse. The time of transmission 
down the axon and the neurotransmitter crossing the synapse 
can be thought of as a delay. This is modeled as the parameter 
tdel. Next the neurotransmitter affects the receiving neuron by 
lowing or raising the membrane potential through the opening 
of selective ion channels. The change in membrane  potential 
is defined by the parameter wsyn. This effect is temporary, 
lasting for a duration defined by the parameter tdur. If 
successive action potentials arrive at the synapse while it is 

already in delay mode or is active then it should be possible 
for it to be triggered again to release more neurotransmitter.  

The synapse model in this work is closely based on the 
synapse model in our previous work [1-3].  The layout of the 
modified Synapse component is shown in Fig 9. The dashed 
lines show connections between the controller for the synapse 
and the solid lines show data connections. The synapse block 

To Synapse 
Bus

Synapse

M
UX

Adder

Synapse Output 
Link In

Zero

Controller

Output Unit

Synapse Output Link 
Out

M
UX

Input Unit
From Neuron 

Bus

AND

Busy 
Signal

Synapse Input 
Link Out

Synapse Input 
Link In

Serial 
Configuration In 

Serial 
Configuration Out 

Fig 9: Modified Synapse Design 
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is shown in the middle of the diagram surrounded by the 
supporting logic which makes its integration into the PVNA 
possible. 

The input unit copies the value from the neuron bus when 
the address on the bus is the same as the value specified by the 
controller. The address value in the input and output unit will 
be different unless the neuron synapses upon itself. Several 
synapses may receive action potentials from a single neuron 
and therefore the address in this unit need not be unique. 

There are several modes of operation for the synapse. If 
only a single synapse is connected to the input of a single 
neuron then the output unit drives the synapse bus with the 
value from the synapse block output. The address in the output 
unit is unique on the synapse bus since only one neuron can 
receive a value from the synapse at any one time. If several 
synapses drive a single neuron then the Synapse output link 
in/out is used to daisy chain synapses through the adder. In 
this case only the last synapse in the chain is set to drive the 
synapse bus, while all the other synapses have their output 
unit address set to zero, ensuring they never drive the bus 
themselves. 

Several synapses may be arrayed together to support 
multiple concurrent activations. The synapses only need to be 
arrayed when the presynaptic neuron can activate the synapse 
while the synapse is already active such that condition (1) is 
met. 

𝑇!" + 𝑇  !"# <   𝑇!"#$% +   𝑇!"#  (1) 

In this case multiple synapses can have their inputs 
chained together through the synaptic input link in and 
synaptic input link out connections. If the first synapse in the 
chain is already processing a synaptic event then the action 
potential is passed along to the next one in the chain and so 
on. Only the first synapse in the chain will have an address 
value other than zero set in the input unit. 

An example of a configuration of several synapses is shown 
in Fig 10. The first two synapses (1 & 2) are independent of 
each other, and thus their input and output links are disabled. 
Their outputs are connected to separate neurons that only have 
a single input. Synapse 3 and 4 may be driven by different 
neurons at their inputs but have their outputs tied together. 
The output unit of synapse 3 is disabled by setting its address 
to zero. Through the output link the synapse 3 output is added 
to the synapse 4 output. Synapse 4’s output therefore 
represents the total value of both 3 & 4. This mode is used 
when a neuron receives inputs from several different neurons. 
Synapse 5 & 6 are set up for concurrent activation by the same 
neuron. Only the first input in the chain is enabled whilst the 
rest have their addresses set to zero so never sample the bus 
directly. The input link is enabled so if synapse 5 is already 
active the activation is passed to synapse 6. The outputs of 
synapse 5 & 6 are chained so that the outputs of all the 
chained synapses are aggregated into a single value which is 
passed to the neuron specified in the output unit. While the 
synapses have to be physically adjacent this is transparent to 
the neurons and synapses.  

As with the Neuron and Pattern-Generator the controller 
stores the configuration word for the synapse. The 
configuration word for the Synapse is 90 bits long and the 
assignments of sections of the word are shown in Table III. In 
the Neuron and Pattern generator, the word should be 
presented MSB first. 

Table III 

Configuration Word for Synapse 

Bit 
Number 

Length Function 

7 - 0 8 Input Address 
15 – 8 8 Output Address 
23 – 16 8 Synaptic Weight 
55 – 24 32 Synaptic Delay 
87 - 56 32 Synaptic Duration 
88 1 Input Link 
89 1 Output Link 

 

1) Neuron Activity Capture 

Thus far we have presented a programmable structure for 
the neurons and synapses but as of yet there is no interface to 
the external world that provides a method to observe activity 
within the device. This function is performed by Neuron 
Output Capture Units. The structure of this is built from 
components we have seen before: a controller with a serial 
interface provides the bus address to the input unit. The input 
unit updates a 1-bit register when the neuron with the 
matching address is driving the bus. A second serial bus 
allows the user to scan out the current data in the 1-bit 
register. There are as many capture units as Neurons and 
Pattern Generators in the system to allow for the complete 
system state to be read from the device. These units are daisy- 
chained through the external bus so the user can scan out all 
the neuron data in one go. This unit is configured with a single 
8-bit value representing the input address. 

1) Neuron Control Unit 

In addition to being able to capture the current state of the 
neuron outputs it is useful to be able to control the neurons 
externally. The Neuron Control Unit allows the user to enable 
or disable any neuron or pattern generator in the network on 
the fly. A controller with a serial interface provides the bus 
address to an output unit. When the address on the address bus 
matches that provided by the controller, the output unit drives 
the enable bus with the value held in the 1-bit register. This is 
the received by the input unit at the neuron connected to the 
enable bus. The content of the 1-bit register is shifted into the 
neuron enable register via a serial external bus. The bus is 
daisy-chained through all the Neuron Control Units. There are 
as many capture units as Neurons and Pattern Generators in 
the system to allow for the complete system state to be read 
from the device. This chain is connected to the external bus so 
the user can scan in all the neuron control data in one go. This 
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unit is also configured with a single 8-bit value representing 
the input address. 

1) Address Bus Control Unit 

The address control unit is essentially a counter that moves 
through all the addresses on the bus in sequence. The address 
control unit begins the sequence after the rising edge of the 
Neuron Clock, beginning at address zero (where nothing 
happens, this also allows setup time for the logic). The address 
controller continues through the address sequence until it 
reaches the maximum address specified by the 8-bit 
configuration word. The Configuration of an upper limit 
means that the unit does not exhaustively run through the 
address space when fewer neurons than the system maximum 
are in use.  

IV. TEST SET-UP 
Here we design a test bench in which to test the PVNA 

system as described above. The system was tested on a Xilinx 
Virtex 5 110T FPGA on a Digilent ML505 development 
board. Communication between the PC and the FPGA was 
supervised by a Cypress CY7C76300 EZ-Host USB controller 
which was integrated onto the development board. 
Configuration data was downloaded from an ASCII file 
containing hand-coded configuration data. Output data was 
captured using a similar program. Every millisecond the 
Cypress Controller processor would read the neuron activity 
data (at the same time programming the enable data since it is 
an SPI based system). The PVNA was configured with 100 
Neuron, 16 Pattern Generators and 200 Synapses. 

 
Fig 10: Synapse Configuration Example 

V. DESIGN EXAMPLE: ROBO. C. ELEGANS 
To demonstrate the operation of our model at a network 

level we present simulations of the locomotory system of the 
nematode C. elegans on the PVNA. The structure of the C. 

elegans locomotory system is regular and there are very few 
variations of its structure from animal to animal within the 
species. We aim to reproduce the activity seen in our previous 
work using the VHDL Neuron model and library [1-3] using 
the PVNA that we have designed in this paper. In total there 
are 86 neurons and 180 synapses in the circuit originally 
devised by Claverol [19] and modified in our previous work 
[3]. The circuit is based closely on the topology given in 
White et al. [21, 22].There are six different types of neuron 
and four different types of synapse within the model, each 
with separate parameter sets. This will use 80 Neurons, 6 
Pattern Generators, 180 Synapses and 86 Neuron Control and 
Output Capture units. The C. elegans model was run for 5 
seconds and the data was captured by the PC. The 
configuration phase plot in Fig 12 shows a 1 millisecond time-
course of the configuration signals Config_Clock and 
Config_In. The black rectangles represent activity on the 
signal lines. Note that this activity was at high frequency 
(approx. 100MHz for the clock line, SCLK) so the individual 
transitions cannot be seen easily. We can clearly see the data 
being transferred over the input line (SDI). The gaps where 
the line is held low correspond to unused sections of the 
PVNA (since the circuit did not use all the resources available 
in the PVNA system). 

The result of the 5 second simulation is shown in Fig 11. 
For clarity we only display the muscle outputs, although the 
outputs of each neuron in the system were available from the 
test bench. The first 10 signals, labelled MD0 to MD9, 
represent the dorsal muscle cells. The lower 10 signals, 
labelled MV0 to MV9, represent the ventral muscle cells. 
Vertical lines are drawn every 500 milliseconds on the x-axis. 
Contraction of the muscle is shown by a train of pulses (each 
pulse is a contraction event) on each trace. 

Activity begins on the dorsal side at the head (MD0) and 
propagates steady down through the dorsal muscles reaching 
the tail end (MD9) in approximately 2900 milliseconds. 

 
Fig 11: C. elegans Locomotion Simulation on the PVNA 

When the wave of contraction reaches around halfway 
down the dorsal side (at 1200ms) the foremost ventral muscle 
(MV0) begins to contract. This contraction has the effect of 
silencing the muscle MD0 on the opposite side of the body via 
contralateral inhibition. Steadily the activity moves down the 
ventral side.  Each time an additional muscle becomes active it 
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has the effect of silencing the corresponding muscle on the 
opposite side of the body,giving rise to the sinusoidal wave 
pattern (much like the way a snake moves) moving down the 
body driving muscles and generates a forward force to drive 
the animal forward. After 2400ms activity is triggered again 
on the dorsal side (MD0) which silences the corresponding 
ventral muscle (MV0) on the opposite side of the body via the 
contralateral inhibition. This activity matches up well with our 
previous work with the VHDL neuron model [1-3] and with 
the work by Claverol [15, 19] on which our model is based.  

VI. DISCUSSION 

This paper has shown that it is possible to modify the 
original VHDL neuron model [1-3] to build a generic neuron 
device that can be configured to behave in any way that the 
user desires. Neurons in the network can be enabled or 
disabled on demand therefore a user can virtually ablate 
neurons while the system is running.  

A. Device Logic Usage 
In this paper we have designed a programmable VHDL 

neuron device consisting of 100 neuron, 16 pattern generators, 
200 synapses, 256 enable units, 256 neuron activity units and 
an address bus width of 8 bits. Synthesis resulted in the 
following device usage figures: 53,020 D-Type flip-flops and 
46,506 LUTs. On a Virtex 5 110T device this represents 
67.28% of the available LUTs used and 75.31% of the 
available flip-flops used. Today’s technology provides devices 
substantially larger than the Virtex 5 110T, but this device is 
sufficient to illustrate our design with a meaningful example.  
The PVNA architecture scales to any commercially available 
allowing the simulation of larger networks on a larger device 
however the maximum size is determined by the maximum 
clock speeds as well as the physical limitations of the device.  

Table IV 

Synthesis O/P Max Clock Frequencies for each bus  

Clock Signal Max. Frequency 
System Clock (Neuron/Synapse 

Clock) 9.884MHz 

Internal Bus Clock 187.336MHz 
Configuration Bus Clock 1162.791MHz 

External Bus 1024.590MHz 

B. Device Clock Limits 
The data in Table IV shows the maximum clock 

frequencies for the various buses in the PNA for the Virtex 5 
platform. The external bus clocks can run at over 1 GHz, 
subject to PCB and clock signals of sufficient quality. The 
neuron clock is limited to 9.8 MHz; this is due to propagation 

delay in the synapse input link. If all the synapse inputs were 
linked together into a huge synapse then an activation signal 
would have to propagate through all the synapse inputs to get 
to the last one in the chain. If the number of synapses 
connected to a single neuron is reasonable (e.g. 3-5 in the 
C.elegans model) the actual possible neuron clock frequency 
would be higher than those values reported in Table IV. For 
example in the C. elegans design no synapses capable of 
concurrent activation are required, so this delay is not a 
problem and the neurons could be run at a much higher 
frequency if a faster than real time performance was desired. 
The Internal Neuron/Synapse bus can run much faster 

therefore the system could support more neurons / synapses.  

C. Comparison with Previous Work 
The simulation results in Sec V. show that the PVNA is 

functionally equivalent to the MBED neuron model [19] and 
the VHDL Neuron Model [1-3] when tested on the C. elegans 
locomotory behaviour. Claverol et al [13, 17] simulated the 
piriform cortex comprising Ο 10!   neurons, using a 350MHz 
PC.  These experiments randomly stimulated the network and 
took 0.9s for each millisecond of simulation.  We can 
calculate the processing time per simulated second 
(SS)(𝑆!"#$𝑆!"!!! )for the MBED piriform cortex model which is 
900s (SS) 𝑆!"#$𝑆!"#!!   . Next if we divide this figure by the 
number of neurons in the network we get the processing time 
per neuron per simulated second (SSN) 
(𝑆!"#$𝑆!"#!! 𝑁!"#$%&'!! ) for the simulator. The MBED 
performance figure is thus 9.0mSSN. In our VHDL neuron C. 
elegans we used a network with O(102) neurons in real-time at 
a clock rate of 1MHz. Since our model runs in real time, 
runtime is equal to simulation time & PVNA runs at 10mSSN. 

This performance metric shows that the MBED platform 
has a better simulation rate than our proposed VHDL 
hardware platform. Two contributing factors are: 1) we use a 
slower clock than the hardware is capable of; & 2) each 
simulated neuron and synapse requires dedicated hardware. 

However, although we chose to run our simulations in 
real-time, this does not approach the limits of the hardware.  
Specifically, as noted in Sec VI-B, the neuron clock could be 
run at 9MHz under the most general synaptic constraints or 
186MHz when synapse daisy-chaining unused so that the 
device performance is then limited by the bus clock. At this 
neuron clock frequency one second of simulated time would 
take 5.4ms, and therefore gives 54uSSN.  Bringing Claverol’s 
MBED result up to date from the 350MHz processor used, 
present processor clocks run at approximately 3GHz. 
Assuming a linear increase in performance (which can be only 
used as a rough guide since architecture improvements may 
have increased performance beyond that of linear scaling) the 

Fig 12: Configuration Phase 
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performance figures could be 8-9 times better.  The PVNA 
therefore operates approx.. 20x faster than the MBED model. 

We used a medium-sized FPGA sufficient to simulate the 
C. elegans locomotion network.  Larger devices could support 
larger networks (we estimate around 720 neurons and 1200 
synapses on the largest Virtex 6 device). Our current design 
uses a specific block of hardware for each simulated neuron 
and synapse.  This is akin to the way that an FPGA maps logic 
functions onto a LUT. This mapping limits the size of network 
that we can simulate. 

However, as noted above the 1MHz frequency we used is 
much slower than the frequency at which many of today's 
digital systems run.  Accordingly, one may pose the question: 
is it possible to better utilise the processor time? With our 
proposed design such an approach is entirely feasible: we can 
load parameters into each neuron, process a single "clock 
cycle", and write the result back to memory.  Provided we do 
not overload the system with neurons or synapses it can 
provide simulation in real-time.  

VII. CONCLUSION

In this paper we have demonstrated the steps required to 
design and build a reprogrammable architecture suitable for 
real-time simulation of neuronal aggregates. The system was 
based on our existing VHDL neuron model and library [1,2,3]. 
A small programmable neuron device was designed in VHDL 
and used to simulate the locomotion system of the nematode 
C. elegans. Results were successfully validated against our 
VHDL neuron model [1-3]. This architecture is much more 
flexible than our previous fixed architecture [3] since it 
require no working knowledge of VHDL is required, instead, 
the user simply has to define the neuron and synapse 
parameters to be loaded into the design. The simulation was a 
post place and route timing model and so simulated all the 
relevant propagation delays in the system.  
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