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Emergence of particle clusters in a one-dimensional

model: connection to condensation processes
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Robert L. Jack
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Abstract. We discuss a simple model of particles hopping in one dimension with

attractive interactions. Taking a hydrodynamic limit in which the interaction strength

increases with the system size, we observe the formation of multiple clusters of particles,

with large gaps between them. These clusters are correlated in space, and the

system has a self-similar (fractal) structure. These results are related to condensation

phenomena in mass transport models and to a recent mathematical analysis of the

hydrodynamic limit in a related model.

1. Introduction

A familiar theme in statistical mechanics is that particles interacting by simple

dynamical rules can lead to complex emergent behaviour – familiar examples include

the rich phenomenology of fluid dynamics and turbulence which appear generically

when atoms or molecules interact by momentum-conserving collisions, or the wide

range of thermodynamic phases that are available for spherical (isotropically-interacting)

particles. Even in much simpler model systems such as exclusion processes or zero-range

processes in one dimension, unexpected phenomena continue to surprise physicists and

mathematicians, including condensation [1, 2, 3, 4, 5, 6, 7] and unusual fluctuation

phenomena [8, 9, 10, 11, 12].

Here, we investigate a very simple model with unusual condensation behavior. We

consider N particles that diffuse in a one-dimensional periodic system of size L. The

particles are coupled to a heat bath at temperature T and interact via attractive forces

from their nearest neighbours, which leads to the formation of clusters of particles. We

focus on a hydrodynamic limit of large system size L, in which the particle density

ρ = N/L is fixed, but the interaction strength increases in the limit. We find that

the particles self-organise into a large number of clusters. The number of particles in

each cluster diverges in the limit; at the same time, each cluster becomes concentrated
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on a single point. The relation to condensation is that the large gaps between clusters

correspond to the kinds of condensate that appear in mass transport models [2], following

a mapping described in [5, 1]. The unusual feature of the model considered here is that

the system forms many large clusters or, equivalently, many condensates. Systems with

multiple condensates have been investigated before [3], but this effect is much less studied

than systems with a single condensate, and the mechanism of condensation in our case

differs from [3]. There are also similarities between this work and the traffic flow model

of [5], where each cluster considered here would correspond to a traffic jam. However, the

system considered here has an equilibrium steady state (which is symmetric under time

reversal), so the clusters necessarily move diffusively (without any preferred direction).

As well as offering a new twist on condensation, this work is also motivated by

connections between this model system and a recent mathematical study [13] where

it was found that the dynamics of the particle density in a similar model should be

described by a stochastic partial differential equation (PDE) with a stochastic term

that does not vanish in the hydrodynamic limit. Usually, one expects to recover

(almost surely) deterministic behaviour in the hydrodynamic limit: for example, the

deterministic diffusion equation describes the spreading of a large number of random

walkers. Moreoever, the stochastic PDE found in [13] is closely related to the Dean

equation [14], which describes (in this case) the diffusive motion of a finite number of

non-interacting particles. This result offers the possibility that the clusters that form

in our model might themselves act as free particles that diffuse through the system.

However, the arguments of [13] do not provide a simple physical picture of the behaviour

of the underlying particle model. By exploring its behaviour in more detail, we find that

the emergence of clusters is consistent with the existence of a finite stochastic element

to the dynamics even in the hydrodynamic limit. However, these clusters do not diffuse

as free particles, but are instead rather strongly interacting, leading to a scale-invariant

distribution of clusters within the system. We argue that an understanding of the

hydrodynamic limit of this model requires an understanding of the dynamics of the

clusters that form in the system – this work establishes a foundation for future work in

that area.

The structure of the paper is as follows. In Sec. 2 we introduce the model. In

Sec. 3 we derive some basic results for its static (equilibrium) properties, including the

existence of an instability towards cluster formation at a finite temperature T ∗, and

its behaviour in the thermodynamic limit. In Sec. 4, we consider the limit in which

multiple macroscopic clusters appear and we analyse the (non-trvial) structure of this

state. Finally in Sec. 5 we discuss the implications of these results and their connection

to previous work.

2. Model

The model consists of N particles that move in a one dimensional system of size L, with

periodic boundaries. The position of particle i is xi ∈ [0, L). Let the distance between



Emergence of particle clusters 3

particle i and the nearest particle to its right be yi. Each particle interacts only with

its nearest left and right neighbours so the energy of the system can be written in the

form

E(x) =
∑

i

E(yi), (1)

where we introduced the vector x = (x1, x2, . . . , xN), from which the gap sizes {yi} can

be calculated.

We focus on the specific case E(yi) = J log yi with J > 0, so that particles feel

attractive forces from their neighbours. In this case, the energy can take arbitrarily large

negative values when one or more gaps are very small. To avoid theoretical difficulties

associated with this effect, it is sometimes convenient to regularise the energy, for which

we consider two possibilities: we can either take E(yi) = J log max(yi, ε) for some small

constant ε, or we give each particle a hard core of size ε, so that E(yi) = +∞ if yi < ε.

We are primarily interested in the behaviour as ε → 0: we believe that all the results

that we present here are valid in that limit (independent of the choice of regularisation

scheme).

We consider this system to be coupled to a heat bath at temperature T so that,

given sufficiently long time, we expect the system to equilibrate. In that case, the

probability (or probability density) of finding the system in configuration x is given by

a Boltzmann distribution,

P (x) =
1

Zx(T )
e−E(x)/T , (2)

where Zx(T ) is a normalisation constant (partition function); we work throughout

in units where Boltzmann’s constant kB = 1. The formula (2) assumes that this

distribution is normalisable, which is certainly true for any ε > 0 but may fail for

ε = 0: we return to this question below.

Within this system, the density ρ = N/L sets the only natural length scale.

For a given number of particles N , the behaviour of the model depends on two

dimensionless parameters, which are the (dimensionless) inverse temperature β = J/T

and regularisation parameter ε0 = ερ.

2.1. Dynamical evolution

We consider two dynamical rules for the evolution of the model in time. In the first,

the particles evolve according to a Langevin equation as

γ∂txi = −∂E
∂xi

+
√

2γTηi, (3)

where γ is a friction constant (which acts only to set the units of time), ηi is a Gaussian

distributed white noise with zero mean and 〈ηi(t)ηi(t′)〉 = δ(t− t′). This choice is simple

from a theoretical point of view and is consistent with [13], but the model is difficult

from a numerical perspective because of the large values of ∂E/∂xi that appear when

particles approach one another. In the absence of any interparticle forces (E = 0), the
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Figure 1. A trajectory of the system with N = 40 particles at density ρ = 1, with

β = 0.75 and amax = 0.3. Particles are initially distributed at random in the system

but as time progresses, clusters of particles are observed to form.

single particle diffusion constant is D0 = T/γ. Since the energy depends logarithmically

on the particle separations, such processes are related to the motion of particles in

logarithmic potentials, which appears in several contexts in physics, as discussed in [15].

The second choice, which is more convenient numerically, uses a Monte Carlo (MC)

dynamics to evolve the system according to a Markov chain. The method depends on

a parameter amax, which is the maximum displacement of a single particle in a single

MC move. In each MC move, a particle i is chosen at random, and a displacement ∆x

is chosen uniformly from [−amax, amax]. The particle is moved from xi to xi + ∆x and

the change in energy associated with this move is calculated. This move is accepted

with a probability given by the Metropolis formula pacc = min(1, e−∆E/T ) where ∆E is

the change in energy associated with the move. If the move is not accepted then the

particle is returned to its original position xi. After each attempted move, the time is

incremented by a2
max/(6D0N) so that in the absence of interparticle forces, the diffusion

constant for the MC dynamics matches that of the Langevin equation (3).

Note that within the MC method, the ordering of the particles within the system

may change, since particles are free to “overtake” each other. Also, the system respects

detailed balance with respect to the equilibrium distribution (2) so, for large times, the

system should converge to that distribution. Moreover, in the limit amax → 0 (assuming

now that ε > 0), this dynamical MC method converges to the solution of the Langevin

equation (3). However, we note that the results presented here are far from the limit

amax → 0, in particular, this limit may require amax � ε while our numerical results have

amax � ε. Nevertheless, we emphasise that the steady state distribution of the system

is given by (2), independent of amax (as long as the distribution (2) is normalisable).

All numerical results in this work are obtained with the MC dynamics. Fig. 1

shows a trajectory of the system, at inverse temperature β = 0.75. At t = 0 the

particles are distributed at random, but one clearly sees that they self-organise into

clusters. Of course this result is expected since particles can reduce their energy by
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approaching each other. The questions that we address in the following relate to this

cluster formation.

3. Static (equilibrium) properties

In order to investigate cluster formation, it is useful to consider the distribution

(probability density) for the gap sizes yi. We consider the model with ε = 0, in which

case (2) leads to

P (y) =
1

Zy(β)
δ

(
L−

N∑

i=1

yi

)
N∏

i=1

y−βi , (4)

where y = (y1, y2, . . . , yN); also β = J/T is the (dimensionless) inverse temperature, the

function δ(x) is a Dirac delta, and Zy(β) is the partition function for this representation

of the system. Distributions of this form are familiar from zero-range processes and

from mass transport models [1, 2, 5, 4].

One sees from (4) that this probability density diverges as yi → 0, and that the

distribution will not be normalisable for β ≥ 1. In fact, β = 1 (or T = J) is a special

temperature for this model, as we now discuss. It is useful to calculate the marginal

distribution of a single gap within this system, which is

P1(y1) =

∫

[0,L]N−1

dy2 . . . dyN P (y). (5)

Making the change of variables ỹi = yi/(L− y1) for i = 2 . . . N yields

P1(y1) =
(L− y1)(N−1)(1−β)−1

Zy(β)
y−β1

∫

[0,a]N−1

dỹ2 . . . dỹN δ

(
1−

N∑

i=2

ỹi

)
N∏

i=2

ỹi
−β, (6)

where a = L/(L − y1). The Dirac delta constrains all integration variables to be less

than or equal to unity and we have a > 1, so the integration domain [0, a]N−1 can be

replaced by [0, 1]N−1. The resulting integral is independent of y1 so (at least for β < 1)

it can be absorbed into the normalisation constant, yielding

P1(y) =
1

C1

y−β(L− y)(N−1)(1−β)−1, (7)

where C1 is a normalisation constant. Hence the rescaled gap length y/L follows a Beta

distribution. It will be useful in the following to recall the definitions of three special

functions

Γ(u) :=

∫ ∞

0

tu−1e−tdt,

ψ(u) :=
1

Γ(u)

d

du
Γ(u),

B(u, v) :=

∫ 1

0

tu−1(1− t)v−1dt =
Γ(u)Γ(v)

Γ(u+ v)
, (8)

which are the Gamma function (Γ), the digamma function (ψ) and the Beta function

(B). Using these results, normalisation of P1(y) means that for β < 1 (high temperature)

we have C1 = L−β+(N−1)(1−β)B(1− β, (N − 1)(1− β)).
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3.1. Low temperature behaviour and effects of regularisation

For β ≥ 1, the distribution P1(y) in (7) is not normalisable: one sees that P1 diverges at

y = 0 in such a way that its integral does not exist (there is also another non-integrable

divergence at y = L). Physically, the source of this problem is that small gaps yi lead

to unbounded negative contributions to the energy of the system, and corresponding

divergences in the distribution P (y) given in (4). For β > 1, these divergences are

strong enough that P (y) cannot be normalised, and so cannot be interpreted as a

probability density any more.

To understand this effect, we regularise the energy E as described in Sec. 2 so that

particles may not approach each other more closely than a distance ε. In this case we

define a regularised distribution P ε(y) by replacing
∏

i y
−β
i in (4) with

∏
i y
−β
i Θ(yi − ε)

where Θ is a Heaviside (step) function. We also replace the partition function Zy(β) by

Zε
y(β). (The following arguments are easily generalised to the alternative regularisation

in which particles may approach each other arbitrarily closely, but with the energy for

small gaps being bounded below.)

The partition function for the regularised model is

Zε
y(β) =

∫

[ε,L]N
dy1 . . . dyN δ

(
L−

N∑

i=1

yi

)
N∏

i=1

yi
−β

=

∫

[ε,L]N−1

dy2 . . . dyN

(
L−

N∑

i=2

yi

)−β
Θ

(
L− ε−

N∑

i=2

yi

)
N∏

i=2

yi
−β. (9)

The final integrand is bounded above by ε−Nβ and the integration range is finite, so

the integral always exists. Hence the distribution P ε(y) for this regularised model is

normalisable, and it can be interpreted as a probability density. This indicates that

the regularisation does indeed make the model well-defined. The remaining question is

whether (or under what circumstances) the regularisation parameter ε can be chosen

small enough that the relevant physical observables in the model do not depend on ε.

We defer a rigorous analysis of the small-ε limit to a later work. For our purposes,

observe that if limε→0 Z
ε
y(β) = Zy(β) then for any y we have P ε(y) → P (y) in (4).

Physical observables in the system are calculated as averages with respect to P ε(y):

if the observable of interest is bounded in magnitude then this analysis is sufficient to

ensure that it converges to a finite limit as ε → 0. In that case one can always choose

ε small enough that the regularisation has no significant effect. We will show that this

is the case whenever β < 1. On the other hand, if Zε
y diverges as ε→ 0 then clearly P ε

does not converge to the function P in (4). This is the case for β ≥ 1.

We first consider β > 1. The integrand in (9) is non-negative so one may obtain a

lower bound on the integral by replacing the range [ε, L]N−1 by [ε, A]N−1 for any A < L.

Restrict ε to be smaller than some ε∗ and fix some constant A in the interval (ε∗, L−ε
∗

N−1
).

In this case the step function in the integrand of (9) is equal to unity throughout the

integration domain. Finally, note that (L −∑N
i=2 yi)

−β ≥ L−β. Combining all the

ingredients yields Zε
y(β) ≥

∫
[ε,A]N−1 L

−β∏N
i=2 y

−β
i dy2 . . . dyN = L−β

(
ε1−β−A1−β

β−1

)N−1

. For
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β > 1, this bound diverges as ε→ 0 so Zε
y(β) diverges in this limit, and the behaviour of

the model depends strongly on the regularisation parameter ε even when this parameter

is small. A similar effect is observed for β = 1: in that case the divergence is logarithmic

in ε. The origin of this divergence is again the diverging probability for small gaps that

renders the distribution P1 in (7) non-normalisable.

For β < 1, the integral in (9) can be evaluated directly for ε = 0: one substitutes

yN = y′N(L −∑N−1
i=2 yi) which allows the yN integral to be performed (yielding a Beta

function); one then repeats the same procedure to perform the integration over yN−1,

and so on. No divergences appear so we conclude that Zε
y does indeed have a finite limit

as ε → 0, and the probability distribution P ε(y) → P (y) for ε → 0, as asserted above.

Note that in the following we sometimes consider limits where β → 1−: in such cases

one should always take ε→ 0 before any limit of β → 1.

3.2. Mean energy and mean gap size

We also calculate the mean energy per particle which (in units of J) is 1
NJ
〈E〉 =

〈log yi〉 =
∫ L

0
dyP1(y) log y, where the angle brackets denote averages in the equilibrium

state of the system. Writing log y = limδ→0
1
δ
(yδ − 1) and using properties of the Beta

function yields the energy per particle

1

NJ
〈E〉 = ψ(1− β)− ψ(N(1− β)) + logL. (10)

The digamma function diverges for x→ 0 as ψ(x) ' −1/x, so taking β → 1−, we have
1
NJ
〈E〉 ' (−1 + N−1)/(1 − β). That is, the energy becomes large and negative in this

limit, again signalling that the system is unstable and small gaps are predominating.

Finally, it is useful to consider the average fraction of the system that is taken up

by gaps with sizes between y and y + dy, which is Pg(y)dy, with

Pg(y) = ρyP1(y). (11)

Compared with P1(y), the main feature of this distribution is that while there may be

very many gaps with small y, these take up only a small fraction of the system. For

0 < β < 1, this means that Pg(y) tends to zero as y → 0, in contrast to P1(y) which

diverges. If one picks a random point in the system then the size of the gap containing

this point is distributed as Pg, and the mean of this distribution is easily verified to be

Y g =
〈y2
i 〉
〈yi〉

=
L(2− β)

1 +N(1− β)
. (12)

(Note that
∑

i yi = L independent of the arrangement of the particles, so one always

has 〈yi〉 = L/N = 1/ρ, but the values of 〈y2
i 〉 and Y g are sensitive to the structure of

the system. In the following we sometimes refer to Y g as the “mean gap size”: we note

that this is the mean associated with Pg, which is different from 〈yi〉 because each gap

is weighted by its size within the distribution Pg.)

Figure 2 shows results obtained with the MC dynamics, and compared with the

theoretical predictions of this section. For these calculations we work at unit density
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Figure 2. Numerical results for finite systems, for ρ = N/L = 1 and amax = 0.3.

We show two temperatures β = 0.5, 0.75 and for the lower temperature we show

results for two system sizes N = 10, 40. (a) Equilibrium gap size distributions Pg(y)

obtained numerically (points) and compared with theoretical predictions (solid lines).

The numerical results were obtained at time D0t = 450. (b) Time evolution of the

mean gap size Y g, with equilbrium values shown as solid horizontal lines. (c) Time

evolution of the average energy per gap 〈E〉/(NJ). This quantity is sensitive to the

gap size distribution at small y – for the lower temperature, this quantity has not fully

converged even for the largest times considered, since the MC dynamics used are not

efficient for sampling very small gaps.

ρ = N/L = 1 with amax = 0.3 (fixing the density simply fixes the unit of length since

the interaction potential E has no characteristic length scale). Within the numerical

calculations, we regularise using a very small value of ε, of the order of the machine

precision: the results do not depend on the precise value of ε and they agree with the

predictions for the limit ε → 0. We interpret this as evidence that the limit ε → 0 is

regular for the dynamics as well as for the equilibrium properties, as long as β < 1 (that

is, T > J). The gap size distribution Pg(y) agrees well with the theoretical predictions.

For this distribution, the most apparent effect of the attractive forces between particles

is to enhance the probability of large gaps – this is due to the formation of clusters of

particles, with large gaps between them.

Starting from a random initial condition, Fig. 2 also shows the convergence to

equilibrium of the mean gap size Y g and the mean energy per particle, as a function of

time. The agreement of the equilibrium values with theory is again good although

we note that convergence to equilibrium can be slow for large systems and lower

temperatures, particularly for the mean energy. The reason is that when particles are

close to each other, their energies are low and MC moves that increase the energy are

unlikely to be accepted – also, the probability of proposing a move into a state where

the particles are extremely close is small, so these states are rather hard to access. This

effect is particularly apparent for the mean energy since that quantity is dominated by

the smallest gaps in the system, in contrast to the mean gap Y g, which is dominated by

large gaps. Convergence to equilibrium could presumably be improved by using different

MC moves (either with smaller amax, or a non-trivial distribution of MC move sizes, or

MC moves that move clusters of particles collectively [16]).
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3.3. Thermodynamic limit: large N,L at fixed ρ, β

So far we considered results for systems with finite numbers of particles. Here, we briefly

discuss the thermodynamic limit in which the temperature T is fixed, and N,L → ∞
with fixed ρ = N/L. It is useful to consider the distribution of a single gap which from

(7) can be written as

P1(y) =
1

C0

y−β(1− ρy/N)(1−β)(N−1)−1, (13)

where C0 is a normalisation constant. Using the standard result limM→∞(1−x/M)M =

e−x with β < 1 and M = N(1− β) we obtain a Gamma distribution:

P∞1 (y) = lim
N→∞

P1(y) =
1

C∞
y−βe−ρy(1−β), (14)

with C∞ = Γ(1 − β)/[ρ(1 − β)]1−β. For β = 0 (non-interacting particles), we recover

a simple exponential distribution with mean 1/ρ, as expected. For β > 0, small gaps

are favoured due to the factor y−β. At the same time the interaction also enhances the

statistical weight of large gaps, via the decaying exponential term in (14) – this ensures

that the mean gap size remains constant at 1/ρ, as required.

We also have

P∞g (y) =
ρ

C∞
y1−βe−ρy(1−β), (15)

from which we see (as expected) that a randomly chosen point in the system is

almost surely contained in a gap of size of order ρ−1, which remains constant in the

thermodynamic limit. Also the mean energy per site (10) converges to

E∞ = ψ(1− β)− log ρ(1− β), (16)

where we used ψ(x)− log(x)→ 0 as x→∞.

3.4. Behaviour as β → 1− in a finite system

We have explained that β = 1 corresponds to a special temperature for the model, in

that the Boltzmann distribution is not normalised at lower temperatures (β > 1). It

is useful to consider briefly the limit β → 1−, in a finite system. From (12), one sees

that on choosing a random point, the mean size of the gap containing that point is

Y g → L as β → 1−. Since all gaps must be smaller than L, this means that as β → 1−

the whole of the system becomes dominated by a single gap, with all the particles

located in a single cluster (and separated by much smaller gaps). More precisely,

Y g = L[1− (N − 1)(1− β)] +O(1− β)2, from which one sees that the N − 1 small gaps

have an average size of roughly L(1− β) as the limit is approached.

This situation, where a single gap occupies almost all of the system, corresponds

to a particular kind of condensation phenomenon, as discussed in the next section.

We also note that a similar singularity appears in the trap model of glassy dynamics

proposed by Bouchaud [18, 19], for which the partition function is not normalisable

for low temperatures: in that case there is an associated stochastic dynamics that is
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well defined for all T but the system never equilibrates for T < 1, leading to aging

behaviour. In Section 4 below, we investigate the behaviour of our model for β ≈ 1.

However, before embarking on that analysis, we connect the results obtained thus far

to previous work on condensation processes.

3.5. Relation to a chipping process, and to condensation phenomena

As discussed in [5, 1], particle hopping models of the type considered here are related to

mass transport models. To see this, we use the regularisation in which particles cannot

approach each other more closely than ε, and consider the MC time evolution given

above with amax < ε. In this case particles may not overtake each other, so we can order

their positions so that yi = xi+1 − xi (modulo periodic boundaries). Now define a mass

transport model that consists of a periodic lattice of N sites, with mass yi on each site,

so that the total mass is M =
∑

i yi = L. Implementing the particle dynamics for the

original model corresponds to a dynamical evolution for the masses yi: if particle i in

the original model moves to the right by a distance a, this corresponds to a transfer

of mass a in the lattice model, from site i + 1 to site i [5]. The rate for such events

depends on the mass transfer a and on the original masses yi, yi+1. This corresponds to

a particular chipping kernel for the mass transport [2]. This allows the model considered

here to be mapped exactly to a mass-transport model whose steady state distribution

has the product structure shown in (4). Such models have been of considerable recent

interest – the masses yi must be positive but they may be either integer-valued (as in

zero-range processes) or real-valued (as in chipping processes or the Brownian energy

process) [5, 4, 2, 6].

For the mass-transport model corresponding to our discussion here, the rates for

mass transport in each direction are symmetric: if the probability of moving mass a from

i to i+1 is ri(a|yi, yi+1) then the probability of transporting the same mass from i+1 to i

is `i+1(a|yi, yi+1) = ri(a|yi+1, yi). This ensures that there is no preference in the direction

of mass transport. In other cases [4, 2] one instead considers asymmetric models in

which mass transport is possible only in one direction, or in which the rates encode

a preference for hopping in one particular direction. Such models can be constructed

with steady state probability distributions of product form, as in (4), so clustering and

condensation phenomena can be observed in non-equilbrium (asymmetric) systems as

well as in equilibrium [4]. Non-equilibrium models with the distribution (4) can be

defined and will lead to the same cluster-formation properties discussed here.

The phenomenon of condensation in this mass transport model happens in the

thermodynamic limit N,M → ∞ at fixed φ = N/M: condensation means that a

finite fraction of the total mass becomes concentrated on a single site i. (This may

happen either for integer-valued or real-valued masses yi.) In the particle model, this

corresponds to a situation where one of the gaps between particles takes up a finite

fraction of the system. A large body of previous work [4, 2] has considered distributions

of the form (4), but with some regularisation at small yi so that the power law y−β
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might be replaced (for example) by 1/(1 + yβ). In this case, condensation is generally

expected for β > 2 [2]. In the thermodynamic limit of the particle model, this means

that a single large gap would occupy a finite fraction of the system, with other gaps

having typical sizes of order ρ−1.

We note that this condensation is not generally the same as cluster formation in

the model considered here. Condensation corresponds to a single large gap taking up

a finite fraction of the system – it is a feature associated with a very large gap. Here,

cluster formation will be associated with a large number of particles concentrating at

a single point – it is associated with many very small gaps. A corollary of these small

gaps is that some larger gaps must also appear (since the mean gap size is fixed). In

the model considered here, these large gaps take up a finite fraction of the system, as

in condensation, but cluster formation need not be linked to this effect. (For example,

suppose that a single cluster contains half of the particles, with the remainder distributed

at random throughout the system. In that case, there would be no macroscopic gaps

but there would be a macrosopic cluster.)

Moreover, the origin of the condensation behaviour considered here is different

from the classical case [2], due to the singular behaviour of (4) for small yi. As a result,

the clustering instability considered here is already present for β > 1 (but only if the

regularisation parameter ε → 0), while the condensation instability sets in only for

β > 2 (and occurs even if ε > 0). The instability considered here also has a condensate

that contains all of the mass in the system, reminiscent of inclusion processes [6]. Note

that some regularisation of the power laws in (4) is absolutely necessary in models with

integer-valued masses since there should be a finite probability yi is zero in that case.

Hence, since the behavior considered relies on the absence of any regularisation, it must

be linked to some extent to the use of continuous masses or, equivalently, the continuous

positions xi ∈ [0, L) used in the original model definition.

4. Limit of multiple clusters

We now to turn to the regime of primary interest for this model. Inspired by [13],

we consider a kind of hydrodynamic limit. To motivate this, fix the density ρ = N/L

and increase the system size L, but imagine observing the system on a length scale

` ∼ L that is also increasing. The usual expectation is that as we observe the system

on these large scales, a description in terms of individual particles can be replaced by

a description in terms of a smooth density profile, as happens (for example) when the

motion of a fluid is described by the Navier-Stokes equation.

Mathematically, the limit of large observation scale ` can be investigated by

rescaling particle positions from [0, L) into the unit interval [0, 1), defining x̂i = xi/L,

and observing this rescaled system on a length scale ˆ̀ = `/L. Taking this limit at a

fixed density, the mean spacing between particles in the rescaled system is 1/ρ̂ = 1/(ρL),

which tends to zero [9]. Assuming that all particle spacings tend to zero in this way, the

system can be defined in terms of a smooth density profile: in an observation window
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of size ` = ˆ̀L one expects of order (ρˆ̀L) particles, which diverges in the hydrodynamic

limit. In this case, one expects a law of large numbers to apply, so that even if the

particle positions are random, the fraction of particles in any such region will converge

(almost surely) to a deterministic value of order unity.

To make this argument precise, define the empirical density

µ(x̂) = (1/N)
∑

i

δ(x̂− x̂i), (17)

where we recall that the x̂i are the positions of the particles, rescaled into the unit

interval. Since the empirical density is a sum of Dirac delta functions, we clearly cannot

expect pointwise convergence to any smooth density profile. Instead, we consider a

weaker form of convergence: the empirical density µ converges to a smooth density

profile µ0 if for any sufficiently well-behaved test function f , one has (almost surely)

that limN→∞
∫ 1

0
µ(x)f(x)dx =

∫ 1

0
µ0(x)f(x)dx. For example, in the model considered

here at equilibrium for β < 1, the statement is true with µ0(x̂) = 1, independent of x̂. A

more interesting setting for the same question would be: if the system is prepared away

from equilibrium with a density profile µ0 that is not constant, how does this smooth

density evolve with time? For β < 1, we expect some kind of (deterministic) diffusion

equation, perhaps with a density-dependent diffusion constant.

However, in this section, we concentrate on a different situation [13], in which the

empirical measure does not converge to any kind of smooth profile, even as N →∞.

4.1. Emergence of clusters

To achieve this, we modify (increase) the interaction strength as we increase the number

of particles, by taking

β =
N − b
N − 1

(18)

for some constant b > 1, so that (1− β)(N − 1) = b− 1. We have β → 1− as N →∞,

and since β = 1 is the limit of stability of the model, one may expect to see non-

trivial behaviour in this limit. A similar construction was used to define interacting

particle systems with multiple condensates [3], and in models with discontinuous

condensation [17].

Now consider an equilibrium configuration of the model, and a random point within

the system. We take the hydrodynamic limit N → ∞ with (18) and we consider the

probability that the random point lies in a gap of size ŷ, which follows from (7) and

(11), yielding

P̂g(ŷ) = lim
N→∞

LPg(ŷL) = lim
N→∞

[
ρLb−1(ŷL)

b−1
N−1

C1

(1− ŷ)b−2

]
= (b− 1)(1− ŷ)b−2, (19)

where we used B(u, v) ≈ (1/u) for small u in order to obtain the limiting behaviour

of C1. The key point is that this limiting probability density exists for all ŷ > 0, is

independent of L, and is normalised to unity. Recall that ŷ is the size of a gap between
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Figure 3. Numerical results illustrating the limit where multiple clusters appear.

(a) Distribution of the scaled gap size P̂g(ŷ), for two different system sizes, as one

takes the hydrodynamic limit according to (18) with b = 10. The limiting distribution

(19) is shown as a solid line. (b) Convergence to equilibrium of the mean (rescaled) gap

size Y g/L; the (L-dependent) equilibrium values for this quantity are indicated. In

the hydrodynamic limit, this average value approaches 1/b = 0.1. The time taken

to converge to equilbrium increases rapidly as N increases, primarily because the

interparticle attractions are becoming stronger, in accordance with (18).

two particles, scaled by the system size. Hence (19) means that a randomly chosen point

in an equilibrium configuration lies (almost surely) in a gap whose size is comparable

with the system size. This is not at all the case in the conventional thermodynamic

limit, in which almost all gaps are comparable with the inverse density (1/ρ) = L/N . In

that case all of the scaled gaps ŷi = yi/L tend almost surely to zero as we take N →∞,

so the limiting probability density P̂g(ŷ) would be concentrated entirely at ŷ = 0.

Finally we note that the energy per gap in (10) diverges in this hydrodynamic limit

as

1

NJ
〈E〉 ' −N

b− 1
+ logN + c, (20)

with c of order unity as N →∞. (We used ψ(x) ' −1/x as x→ 0.) Since this quantity

is equal to 〈log yi〉, we conclude that the average must be dominated by exponentially

small gaps, with yi . e−N/(b−1), consistent with the idea that the clusters of particles

concentrate on single points, in the limit.

In Fig. 3 we compare our numerical results to the theoretical predictions of this

section: we illustrate the convergence of P̂g(ŷ) to its limiting form as N → ∞, and

the convergence with time of the (rescaled) mean gap size Y g/L =
∫
ŷP̂g(ŷ)dŷ. As in

Fig. 2, the convergence with respect to time t is rather slow when interactions are strong

and systems are large, but these results are sufficient to illustrate our main conclusions.

(Note also, the presence of exponentially small gaps means that numerical precision will

limit our ability to resolve the fine detail in this problem when N is large and attractions

are strong.)

The physical interpretation of this result is that the strong attractive interactions

between particles lead to the formation of clusters (recall Sec. 3.4). Within a cluster

there are many small gaps between particles, but these gaps are so small that a point
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Figure 4. Illustration of the hydrodynamic limit. We show histograms of the density

based on configurations of the system for various N . [To define µ̃(x̂), we divide the

unit interval into bins (subintervals) Bn = [(n − 1)δx̂, nδx̂), for integer n. We take

δx = 0.05 so 1 ≤ n ≤ 20. Then µ̃(x̂) is the density of particles in the bin that contains

the point x̂.] (a) Increasing N at constant β = 0.25: as the number of particles

increases then the local density is self-averaging and µ̃ converges to a flat profile, as

expected for a diffusive system at equilibrium. (That is, the density satisfies a law of

large numbers within each bin.) (b) Increasing N and varying β according to (18) with

b = 10 does not lead to a smooth density profile: multiple clusters of particles persist

even as N →∞ because the particle correlations are so strong there is no law of large

numbers within each bin. (For N = 160 and b = 10, the limitations of our numerical

method mean that the system may not be completely converged to equilibrium, but

the data are sufficient to illustrate the qualitative behaviour.)

picked at random has probability zero of being in such a gap. Between the clusters,

there are large gaps, whose sizes are comparable with the system. These are the gaps

that contribute to (19).

If we consider the empirical density µ(x̂) defined in (17), the fact that the

hydrodynamic limit consists of clusters separated by large gaps means that µ does not

converge to any smooth profile µ0. Rather, assuming that a hydrodynamic description

exists, we should think that µ, which is a sum of N Dirac delta functions, should

converge (as N →∞) to some µ0(x̂) = 1
n

∑
jMjδ(x̂− X̂j) where Mj is the mass of the

jth cluster and X̂j is its position. Clearly the number of clusters n � N . Moreoever,

as the particle model evolves in time, one cannot describe the time evolution of the

corresponding µ0 by any kind of deterministic diffusion equation. Instead it should

solve some kind of stochastic partial differential equation that can describe the random

motion of the clusters in the system.

The resulting situation is illustrated numerically in Fig. 4, where we represent the
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density µ by histograms, for various different configurations. Taking N → ∞ at fixed

β = 0.25, the results are consistent with convergence to a smooth profile: there are

sufficiently many particles in each region of space that a law of large numbers applies

so the local (smoothed) density µ̃→ 1 as N →∞. However, if we fix b in (18) and take

the limit N →∞, the results indicate that there is no convergence to a smooth density

profile: the variation in the density between the bins is of the same order as the density

itself.

The emergence of several (or many) clusters in this model raises several interesting

questions. In the remainder of this work, we investigate how many of these clusters

there are and how they are distributed in space. Other possible questions, such as the

dynamics of these clusters [22], are beyond the scope of this work, but we discuss them

briefly in Sec. 5.

4.2. Statistics of clusters

From (19), one sees that on choosing a random point in the system, the average size

of the gap containing this point is Y g/L = (1/b). From this result, one might suppose

that there are typically b clusters within the system, separated by gaps of this typical

size. In fact the situation is rather more complicated.

To see this, suppose that we choose two random points in the system. For a finite

system with N particles and interaction parameter β, we have a joint probability density

for the two gap sizes

P2(y, y′) = Pg(y|N,L) · (y/L)δ(y − y′) + Pg(y|N,L) · (1− y/L)Pg(y′|N − 1, L− y), (21)

where Pg(y|N,L) is the distribution (11) for a system of size L containing N particles.

The first term in (21) accounts for the case where both points are in the same gap,

while the second is the case where they are in different gaps. (If the first point to be

chosen is in a gap of size y, the probabilities of these two outcomes are y/L and 1− y/L
respectively.) In the case where the two points are in different gaps, we have used the

fact that gaps are independent, so once the first gap is fixed, the distribution of the

second gap is obtained by considering an equivalent system with size L − y, and with

one fewer particle. If we now take the hydrodynamic limit according to (18), we define

P̂2(ŷ, ŷ′) = limN→∞ L
2P2(ŷL, ŷ′L) and obtain

P̂2(ŷ, ŷ′) = (b− 1)ŷ(1− ŷ)b−2δ(ŷ − ŷ′) + (b− 1)2(1− ŷ − ŷ′)b−2Θ(1− ŷ − ŷ′), (22)

where the step function Θ in the second term enforces that the sum of the two gaps

must be less than the system size. Note that this distribution is symmetric in ŷ, ŷ′ (as

it should be).

From the second term in (22) we see when the two points are located in different

gaps, then both of these gaps almost surely have sizes comparable with the whole system.

If we condition on this case, we can consider the distribution of the second gap ŷ′,

given a particular value of the first gap ŷ. Rescaling the size of the second gap as

ŷ′′ = ŷ′/(1− ŷ), the distribution of ŷ′′ is exactly the original P̂g. (This fact is true only
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Figure 5. Illustration of the statistics of the clusters within the system. (a) Sketch of

the (smoothed) empirical density for a configuration containing several clusters, within

the unit interval. Each cluster is depicted as a triangle with finite width: there are

many particles within each cluster but as N →∞ each cluster should concentrate on

a single point. The origin x̂ = 0 has been placed at the centre of a cluster and the

periodic image of this cluster is shown at x̂ = 1 by an unfilled triangle. (b) If we

ignore the last gap (which has size α) and zoom in on the remainder of the system,

the distribution of clusters within this subsystem is statistically identical (as N →∞)

to their distribution in the full system.

in the hydrodynamic limit N →∞ because it relies on the fact that replacing N − 1 by

N in the last term of (21) has no effect on the limiting behaviour.) Analysing the joint

distribution of three or more gaps is a straightforward extension of the same procedure.

The conclusion is that if we remove a single large gap from the system, the distribution

of the remaining large gaps in the remainder of the system is the same (up to rescaling)

as the distribution of all the gaps within the whole system. Hence we conclude that

there are in fact infinitely many large gaps, and hence infinitely many clusters in the

system, arranged in a hierarchical structure.

A sketch of this situation is shown in Fig. 5, illustrating how the system includes

gaps of all sizes, arranged in a fractal (self-similar) structure. Nevertheless, we emphasise

that since the number of particles in the system has already been taken to infinity,

typical gaps between particles are vanishingly small on the scale shown here. So while

the number of the clusters in the system is infinite, each cluster contains a very large

(presumably infinite) number of particles.

4.3. The limit b→ 1+

Note that we must have b > 1 in (18) since otherwise β > 1 and the whole analysis

breaks down (all our arguments start from (4) which requires β < 1). However, the
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limit b → 1 is of interest. In this case, the hierarchical structure discussed in this

section simplifies: the physical picture is that on choosing a random point, the gap

containing this point covers almost all of the system, up to corrections that vanish as

N →∞. Mathematically, it is easy to verify that

lim
∆↘0

lim
b↘1

∫ 1

1−∆

P̂g(ŷ)dŷ = 1, (23)

so that ŷ → 1, almost surely. Hence one may write for b → 1 that P̂g → δ(1 − ŷ) and

(22) simplifies to P̂2(ŷ, ŷ′) = δ(ŷ − ŷ′)δ(1 − ŷ). That is, on choosing two points in the

system, they almost surely lie in the same large gap, which covers (almost) the whole

system. In this case, all of the particles are concentrated in a single cluster. This is the

same situation as was discussed informally in Sec. 3.4 where β → 1 at fixed N . Writing

β = 1− b−1
N−1

, one sees that taking b→ 1+ at fixed N (as in Sec. 3.4) has the same result

as taking N →∞ and then b→ 1+.

More generally, one may take the joint limit β → 1, N → ∞ with 1 − β = cN−α

for any α ≥ 0 and c > 0. We expect all particles in a single cluster for α > 1 (which

includes the case discussed in Sec. 3.4); for α < 1 we expect ŷ → 0 almost surely so

there are no macroscopic clusters (this case includes the thermodynamic limit discussed

in Sec. 3.3, which corresponds to α = 0). For α = 1 one has a hierarchy of clusters as

discussed in this section, but one recovers the single cluster on taking c→ 0.

5. Conclusion and outlook

We have defined a model of interacting particles on the real line, which has an

instability at temperature T ∗ = J . Below this temperature, particles attract each

other so strongly that the gaps between adjacent particles tend to zero, and the system

is unstable to collapse at a single point. However, the system is well-behaved for

T > T ∗: particles attract each other and assemble into clusters. All clusters are finite

in the thermodynamic limit, and the system has a hydrodynamic limit in which the

macroscopic density is smooth. We have shown that if we take a hydrodynamic limit

in which T → T ∗ from above as the number of particles tends to infinity, this system

has a well-defined equilibrium state in which density profiles are not at all smooth:

instead particles self-organise into clusters that are arranged in a self-similar hierarchical

structure.

The limiting process that we took in order to arrive at this situation was somewhat

unusual, but similar methods have been used in zero-range processes [3, 17]. Our analysis

of this model further accentuates the rich phenomenology that is accessible even in

deceptively simple interacting particle systems. It also raises several interesting new

questions.

Our model was inspired by [13], in which a similar model was proposed, with the

same invariant measure (compare the first equation in section 2 of that paper with

our Eq. (4), and note that β in that work corresponds to our b − 1, up to corrections

of order 1/N). The results of that work indicate that this model has an underlying
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(abstract) geometrical structure related to the Wasserstein metric – this is a metric

in the space of density profiles µ, with connections to diffusive processes: see [20] for

a physical discussion and [21] for a more mathematical presentation. From the results

presented here, the precise connection between this geometrical structure and our model

is not clear to us: we expect that the motion of the clusters that form in the system

should be described by a stochastic process in this abstract space, but this requires

further investigation. A more rigorous analysis of the steady state of the model would

also be useful, particularly regarding the limiting behaviour of the empirical measure

µ(x) = N−1
∑

i δ(x− xi) as N →∞ at fixed b > 1. We have argued that this measure

consists of clusters separated by large gaps, and we have argued that the gaps are

independently distributed. However, the distribution of the number of particles in each

cluster is not available from the analysis performed here, so a full characterisation of

the limiting measure requires more detailed investigation.

Independent of those questions, it would also be very interesting to characterise the

motion of the clusters of particles that form in this system, when the hydrodynamic limit

is taken. In particular, we expect the clusters to move diffusively [22], and they should

presumably undergo fusion and fission processes when they encounter one another.

Certainly, the Langevin dynamics (3) imply that the centre of mass of a cluster of

mass N moves with a diffusion constant of order 1/N , but other processes in the system

may also be relevant (for example exchange of particles between clusters, which can

even lead to cluster evaporation). Also, the MC dynamics defined here are different in

general from (3), given that we take N →∞ and β → 1 at fixed amax. Further numerical

or analytical results for these processes would be valuable, either for this system or for

other systems where multiple clusters (or condensates) appear in large systems [3]. We

hope to revisit these questions in a later work.
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