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ABSTRACT
We propose technology to enable a new medium of expression,
where video elements can be looped, merged, and triggered,
interactively. Like audio, video is easy to sample from the
real world but hard to segment into clean reusable elements.
Reusing a video clip means non-linear editing and compositing
with novel footage. The new context dictates how carefully
a clip must be prepared, so our end-to-end approach enables
previewing and easy iteration.

We convert static-camera videos into loopable sequences, syn-
thesizing them in response to simple end-user requests. This is
hard because a) users want essentially semantic-level control
over the synthesized video content, and b) automatic loop-
finding is brittle and leaves users limited opportunity to work
through problems. We propose a human-in-the-loop system
where adding effort gives the user progressively more creative
control. Artists help us evaluate how our trigger interfaces can
be used for authoring of videos and video-performances.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User interfaces
- Prototyping

Author Keywords
Video Editing; Video Textures;
Sprites; Cinemagraphs; Interactive Machine Learning.

INTRODUCTION
In a SIGCHI acceptance speech [21], Dan Olsen outlined the
three properties that characterize a great medium of expression:
Range, Empowerment, and a Balanced Structure. Good range
indicates a wide variety of possible expressions, empowering
mediums lower the required skills and cost to reach excellent
results while a balanced structure constrains the user to
make new outputs possible. By these measures, we find Live
Looping [23], where music is recorded and played back in

This is an author-prepared pre-print, the definitive version appears in the ACM Digital
Library (http://dl.acm.org).
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Figure 1: Illustration of how users prepare raw videos
to make an interactive live performance. Our end-to-end
technology assists with finding and segmenting loopable ac-
tions in video inputs (orange, blue, red). Then, discrete but
compatible actions can easily be triggered during a show.

real-time, to be an inspirational medium for authoring music.
Present-day musicians like Reggie Watts1 and Kimbra2 can

1https://youtu.be/0gKWfvd-chA?t=123s
2https://youtu.be/DgmoHtnoi7k?t=27
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easily accumulate simple sounds, faithful to the original audio-
clips, yet they have the flexibility and precise control to overlay
and repeat clips to compose complex music that transcends
their solo-musician appearance. We want to make a “cousin”
of Live Looping for the video domain3, as illustrated in Fig. 1.

Presently, technologies for video-authoring have good
Range [21], meaning that they are flexible and accurate in
depicting many subjects. But they lack a Balanced Structure
and Empowerment, which require confining flexibility to en-
sure even novices succeed, without curtailing what experts can
create. Our goal is to develop a tool that enables a medium of
expression characterized by all of these three properties. In
particular, we aim to a) “lower the floor” so that novices can
participate, b) “raise the ceiling” so that a single artist can com-
pose expressive pieces and performances while c) catering for
the widest range of inputs possible.

We achieve this by adapting looping concepts to video in a
prepare- and perform-structure (see Fig. 1). In the preparation
stage, we treat all moving elements as video sprites, i.e. a bendy
tube of pixels in a stack of sequenced images, like Lu et al. [20].
We call these actors. If a video features only one actor, this is
simply a whole-frame sprite. Each tube is then manipulated
in time, while maintaining the original spatial properties, to
create the output. This is done by splitting a sprite’s frames
into clusters of actions, and allowing artists to choose which
subset of frames to show during the second part of our approach:
the live performance. A user requests actions through a wide
range of trigger interfaces, such as tangible widgets, keyboard,
or paint-by-numbers, while our system ensures smooth loops
within clusters and transitions between them. Artists can also
edit synthesis constraints to ensure sensible actor behavior.

In this paper, we present the following contributions:

1. a constrained optimization algorithm wrapped inside an
expressive new interface, that allows users, for the first time,
to control actors in video by high level interactions;

2. an end-to-end system to create, iteratively repair, and control
video sprites: artists can quickly improve clips that are hard
to segment or loop, and check their quality live without
jumping between disjoint tool-chains;

3. a responsive new medium of expression, that enables artists
to merge video assets they made and rehearsed earlier in a
live performance.

We assume the input videos to our system adhere to the follow-
ing criteria: a) the camera is stationary, b) there are no large
differences in lighting over the sequence, c) the background is
mostly stationary, d) the filmed actors are mostly well separated
from each other and e) the actions they perform are visually
distinct. We show how, despite these assumptions, our system
can cater for widely different videos featuring various types of
actors and actions and produce rich and diverse results. We also
present interviews with several video-artists and evaluate the
triggering interfaces to understand the pros and cons of this new
medium of expression and adjust the underlying technology.
3YouTube’s MysteryGuitarMan uses labor-intensive methods and has
almost 3M followers: https://youtu.be/EQXA7ErL708

RELATED WORK
In this work, we are inspired by methods for direct video manip-
ulation [8] and navigation [5, 13]. Eventually, we aim to make
interactive synthesis of new videos as fun as the manipulation
and non-sequential playback of existing videos is in the above
methods. We simultaneously tackle the problems of looping
arbitrary videos and influencing synthesis of novel content
through user annotation. We now highlight works related to
those problems and interesting interfaces for video editing.

Video looping and animation
With their pioneering work on Video Textures, Schödl et al. [28]
tackled the problem of indefinitely playing back a finite length
video without visible transitions. It worked by finding inter-
changeable pairs of frames, for single subject videos depicting
repetitive or stochastic motion, but struggled with videos
containing multiple independent subjects or complex motions.

Kwatra et al. [16] treat video looping as a texture synthesis
problem, solved using an energy minimization approach.
Extensions for panoramic videos and stereo panoramic videos
were proposed in [1] and [4] respectively. Liao et al. [18, 17]
model motion on a per-pixel basis and segment the input video
into spatio-temporal regions of similar motion automatically.
Finally, Sevilla-Lara et al. [29] focus on videos exhibiting
camera motion which significantly increases the looping com-
plexity and thus limit themselves to single dominant subjects.

In contrast to the above, our technique enables more meaningful
synthesis by introducing additional knowledge rather than
simply focusing on loop finding and disguising transitions.

Video-based animation
There are many examples of methods to create novel animations
from filmed footage found in the literature. The original Video
Textures paper by Schödl et al. [28] and follow-up work [27],
allows segmented sprites of animals, annotated with velocity
vectors, to be controlled interactively using the mouse pointer.
In contrast, Bhat et al. [3] create animations of stochastic
elements, such as smoke and water, by leveraging user-defined
flow patterns to loop and re-position them. Flagg et al. [7]
introduce a specialized technique for human video textures that
can create animations of human motions from a database.

The systems described above do not have any knowledge about
what is taking place in the input video. Therefore, synthesized
video elements look plausible, but random. Some indirect user
control is possible by making some assumptions and devising
custom energy functions (such as looping through more or
less heterogeneous frames [18]). In contrast, we generalize
by giving users the tools to interactively define their subjects
and how to control them “by example”.

Video editing
A cinemagraph is a traditionally hand-made medium of expres-
sion that combines still and moving imagery. In recent years,
much effort [2, 11, 18, 31] has gone into automating this time-
consuming process. Users can decide what areas to animate
in [31], combine small looped clips called cliplets in [11] or
scribble over patches to automatically animate or de-animate
them [2, 18]. Similar to these works, we reduce the degrees of
freedom of captured footage by dividing it into disjoint patches.

https://youtu.be/EQXA7ErL708
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Figure 2: Overview of our interactive video synthesis pipeline: (a) The first, optional, step is to track and segment the actors
we wish to control, such as the two sticks and foot of the drummer in this example. (b) The user defines a set of actions for
each actor by tagging example frames. Here, actions are hitting a specific drum or cymbal and resting. (c) A new video is
synthesized given input commands mapped to actions and, optionally, frame compatibility information. The compatibility
knowledge is learned over time, as the user tags pairs of frames, and the output is changed accordingly. (d) The synthesized
sequence is composited and rendered seamlessly (using Poisson Blending [22] and our custom compositing algorithm).

Unlike them, however, we do not restrict users to a binary deci-
sion of “(not) animate” and allow them to easily decide how to
animate through our object-action mapping.

Related to our method, video re-timing allows one to re-order
filmed events for new and interesting effects. Shah et al. [24]
focus on condensing large amounts of video into short
animations but often result in disturbing artifacts such as
ghosting. Users are given tools to cut and re-arrange trajectories
in a spatio-temporal 3D volume in [20, 30]. In DuctTake [26],
events filmed in the same scene at different times are composed
together using a graph-cut energy optimization, while Liao et
al. [19] build on this by allowing music to drive event
re-ordering. Finally, Rav-Acha et al. [25] bend time for image
patches by projecting their pixels onto evolving time fronts.

In contrast to the above techniques, which do not natively
support looping, our method can re-arrange frames arbitrarily.
Additionally, unlike in our approach, users must synchronize
events manually to avoid incompatibilities, e.g. colliding
cars [30]; outputs are limited to ones where filmed interactions
are preserved [20], or they are not supported altogether [25].

SYSTEM OVERVIEW
We design our end-to-end interface to allow content-creators to
quickly prototype their ideas. The more effort they are willing
to invest, the higher the quality and complexity their results can
achieve. Through discussions with six different technical artists,
interactivity (as opposed to automation) and responsiveness
were identified as stand-out characteristics of this medium of ex-
pression; we emphasize these aspects in our prototype system.

Broadly, videos are prepared before being used in one or more
performances. With this in mind, we start by providing the
necessary tools to define elements of interest which we call
actors. These can be full-frame video sequences, such as our
Toy and Candle datasets (see Fig. 10 and Tab. 1), or localized
objects, such as the cars in Havana or hands in Drumming.

For the objects, we provide semi-automatic tracking and seg-
mentation capabilities (Fig. 2a). We enable the user to correct

any mistakes in the bounding box tracks interactively. Similarly,
for separating the tracked object from the background, our tool
provides previews of generated action video clips, together or
in isolation. Users can then correct and influence the quality of
the final segmentation by scribbling over the resulting masks.

The next step is the most critical and represents the core of our
new medium of expression. Using our simple UI (Fig. 2b), users
associate a set of actions to each actor, specifying the moment
in the video timeline. For instance, each musical note in Toy,
or drum hit in Drumming, represents semantically and visually
distinct actions. Users define these by tagging a few exam-
ple frames while the remaining ones are labeled automatically,
based on visual similarity, using a machine learning approach.
This reduces the required user input and provides almost instant
feedback, allowing users to validate the automatic action asso-
ciation and, if necessary, refine it by tagging more examples.

A new video performance synthesizes a number of output
layers, each of which corresponds to an actor. Without further
guidance, our algorithm can seamlessly loop through the actor
input frames by finding visually smooth transitions (similar
to [28]). Users can, however, guide the live video performance
by pressing keys mapped to actors’ actions (Fig. 2c), requesting
what to see and when. As we show later, this simple but
powerful interaction mechanism enables more creative input
methods such as MakeyMakey [12], synthesis-by-numbers [10]
or custom game logic.

Our novel and fast synthesis algorithm balances the importance
of meeting users’ requests with maintaining the visual quality of
loop transitions, to create a new video interactively. Users can
further refine the output by tagging incompatible frames or ac-
tions, so that actors interact only in desirable ways; for example,
diggers should only load parked trucks (see Digger in Fig. 7).
Our synthesis algorithm uses this information to improve the
resulting output, completing the human-machine feedback loop
that makes results possible, in response to high level triggers.

Finally, we can perform an optional post-processing step
(Fig. 2d) to improve the quality of the output sequence recorded



during the interactive phase described above, producing the
final results shown in the supplemental video. We use seamless
blending to remove artifacts due to illumination changes and
then merge the actor patches together with the background
ensuring that the overlapping regions are handled correctly.

The following sections provide the technical and implemen-
tation details required to reproduce our system; these are
followed by the results and evaluation.

ACTOR PREPARATION
We now describe the steps and tools used to prepare a raw video
for use during a live performance. The result of this stage is
a set of actor sequences: video sprites associated to actions
that can be interactively triggered during synthesis. Optionally,
actors can be tracked and segmented to improve looping and
increase output variability.

Tracking and segmentation
Critical to looping algorithms is the ability to find similar
frames or patches, at different points in the timeline, that can be
used interchangeably to “jump” between different parts of the
video. This is impossible for complex videos, such as ones with
multiple, independently moving objects (see Havana). Methods
such as [18] partially address this problem by adapting their
patch shape to best suit looping, but are prone to cutting objects,
introducing visible seams. We choose to let users decide
interactively which elements they may want at showtime.

First, users track bounding boxes around objects. In our system,
we chose to use the KCF tracker [9] because a) it is easy and
quick to correct in an interactive setting (see our UI in Fig. 5)
and b) it estimates both scale and orientation along with the
position of the bounding box.

We then use the bounding box to constrain our custom,
graphcut-based foreground (FG) segmentation algorithm.
Unlike traditional approaches, we aim to composite the patches
on their original background (BG). We therefore allow BG
pixels to belong to the FG patch as long as all FG pixels are
correctly classified (see Fig. 3a). To ensure this, users can
correct any errors in the labeling by interactively scribbling
over patches (the colored strokes in (2) in Fig. 5).

Segmentation algorithm
After estimating the static background as the per-pixel median
of all input frames, we use the seam-finding algorithm in
Graphcut textures [16] to separate FG from BG pixels. We use
their pairwise term to conceal seams, and a novel unary term
that enforces seam consistency over time and FG pixels to be
within the bounding box. Formally, the unary term U for pixel
s at position X(s) belonging to the FG in frame t is defined as

U(s,X)= (1−α)
[
− 1

2σ2

X(s)−Xc

2
]
+

α
[
1−Mt−1

(
F←t

(
X(s)

) )]
,

(1)

where Xc = (xc, yc) are the coordinates of the center of the
bounding box in image space, F←t (·) is the optical flow
function that maps a pixel to its location in the previous
frame [6] and Mt−1 ∈ {0,1} is the pixel mask (FG/BG) of the

(a) On BG (b) Ours final (c) Thresholded (d) Mix clone

Figure 3: Result of our user-in-the-loop segmentation pro-
cedure and post-process compositing: the raw image patch
is placed on the original background (a) and composited us-
ing seamless cloning [22] to remove lighting changes w.r.t.
BG (red arrows in (a)) and our custom algorithm to resolve
occlusions (b). Thresholding the BG difference introduces
artifacts (c), while the “mixed seamless cloning” in [22]
does not resolve occlusions (d). Input©Brooks Sherman.

previous frame t−1. We use α=0.35 against a fixed cost to the
BG. User-defined scribbles fix pixels’ unary cost depending
on their association; see Fig. 3 for an example output.

Action definition
The main innovation of our paper is the direct mapping between
arbitrary, user-defined, semantic actions and video synthesis
commands. Users quickly and intuitively guide our synthesis
algorithm towards their goal by issuing these commands; for
instance, requesting a candle flame to flicker to the right. In
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Figure 4: We show the automatically propagated action
assignments (OUR) as opposed to the ground truth (GT).
Two examples are given manually (vertical lines) for each
one of the three actions (denoted with different colors). The
values of the action vector at are shown for 4 example
frames. Note how frame b) is correctly “softly” assigned
to an action between “left” and “rest” (not present in GT).

contrast, traditional approaches expect users to manipulate
the timelines of several clips by cutting, re-arranging and
synchronizing them [11, 20]; we believe this makes for far less
intuitive and powerful video synthesis.

Action recognition is a well studied problem in the literature.
However, existing methods focus on specific use cases, e.g.
human actions [32]. Not wanting to impose restrictions, we
allow users to indicate actions of interest “by example”, using



Figure 5: Our actor definition user interface: (1) actions associated to each frame of a tracked object (e.g. the closest person
is shown “sitting” in each red frame and “standing” in each purple frame, with in-between frames shown as a combination
of the two colors); (2) two example frames with associated actions (above each and denoted by marker), bounding box and
segmentation with corrective strokes (blue = BG, green = FG); (3) input video timeline: the black vertical line indicates the
current frame and the colored horizontal lines indicate frames where each actor (in this case people) has been tracked; (4)
list of tracked actors (identified by their unique color also used in (3)).

our responsive interactive tool (Fig. 5). To define actions, users
inspect actor sequences (potentially tracked and segmented)
and indicate example frames for each action with the press of
a button. Users receive immediate feedback on the quality of
the frame-to-action association of the remaining input frames,
as they are automatically compared to the user-given examples.

We can view this as a fuzzy clustering problem, where each
action (e.g. “sit” and “stand” for Wave in Fig. 5) is a cluster.
In practice, we represent the action visible in frame t of actor
sequence S for which l distinct actions have been defined as an
l-dimensional vector at . It represents a probability distribution
over the action space, so | |at | | = 1. Intuitively, the higher the
value of the l th element of at , the more representative is frame t
of the l th action. For frames indicated as examples of a given ac-
tion, at takes the form of a binary vector with a 1 for the specified
action and 0’s elsewhere. For instance, given the l =3 actions
defined for Candle (i.e.“rest”, “left” and “right” in Fig. 4), a
confident example frame showing the flame flickering to the
left would be associated the action vector at = [0,1,0] (Fig. 4d).

We then quickly propagate the user-given information to the
remaining frames using [33]. Action vectors at , with | |at | |=1,
are assigned to all frames, softly clustering them into different
actions based on similarity to example frames. The distance
between each frame pair (t,t ′) is defined as

D(t,t ′)= 1
NO

N∑
n=1

[
I
(
t,X(n)

)
−I

(
t ′,X(n)

) ]2
, (2)

where we take the L2 distance between color intensities
I
(
t,X(n)

)
and I

(
t ′,X(n)

)
of every pixel n. If the actor sequence

has been tracked, we first place the frame’s segmented patch
onto the static background as shown in Fig. 3a. This ensures
Eq. 2 can be used for both tracked and full frame sequences,
and spatial relationships are preserved. To avoid bias due to

camera-related effects, such as foreshortening, we normalize
the distance measure by the number of overlapping pixels NO
between each frame’s bounding box. We set NO to the whole
frame area if no bounding box is defined. For space reasons
we do not discuss the propagation further. Please see [33] and
specifically their Eq.(5) for more details.

Each input frame is associated to an action-cluster “softly”
as shown in Fig. 4. This is critical, as frames for which no
clear association exists (e.g. (Fig. 4b)), are used as in-between
transitions by our synthesis algorithm. In contrast, traditional
video annotation tools, such as ANVIL [14], enable a similar
partitioning of video sequences but with hard boundaries
between manually defined intervals (see Fig. 4 GT), losing the
expressiveness of fuzzy assignments in the process. Moreover,
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Figure 6: Time we spent labeling actions for datasets
Toy (700 frames) with 9 different actions and Candle
(4000 frames) with 3 different actions using our system or
ANVIL [14]. Precision computed w.r.t ANVIL labels.

as shown in Fig. 6, we experienced a 2× to 3× speed-up in reach-
ing the accuracy permitted by ANVIL (and ignoring in-between
frames) thanks to the automatic label propagation from [33].



VIDEO PERFORMANCE
In this section, we show how we synthesize a live video
performance given a set of input actor sequences. First, users
interactively define the frame compatibility measure, which
is later used to avoid implausible outputs. Second, we present
our optimization strategy that balances user commands, frame
compatibility and transition quality information to synthesize
new videos.

Frame compatibility
As we will see later, users guide the video synthesis by request-
ing when actors should perform actions. When multiple actors
are present in the same frame however, outputs can exhibit
implausible situations depending on when users issue their
commands (see Havana cars or Candle flames). For instance,
Candle flames could flicker in different directions at the same
time (Fig. 10a), a digger could start loading a moving truck
(Fig. 7a) or cars could collide in Havana (Fig. 8). In our sys-
tem, these incompatibilities take the form of two actors’ frames
being composited together onto the output background.

In essence, we again want to assign frames to a set of clusters
fuzzily, as we did for our action definition. These clusters
further decompose the actions into sub-sequences. Users mark
them as (in)compatible w.r.t. the sub-sequences of other actors,
indicating which sets of frames should be allowed to co-exist
in the output video. Given actor sequences Si and Sj , we define
the compatibility between their respective clusters m and n as

B(i, j,m,n)=
{

1 if compatible

100 if incompatible
. (3)

Initially, there is one sub-sequence cluster for each user-defined
action, so m and n are in the range [0,l). Later, we discuss how
users marking (in)compatibilities changes the number of clus-
ters. We initialize B(i, j,m,n)=1 for all combinations of m and n.
We use ctii→j to denote the vector containing the probability that
frame ti of actor Si belongs to clusters compatible with actor Sj .
Similarly, we define ctjj→i for frames of actor Sj . We initialize
ctii→j =ati as it provides an initial division of the input frames,
the combination of which could be incompatible. The compati-
bility between frame ti of Si and frame tj of Sj is then defined as

χ
(
ti,tj

)
=
∑
m

∑
n

ctii→j[m]c
tj
j→i[n]B(i, j,m,n), (4)

where ctii→j[m] denotes the mth element of ctii→j . Intuitively,
the higher the probability that two frames belong to two
compatible clusters, the lower the value of χ

(
ti,tj

)
, denoting

a low compatibility cost.

Using our GUI (Fig. 8) at synthesis time, users can tag pairs
of frames as compatible or incompatible. Given the pair

(
ti,tj

)
we allow two options, which we illustrate for ti only, as they
are analogous for tj :

1. specialize the compatibility by using ti as an example for
a new cluster m̃, re-running label propagation using the ex-
tended set of examples to compute (the now 1D larger) ctii→j

for all frames of Si , extending B by one row, setting B(i, j,{m |
m, m̃},n)=1 and B(i, j,m̃,n) according to the user input;

(a) Without (b) With

Figure 7: Compatibility illustration. Here, the digger is re-
quested to “load” a truck while the truck is asked to “drive”
away in both cases. (a) Without frame compatibility, the
two actors are free to perform these incompatible actions,
with obvious artifacts. (b) With it, the digger is forced
by our algorithm to “load” only when the truck actor is
“parked”. Input© Perfect Lazybones/Shutterstock.com

2. refine the compatibility measure by leaving B unchanged,
setting ti as a new example for the cluster m=argmax

m

[
ctii→j

]
it most likely belongs to and, again, re-running label
propagation to re-compute ctii→j .

If the compatibility of
(
ti,tj

)
is changed, we assume option 1,

otherwise, the user is asked to decide.

Intuitively, using the example of the two cars at the crossing
in Fig. 8, if one chooses to specialize, each cluster will contain
frames showing the car in different parts of the intersection. All
frames showing the cars in the middle of the crossing can then
be marked as incompatible and avoided in the output, making
our synthesis continuously smarter.

Action-based video synthesis
An output video is composed of the frames of one or more
actor sequences, re-arranged to infinitely loop showing specific
actions and the transitions between them. We phrase our
synthesis process as a labeling problem over a two-dimensional
graph with D rows and K columns. Each d row is an output
layer that contains the frames {ti} of a specific actor sequence
Si , re-arranged to adapt to the user’s commands. Each k
column represents a final output frame as the union of the
frames chosen for each layer. For instance, the Toy result has
one row with output frames straight from the input, while the
Havana output has as many rows as controllable cars. The label
assigned to each (d,k) node is the index of an actor’s frame.

Users control the output video by selecting one output layer
at a time (see output timeline in Fig. 8) and pressing the key
associated to the action they want the actor to perform. This in
turn defines for each output frame k a D-dimensional requested
action vector {rk

d
}, d ∈ [1,D]. We use a smooth-step function

to automatically switch from the currently shown action to the
one associated to the user-pressed key stroke.

Formally, our optimization strategy minimizes the energy
function

E =

K∑
k=1

D∑
d=1

αEA+(1−α)
(
βEC+(1−β)ET

)
, (5)
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Figure 8: Our video synthesis user interface: (1) output timeline: lists the used actor sequences (e.g. 1 bordeaux car and 2
black cars) and the color coded user-given commands (e.g. red for the car to stay hidden and purple for it to drive through
the crossing); (2) frame compatibility tagging interface: pairs of frames (previewed to the right of the compatibility info) can
be tagged as compatible or incompatible; (3) compatibility info for the two selected actors (i and j): frame association to
compabtibility clusters per actor (ctii→j and ctjj→i), the cluster-pair compatibility (B(i, j,m,n), see Eq.3), for instance, here, the
3rd cluster of each actor (dark cyan above) are incompatible as denoted by red in the cell (2,2) and the frame compatibility
measure χ

(
ti,tj

)
from Eq 4 (blue denotes a low cost and red denotes a high cost) (4) list of available actor sequences (added

to the output timeline shown in (1)) and synthesis parameters. Input©Brooks Sherman

where EA,EC and ET are action, compatibility and transition
costs respectively. Intuitively, the higher the value of α, the
more responsive the synthesis is to the requested actions (as
EA counts more towards total energy) at the expense of looping
quality. This is in turn controlled by the other two terms,
balanced by β. The higher its value, the more important it
is to show compatible frames (EC) at the expense of smooth
transitions (ET). Both parameters are user-tuned.

We now define the three components of our energy function.
For output layer d, EA is the cost of showing a frame tki of actor
sequence Si , in output frame k, based on whether the action
it shows atki matches the requested action rk

d
and is defined as

EA

(
d,tki

)
=

1
2σ2

A

at
k
i −rkd

2
. (6)

EC is the cost of showing a pair of frames tki and tkj , from output
layers d and d ′ respectively, in the same output frame k based
on the compatibility cost χ(·,·) from Eq. 4 and is defined as

EC

(
d,tki

)
=

∑
j∈[1,D]\d

χ
(
tki ,t

k
j

)
. (7)

Finally, ET is the cost of showing actor Si’s frame tki in output
frame k after showing a frame t(k−1)

i in the previous output
frame (k−1) and is defined as

ET

(
d,tki

)
=exp

[
1
σ2

T

D
(
t(k−1)
i ,tki

)]
, (8)

where D(·,·) is defined in Equation 2.

Real-time performance
The objective in Eq. 5 can be solved using any discrete energy
minimization solver that supports multi-label nodes and
arbitrary cost functions, e.g. TRW-S [15]. Unfortunately,
TRW-S fails to converge in our experiments and our system
requires immediate feedback to enable live performances.

Instead, we propose an iterative approach that minimizes our
objective function locally. We define the new energy function

E ′(d)=
K∑
k=1

EU+EP, (9)

and solve it using dynamic programming, one row d at a time,
to synthesize K output frames showing the actor associated
to the given row. The only inter-row energy is EC (Eq. 7),
that ensures compatibility between frames of different actors,
which we “bake” into the unary term EU. We define it and
pairwise term EP as

EU =αEA+(1−α)βEC,

EP = (1−α)(1−β)ET,
(10)

respectively. At each iteration we minimize Eq. 9 for each
row in the order the output layers are defined and update EU to
consider the already computed rows. We have found that, one
iteration is enough to satisfy our three constraints and enables
real-time synthesis. Note that, the result seen during a live
performance might differ from the one synthesized using the
full set of action requests recorded during it. This is due to
the fact that, we can better optimize frame compatibilities and
transitions between actions, once we exactly know what each
actor will be requested to do and when. In our experiments,
even long (see Table 1) actor sequences such as the people in



Wave or the flame in Candle never require more than 500ms
to synthesize 400 frames. We further drastically reduce these
timings (10× to 30×) by using our compression strategy
described below. Typically, we synthesize less than 100 frames
in < 20ms every 2-3 seconds in a live performance scenario,
making our system very reactive.

Optimization Compression
Jumps are rarely perfect, as pointed out by [28], so higher
quality outputs involve fewer jumps (i.e. the original timeline
is followed for as long as possible). With this insight, we speed
up our optimization further by synthesizing a subset of the
output frames using a subset of the input frames, and “filling
in the blanks” using subsequent frames. For instance, we can
optimize for half the output frames using only every other input
frame and gain a 10× speed-up. We experimented with up to
4× compression, meaning we optimize for every 4th frame,
with no visible quality penalty.

Post-Processing Rendering
Our optional post-process first uses seamless cloning by Pérez et
al. [22], to merge each patch to the static background and
remove artifacts (red arrows in Fig. 3a) due to illumination
changes. Then, our custom compositing algorithm resolves
occlusions between overlapping segmented actor patches.

As shown in Fig. 3a, our segmented patches often contain back-
ground pixels. This was deliberate as it allows us to retain small
details such as soft shadows, and works well when patches are
placed on their original background. When patches of different
actors overlap in the synthesized frame (Fig. 3b), BG pixels
may obscure FG pixels. For each pixel where this happens,
we dynamically decide which patch is most likely to be FG
based on its color intensity difference to the BG. This approach
is more flexible and gives better results than setting a global
threshold on the background difference, as shown in Fig. 3c.
It is also more suited to our problem than the “mixed seamless
cloning” in [22] which does not perform well with complex
backgrounds or occlusions, and introduces ghosting (Fig. 3d).

CREATIVE SYNTHESIS
In contrast to existing tools, our system accepts high-level,
user-defined commands that guide our video synthesis
algorithm. Users need simply request when they want an actor
to perform an action, enabling many alternative and fun ways
of creating videos, which we now present.

Keyboard and MakeyMakey
The simplest way to create a video with our system is by using a
keyboard. An action for each actor can be mapped to a specific
key stroke which, when pressed, signals our synthesis algorithm
to show frames from that category. Given the simplicity of our
mapping process, we can use more creative input methods too.
For instance, in Fig. 9a and in our supplemental video, an artist
uses MakeyMakey [12] and some Play-doh figurines to create
a video using our Drumming dataset, where specific drums or
cymbals are hit when the associated figurine is touched.

Synthesis by numbers
Our system enables creation of video analogous to image
synthesis [10]. We associate actions to solid colors, and create

(a) MakeyMakey [12] (b) By numbers

(c) Game logic

Figure 9: Using actions as an abstraction for synthesis com-
mands enables new and creative ways of creating videos.
Trigger commands can be given through touching a key-
board or Play-doh figurines (a), animated color bars (b) or
context specific game logic (c).

an animated control sequence showing those colors using any
paint tool. Actions are then triggered according to the colors
shown by the control sequence. For instance, Fig. 9b, shows
an animated black bar crossing the screen from left to right. At
each output frame, people in Wave are asked to “stand” if they
are under the black bar and “sit” otherwise. This allows us to
quickly create a Mexican Wave. In our supplemental video we
show that we can easily change the control sequence to quickly
synthesize completely different waves.

Game Logic
Our system also allows external factors to drive video synthesis.
In particular, custom video-game logic can be programmed to
issue commands to our synthesis algorithm based on dynamic
game-related events. For instance, we have embedded a pre-
computed set of outputs of our controllable Candle into a game
level (see Fig. 9c and supplemental video). Then, the game logic
decides how the candle should react to its own wind simulation,
by for instance, making it flicker to the left or to the right.

RESULTS
The new medium of expression described in this paper enables
the creation of a wide variety of video performances. To stim-
ulate the reader’s creativity, we and our users have produced
a number of output videos using the system. They can be seen
in our supplemental video4, as stills in Fig. 10, and are briefly
described here. In Table 1, we provide information about the
actors defined for each dataset and the needed user effort.

We use Candle as a didactic example. After segmenting the
flame using pixel intensity, we define three actions (“left”,
“right”, “rest”) and thus are able to have it react according
to a hypothetical breeze. Given multiple copies of a candle,
as shown in our supplemental video, we also tag pairs of
frames showing distinct actions as incompatible, such that
our synthesis algorithm can ensure they all react to the breeze
randomly, but in the same manner, without having to manually
ensure it for each flame. Similar results are achieved from
within a videogame level, as shown in Fig. 9c.

Range
Havana and Theme Park show the flexibility of our method and
its ability to avoid incompatibilities. These and the subsequent
4Visit our website http://visual.cs.ucl.ac.uk/pubs/actionVideo/

http://visual.cs.ucl.ac.uk/pubs/actionVideo/


(a) Candle (b) Toy (c) Wave (d) Havana (e) Drumming (f) Digger (g) Windows (h) Planes

Figure 10: Sample output frames. Inputs to (d)©Brooks Sherman, (f)©Perfect Lazybones/Shutterstock.com, (g)©Pavel
L/Shutterstock.com, (h)©Cysfilm. Results sequences shown in supplemental video.

Dataset Actors Actions
Average
#frames

Avg Prep
[s/actor]

Output
layers

Candle 1 {3} 1168 60 8
Toy 1 {9} 702 210 1
Wave 18 {2} 1124 1320 15
Havana 13 {2} 587 1257
Theme Park 13 {1, 2} 630 820 21
Digger 2 {2} 160 405 2
Windows 23 {2} 115 60 54
Planes 7 {2} 105 917 10
Drumming 3 {2, 4, 5} 506 2440 3

Table 1: Example input videos. Note how some datasets
contain actors with different numbers of actions. For each
dataset, we show the average number of frames per actor,
average number of seconds necessary to prepare them and
the number of layers in the corresponding output video.

examples differ from Candle because they cannot or would
be very hard to make using existing tools. Multiple moving
elements were tracked and segmented, and associated to the
actions “visible” and “invisible”. Thanks to our frame compati-
bility measure, we are able to avoid collisions between cars and
people when they are visible at the same time in the output video.
Similarly, in Digger the user ensured a digger only loads a truck
when it is parked, by tagging a few incompatible pairs of actor-
frames where the truck is moving while the digger tries to load it.

With the remaining datasets, we showcase further creative
interactions with our system. Using Wave, we create a Mexican
Wave simply by creating a control animation as seen in Fig. 9b.
We can then quickly alter the result by simply changing the
control sequence, to add a second subsequent wave, one in the
opposite direction, or even an interlaced one. In Drumming,
we can control a drummer playing his instrument by simply
touching play doh figurines representing funny sounds, while
with Toywe can create a video showing specific songs being
played onto a colorful xylophone after filming random notes
being hit. Windows allows us to map windows on a building fa-
cade to pixels in a grid, and render a compelling game of Tetris
by manipulating the light switches. With Planes, airplanes take
off in sync with a user hitting the spacebar to the rhythm of a
well known videogame theme-song. Finally, a game-developer
used Havana to create the CounterLoop videogame (see project
webpage). All these outputs and use-cases are prepared with
the same workflow, qualitatively demonstrating its range.

EMPOWERMENT EVALUATION
As they are our closest competitors, we aim to replicate our
Mexican Wave output (Fig. 10c) using either of [18, 20, 11].
Liao et al. [18] can deal with complicated scenes but it merely
finds the best possible looping patches. It does not allow
the user to choose where to loop or when people should sit
and when to stand. The system of Lu et al. [20] can allow
us to splice together different sub-clips and re-arrange them.
However, they create unnatural speed-ups or slow-downs
when people need to sit for longer or less than the input video,
because of their time scaling algorithm, and do not account for
transitions between the clips as our looping does automatically.

We informally compare our system to Cliplets [11] by recreating
an 8-actor Mexican Wave (see supplemental video) and one
candle flame using Candle. Similar to [20], Cliplets works by
defining, manipulating, and arranging layers of video clips to
create the output. Each layer shows one looping animation (e.g.
an actor performing one action) or input frames as captured
(which we used to transition between actions of the same actor).
For instance, a video of a flame flickering left and then right,
requires three layers: a) “loop flame left”, b) “playback flame
going from left to right”, c) “loop flame right”. Users must
manually define when to show each loop and its length and
find transition frames in b) such that there is no visible jump
when hiding layer a) to show b) and when hiding b) to show c).
This very time consuming process is slowed further if the result
needs changes, as changing looping time or animation order
requires carefully re-arranging layers and redefining transitions,
effectively starting over. In contrast, our system enables live
performances after a one-off preparation stage. The output is
created as an endless stream and the user is free to play-act
and improvise in real time, an invaluable ability unique to our
system. Using Cliplets, it took us 4× and 9× longer to recreate
Wave and Candle respectively. This is mainly due to manually
inspecting the video to find the right subset of frames to loop
through or use as transitions between animations.

For reasons discussed above, several methods [11, 18, 20] were
not able to successfully recreate our outputs. Separately from
range, we want to assess whether our action-based synthesis
empowers users’ creativity [21] and helps express it better and
faster than baselines. We therefore compare against Adobe
After Effects (AE) because, with proper training, it gives users
commercially-accepted tools that should reproduce our results.
We gathered 6 novice users, that had never used either system,
and asked them to recreate the Mexican Wave sequence. In
particular, they were instructed to create a left-to-right wave,
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Figure 11: Average timings necessary to replicate a varia-
tion of our Mexican Wave result. From top to bottom: ex-
pert users of NukeStudio, Blender, and AfterEffects; novice
users of AfterEffects; novice users of our system.

some idle animation in the middle (i.e. sitting people) and a
final right-to-left wave. After relevant training, half of the users
used our system while the remaining half performed the same
task using AE. Both sets of users were given the same 7 sprites
as input that had already been tracked and segmented.

Fig. 11 shows that users of our system were roughly twice as
fast, indicating that our system is indeed easy to use. In their
words, they really enjoyed the simplicity with which actions
are defined, the responsive visualization (Fig. 5), and the im-
mediate video feedback that comes with action requests during
synthesis. In the supplemental video, we qualitatively show
that the AE results are inferior to ours. This is because our
system automatically finds the best transitions between actions,
while the AE users need to manually align the clips showing
the sitting and standing actions and decide when to transition
between them. Finally, we also asked three expert Nuke Studio,
Blender, and AE users to recreate the same sequence. Their
timings (also in Fig. 11) show a larger variability depending on
their willingness to find optimal-looking jumps. In fact, they
were given the same inputs and task as the novice AE users, but
no further instructions, and their results are of varying quality.

DISCUSSIONS WITH ARTISTS
To assess the balanced structure [21] of our system, we
informally interviewed three digital artists, mostly involved
with game development or live performance design, and
introduced them to our system (see Fig. 12 using Drumming).
They agreed that our system takes a large step toward making
“video composition more like playing a musical instrument”,
enabling live performances with immediate video feedback,
such as seen in Drumming. We were surprised that one asked to
sacrifice video quality for better responsiveness, especially if
sound feedback is present. As shown in our supplemental video,
we were able to cater to this request by favoring EA(Eq. 5) at
the expense of good looking transitions. The result can then
be improved, immediately after recording the user commands,
by re-synthesizing the sequence with the default video settings.

Interestingly, artists saw our system as a “sketching tool”
for quick prototyping, such as seen using synthesis by
numbers to create the variations of the Mexican Wave. In fact,
experimenting with choreographies was a suggested use case,
such as filming dancers improvising and re-arranging their
moves using our system after the fact. They also expressed the
desire to have the synthesis algorithm as part of game engines,
as they feel it gives them important control over sprite synthesis.
When shown our Candle video, they immediately recognized

Figure 12: An artist using our live performance system.

its value for game development and suggested further content,
such as water drops into puddles. Finally, they suggested a
number of “shared experiences” for teaching and training that
our system would make possible. For example, a trainer could
decide which exercises people should perform and give them
live video tutorials, or could trigger traffic scenarios.

CONCLUSION
We presented a system that facilitates a new medium of
expression, where videos are created much like live looping
is composed. Users define actors, optionally tracking and
segmenting them, and associate actions to triggers, which can
take the form of multiple interfaces. Our workflow helps both
novices and advanced users to prepare their footage and, for
the first time, turn it into interactive live performances.

Limitations
The quality of our results, ultimately depends on the input
videos and the users’ willingness to invest the necessary effort
to process them. The longer the actor sequences, the greater
the variability and coverage of situations. For instance, there
are no clean transitions between hitting some notes in Toy
and the rest position, because the mallet hand rarely leaves
the view in the input video, resulting in occasional jumpy
animation. In general, this holds for short videos where there
is too much variability but not enough coverage. This problem
could be tackled with interpolation and morphing techniques
similar in spirit to [29]. Additionally, there is always a trade-off
between how quickly the synthesis shows the desired action,
and how smooth the transition looks. Being able to successfully
camouflage bad jumps would reduce the time necessary to
transition between actions. It would also remove the input lag
between the button press and the on-screen response, critical
for live performances such as Drumming.
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