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Growth of CZTS crystals and Cooling Curve 

CZTS was synthesized in evacuated quartz ampules using copper (Sigma Aldrich 99.7%), zinc (Alfa Aeser, 99.9%), tin (Alfa 

Aeser 99.85%) and sulfur (Alfa Aeser 99.999%). The amounts of material and conditions used in the synthesis of the CZTS 

precursors for crystal growth were as follows. Needle precursor: Cu 2.3807 g, Zn 1.8368 g, Sn 2.7786 g, S 4.2093 g, 900o C 

for 2 days. Platelet precursor: Cu 6.2424 g, Zn 4.2829 g, Sn 6.4782 g, S 7.0112g, 750o C for 43 days.  The needles were 

grown using 10 g CZTS and 0.2 g I2 (Sigma Aldrich 99.999%), 8 days. The platelets were grown using 6.033 g CZTS, 0.749 g 

I2 and 0.06 g NaI (99+%, Sigma Aldrich), 9 days. The crystals were cooled in situ after switching off the furnace.  The cooling 

curve is shown in Fig. 1. 

 

Fig. 1. Measured Cooling curve for Growth Zone of the 4-zone furnace. 

 

Spectroscopic Ellipsometry 

The crystals’ complex dielectric functions (
' ''i    ) were determined using spectroscopic ellipsometry. The crystals 

were mounted in epoxy resin and Teflon and polished to 1µm using alumina paste, and optical microscopy was used to 

select areas for examination. This was done using a J.A. Woollam M20000U-Xe rotating compensator ellipsometer with 

focusing optics that gave a 150 µm wide spot. Measurements were carried out over a spectral range of 245 to 1690 nm 
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(0.734 to 5.044 eV) at three angles of incidences (45, 55 and 65°). The resulting data were analysed using the computer 

program CompleteEASE.1. This was done in two stages. First the ellipsometric parameters (Ψ and Δ) were fitted by 

approximating 𝜀 by a B-spline. This allowed arbitrary flexibility whilst enforcing Kramers-Kronig consistency and a positive 

𝜀2 to ensure a physically meaningful solution. 𝜀 was then refined by converting the B-spline into a general oscillator model 

where its main features were represented by PSEMI-M0 oscillators2,3, and Gaussian peaks were used to improve the 

overall fit. The absorption coefficient values derived by fitting the spectroscopic ellipsometry data for the platelet sample 

are compared with published data in Fig. 2. 

 

Fig. 2. Comparison of  values derived by SE for platelet sample with data from Li et al.4 for reactively sputtered thin films 

and tabulated by Ito5 based on SE data from ref 6. 

 

Fig. 3 shows the Tauc plot obtained using the absorption coefficient determined by SE. 

 

Fig. 3. Tauc plot of absorption coefficient data obtained by spectroscopic ellipsometry (platelet crystal) 
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Fig. 4 shows the Urbach plot for the SE data. 

 

Fig. 4. Urbach plot of absorption coefficient obtained by SE for the platelet crystal. 

Photocurrent Spectroscopy   

Chopped collimated illumination was provided by a tungsten lamp and grating monochromator (Bentham Instruments) 

with a variable frequency mechanical chopper operating at 27 Hz, and the photocurrent was detected by a lock-in amplifier 

(Stanford Research). The spot size of the illumination was controlled by image slits and was chosen to be smaller than the 

smallest dimension of the crystals to ensure that all the light fell on the crystal surface. The illumination intensity was 

measured using a calibrated silicon photodiode traceable 5% to NBS standards. The external quantum efficiency spectra 

were corrected for reflection losses due to the glass window of the cell and reflection from the crystal surface.  

The Tauc plot derived from the EQE data for needle is shown in Fig. 5. The intercept gives a band gap of 1.64 eV, slightly 

lower than that obtained for the Tauc plot for the platelet (1.68 eV). 

 

Fig. 5. Tauc plot of the EQE data for the needle sample (Eg = 1.64 eV). 
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The Urbach plot of the EQE data for the platelet is shown in Fig. 6. 

 

Fig. 6. Urbach plot of EQE data for the platelet. 

Electrolyte Electroreflectance  

For electrolyte electroreflectance measurements, unchopped illumination was incident on the crystal surface at 45o, and 

the reflected beam was detected by silicon photodiode.  The electrode potential was modulated by an ac voltage of 

variable frequency and amplitude provided by the lock-in amplifier, which also detected the modulated reflectance signal 

from the photodiode. EER spectra reported here were recorded using 13 Hz modulation.  The validity of the low field 

approximation was checked by varying the amplitude of the ac modulation.  The results shown in Fig. 7 show that the EER 

signal depends linearly on the amplitude of the ac modulation as expected. 

 

Fig.7. Dependence of the EER signal on modulation amplitude measured for the CZTS platelet sample at -0.6 V vs Ag/AgCl. 
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Raman Spectroscopy 

Fig. 8 shows the fitting of the resonant Raman spectra of the as-grown platelet and needle. 

 

Fig. 8. Deconvolution of near-resonant Raman spectra of the as-grown platelet and needle (red lines total fit). 

Assignment of the Raman peaks used to identify the kesterite phase  

Platelet Needle Theoretical kesterite 7,8 Theoretical stannite 7,8 

Modes Wavenumber (cm-1) Modes Wavenumber (cm-1) Modes Wavenumber (cm-1) Modes Wavenumber (cm-1) 

A 338  A 336  A 340.04/335.2  A1 334.08/332.7  
 302   300   284.30/309.0   277.12/309.1  
 287   285   272.72/302.1  A2 263.11/304.3  
B (TO LO) 351 375 B (TO LO) 349 373 B (TO LO) 355.80/354.8 374.05/366.4 B1 291.12/324.1  
       309.56/332.7 313.19/336.1  74.17/88.1  
 236 249  237 250  238.48/269.1 254.73/285.1 B2 (TO LO) 360.12/358.5 370.63/364.2 
       166.65/179.6 168.21/179.9  277.08/306.2 291.82/320.6 
       98.82/104.2 98.83/104.3  149.69/171.0 150.91/171.1 
       86.70/92.3 87.51/93.1  95.85/96.4 95.86/96.4 
E (TO LO)  366 E (TO LO)  365 E (TO LO) 351.55/341.4 366.35/353.2 E (TO LO) 346.01/341.3 364.87/353.7 
  314   313  281.07/309.7 293.44/314.1  264.34/305.3 275.52/311.9 
 245 263   261  250.26/278.2 257.85/289.8  235.41/268.7 246.58/283.3 
       150.53/166.1 151.05/166.2  161.68/170.9 162.63/171.0 
       105.93/101.4 106.00/101.4  97.34/106.9 97.38/106.9 
       83.64/79.2 83.65/79.2  78.39/74.9 78.73/75.5 
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Vineyard model 

The Vineyard model9 of order-disorder transformations gives the rate constants . 
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and the rate of change of order as 

       
 

2 21
1 1

2
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dS
k S k S

dt
  

Here f is the frequency of the vibrational mode involved in the exchange of neighbouring atoms (taken as 1012 Hz), U is 
the activation energy for place exchange (taken as 14900/kB) and ν (taken as 358/kB) is related to the interaction energies 
of the three possible nearest neighbour pairs (Cu-Cu, Zn-Zn and Cu-Zn).  The values of U and ν used in the calculations 
shown here were taken from the fit obtained by Scragg et al.10  Equilibrium is established at a given temperature when 
dS/dt = 0, as illustrated in Fig. 9 for a temperature of 150oC 

 

Fig. 9. Plot showing definition of equilibrium order when dS/dt = 0 for T = 150oC. 

The predicted time dependence of the order parameter S for a temperature of 100oC is illustrated in Fig. 10. 

 

Fig. 10. Time-dependence of the order parameter S predicted for the annealing of a fully disordered crystal at 100oC. 
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The predicted equilibrium order parameter as a function of annealing temperature is illustrated in Fig. 11.  

 

Fig. 11. Equilibrium Order Parameter S as a function of annealing temperature calculated from the Vineyard model for 
values given in text. 

Photoluminescence  

Photoluminescence spectra were recorded in a homebuilt set up. A green (514 nm) CW argon laser was used with a power 

of 1 mW and diameter of 100 µm and integrated over several minutes to obtain an optimized signal. The spectra were 

measured between 550 and 1050 nm with a Si camera and between 900 and 1250 nm with an InGaAs camera. High pass 

filters of 550 nm for the Si to exclude laser light and 850 nm for the InGaAs to exclude second order light (from laser and 

the sample) were used.  

Time-resolved photoluminescence measurements where performed in air with a photon counting system (Fluotime 300, 

PicoQuant GmbH). The samples were excited with a 634 nm laser diode (LDH-P-C-635, PicoQuant GmbH, pulse duration 40 

ps). Decay traces were acquired at an excitation fluence of 2.3 µJ/cm2. We used an IR-PMT detector (Hamamatsu, H12694) 

to measure decays at 1.30 eV and a PicoQuant PMA-Hybrid detector for decays at 1.65 eV.  

Fig. 12 compares the blue shift measured for the platelet and needle samples  

 

Fig. 12. Intensity dependence of PL peak energy for platelet and needles crystals 
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Fig. 13 shows the dependence of PL intensity on laser power for the platelet and needle samples. 

 

Fig. 13. Dependence of PL intensity on laser power for platelet and needle crystals. 

Fig. 14 shows the PL decays measured at two different photon energies in the case of the CZTS needle.  The decay times 
are almost identical.  This contrasts with the energy dependence of the lifetime the platelet sample shown in the main text. 

 

Fig. 14. PL decay plots for the CZTS needle at two different emission energies. Excitation energy 1.96 eV 
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Attempt to obtain the electron diffusion length using Gärtner analysis 

Close to the bandgap, where Ln<<1, the Gärtner equation  






 



exp
1

1 n

W
EQE

L
  

reduces to the simpler form  

    ln 1 EQE W   

If the semiconductor/electrolyte interface behaves ideally (no surface states), the width of the space charge region should 
vary with the square root of Ufb – U, where Ufb is the flat band potential.  
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It follows that a plot of    
2

ln 1 EQE  vs. electrode potential U should have an intercept at Ufb. Fig. 15 shows plots for two 

wavelengths close to the band edge, from which the flat bad potential is estimated to be -0.5 V vs Ag/AgCl. 

 

Fig. 15. Plots used to estimate the flat band potential of CZTS  

The Gärtner equation can also be written in the form  

   
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  
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EQE L W
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so that a plot of -ln(1-EQE) vs. (Ufb – U)1/2 should have an intercept on y axis equal to ln(1+ Ln).  Fig. 16 shows plots of this 

function for three different wavelengths.  The plots are clearly non-linear and so it is not possible to obtain a reliable value 

of the intercept on the y axis.  We attribute this to non-ideal behaviour of the CZTS/electrolyte junction due to the 

presence of a high density of surface states.  The charging of these surface states leads to a change in the potential drop 

across the Helmholtz layer when the electrode potential is altered, so that the simple square root relationship between the 

width of the space charge region and (Ufb-U) no longer holds. 
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Fig. 16. Plots of -ln(1-EQE) vs .(Ufb-U) according to the Gärtner equation showing non-ideal junction behaviour 

Impedance Measurements 

Impedance measurements were carried out using a Solartron Modulab system and fitted using ZView software (Scribner). 

The impedance behaviour of the platelet crystal shows that the evaporated Au contact is non-ohmic with a series 

resistance greater than 1 k and a stray capitance of around 800 pF. The series resistance is not a problem for the very low 

currents and low chopping frequencies in the EQE measurements.  

An example of the impedance fitting to the equivalent circuit on the next page is shown below for data measured at -1.0 V 

vs. Ag/AgCl.  The low frequency behaviour is consistent with the presence of a high surface state capacitance, modelled 

here by the constant phase shift element CPE1. Reliable fitting and extraction of the space charge capacitance proved 

difficult due to the overlap in time constants for the surface state and space charge capacitances, and consequently 

construction of Mott-Schottky plots to determine the doping density of the crystal was not possible.   

 

 

Fig. 17. Bode and Nyquist plots of impedance of etched CZTS platelet crystal. The fitting data are given below. 
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R1 contact resistance 

R2 surface state resistance  

R3 Faradaic resistance 

C1 space charge capacitance 

C2 contact capacitance  

CPE1 surface state CPE 

R1 
C2 

R3 
C1 
R2 CPE1 

Element Freedom Value Error Error % 
R1 Free(+) 1376 6.4889 0.47158 
C2 Free(+) 8.6322E-10 7.3385E-12 0.85013 
R3 Free(+) 46185 1034.5 2.2399 
C1 Free(+) 4.1256E-08 1.2771E-09 3.0955 
R2 Free(+) 1537 201.27 13.095 
CPE1-T Free(+) 7.2261E-07 4.1279E-08 5.7125 
CPE1-P Free(+) 0.67597 0.0078146 1.1561 
Chi-Squared: 0.00021708 
Weighted Sum of Squares: 0.010637 
Data File: C:\Users\chslmp\LMP Files\Papers 2016\CZ 

TS single crystal\SI Figures\impedance a 
t -1 V.txt 

Circuit Model File: 
      Mode:  Run Fitting / Selected Points (0 - 27) 

Maximum Iterations: 100 
Optimization Iterations: 0 
Type of Fitting:  Complex 
Type of Weighting:  Calc-Modulus 


