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Tutors and gatekeepers in sustainability 
MOOCS 

 
 

Danish Mishra, Steve Cayzer, and Tracey Madden



 

Introduction 

For educators concerned with sustainability literacy, we are necessarily both affected by, and effectors of, digital pedagogies. 

The call for papers for this special issue challenged us to consider whether digital pedagogies are “supportive of sustainability 

or perpetuators of unsustainability”. As might be expected, this question is not a simple binary choice and we have chosen to 

address it indirectly, by considering the nature of interaction in a global, digitally connected community of learners. In 

particular, we examine the changing role of tutors in these communities, and the possible implications of this change on 

sustainable literacy.      

MOOCs (massive open online courses) are sometimes credited with the potential to revolutionize distributed learning. 

Practices such as learner generated resources, system thinking and citizenship education, are characteristic of so-called 

connectivist MOOCs. In such MOOCs, it might be that the educator could take the role of facilitator or even absent themselves 

entirely from the learning process. 

This has implications for sustainability literacy. In our paper we examine the extent to which these patterns of interaction may 

affect the learning process, and to what extent this may help participants engage with the concept of sustainability. We use 

Social Network Analysis (SNA) to explore the nature of interaction between learners in a MOOC, particularly the role of the 

tutors in mediating such interactions. We find that tutors can and do take a central role in some cases. However in other 

cases the removal of tutor nodes has little effect, suggesting that different modes of learning are possible in a MOOC 

community. We see participants playing central role in the network as gatekeepers; influencing network learning, learning 

driven by the participants via conversations among themselves and information flow. The implication for sustainability is that 

digital pedagogies, when structured correctly, can drive connectivity and engagement.  

 

Related Work 

MOOCs (massive open online courses) are sometimes credited with the potential to revolutionize distributed learning. 

Practices such as learner generated resources, system thinking and citizenship education, are characteristic of so-called 

connectivist MOOCs. Some authors (Jacobs,  2013;  Hew  & Cheung, 2014) argue that MOOCs offer a model of 

democratisation in higher education: courses available to the  greatest  number  of  people  possible  with  the  lowest  barrier  

to  participation. MOOCs differ from traditional classroom learning in their scale and may be change agents. This has potential 

repercussions for higher education and needs a re-examination of its traditional practices (Gillani & Eynon,  2014; Gašević et  

al,  2014). Sinha (2014) highlights how MOOCs are prompting participants to rethink learning and it has also been suggested 

that the real potential is in the new knowledge created through student interaction within MOOCs (Gillani & Eynon, 2014).  

Traditionally, content delivery has been the focus of education. MOOCs challenge that approach and encourage students to 

form learning networks where knowledge is constructed by all participants. Traditional roles of student and teacher are 

challenged (Koutropoulos et al, 2012; Rodriguez, 2013); for instance, in connectivist MOOCs, the educator could take the 

role of facilitator or even absent themselves entirely from the learning process (Kop, 2011).  

Social Network Analysis (SNA) is a key tool to understand interactions in an online environment (de Laat et al 2007) and 

allows quantitative comparison between different networks and thus between courses (Shen et al 2008). The  structure  of  

the  network  can  be  pedagogically  important: Reuven et al 2003 (quoted by de Laat et al 2007) have found that critical 

thinking was enhanced in a structured network (rather than  an  unstructured  forum).  

In the context of digital pedagogy, there are a number of relevant metrics. We can start by measuring the number of nodes 

and edges present in a network. This gives a sense of scale, which of course will be a different order of magnitude in a MOOC 

compared with a traditional classroom environment. MOOCS tend to have low participation as a % of total enrolments, with 

completion rates around 15% (Jordan 2015). In addition, the vast majority of MOOC participants tend to ‘lurk’ ; that is, operate 

in read only mode; Breslow et al (2013) found over 90% of participants were lurkers. Thus density (the percentage of all 

possible edges present) is expected to be low. This gives an initial picture of participation. However, as Lipponen et al (2003) 

point out, high density may be due to one dominant individual. In this way, a teacher’s presence may affects the density of a 

network, perhaps substantially (Martinez et al 2003).  

Toikkanen & Lipponen (2011) assert that density is “unrelated to quality or meaningfulness” of online learning. If this is the 

case then perhaps we need a node centric metric such as degree (Rabbany et al 2014; Russo & Koesten 2005) which refers 

to the number (or relative proportion) of links to a node. The degree can be weighted (e.g. by number of times these nodes 

have interacted). High degree denotes a node that is highly connected in the network and potentially highly influential; low 

degree centrality denotes a node that is on the periphery (Wasserman & Faust, 1994) thus SNA can be used to identify 

isolated participants (Reffay & Chanier 2003). It is common to measure average degree over a network or cluster. 

Betweenness centrality is a measure which incorporates the importance of nodes as interconnectors. It is measured by 



 

calculating the proportion of geodesic (minimal length) paths between two other nodes in which the node particpates.  A node 

with high betweenness has a large influence on the transfer of items through the network. However this metric is not always 

correlated with meaningfulness of learning (Toikkanen & Lipponen 2011) nor to course grades (Cho et al 2007).   

Calvani et al (2010)  advocate measuring  Depth of discussion – e.g. hierarchic levels in a discussion thread. This approach 

is clearly only possible where network connections are structured appropriately. Average path length and diameter 

(Palazuelos et al 2013) are possible alternatives. Average path length shows how closely connected nodes are; however 

this metric can only consider finite path lengths – i.e. connected nodes. So the number of shortest paths should also be 

recorded. Diameter is the longest optimal path between nodes. However this is not quite the same thing as depth of 

discussion (one could loosely claim that diameter measure depth of discussion in participants rather than in messages). What 

diameter can do is to give some clues about the social nature of discourse. A large diameter implies a potentially loosely 

connected community; a small diameter may be a very densely connected community, or one in which few connections are 

present (most nodes unconnected or in small clusters).  

These possibilities can be teased apart by looking at the clustering of the graph.  Connected nodes tend to form in clusters, 

which may be weakly or strongly connected. Weakly connected clusters are those in which every node is connected 

somehow to every other (perhaps via other nodes in the cluster). It is common for the entire graph, with the exception of 

isolated nodes, to form a single weakly connected cluster. However, when link direction is taken into account, this strongly 

connected cluster will lose any nodes without both in-links and out-links to nodes in the cluster. The clustering coefficient 

gives a clue as to the tightness of that cluster, or clique.  

The number of connected components is another useful metric, closely related to modularity, which is the tendency to form 

subcommunities. According to the Gephi documentation “A high modularity score indicates sophisticated internal structure ...  

into sub-networks (or communities)”   More precisely, modularity compares links within partitions against links between 

partitions. The result is calculated as a scalar with +1 representing perfect modularity. The algorithm proposed by Blondel et 

al (2008) starts with individual nodes (ie clusters of size 1) and then performs a hill climbing search, clustering nodes one by 

one until modularity can no longer be increased by the addition of one more node. The algorithm repeats on the clusters 

produced by the first pass, and so the process repeats until a local maximum is reached.  

A modular structure might result in deeper, or perhaps just more fragmented, community discussion. On the other hand, 

Toikkanen & Lipponen (2011) find that communities with low hierarchy and few cliques are conducive to learning.  

These SNA metrics will be used to build up a rich picture of network structure with and without tutors, and to relate this 

structure to pedagogic outcomes.  

 

Methods 

We focus on the ‘Sustainability for Professionals’ MOOC delivered by the University of Bath on the FutureLearn platform 

which hosts the ‘Inside Cancer’ MOOC, also from Bath. ‘Sustainability for Professionals’ is pedagogically connectivist, with 

‘Inside Cancer’ being more traditional and instructor led.  

The FutureLearn platform provides a dataset containing comments posted by the participants and tutors during the course. 

These comments are timestamped, with each commentator and comment being assigned a unique identification number. 

Comments may be either directly associated with course content, or may be a response to another user’s comment.  

For our analysis we used Gephi, an open source network analysis and visualization software. We used Gephi as the syntax 

for metrics in Gephi is accessible and can be altered to reflect the desired structural changes as well as new metrics can be 

accommodated within the Gephi framework. Gephi has become an industry standard for visualising networks and producing 

a rich variety of metrics (Jacomy et al., 2014; Burns, 2012) .  

Using Python (code in Appendix I), we parsed through the FutureLearn dataset to create node and edges file for Gephi. The 

definition of nodes and edges are as follows: 

 A node represents a participant who has posted at least one comment 

 An edge represents a response to a comment. The FutureLearn dataset does not support hierarchical responses, 

so the recipient node is taken to be the owner of the original comment and not any intervening response. 

 Edge weight is the number of interactions between 2 nodes (participants). Directed edges are permitted and 

recorded; for simplicity the results reported here use undirected edges (ie the sum of in-links and out-links).  

Table 1 shows number of nodes and edges for each run of the courses. 

 



 

Table 1: Statistics for different runs of the “Sustainability for Professionals” and “Insider Cancer” MOOCS. 

MOOC Sustainability 

March 2014 

Sustainability 

January 2015 

Sustainability 

August 2015 

Cancer 

January  2014 

Cancer 

September 2014 

Cancer 

March 2015 

Nodes 962 1109 1177 1512 1099 1069 

Edges 2312 2279 1822 1215 1255 1141 

 

These files were imported into Gephi, and various metrics (see table 2) were run to create the final dataset containing metric 

values for each node and the graph as a whole 

Table 2: Metrics used for SNA analysis of the MOOCS 

Metric How Calculated 

Nodes (Participants) Simple count  

Edges (Interaction among 

participants) 

Simple count 

Network  Diameter  Longest finite optimal path between nodes using undirected edges 

Graph Density Fraction of all possible undirected edges present 

Modularity  Calculated using Gephi algorithm, based on Blondel et al (2008).  

Weakly Connected  Number of maximally sized clusters in which each node is reachable from every other 

node along undirected edges 

Strongly Connected  Number of maximally sized clusters in which each node is reachable from every other 

node along directed edges 

Average Degree Average number of undirected, unweighted edges per node 

Average Weighted Degree  Average sum of weights on undirected edges per node 

Average Path Length Average path length (along undirected edges) between all connected nodes 

Number of Shortest Paths Number of optimal routes found between nodes.  

 

Interviews with Tutors 

In addition to Social Network Analysis, structured interviews were carried out with the lead tutors on the Cancer and 

Sustainability MOOCs to contextualise the network analysis and discuss the metrics. The interview questionnaire is attached 

in Appendix II. Interviews highlight the approach of tutors to the online learning environment and their expectations (or lack 

of) concerning network learning. Tutors also remark on differences between a traditional pedagogic environments, such as 

university classroom, and MOOC.  

Interviews highlighted tutors’ approach to the MOOC and helped contextualise social network analysis findings within the 

broader framework of pedagogy. 

 
Results 
 



 

                      

Figure 1 Sustainability March 14 Network Graph with (left) and without (right) Tutors. One of the tutor nodes is circled on the 

left hand picture. Node size and colour is based on Betweenness Centrality 

 

Figure 1 illustrates the effect of removing tutors from a network. A number of well-connected nodes (including the one circled 

in the picture) have been removed; and yet the network still appears richly connected. Of course, this is only a visual 

impression and a deeper inspection can be achieved through the use of SNA metrics as shown in table 3.  

Table 3: Metric Table. Figures in brackets are metric value of the network without tutors. Where no figure is given, the removal 

of tutors had a negligible effect on the value of the metric.  

MOOC Sustainability 

March 2014 

Sustainability 

January 2015 

Sustainability 

August 2015  

Cancer 

January  

2014  

Cancer 

September 

2014  

Cancer 

March 

2015  

Nodes 

(Participants) 

962 (955)  1109 (1103)  1177(1172)  1512 (1503)  1099 (1093) 1069 

(1063) 

Edges 

(Interaction 

among 

participants) 

2312 (1959)  2279 (2165)  1822 (1715)  1215 (1020)  1255 (1126) 1141 

(1075) 

Network  

Diameter  

10 12 12 14 (12)  11 11 

Graph Density 0.003 (0.002)  0.002 0.001 0.001 (0) 0.001 0.001 

Modularity  0.305 (0.338)  0.373 (0.367)  0.401 (0.42)  0.501 

(0.542) 

0.401 (0.422) 0.402 

(0.405) 

Weakly 

Connected  

356 (423)  470 (480)  586 (589)  972 (1008) 664 (669) 669 (673) 

Strongly 

Connected  

764 (786)  887 (891) 987 (985)  1435 (1450) 1011 (1008) 976 (973) 

Average Degree 2.403 (2.051) 2.055 (1.963) 1.548 (1.463) 0.804 

(0.679) 

1.142 (1.03) 1.067 

(1.011) 

Average 

Weighted Degree  

3 (2.53) 2.705 (2.596) 2.038 (1.933) 0.997 

(0.844) 

1.669 (1.525) 1.843 

(1.751) 

Average 

Clustering 

0.048 (0.031) 0.029 (0.028) 0.024 (0.023) 0.01 (0.008) 0.024 0.023 



 

Coefficients 

Average Path 

Length 

4.155 (3.922) 4.189 (4.157) 4.61 (4.644) 4.766 ( 4.58) 3.719 (3.703) 3.907 

(3.937) 

Number of 

Shortest Paths 

128329 

(95859) 

150918 

(141036) 

115241 

(112381) 

54160 

(37074) 

41945 

(38210) 

42523 

(39890) 

                             

                           

Fig 2: Comparison of SNA Metrics for Sustainability (1st 3 columns in each group) and Cancer (final 3 columns in each group) 

MOOCs. The metrics are normalized against the maximum for that particular metric.  

 

 

Figure 3. Effect of removal of tutors (% increase or decrease). The bars are arranged as for figure 2. The bar for the density in 

the first run of Cancer has been cropped from -100%.   



 

Table 3 presents the summary results for the SNA metrics considered. Figure 2 presents the data in a relative form 

(normalised against the maximum value for that metric across all 6 MOOCs). The number of active participants (nodes) 

increases for subsequent runs of the sustainability MOOC but with the number of connections (edges) decreasing. A 

contrasting effect occurs for Cancer, with the number of nodes decreasing and the edge numbers holding steady.  Naturally, 

removal of tutors had a negligible effect on the number of nodes (less than 1%), but the effect on edges was more marked, 

particularly on the first run.  

The density for MOOCs tends to be low with Sustainability having a higher density then Cancer. The removal of tutors (fig 3) 

appeared to have little effect on overall density; we observed an appreciable effect only in the first run of each MOOC where 

removal of tutors from the network resulted in more than 33% drop in density. In case of degree, we observed that 

Sustainability MOOCs had higher average and weighted out-degree than Cancer MOOCs. Again, subsequent runs appeared 

to have opposite effects, with degree increasing in Cancer MOOC but decreasing in the Sustainability MOOC. Nevertheless, 

there appears to be some persistent difference between the MOOCS, since a higher proportion of nodes have high 

betweenness centrality in the Sustainability MOOC (figure 4).   

 

 

Figure 4. Cumulative distribution of betweenness centrality for three runs of the Sustainability and Cancer MOOCS. 

Betweenness centrality is plotted on a log scale, and the graph is expanded to show the top 25% participants ranked by 

betweenness centrality. 

 

The number of shortest paths for Sustainability MOOCs are almost double of those available in Cancer MOOC courses. While 

removal of tutors substantially reduces the number of shortest paths (particularly on the first run), the difference between the 

MOOCs persists.  The network diameter increases on subsequent runs of the Sustainability MOOC, but decreases on 

subsequent runs of the Cancer MOOC. A similar pattern is shown for the average path length. Only on the first run of both 

MOOCS (and for number of shortest path lengths, just the Cancer MOOC) did the removal of tutor nodes have an appreciable 

effect.  

Looking at connected components we found two distinct trends. First, in both courses, there are almost twice as many strongly 

connected components as weakly connected components. Second, cancer courses have higher number of connected 

components, both weakly and strongly. This difference reduces with subsequent runs to the extent that it is barely noticeable 

on the third run. Modularity also displays the same trend. The first run of the Cancer MOOC has a much higher modularity 

compared to its Sustainability cousin, but this difference disappears by the third run of the course. The clustering coefficient 

exhibits the same trend as modularity but in reverse (with values increasing rather than decreasing and vice versa). Both 



 

modularity and number of connected components are increased (and clustering coefficient decreased) by removal of tutors, 

particularly on the first run of the Sustainability MOOC.  

 

Interviews with Tutors 

The lead tutor for Cancer MOOC remarked on the nature of interaction among learners and how the level of engagement 

was “surprising”. She also commented on the role of tutor in clarifying and verifying information posted by learners. The 

Cancer MOOC is a content driven course and needs tutor intervention on matter of technical knowledge and veracity of 

information within the network. The tutor felt that the MOOC offers more robust engagement for students in terms of 

involvement of patients, experts, and consultants when compared to the traditional classroom environment. The tutor also 

highlighted a different approach to aid student learning in MOOC with focus on end of the week wrap-ups to assist student 

learning. 

The lead tutor for Sustainability MOOC pointed out design of the course as critical factor for an online learning environment 

and how it leads to greater participation. In case of Sustainability MOOC, the lead tutor already had experience of distance 

learning programme and found that helpful in delivery of the MOOC. Though MOOC is similar to online distance learning 

programmes, MOOC generates more positive feedback and is more engaging and enjoyable for the tutors. MOOCs also 

appear to have more potential for network learning compared to distance learning as students involvement appeared to be 

more. MOOC learners have distinct set of motivations compared to traditional pedagogic environment learners, such as 

university students. The tutor added that students in university may be more driven by “value for money” aspect of the course 

whereas MOOC participants with their different backgrounds and professions are more interested in learning for the sake of 

it. The tutor also pointed out how conversations in MOOCs are initiated by highly confident people before spreading through 

the network. 

 

Discussion 

Social Network Analysis (SNA) is a key tool to understand interactions in an online environment (de Laat et al 2007) and 

allows quantitative comparison between different networks and thus between courses (Shen et al 2008). The  structure  of  

the  network  can  be  pedagogically  important: Reuven et al 2003 (quoted by de Laat et al 2007) have found that critical 

thinking was enhanced in a structured network (rather than  an  unstructured  forum). Table 5 shows a comparison between 

sustainability MOOC and a traditional pedagogic environment course. 

 

Table 4: comparison between sustainability MOOC and a traditional pedagogic environment course (Palazuelos et al 2013). 

Characteristic Introduction to 
Multimedia 

Methods 

Making an Impact: 

Sustainability for 

Professionals 

Size ~70 962 - 1177 

Density 0.05 - 0.07 0.001 – 0.003 

Average degree 1 - 2 0.5 – 1.5 

Diameter 11-19 10-12 

Components 1-3 356 - 586 

Average size of 
component 

20-70 2-3 ! BUT 

largest 550-650 nodes 

Although the number of participants did vary across MOOC and occurrence, the number of active nodes was usually between 

900 and 1200 (with the first run of Cancer picking up 1500 active participants), thus allowing comparison between the 

datasets.  

Density for MOOCs tend to be low, perhaps because a majority of MOOC participants are predominantly in a ‘read only’ 

mode. Density can be problematic as the presence of even one dominant node can greatly skew its value. We observed that 

trend only in the first run of Sustainability and Cancer MOOCs (this aligns with the conclusions of Martinez et al 2003.).  

Average degree and diameter are perhaps slightly reduced in MOOCS; however this difference is negligible in comparison 

to the explosive growth of clusters, many of which are in fact isolated nodes. This suggests that the connectivity in MOOCS 

is worth exploring further.  

 



 

One common finding is that the Sustainability MOOCS are better connected that the Cancer MOOCs, with higher numbers 

of edges, degree, clustering coefficient and number of shortest paths.  These metrics, taken together, suggest that 

Sustainability MOOCs networks are more ‘dense’ than Cancer MOOCs. Sustainable MOOC networks appear to be sparse 

but with dense neighbourhoods and high number of shortest paths. Toikkanen & Lipponen (2011) have shown in their paper 

that students with high in and out degree have a more meaningful learning experience.  

Betweeness centrality presents an interesting picture.  Frequency distribution (figure 4) curves suggest that sustainability 

course nodes usually have a wider distribution and higher values for betweeness centrality metric. This suggests a gatekeeper 

phenomenon where certain nodes are important for network wide interactions, whereas in case of cancer courses, 

communication is more widely spread and not dependent on certain critical nodes. This trend holds on removal of tutors from 

the network suggesting a more participant driven community learning environment. It can be again attributed to the course 

content where Cancer MOOC resembles a more traditional pedagogic approach where Sustainability MOOC is designed to 

encourage network learning.  We define network learning as the learning driven by the participants via conversations among 

themselves. In network learning; participants acting as information brokers attract other participants based on their reputation 

and are hubs for flow of information flow (Kop, 2012) 

The lead tutor interviews confirm these intuitions; Cancer is more traditional in its structure and involves tutor involvement on 

technical subject matter. In the case of Sustainability, the lead tutor remarked on how network learning was facilitated via the 

design of the course. 

On subsequent runs of the MOOC, the MOOCs become more similar in terms of modularity, connected components and 

degree. However the number of shortest paths is still appreciably higher in the sustainability MOOC. A common finding was 

that the effect of tutor removal was ameliorated in subsequent runs. Particularly in the case of clustering, modularity and 

connected components, tutor removal goes from having a very strong effect to an almost negligible effect. This suggests a 

move to network learning in which the critical nodes (or gatekeepers) are participants and carry on the conversation 

irrespective of the presence of tutors. This tendency of MOOCs to adapt and encourage network learning even when the 

course is not specifically designed to do so stands out in our study.  

 

 

Figure 5: Example of a gatekeeper; the highlighted node (in red) is highly connected but is not a tutor. Example taken from 

Sustainability MOOC   

Studies done using social network analysis (Xie et al., 2011) have shown how these highly influential gatekeepers or 

information brokers, who themselves resist external influence, are committed to spreading their point of view and when they 

reach a inflection point, their ‘followers’ adapt their point of view. Boyd et al. (2010) describe how these gatekeepers filter the 

information and resources that reach to other participants within the network. These gatekeepers do not seem to have 

responsibility to validate the information that they feed into the network unlike a tutor or information gatherer might. This is 

where digital pedagogies adapt a contrasting approach to that of traditional learning environments.  

However this does not mean that tutors are not essential to such a learning environment. Tutors play a valuable role in 

delivery of the course and when approached by participants, they can play an important role in validating the information that 

is being filtered via the gatekeepers. Tutors’ limited role in initiating conversations within the network is due; in parts to the 

design & content of the courses and composition of the network participants. A MOOC course designed with focus on 

 



 

professionals (Sustainability) will encourage network learning with minimum input from tutors whereas a MOOC designed 

with highly technical details with a focus on experts and students in the field (Cancer) will behave differently and interactions 

within such a network will not be on a similar scale as can be seen in table 3. Participation, as shown by number of edges, in 

Sustainability is greater than in Cancer. The importance of design is highlighted in the interviews with the tutors as well.  

MOOC networks differ depending on the subject matter and have a tendency to adapt to the course content. As shown in our 

analysis, most metrics tend to similar values with each subsequent run of the course. MOOCs offer a network learning 

approach based on connection, communication, and collaboration. Participants build connections and communities leading 

to collaborations and information flows. Role of participants, as shown in our analysis, is critical and in contrast with traditional 

pedagogies, it is the participants, especially those who act as gatekeepers that direct the learning process and access to 

resources.  

This implies a different type of learning is possible in a MOOC community where the network of learners, instead of the tutor, 

facilitate learning. For sustainability learnings, if the course is designed and delivered in a manner consistent with the medium, 

digital pedagogies are an effective medium. The role of tutor in such a case is limited to the delivery of the ‘lecture’ and 

participants learn via network learning where gatekeepers act as hubs for information flow and greatly influence the network.  

Our analysis shows how connectivist MOOCs can play a constructive role in sustainability pedagogy. Sustainability courses 

that are designed and delivered in MOOC environment can lead to network learning with knowledge sharing and 

conversations being driven by participations. Participations in connectivist MOOCs tend to form communities with certain 

individuals playing the role of gatekeepers. As our analysis highlighted, these gatekeepers are distinct from tutors who play 

a limited role in driving the conversation. This type of ‘network learning’ where participants take a leading role has implications 

for sustainability pedagogies. 

 

Limitations and Future Implications 
 

Our study is based on analysis of two MOOCs, Sustainability for Professionals and Inside Cancer, run by University of Bath. 

We analysed three runs of each course and thus limited in sample size. Although we believe our findings have high 

generalizability, our analysis was not carried out in a controlled environment. Platform for MOOC represent another limitation 

to our analysis. We made use of FutureLearn platform which is one of many platforms available for MOOCs and it is possible 

that different platforms will have different effect on network learning.  

A major limitation of study is we had no way to interact with participants of the course after they had finished the course. To 

derive most robust conclusions, students need to be interviewed on their experience of the MOOC and how it 

facilitate/obfuscate the learning process. Our study’s pedagogical implications are limited by the lack of a controlled 

environment and sample.  

Future studies can elaborate on the role of gatekeepers and their motivations with a focus on how it affects network learning. 

To better understand the role of gatekeepers, studies need to be conducted in a controlled environment with the same 

population sample and size, involving subject matter delivered in a traditional pedagogic environment and via MOOC. 

Gatekeepers, participants, and tutors would need to be interviewed at the end of both runs alongside the social network 

analysis to arrive at conclusive findings on the role and motivations of gatekeepers and difference between MOOCs and 

traditional classroom approaches. 

  

Conclusion 

Our study has implications for sustainability literacy. We examined the extent to which patterns of interaction in the network 

affect the learning process, and how this can help participants engage with the concept of sustainability. We used social 

network analysis to explore the nature of interaction between learners in a MOOC, particularly the role of the tutors in 

mediating such interactions. We found that tutors can and do take a central role in early runs of the MOOC however with the 

subsequent runs the removal of tutor nodes has little effect, suggesting that different modes of learning driven by participants 

are possible in a MOOC community. This type of network learning has implications for sustainability.  

In our study we found that MOOCs are different in their network structure but tend to adapt to the subject matter. Digital 

pedagogies for sustainability result in a qualitative as well as quantitative change in learning where course design affects the 

learning process and gatekeepers are critical for information flow. These gatekeeper are distinct from tutors in the network. 

In such a network, tutors’ role is limited to course delivery and verifying, depending on course content, the information within 

the network. Our analysis shows that network learning is dependent on course design and content and gatekeepers exercise 

influence over the information within the network.  
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Appendix I  
Python Code 
 
import csv 

import collections 

import argparse 
  
parser = argparse.ArgumentParser(description='Restructure MOOC CSV.') 

parser.add_argument('input_csv', type=open) 

args = parser.parse_args() 
  
data_in = {} 

with args.input_csv as csvin: 

    reader = csv.reader(csvin) 

    next(reader)  # skip titles 

    for cid, author_id, parent_cid in reader: 

        data_in[cid] = (author_id, parent_cid.strip()) 
  
data_out = collections.defaultdict(int) 

for source_author_id, parent_cid in data_in.values(): 

    if len(parent_cid) > 0: 

        data_out[(source_author_id, data_in[parent_cid][0])] += 1 
  
with open('output.csv', 'w') as csvout: 

    writer = csv.writer(csvout) 

    writer.writerow(['source', 'target', 'weight']) 

    for k, v in data_out.items(): 

        writer.writerow(list(k) + [v]) 

 

Appendix II 
Interview Questionnaire 
 

 How would you describe your role in the MOOC? 
o (Follow up) Does your role in the MOOC differ from your role in the classroom? 

 How would you describe the extent of your involvement in the community of students? 
o (Follow up) Did you find your involvement levels changing with the progression of the course? 
o (2nd Follow up) How does it differ from the traditional classroom environment? 

 Did you take on the same role in each run of the course? 
o (Follow up) If yes, why? Does it differ from the classroom? 
o (Follow up) If no, why?  

 How would you describe the network learning and involvement of the participants? 
o (Follow up) Did you find the levels of participation changing with the course progression? 
o (2nd Follow up) Does this stand in contrast with the classroom setting? 

 What were your expectations regarding student participation and network learning before the course 
commenced? 

o (Follow up) Did these expectations change with the subsequent runs of the course? 
o (2nd Follow up) If yes, why? 

 


