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a Phosphino Cyclopentadienide 
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Abstract  The Hafner azulene synthesis may be applied to the direct synthesis 
of phosphorus-substituted azulenes, when a phosphinocyclopentadienide is 
used as one of the reactants. The azulenyl phosphines produced in this fashion 
are preferentially isolated as the corresponding phosphine oxides or 
phosphine borane adducts. 
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The non-alternant aromatic hydrocarbon azulene has markedly 

different properties from its isomer naphthalene, such as a high 

dipole moment and an intense blue colour.1 In recent years, 

azulene motifs have increasingly been exploited in optoelectronic 

applications,2 in stimuli-responsive systems3 and in drug 

discovery.4 As such, there is a continuing need for synthetic 

methods for accessing substituted azulenes.  

Many approaches have been reported for introducing 

substituents onto a preexisting azulene skeleton, such as cross-

coupling,5 C-H activation,6 metallation,7 and SEAr reactions.8 A 

fundamentally different approach is to employ reactions that 

directly form substituted azulenes from non-azulene precursors; 

many such reactions are known. For example, Nozoe azulene 

syntheses allow direct access to azulenes substituted on the five-

membered ring.9 Complementary syntheses that can give 

azulenes substituted on the seven-membered ring are also 

known,10 of which the oldest is the Ziegler–Hafner synthesis.11 In 

one variant, reported by Hafner,11c a cyclopentadienide anion is 

added to a pyrylium salt to give the desired substituted azulene 

(Scheme 1). 

 
Scheme 1 Hafner’s synthesis of substituted azulenes from a pyrylium salt and 
a metallated Cp. 

In the above transformation, substitution on the pyrylium 

fragment has been extensively explored (R1 = multiple alkyl, aryl 

and heteroatom substituents). In contrast, the literature is 

notably lacking in examples of the use of substituted 

cyclopentadienides (i.e. R2 ≠ H) to access directly an azulene 

substituted on the 5-membered ring using the Hafner process. 

While Hafner has reported using sodium 

methylcyclopentadienide (R2 = Me),11c Hansen et al. and Koenig 

et al. have independently described R2 = COOMe,12 and R2 = 

COOEt13 substituted cyclopentadienide systems, respectively. It 

is probable that the use of substituted Cp species in the Hafner 

azulene synthesis is rare because it is possible for regioisomeric 

mixtures of products to form (with the R2 substituent at the 

azulene 1- or 2-position), which can be difficult to separate.14 As 

part of an ongoing effort to synthesise azulenes bearing 

phosphorus substituents, we sought to establish the viability of 

accessing directly an azulene bearing a P-substituent on the 5-

membered ring via a Hafner reaction employing a P-substituted 

cyclopentadienide. Azulenyl phosphines are potentially of 

interest as bulky monodentate ligands for transition metal 

catalysis.15 The results of our studies are disclosed here. 

Lithium (diphenylphosphino)cyclopentadienide 4 has been 

reported previously, and was synthesized by Erker’s 

procedure.16 When pyrylium salt 5 was treated with two 

equivalents of 4 in THF, 2-azulenyl phosphine 6 was formed as 

the only isomer (Scheme 2). 
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Scheme 2 Synthesis of an azulenyl phosphine by the Hafner method 

To our knowledge, this is the first example of the direct synthesis 

of a P-substituted azulene by the Hafner method. The noteworthy 

regioselectivity of this reaction may be due to the steric bulk of 

the substituent on the cyclopentadienide (which is an ambident 

nucleophile). Since the first step in the Hafner reaction is attack 

of the cyclopentadienide at the pyrylium 2-position (which itself 

bears a methyl substituent), we envisage that attack by a 

cyclopentadienide carbon distal to the diphenylphosphino group 

will be appreciably less sterically hindered; this would lead to 

formation of 6. Novel phosphine 6 was obtained in only a 3% 

yield; we ascribe this low yield partly to its apparent tendency to 

undergo aerobic oxidation to the phosphine oxide very readily 

(which also complicated the characterization of 6) and partly to 

the co-elution of 6 and protonated 4 on silica. Variation of the 

reaction conditions did not lead to an improved yield, so we 

instead sought to effect deliberately the oxidation of 6 after its 

formation (with hydrogen peroxide) and isolate 7. Such a 

procedure did indeed furnish 7 but in a similarly low yield (<2%). 

Much more successful, however, was the trapping of 6 in situ by 

formation of the corresponding phosphine-borane adduct 8 

(Scheme 3). This was isolated in 12% yield in a 2 step, one-pot 

process.17 As 8 was the only isomer isolated, this yield in fact 

compares favourably with that reported by Koenig for the 

synthesis of 3 (R2 = 2-COOEt).13 Furthermore, azulenyl 

phosphine-boranes are previously unknown in the literature, and 

our telescoped route to 8 requires only 2 steps (3 reactions) from 

commercial materials. 

 
Scheme 3 Synthesis of the first azulenyl phosphine-borane. 

We also explored the applicability of this “phosphino-Hafner” 

process to a different pyrylium salt, 4-methoxy-2,6-

dimethylpyrylium tetrafluoroborate 9.18 Reaction of 4 with 9 

required more forcing conditions than for the reaction of 4 with 

5, presumably because the methoxy substituent in 9 attenuates 

its electrophilicity. Analogously with 6, the azulene 10 formed 

from 9 was found to be susceptible to air oxidation, so phosphine 

protection was once again employed. Phosphine oxide 11 could 

be isolated in pure form, (Scheme 4, 2% yield), but the borane 

adduct of 10, although it formed in a yield comparable to that of 

8, could not be isolated in pure form. 

 
Scheme 4 Use of an alternative pyrylium salt. 

In conclusion, we have demonstrated for the first time the 

applicability of the Hafner azulene synthesis to the production of 

P-substituted azulenes. Novel azulenes so produced can be 

expected to find applications in diverse areas of research. 
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