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Abstract—Bond graph (BG) models are widely used to display
various fields of a physical system and their interconnection.
In this paper, a BG pseudo-junction structure for non-linear
and non-conservative systems is proposed. This BG pseudo-
junction structure has an inner structure that satisfies energy
conservation properties and a multiport-coupled dissipative
field that determines the physical realisability of the system.
Properties of the dissipative field like passivity are highlighted
by the proposed BG pseudo-junction structure. The results are
illustrated through examples.
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1. Introduction

State space and transfer function descriptions have been
widely used to represent dynamic systems. These time do-
main and frequency domain models, respectively, are use-
ful, compact and abstract descriptions with parameters and
variables that may not have physical meanings. The work
of [Gawthrop, 1995] designed controllers in the physical
domain based on Bond Graph (BG) models (see [Karnopp
and Rosenberg, 1975]). BG (see [Karnopp and Rosenberg,
1975]) usually models a physical system and the parame-
ters and variables have physical meanings. The associated
bonds have two associated variables whose product is power,
however, it is not allowed in general to manipulate only one
variable. An approach for the passification of mechatronic
systems is proposed by [Li and Ngwompo, 2005], based on
power scaling transformers and gyrators. However, the work
of [Li and Ngwompo, 2005] does not cover the interconnec-
tion of subsystems.

The aim of the present work is to develop a new BG
pseudo-junction structure description that is closer to the
above abstract descriptions. A BG pseudo-junction structure
is proposed in section 3 that includes an associated inner
pseudo-junction structure that satisfies energy conservation
properties and a multiport-coupled dissipative field that
determines the physical realisability of the system. This
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dissipative field and inner pseudo-junction structure high-
lights the energy properties like passivity. The proposed
BG pseudo-junction structure can been seen as consisting
of an inner and an outer structures and these are called
pseudo because of the non conservation of power in the
outer structure. As shown in Fig. 1 the proposed BG pseudo-
junction structure allows to represent non-linear and non-
conservative as well as conservative systems modelled by
BG or by state space descriptions.

Active bonds are used to manipulate only one variable
leading to non-conservation of energy, which can also be
interpreted as power scaling [Li and Ngwompo, 2005]. This
signal bond is widely used in control theory for the inter-
connection of sub-systems using internal modulated sources
of energy that are modelled as power scaling transformers
and gyrators in the work of [Li and Ngwompo, 2005].
These interconnected sub-systems can lead to an overall
non-conservative system.

In Fig. 1, the BG pseudo-junction structures are not
unique descriptions, so, for linear systems, state space
descriptions obtained from given BG (see [Karnopp and
Rosenberg, 1975]) do not recover in general the original
BG using the work of [Gonzalez and Galindo, 2009].
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Figure 1. BG pseudo-junction descriptions

In section 2, a brief review of junction structure back-
ground and its structural properties, is given. The proposed
BG pseudo-junction structure is presented in section 3. The
results are illustrated by examples. Finally conclusions are
given in the last section.
Notation Ip is the identity matrix of dimension p× p; and
diag{a1, a2, . . . , an} is a diagonal matrix of dimension n×
n whose elements are a1, a2, . . . , an.



2. Background

Suppose that a predefined integral causality is assigned
to a standard Bond Graph (BG) [Karnopp and Rosenberg,
1975]. In this BG, all the bonds can be classified as external
bonds on the one hand, connecting the storage elements
C and I in integral causality, the dissipative elements R,
and the sources of effort and flow Se and Sf , respectively,
and as internal bonds on the other hand, connecting the
elements of the junction structure S, as shown in Fig. 2.
Junction structures are assemblage of 0− junctions and
1− junctions, transformers , TF , and gyrators, GY , which
disable or enable the energy interchange which enforce the
constraints among parts of dynamic systems. In Fig. 2,
x(t) ∈ <n×1 is the state vector associated with I and C
elements in integral causality, z(t) = φ (x(t)) ∈ <n×1 is
the co-energy vector composed of effort and flow variables,
Do(t) = ψ (Di(t)) ∈ <q×1 and Di(t) ∈ <q×1 are vectors
which relate efforts and flows between the dissipation field
R and S, and u(t) ∈ <m×1 and y(t) ∈ <p×1 are the system
input and output, respectively.

Se, Sf
u�
- (0, 1, TF,GY )

I, C

ẋ6z
?
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Do
6 Di?
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y
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Figure 2. Junction structure

The relationships for the junction structure are given by: ẋ(t)
Di(t)
y(t)

 = S

 z(t)
Do(t)
u(t)

 (1)

where S has a block partition according to the dimensions
of z(t), Do(t) and u(t).

Also, the junction structures are special type of fields
that do not store or dissipate power, and their structural
properties (see [Karnopp and Rosenberg, 1975], [Sueur and
Dauphin-Tanguy, 1989] and [Lamb et al., 1997]) are stated
as follows,

P1 . S11 and S22, are skew-symmetric,
P2 . S12 = −ST21,
P3 . When the elements of R are linearly independent,

there are no direct causal paths between these ele-
ments and S22 = 0.

In the case of conservative systems a sufficient condition
of inexistence of asymptotic stability is that there exist
a linear combination between the rows of

[
S11 S12

]
.

Also, structural controllability and observability have been
analysed in [Sueur and Dauphin-Tanguy, 1989].

The aim is to model a given non-linear and non-
conservative system decomposing it into a part that is power

conserving and a multiport-coupled dissipative field that
might be non-passive. This problem is tackled in the next
section where the main results present a BG pseudo-junction
structure.

3. Bond graph pseudo-junction structure

Let a given lumped system modelled by bond graph
as shown in Fig. 3. The constitutive relations can be non-
linear as well as linear and in both cases the junction
structure is the same. In this physical system, power is
conserved, energy is dissipated at the R element and all
the conjugate variables are power variables. If this system
is interconnected with another system through active bonds
or if it includes modulated sources of energy, the overall
system might be non-conservative, still having a junction
structure description that in general,

1) Does not satisfy energy conservation properties P1
to P2

2) Has a dissipative field that may not be passive.

Figure 3. RC model

In the following Lemma, the construction of a pseudo-
junction structure associated with a given BG is given. Also,
this Lemma requires that the number of storage elements be
equal to the number of dissipative elements. This condition
can be achieved by,

1) Connecting high resistors in parallel to each C or
connecting small capacitors in parallel to each R,
as required, and

2) Connecting small resistors in serial to each of the
storage elements L or connecting small inductors
in serial to each R, as required.

Figure 4. Augmenting the BG model using parasitic elements.

When small capacitors or inductors are added, the aug-
mented system is singularly perturbed and the added fast
dynamics must be stable accordingly to Tikhonov’s Theorem
(see [Kokotovik et al., 1999]). This building proposition
is shown in Fig. 4 where a predefined integral causality
assignment is realized. So, the strong bonds impose the
causality to all the elements connected to this junctions and
assures that,

eR = eC and fR = fI (2)



Hence, since it is realized for each pair of R−C and R−I ,
then,

S22 = 0, S23 = 0 and S21 = In (3)

and property P3 is achieved, that is, there are no direct causal
paths between the R elements. Also, Fig. 4 implies that
S12 = −In for conservative systems. However, it does not
hold for non-conservative systems.
Lemma 1. Let a given outer pseudo-junction structure Ŝo

defined by, ẋ(t)
Di(t)
y(t)

 =

 S11 S12 S13

In 0 0
S31 S32 S33

 z(t)
Do(t)
u(t)

 (4)

where x (t) ∈ <n×1, Di(t) ∈ <q×1, z(t) = φ (x(t)) ∈
<n×1, Do(t) = ψ (Di(t)) ∈ <n×1 and S12 is a non-
singular matrix. Then, an inner pseudo-junction structure
Ŝi satisfying the energy conservation properties P1 to P3
is, ẋ(t)

Di(t)
y(t)

 =

 0 −In S13

In 0 0
Φ −S32S

−1
12 S33

 z(t)

D̂o(t)
u(t)


(5)

where D̂o(t) ∈ <n×1, Φ := S31 − S32S
−1
12 S11, and the

multiport-coupled dissipative field is defined by,

D̂o(t) := −S12ψ (Di(t))− S11Di(t) (6)

Moreover, the system is passive if,∫ t
0
DT
i (τ)D̂o (τ) dτ ≥ 0 (7)

Proof. Since S12 is a non-singular matrix, from the defini-
tion of the dissipative field,

ψ (Di(t)) = −S−1
12

(
D̂o(t) + S11Di(t)

)
(8)

Hence, from the outputs of Ŝo in Eq. (4), z(t) = Di(t), and
substituting it into the Eq. of ẋ (t) given by Eq. (4),

ẋ (t) = S11Di(t) + S12ψ (Di(t)) + S13u (t) (9)

Then using the definition of the dissipative field given in
Eq. (6) the result of ẋ (t) in Eq. (5) follows. So, using
Di(t) = z(t) into Eq. (8),

ψ (Di(t)) = −S−1
12 S11z(t)− S−1

12 D̂o(t) (10)

Hence, from y (t) = S31z(t) +S32ψ (Di(t)) +S33u (t) and
Eq. (10) the result of y (t) in Eq. (5) follows. Clearly,
Eq. (5) satisfy properties P1 to P3. For non-conservative
systems, the stored power is not equal to the dissipated
power, that is,

ẋT (t) z (t) +DT
i (t)Do (t) 6= 0 (11)

when the input u (t) = 0. Equivalently, the total energy is
not conserved. However, due to Ŝi satisfying properties P1
to P3, the total energy c2 is conserved in Ŝi, i.e.,∫ t

0

(
ẋT (t) z (t) +DT

i (τ) D̂o (τ)
)
dτ = c2 (12)

and only the dissipative field given by Eq. (6) may not be
passive. Thus, to assure that the total energy is conserved
in Ŝo, this dissipative field must satisfy inequality (7). �
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Figure 5. Detailed equivalent pseudo-junction structure where z(t) =
φ (x(t)) and Do(t) = ψ (Di(t)).

A detailed representation of the proposed BG pseudo-
junction structure is given in Fig. 5. The inner pseudo-
junction structure Ŝi with variables (ẋ (t) , z (t)) and(
Di (t) , D̂o (t)

)
at its interface is power conservative, when

the input u(t) = 0. This is equivalent to properties P1 and
P2 being satisfied as shown in Eq. (5). The matrix S11 of Eq.
(6) and Fig. 5 is analogous to the power scaling transformers
and gyrators proposed by [Li and Ngwompo, 2005], used
in the passification of mechatronic systems. So, the energy
conservation can be regarded as being with respect to some
power scaling in the dissipative field. Therefore, the stability
of the system related to the outer pseudo-junction structure
Ŝo can be analysed from passivity properties of the dissi-
pative field and power-conservation. In the linear case, the
passivity of the dissipative field is related to the positive
semi-definiteness of the matrix defining the constitutive
relationship of the field. However if the dissipative field is
non-linear, the determination of the passivity will require
that inequality (7) of Lemma 1 must be satisfied.

Lemma 1 gives a way to recover the physical variables
leading to the outer structure Ŝo. It is well known that the
junction structure description is not unique, that is, there are
several junction structures for the same BG. In the linear
case and for systems described by state space realizations,
a BG pseudo-junction structure is proposed in the work of
[Gonzalez and Galindo, 2009].

The following example applies the results of Lemma 1 to
a two-mass-spring-damper linear time invariant conservative
system.

k1

b1
m1 - e1(t)© ©

7−→ f3(t)

k2 m2 - e10(t)© ©

7−→ f8(t)

b2

Figure 6. Two-cart system



Figure 7. Bond graph of a two mass spring damper system

Figure 8. Augmented bond graph of a two mass spring damper system

Example 1. Consider the two-mass-spring-damper system
shown in Fig. 6, where mi, ki and bi, i = 1, 2, are the mass,
the elasticity and friction coefficients, respectively, e1 (t) and
e10 (t) are forces applied to masses m1 and m2, respectively,
and f3 (t) and f8 (t) are the velocities of the masses m1

and m2, respectively. The bond graph model of this system
is shown in Fig. 7 where f3 = 1

m1
p3, f8 = 1

m2
p8, e4 =

k1q4, e6 = k2q6, e2 = b1f2 and e9 = b2f9. In order to
apply Lemma 1, ensuring that Fig. 4 is satisfied, first high
gain resistors R3 and R4 are added as show in Fig. 8. The
junction structure equation of this augmented bond graph is, ẋ (t)

Di (t)
y (t)

 =

 S11 −I4 S13

I4 0 0
S31 0 0

 z (t)
Do (t)
u (t)

 (13)

where S11 =

 0 0 −1 −1
0 0 0 1
1 0 0 0
1 −1 0 0

, S13 =

[
I2
0

]
,

S31 =
[
I2 0

]
, ẋ (t) =

[
e3 e8 f4 f6

]T
, Di (t) =[

f2 f9 e11 e12
]T

, y (t) =
[
f3 f8

]T
, z (t) =[

f3 f8 e4 e6
]T

, Do (t) =
[
e2 e9 f11 f12

]T
and u (t) =

[
e1 e10

]T
. From Lemma 1, Φ = S31, so,

an inner pseudo-junction structure Ŝi satisfying the energy
conservation properties P1 to P3 is, ẋ(t)

Di(t)
y(t)

 =

 0 −I4 S13

I4 0 0
S31 0 0

 ẑ(t)

D̂o(t)
u(t)

 (14)

and from Eq. (6) the dissipative field is,

D̂o(t) =


b1 0 1 1
0 b2 0 −1
−1 0 1

R3
0

−1 1 0 1
R4

Di(t) (15)

As expected, the system is passive since the associated
matrix of this dissipative field can be decomposed into a
positive definite matrix diag

{
b1, b2, 1

R3
, 1
R4

}
plus a skew

symmetric matrix −S11. So, inequality (7) is satisfied due
to DT

i (t)S11Di(t) = 0, ∀Di(t) 6= 0. Also, the augmented
bond graph or equivalently Ŝi plus the multiport-coupled
dissipative field given by Eq. (15) approaches the original
system modelled by the bond graph in Fig. 7 as R3 and R4

tend to infinity. �
The following example is equivalent to the one given in

Fig. 4 of [Li and Ngwompo, 2005] that uses power scaling
transformers and gyrators modelling an internal modulated
source of energy. Here, it is regarded as the feedback
interconnection of two linear time invariant systems in order
to apply the results of Lemma 1. Active bonds are used for
this interconnection leading to an overall system that might
be non-conservative.

Figure 9. BG of a feedback system

Example 2. An illustrative example of a feedback system is
given in which the controller is a single flow source of gain
Ka = ρ − 1 modulated by the output, as shown in Fig. 9.
This example is equivalent to the one given in Fig. 4 of [Li
and Ngwompo, 2005] where the power scaling transformer
is replaced by the modulated source and a single transformer
with modulus m = 1, a gyrator modulus k = 1 and a
small resistance R is added connected in cascade with the
inductance according to Fig. 4. From Fig. 9, e2 = u1−e3−
e8 + km(u4 + f2) and e8 = e7 = mkf2, hence the junction
structure of the open loop system is, e2

f3
y(t)

 =

 0 −1 1 km
1 0 0 0
1 0 0 0


 f2

e3
u(t)
u4(t)

 (16)

Since u4 = (ρ− 1)f2 the closed loop outer pseudo-junction
structure Ŝo is, e2

f3
y(t)

 =

 km(ρ− 1) −1 1
1 0 0
1 0 0

 f2
e3
u(t)

 (17)



Applying Lemma 1, Φ = 1, then the closed loop inner
pseudo-junction structure Ŝi is given by Eq. (4) where from
Eq. (6) the dissipative field is,

D̂o(t) = (R− km(ρ− 1))f3 (18)

As R tends to 0,

D̂o(t) = km(1− ρ))f3 (19)

Thus, the feedback system is passive if ρ1 as previously
stated in [Li and Ngwompo, 2005], however, in [Li and
Ngwompo, 2005] feedback interconnections are not covered.
�

The following example applies the results of Lemma 1
to the feedback interconnection of two non-linear systems
that might be non-conservative.

Figure 10. A tank system.

Figure 11. BG of two R− C systems interconnected in feedback.

Example 3. Consider the tank system shown in Fig. 10
where Q(t) is the supplying flow rate in m3/sec., h(t) is
the liquid level in meters and S the section of the flow leak
in m2. Let A be the cross section of the tank in m2, g be the
earth gravity, ρ be the flow density, and θ1, . . . , θ4 be real
constant parameters. This tank is modelled by the R2−C2
system in Fig. 11 where,

h(t) = e6
ρg = q6

A = −θ3yb(t) + θ4, (20)

Q(t) = f4 = θ3A (θ1ub(t) + θ2) and (21)

Q0(t) = f5 = z0S
(

2e6
ρ

)1/2
(22)

with yb(t) being the output in volts of a liquid level meter,
ub(t) being the input in volts of the pump that modulates the
flow source in Fig. 11, Q0(t) being the liquid leakage flow
and 0 ≤ z0 ≤ 1 the proportion of leakage. Let R1 − C1

in Fig. 11 be a proposed model for the controller where
analogously to the tank system,

hK(t) = e3
ρg = q3

A = −θ3ya(t)− θ3θ2
θ1Kb

,

f2 = z1S
(

2e3
ρ

)1/2
and

f1 = θ3A (θ3ua(t) + θ4)

(23)

where z1 is a control parameter, and ua(t) and ya(t) are
in volts. These two R − C systems have a feedback inter-
connection as shown in Fig. 11 where ua(t) = −yb(t) and
ub(t) = Kbya(t) with Kb being the gain of the modulated
source of flow. Hence,

f1 = θ3A
ρg e6

f4 = −θ1AKb

ρg e3
(24)

The BG of Fig. 11 satisfies Fig. 4 and the number of
dissipative elements is equal to the storage elements. So,
no parasitic elements are needed to apply Lemma 1. The
junction structures of the interconnected sub-systems are, f3

e2
e3

 =

 0 −1 1
1 0 0
1 0 0

 e3
f2
f1

 and f6
e5
e6

 =

 0 −1 1
1 0 0
1 0 0

 e6
f5
f4

 (25)

So, an outer pseudo-junction structure Ŝo for the feedback
interconnection is, ẋ(t)

Di

f5

 =

 S11 −I2
I2 0
S31 0

[ z(t)
Do(t)

]
(26)

where S11 :=

[
0 θ3A

ρg
−θ1AKb

ρg 0

]
, S31 =

[
0 1

ρg

]
,

ẋ(t) :=
[
f3 f6

]T
, Di(t) :=

[
e2 e5

]T
, z(t) :=[

e3 e6
]T

and Do(t) :=
[
f2 f5

]T
, that does not

satisfy property P1. Applying Lemma 1, Φ = S31, so, an
inner pseudo-junction structure Ŝi for the feedback inter-
connection of these R− C systems is, ẋ(t)

Di(t)
f5

 =

 0 −I2
I2 0
S31 0

[ ẑ(t)

D̂o(t)

]
(27)

where from Eq. (6) the multiport-coupled dissipative field
is,

D̂o(t) =

 z1S
(

2e2
ρ

)1/2
− θ3A

ρg e5

z0S
(

2e5
ρ

)1/2
+ θ1AKb

ρg e2

 (28)

Selecting,
Kb = θ3

θ1
(29)



then, the cross-terms of inequality (7) are cancelled and the
system is passive if,∫ t

0
DT
i (τ)D̂o (τ) dτ =

S
(

2
ρ

)1/2 ∫ t
0

(
z1e2 (e2)

1/2
+ z0e5 (e5)

1/2
)
dτ ≥ 0

(30)

These terms are the dissipative powers of the controller
and the plant. So, the feedback system is passive for all
0 ≤ z1 ≤ 1 and the designer can tune z1 adding damping
and achieving the desired performance, where z1 = 0
is analogous to a completely closed and z1 = 1 to an
completely open leak valve, respectively.

This non-linear controller is implemented on MatLab-
Simulink in the feedback configuration of Fig. 11 as shown
in Fig. 12. The tank-system parameters are g = 9.81 m/s2,
ρ = 1000kg/m3, z0 = 1 for a completely open leakage
valve, S = 0.05× 10−3m2, A = 0.0154 m2, and the pump
and sensor parameters are θ1 = 0.0103, θ2 = 0.1022, θ3 =
0.0338143 and θ4 = 0.3115872. For safety, a saturation
function for the plant input,

sat(ub(t)) =

 ν if ub(t) > ν
ub(t) if |ub(t)| ≤ ν
−ν if ub(t) < −ν

(31)

is considered, where ν = 0.11667×10−3 m3/s. The control
parameter Kb is given by Eq. (29), the initial conditions
h(0) = 0.4 for the plant and hK(0) = 0 for the controller
are considered, and the parameter z1 is given the values
0.05, 0.1 and 0.2 in figures 13 and 14. The regulation
problem is investigated. The outputs are smooth and stable
due to the feedback system being passive. Fig. 13 shows
that h(t) converges to zero for z1 = 0.05 and Fig. 14 shows
that increasing z1 the damping is increased reducing the
magnitude of the ub(t) undershoot. �

4. Conclusions

A Bond Graph (BG) pseudo-junction structure is pro-
posed for non-linear and non-conservative systems. This
BG pseudo-junction structure has an inner pseudo-junction

Figure 12. Non-Linear controller applied to a tank system in the feedback
configuration.

Figure 13. Tank liquid level output h(t) in the feedback configuration.

Figure 14. Pump voltage input ub(t) in the feedback configuration.

structure that satisfies energy conservation properties, and a
multiport-coupled dissipative field that determines the phys-
ical realisability of the system. The proposed BG pseudo-
junction structure allows to model a large class of systems
than the standard BG models. The results show that this BG
pseudo-junction structure is useful for the interconnection of
systems through active bonds and for passive-based control
design. So, the proposed BG pseudo-junction structure has
potential applications in control theory for analysis, design
and optimization.
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