
        

Citation for published version:
Ross, RJH, Yates, C & Baker, RE 2017, 'Variable species densities are induced by volume exclusion
interactions upon domain growth.', Physical Review E, vol. 95, no. 3-1, 032416.
https://doi.org/10.1103/PhysRevE.95.032416

DOI:
10.1103/PhysRevE.95.032416

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

©2017 American Physical Society. The following article appeared in Ross, R. J. H. Yates, C. A. Baker, R. E.
(2017) Variable species densities are induced by volume exclusion interactions upon domain growth. Phys. Rev.
E 95(3) and may be found at doi.org/10.1103/PhysRevE.95.032416.

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161917348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevE.95.032416
https://researchportal.bath.ac.uk/en/publications/variable-species-densities-are-induced-by-volume-exclusion-interactions-upon-domain-growth(abadea00-6ccd-4d22-89f8-317bafcf4f6b).html


Variable species densities are induced by volume exclusion

interactions upon domain growth.

Robert J. H. Ross ∗1, C. A. Yates †2, and R. E. Baker ‡1

1Wolfson Centre for Mathematical Biology, Mathematical Institute, University of

Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG

2Centre for Mathematical Biology, Department of Mathematical Sciences, University of

Bath, Claverton Down, Bath, BA2 7AY

February 17, 2017

Abstract

In this work we study the effect of domain growth on spatial correlations in agent popu-

lations containing multiple species. This is important as heterogenous cell populations are

ubiquitous during the embryonic development of many species. We have previously shown

that the long term behaviour of an agent population depends on the way in which domain

growth is implemented. We extend this work to show that, depending on the way in which

domain growth is implemented, different species dominate in multispecies simulations. Con-

tinuum approximations of the lattice-based model that ignore spatial correlations cannot

capture this behaviour, while those that explicitly account for spatial correlations can. The

results presented here show that the precise mechanism of domain growth can determine

the long term behaviour of multispecies populations, and in certain circumstances, establish

spatially varying species densities.

1 Introduction

Heterogeneous cell populations are widespread throughout biology. Obvious examples include

the immune system [1], the brain [2], and the heart [3]. Tumours are often composed of cells
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that are not phenotypically identical, an important factor that reduces the efficacy of many drug

treatments [4]. Cranial neural crest stem cells, a subset of a migratory cell population that give

rise to a diverse lineage, exhibit ‘leader’ or ‘follower’ phenotypes during their collective cell mi-

gration [5–7]. Similarly melanoblasts, another neural crest stem cell subset, and keratinocytes,

simultaneously populate the dorsal lateral epithelium during embryonic development [8].

Spatial structure in cell populations is known to be important for their function and develop-

ment. For instance, in melanoblasts spatial correlations between migrating cells are hypothesised

to underpin pigmentation patterns [8]. Spatial structure is often established by cell prolifera-

tion, as a new cell is naturally close to its parent cell following division. Important examples of

this are tumour development [9] and the growth of the cerebral cortex [2]. Spatial correlations

between cells can also be indicative of different types of cell-cell interactions, such as adhesion

or repulsion [10–13]. Importantly, many of the aforementioned examples of heterogenous cell

populations in which spatial structure is important are associated with growing tissues, either

during embryonic development [2, 5–8], or in pathological scenarios [3, 4]. Therefore, it is im-

portant to be able to include domain growth in models of cell populations containing multiple

species where spatial structure plays a significant role [5–8, 14, 15].

In this work we examine the effects of domain growth on the evolution of spatial correlations

between agents (where agents represent cells) in individual-based models (IBMs). To do so we

employ an agent-based, discrete random-walk model on a two-dimensional square lattice with

volume-exclusion. We have previously shown that the way in which domain growth is imple-

mented in an IBM can alter the behaviour of a population of identical agents [16, 17]. Therefore,

we hypothesised that the way in which domain growth is implemented in a simulation with mul-

tiple agent species could change the dominant agent species. We also reasoned that a standard

mean-field approximation (MFA) would be insufficient to capture the behaviours exhibited by

the IBM, and the MFA would require correction by the inclusion of spatial correlations in the

form of a system of ordinary differential equations (ODEs) to accurately approximate the IBM

results. This has previously been shown in scenarios without growth. For example, Markham

et al. [14] demonstrated the necessity of including the effect of spatial correlations in continuum
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models to accurately predict the dominant species in a multispecies context.

The outline of this work is as follows: we introduce a two-dimensional IBM and two distinct

growth mechanisms in Section 2.1. We then define the individual and pairwise density func-

tions, and a derive a system of equations (referred to as a correlation ODE model) describing

the evolution of the individual and pairwise density functions for multiple species on a growing

domain in Sections 2.2-2.3. In Section 3 we test the accuracy of the correlation ODE model by

comparing it with the standard MFA and IBM results for multispecies simulations. We then

demonstrate that the precise details of the implementation of domain growth can affect agent

population fates; a species that dominates in one growth regime might not dominate in the

other. As far as we are aware this is the first time it has been reported that the particular

details of the growth regime can change the competition outcome between two species. We

also demonstrate that the MFA is unable to accurately capture the effects of domain growth

in the IBM, whereas the correlation ODE models that include the effect of spatial correlations

do. Finally, we examine some biologically motivated examples of non-uniform domain growth

in our IBM in Section 3.2, and show that non-uniform domain growth can cause spatially vary-

ing species densities in multispecies agent populations that depend on the growth mechanism

implemented. We conclude in Section 4 with a discussion of our results.

2 Model

In this section we first introduce the IBM and the two domain growth mechanisms we employ

throughout this work. We then derive equations describing the evolution of the individual and

pairwise density functions in the IBM for both growth mechanisms. The inclusion of the effect of

agent motility, proliferation, and death, in the density functions has been previously presented

[14, 18, 19]1

2.1 IBM and domain growth mechanisms

The IBM is simulated on a two-dimensional square lattice with lattice spacing ∆ = 1 [20] and

size Nx(t) by Ny(t), where Nx(t) is the number of lattice sites in a row and Ny(t) is the number

1We present the details of how to include the effects of agent motility, proliferation, and death, in the density
functions in the supplementary information (Section S1).
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of sites in a column. Initially, all simulations are performed with periodic boundary conditions.

Each agent is assigned to a lattice site, from which it can move or proliferate into an adja-

cent site. If an agent attempts to move into a site that is already occupied, the movement event

is aborted. Similarly, if an agent attempts to proliferate into a site that is already occupied, the

proliferation event is aborted. Processes in which only one agent is allowed per site are often

referred to as exclusion processes [20]. Time is evolved continuously, in accordance with the

Gillespie algorithm [21], such that movement, proliferation and growth events are modelled as

exponentially distributed ‘reaction events’ in a Markov chain. Throughout this work we only

present examples with two species, and these species are referred to as A and B. However, all

the results presented in this work are easily extendable to scenarios containing more than two

species [14]. Attempted agent movement or proliferation events occur with rates P Im or P Ip per

unit time, respectively, where I denotes the species type. For example, PAmδt is the probability

of an individual agent of species A attempting to move in the next infinitesimally small time

interval δt. Death events occur with rate P Id per unit time and result in the removal of an agent

from the lattice.

Both growth mechanisms we employ are stochastic [22]: the insertion of new lattice sites occurs

with positive rate constants Pgx and Pgy per unit time for growth in the x (horizontal) and y

(vertical) directions, respectively. That is, an individual lattice site undergoes a growth event in

the x direction with rate Pgx . Our growth mechanisms are designed to represent the growth of

an underlying tissue upon which a cell population is situated. Examples of cell populations that

are situated on top of growing tissues can be readily found in biological systems. For instance,

cell populations such as neural crest stem cells are known to migrate through growing tissues,

such as the epidermis, during embryonic development [5, 8, 15]. In growth mechanism 1 (GM1)

when a ‘growth event’ occurs along the x-axis (horizontal axis in Fig. 1 (a)), one new column of

sites is added at a position selected uniformly at random. In growth mechanism 2 (GM2) when

a ‘growth event’ occurs along the x-axis (see Fig. 1 (b)), for each row, one new site is added in

a column that is selected uniformly at random. Importantly, when a growth event occurs, the

site selected for division is moved one spacing in the positive horizontal direction along with its
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contents (i.e. an agent or no agent, an agent is symbolised by a black circle in Fig. 1). The new

lattice site is empty, and the contents of all other lattice sites remain unaffected. Growth in the

y direction is implemented in an analogous manner to the x direction for both growth mecha-

nisms. We chose these growth mechanisms as they are significantly different to each other, and

both may have biological relevance [23–25]. Furthermore, both of these growth mechanisms

can be used to implement any form of isotropic growth in our IBM, and are adaptable to three

spatial dimensions [22]. Finally, it is important to note that both growth mechanisms give rise

to the same overall growth rate when implemented with the same rate constants.

(a) (b)

Figure 1: (Colour online). Before and after the growth events for both (a) GM1 and (b) GM2,
in which growth is along the x-axis for a two-dimensional lattice. In each row the yellow (light
grey) site has been chosen to undergo a growth event. Following this the yellow (light grey)
site is moved to the right with its contents, for instance an agent (represented by a black cell).
The blue (dark grey) sites are the new lattice sites and are always initially empty. The contents
of all the other sites remain unaffected, although in some cases their neighbouring sites will
change.

Throughout this work we employ homogenous initial conditions in our IBM (when our initial

condition is averaged over many repeats). That is, our initial distribution for both species is

achieved by populating a certain number of sites uniformly at random. An occupied site is

indicated by A or B, and an unoccupied site is indicated by 0. This means the normalised

average agent density for species A on the two-dimensional domain is

cA(t) =
1

Nx(t)Ny(t)

Nx(t)Ny(t)∑
m

1A{m}. (1)
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Here 1A is the indicator function for species A (i.e. 1 if species A occupies site m, and 0 if it

does not). An analogous equation holds for species B.

2.2 Individual density functions

We now derive the evolution equations for the individual density functions. To begin with, we

only include the effects of domain growth on the density functions (the details of how to include

the effects of agent motility, proliferation, and death, in the density functions are demonstrated

in the supplementary information Section S1).

We define the individual density functions, ρ
Nx×Ny

A (m; t), as the probability that site m is

occupied by an agent A at time t on a domain of size Nx(t) × Ny(t), where m is the vector

(i, j), with i indexing the row number of a lattice site, and j indexing the column number of

a lattice site2. For instance, (2, 3) would be the lattice site situated in the second row and the

third column of the lattice. Similarly, ρ
Nx×Ny

B (m; t) is defined as the probability that site m is

occupied by an agent B at time t on a domain of size Nx(t)×Ny(t).

The following derivation for the evolution of individual density functions is the same for GM1

and GM2 (and for species A and B)3. Therefore we only derive the equation for the evolution

of the individual density functions in the case of species A. The sum of the individual density

functions on a domain of size Nx(t+ δt)×Ny(t+ δt) at [t+ δt) for species A can be written in

terms of the individual density functions at time t:

Nx(t+δt)∑
i=1

Ny(t+δt)∑
j=1

ρ
Nx×Ny

A (m; t+ δt) = (1− δtPgxNx(t)− δtPgyNy(t))

Nx(t)∑
i=1

Ny(t)∑
j=1

ρ
Nx×Ny

A (m; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(Nx(t)− 1)ρ
(Nx−1)×Ny

A (m; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(Ny(t)− 1)ρ
Nx×(Ny−1)
A (m; t) +O(δt2).

(2)

2As ρ
Nx×Ny

A (m; t) denotes a probability its domain of definition is [0, 1].
3A simpler (one-dimensional) version of this derivation can be found in Ross et al. [16].
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The terms of the right-hand-side (RHS) of Eq. (2) correspond to the following events: i) no

growth event occurs in [t, t + δt); ii) a growth event occurs in the horizontal (x) direction in

[t, t+ δt); and iii) a growth event occurs in the vertical (y) direction in [t, t+ δt). As the initial

conditions are, on average, spatially uniform we can assume translational invariance for the

probability of an agent occupying a site throughout. By this we mean

ρ
Nx×Ny

A (m; t) = ρ
Nx×Ny

A (n; t), ∀ m,n, (3)

where n indexes any other site on the domain4.

Equation (3) allows us to rewrite Eq. (2) as

(Nx(t+ δt))(Ny(t+ δt))ρ
Nx×Ny

A (m; t+ δt) =

(1− δtPgxNx(t)− δtPgyNy(t))(Nx(t))(Ny(t))ρ
Nx×Ny

A (m; t)

+ δtPgx(Nx(t)− 1)(Ny(t))(Nx(t)− 1)ρ
(Nx−1)×Ny

A (m; t)

+ δtPgy(Nx(t))(Ny(t)− 1)(Ny(t)− 1)ρ
Nx×(Ny−1)
A (m; t) +O(δt2).

(4)

Equation (4) can then be simplified to obtain

ρ
Nx×Ny

A (m; t+ δt) = (1− δtPgxNx(t)− δtPgyNy(t))ρ
Nx×Ny

A (m; t)

+ δtPgx

(
Nx(t)− 1

Nx(t+ δt)

)
(Nx(t)− 1)ρ

(Nx−1)×Ny

A (m; t)

+ δtPgy

(
Ny(t)− 1

Ny(t+ δt)

)
(Ny(t)− 1)ρ

Nx×(Ny−1)
A (m; t) +O(δt2). (5)

Rearranging Eq. (5) and taking the limit as δt→ 0 we arrive at the ODE

dρ
Nx×Ny

A (m; t)

dt
= −(PgxNx(t) + PgyNy(t))ρ

Nx×Ny

A (m; t)

+ Pgx

(
Nx(t)− 1

Nx(t)

)
(Nx(t)− 1)ρ

(Nx−1)×Ny

A (m; t)

+ Pgy

(
Ny(t)− 1

Ny(t)

)
(Ny(t)− 1)ρ

Nx×(Ny−1)
A (m; t). (6)

4We assume translational invariance throughout this work because the initial agent density for all simulations
in the IBM is achieved by populating lattice sites uniformly at random until the required density is achieved.
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If we make the approximation ρ
Nx×Ny

A (m; t) ≈ ((Ny(t)− 1)/Ny(t)) ρ
Nx×(Ny−1)
A (m; t) and

ρ
Nx×Ny

A (m; t) ≈ ((Nx(t)− 1)/Nx(t)) ρ
(Nx−1)×Ny

A (m; t) in Eq. (6) we obtain

dρ
Nx×Ny

A (m; t)

dt
= −(PgxNx(t) + PgyNy(t))ρ

Nx×Ny

A (m; t)

+ Pgx(Nx(t)− 1)ρ
Nx×Ny

A (m; t)

+ Pgy(Ny(t)− 1)ρ
Nx×Ny

A (m; t). (7)

This approximation has been previously published [26], and reasonably implies that domain

growth ‘dilutes’ the agent density [16] (we present analysis of the accuracy of this approximation

in Section S2 of the supplementary information). Finally, we simplify Eq. (7) to obtain

dρ
Nx×Ny

A (m; t)

dt
= −(Pgx + Pgy)ρ

Nx×Ny

A (m; t). (8)

Equation (8) is a single equation that describes how exponential domain growth affects the

evolution of the individual density functions for species A. It is important to note that Eq. (8)

describes how exponential domain growth affects the evolution of individual density functions

because we have defined Pgx and Pgy as constants. It is straightforward to derive equations for

linear and logistic domain growth analogous to Eq. (8) if required.

In the course of the following derivation it will be useful to write the pairwise density func-

tions in terms of the distances between sites, therefore we shall rewrite the individual density

functions as

ρ
Nx×Ny

A (m; t) = c
Nx×Ny

A (t) = cA(t). (9)

If we substitute Eq. (9) into Eq. (8) we obtain

dcA(t)

dt
= −(Pgx + Pgy)cA(t). (10)

A comparison between Eqs. (6) and (10) demonstrates that the approximation we have em-

ployed reduces an infinite system of equations describing the evolution of the macroscopic agent

density on a growing domain, into a single first-order linear ODE that is trivially solvable. To
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include the effects of agent proliferation and motility in Eq. (10) we first need to define the

pairwise density functions.

2.3 Pairwise density functions

Figure 2 displays two configurations of two agents, which we will term (a) colinear and (b)

diagonal. The distance between sites is measured from their centres, as illustrated in Fig. 2 (b).

(a) (b)

Figure 2: The two types of configuration of lattice sites: (a) colinear and (b) diagonal. The
lattice sites in question are labelled m and n and bordered by blue (thicker line). In (a), two
colinear lattice sites share the same row but not the same column (or vice versa). In (b), two
lattice sites are diagonal, meaning they do not share the same row or column. rx is the distance
between two lattice sites in the horizontal direction, ry is the distance between two lattice sites
in the vertical direction. In (b) rx = 3 and ry = 1.

As can be seen in Fig. 2, rx is the distance between two lattice sites in the horizontal direction,

and ry is the distance between two lattice sites in the vertical direction.

We define the auto-correlation pairwise density functions, ρ
Nx×Ny

A,A (m,n; t), as the probabil-

ity sites m and n are both occupied by species A at time t on a domain of size Nx(t) ×Ny(t)

(where m 6= n). Similarly, the auto-correlation pairwise density function ρ
Nx×Ny

B,B (m,n; t) is

defined as the probability sites m and n are both occupied by species B at time t on a domain

of size Nx(t) × Ny(t). The cross-correlation pairwise density function, ρ
Nx×Ny

A,B (m,n; t), is the

probability sites m and n are occupied by species A and B, respectively, at time t on a domain of

size Nx(t)×Ny(t). We now rewrite the pairwise density functions in terms of the displacement

vector between lattice sites, that is

ρ
Nx×Ny

A,A (m,n; t) = ρ
Nx×Ny

A,A (m,m + (rx, ry); t). (11)
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As the initial conditions in the IBM are, on average, spatially uniform we are able to assume

translational invariance for the probability of two sites a given distance apart being occupied.

This means that the pairwise density function can be written as a function of the displacement

between two lattice sites, (rx, ry). Therefore, we will further simplify our notation and write

ρ
Nx×Ny

A,A (m,m + (rx, ry); t) = ρ
Nx×Ny

A,A (rx, ry; t). (12)

2.3.1 Agent motility, proliferation and death

The inclusion of agent motility, proliferation and death in Eq. (10) has been outlined previously

[14, 18, 19]. Therefore, we refer the reader to the supplementary information (Section S1) for

details of how to include the effects of agent motility, proliferation, and death in Eq. (10), and

simply state the result for the individual density functions in the main text. The evolution of

the individual density function for a motile and proliferating species A on a growing domain is

dcA(t)

dt
= PAp

(
cA(t)− ρNx×Ny

A,A (1, 0; t)− ρNx×Ny

A,B (1, 0; t)
)
− PAd cA(t)−

(
Pgx + Pgy

)
cA(t). (13)

An analogous equation exists for species B. As can be seen from Eq. (40), the inclusion of

agent proliferation means that pairwise density functions are now present in the equations for the

evolution of the individual density functions, which is not the case without agent proliferation

(Eq. (10)). It is important to stress that we can combine proliferation, death, and growth terms

as we do in Eq. (40), as these terms are independent of each other in the derivation of Eq. (40)

(see the supplementary information Section S1 for further details).

2.3.2 Growth mechanism 1

We now derive the equations for the evolution of the pairwise density functions for GM1 domain

growth. We do not include agent migration, proliferation, or death in the following derivation

for the purposes of clarity. The inclusion of the effects of agent migration, proliferation, and

death in the equations for the evolution of the pairwise density functions has been described

before [14, 18, 19] (the details of how to do so can be found in the supplementary information

Section S1).
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Colinear component

We begin with the colinear component of the equations for the evolution of the pairwise density

functions, that is, the scenario in which the lattice sites in question share the same column or

row, as depicted in Fig. 2 (a). The following derivation is the same for both auto-correlation

pairwise density functions, ρ
Nx×Ny

A,A (rx, ry; t) and ρ
Nx×Ny

B,B (rx, ry; t), and the cross-correlation pair-

wise density function, ρ
Nx×Ny

A,B (rx, ry; t). Therefore, we only derive the evolution of the pairwise

density functions for species A. For agents colinear in the horizontal direction, that is, ry = 0,

the evolution of the auto-correlation pairwise density functions for species A with GM1 is

Nx(t+δt)∑
i=1

Ny(t+δt)∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t+ δt) =

(1− δtPgxNx(t)− δtPgyNy(t))

Nx(t)∑
i=1

Ny(t)∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(rx − 1)ρ
(Nx−1)×Ny

A,A (rx − 1, 0; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(Nx(t)− 1− rx)ρ
(Nx−1)×Ny

A,A (rx, 0; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(Ny(t)− 1)ρ
Nx×(Ny−1)
A,A (rx, 0; t) +O(δt2).

(14)

The terms on the RHS represent the probabilities that: i) no growth event occurs in [t, t+ δt);

ii) a growth event occurs in the horizontal direction between agents (rx − 1, 0) apart, moving

them (rx, 0) apart on a domain of size Nx(t + δt) × Ny(t + δt) at [t + δt); iii) a growth event

occurs in the horizontal direction at a site that is not in between agents (rx, 0) apart, meaning

that they remain (rx, 0) apart but now on a domain of size Nx(t + δt) × Ny(t + δt) at time

[t + δt); and iv) a growth event occurs in the vertical direction (as the sites are horizontally

colinear in this a GM1 growth event cannot change the displacement between them).

Similarly, the evolution of the auto-correlation pairwise density functions for agents colinear
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in the vertical direction (that is, rx = 0) is

Nx(t+δt)∑
i=1

Ny(t+δt)∑
j=1

ρ
Nx×Ny

A,A (0, ry; t+ δt) =

(1− δtPgxNx(t)− δtPgyNy(t))

Nx(t)∑
i=1

Ny(t)∑
j=1

ρ
Nx×Ny

A,A (0, ry; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(ry − 1)ρ
Nx×(Ny−1)
A,A (0, ry − 1; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(Ny(t)− 1− ry)ρ
Nx×(Ny−1)
A,A (0, ry; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(Nx(t)− 1)ρ
(Nx−1)×Ny

A,A (0, ry; t) +O(δt2).

(15)

We can simplify Eq. (14) to obtain

ρ
Nx×Ny

A,A (rx, 0; t+ δt) = (1− δtPgxNx(t)− δtPgyNy(t))ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgx

(
Nx(t)− 1

Nx(t+ δt)

)
(rx − 1)ρ

(Nx−1)×Ny

A,A (rx − 1, 0; t)

+ δtPgx

(
Nx(t)− 1

Nx(t+ δt)

)
(Nx(t)− 1− rx)ρ

(Nx−1)×Ny

A,A (rx, 0; t)

+ δtPgy

(
Ny(t)− 1

Ny(t+ δt)

)
(Ny(t)− 1)ρ

Nx×(Ny−1)
A,A (rx, 0; t) +O(δt2). (16)

If we apply the approximations5 ((Nx(t)− 1)/Nx(t+ δt)) ρ
(Nx−1)×Ny

A,A ≈ ρNx×Ny

A,A and

((Ny(t)− 1)/Ny(t+ δt)) ρ
Nx×(Ny−1)
A,A ≈ ρNx×Ny

A,A to Eq. (16) we obtain

ρ
Nx×Ny

A,A (rx, 0; t+ δt) = (1− δtPgxNx(t)− δtPgyNy(t))ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgx(rx − 1)ρ
Nx×Ny

A,A (rx − 1, 0; t)

+ δtPgx(Nx(t)− 1− rx)ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgy(Ny(t)− 1)ρ
Nx×Ny

A,A (rx, 0; t) +O(δt2). (17)

5These approximations sensibly imply that domain growth ‘dilutes’ pairwise agent densities.
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Rearranging Eq. (17) and taking the limit as δt→ 0 we arrive at

dρ
Nx×Ny

A,A (rx, 0; t)

dt
= Pgx(rx − 1)ρ

Nx×Ny

A,A (rx − 1, 0; t)

− Pgx(rx + 1)ρ
Nx×Ny

A,A (rx, 0; t)

− Pgyρ
Nx×Ny

A,A (rx, 0; t). (18)

The equivalent equation for sites colinear in the vertical direction (see Eq. (15)) is

dρ
Nx×Ny

A,A (0, ry; t)

dt
= Pgy(ry − 1)ρ

Nx×Ny

A,A (0, ry − 1; t)

− Pgy(ry + 1)ρ
Nx×Ny

A,A (0, ry; t)

− Pgxρ
Nx×Ny

A,A (0, ry; t). (19)

Diagonal component

For the diagonal component, that is, rx, ry 6= 0, we have, by similar reasoning,

Nx(t+δt)∑
i=1

Ny(t+δt)∑
j=1

ρ
Nx×Ny

A,A (rx, ry; t+ δt) =

(1− δtPgxNx(t)− δtPgyNy(t))

Nx(t)∑
i=1

Ny(t)∑
j=1

ρ
Nx×Ny

A,A (rx, ry; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(rx − 1)ρ
(Nx−1)×Ny

A,A (rx − 1, ry; t)

+ δtPgx

Nx(t)−1∑
i=1

Ny(t)∑
j=1

(Nx(t)− 1− rx)ρ
(Nx−1)×Ny

A,A (rx, ry; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(ry − 1)ρ
Nx×(Ny−1)
A,A (rx, ry − 1; t)

+ δtPgy

Nx(t)∑
i=1

Ny(t)−1∑
j=1

(Ny(t)− 1− ry)ρ
Nx×(Ny−1)
A,A (rx, ry; t).

(20)
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If we follow the same procedure as for the colinear component we obtain

dρ
Nx×Ny

A,A (rx, ry; t)

dt
= Pgx(rx − 1)ρ

Nx×Ny

A,A (rx − 1, ry; t)

− Pgx(rx + 1)ρ
Nx×Ny

A,A (rx, ry; t)

+ Pgy(ry − 1)ρ
Nx×Ny

A,A (rx, ry − 1; t)

− Pgy(ry + 1)ρ
Nx×Ny

A,A (rx, ry; t). (21)

2.3.3 Growth mechanism 2

For the derivation of the pairwise density functions for GM2 we refer the reader to the supple-

mentary information (Section S3) and simply state the results in the main text. The evolution

equation for the colinear component (horizontally colinear) for GM2 is

dρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)

dt
= −Pgx(rx + 1)ρ

(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ Pgx(rx − 1)ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, 0; t)

+ Pgy

(
−1− Ny(t)

3
+

1

3Ny(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ Pgy

(
−1 +

Ny(t)

3
+

2

3Ny(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx,−1; t). (22)
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An analogous equation exists for the vertically colinear component for GM2. The diagonal

component for GM2 is

dρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

dt
=

Pgx

(
−1− Nx(t)

3
+ rx

(
rx

Nx(t)
− 1

)
+

1

3Nx(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
−1− Ny(t)

3
+ ry

(
ry

Ny(t)
− 1

)
+

1

3Ny(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
−1

2
+
Ny(t)

6
− ry

2

(
ry

Ny(t)
− 1

)
+

1

3Ny(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry − 1; t)

+ Pgy

(
−1

2
+
Ny(t)

6
− ry

2

(
ry

Ny(t)
− 1

)
+

1

3Ny(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry + 1; t)

+ Pgx

(
−1

2
+
Nx(t)

6
− rx

2

(
rx

Nx(t)
− 1

)
+

1

3Nx(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, ry; t)

+ Pgx

(
−1

2
+
Nx(t)

6
− rx

2

(
rx

Nx(t)
− 1

)
+

1

3Nx(t)

)
ρ
(Nx+1)×(Ny+1)
A,A (rx + 1, ry; t).

(23)

If we compare Eqs. (18) and (21)-(23) it is apparent that the length of the domain influences

the evolution of the pairwise density functions in the case of GM2, but not in GM1.

3 Results

We present our results in terms of correlation functions [27–31] in order to simplify the visual-

isation of results, and allow the results presented here to be easily related to other research in

this field [14, 18, 19, 32, 33]. The correlation function is defined as

FA,A(rx, ry; t) :=
ρ
Nx×Ny

A,A (rx, ry; t)

cA(t)2
, (24)

and is simply a measure of the degree to which the occupancies of two lattice sites are inde-

pendent of one another. Analogous correlation functions exist for auto-correlations in species

B and for the cross-correlations between species A and B:

FB,B(rx, ry; t) :=
ρ
Nx×Ny

B,B (rx, ry; t)

cB(t)2
, (25)
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and

FA,B(rx, ry; t) :=
ρ
Nx×Ny

A,B (rx, ry; t)

cA(t)cB(t)
. (26)

If we substitute Eqs. (24) and (26) into Eq. (40) we obtain

dcA(t)

dt
= PAp cA(t)

(
1− FA,A(1, 0; t)cA(t)− FA,B(1, 0; t)cB(t)

)
− PAd cA(t)−

(
Pgx + Pgy

)
cA(t).

(27)

We refer to Eq. (27) as the correlation ODE model. The standard MFA assumes FA,A(1, 0; t) =

FA,B(1, 0; t) = 1, that is, spatial correlations between agents are insignificant, and so Eq. (27)

becomes

dcA(t)

dt
= PAp cA(t)

(
1− cA(t)− cB(t)

)
− PAd cA(t)−

(
Pgx + Pgy

)
cA(t). (28)

Equation (28) is relevant as it represents the standard MFA often used to model the evolution

of the macroscopic density of a cell population [13, 34, 35]. However, in certain scenarios the

standard MFA has been shown to be inadequate [18], especially when the spatial structure of

a cell population is known to be important. As such, we will compare Eqs. (27)-(28) in the

results section.

For our discrete simulations we use a regular square lattice of initial size 100 by 100 lattice

sites. The boundary conditions are periodic, and we have an initial uniform random seeding of

density 0.05 for each species A and B (so the total agent density is 0.1). By an initial uniform

random seeding it is meant that, on average, the initial conditions of the IBM are spatially

uniform for both species. All results presented from the IBM are ensemble averages taken from

500 repeats. To solve Eqs. (10), (18) and (21)-(40) we use MATLAB’s ode15s, with an absolute

error tolerance of 10−12.

Our initial condition for all simulations entails that all pairwise distances are initially uncorre-
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lated, that is,

FA,A(rx, ry; 0) = FB,B(rx, ry; 0) = FA,B(rx, ry; 0) = 1. (29)

Initially we study the effect of exponential domain growth for both GM1 and GM2 on agent

density and spatial correlations in the IBM and correlation ODE model. As previously stated,

Nx(t) and Ny(t) are integers that describe the number of lattice sites in the horizontal and

vertical directions, respectively. However, as results from the IBM are ensemble averages we

replace Nx(t) and Ny(t) with their continuum analogues Lx(t) and Ly(t), respectively. This

substitution of Nx(t) and Ny(t) with Lx(t) and Ly(t) avoids jump discontinuities in the nu-

merical solutions of Eqs. (21)-(23), which are not present in the averaged IBM results. For

exponential domain growth Lx(t) evolves according to

dLx(t)

dt
= PgxLx(t). (30)

An analogous equation exists for Ly(t).

We also study the effect of linear and logistic domain growth for both GM1 and GM2 on

agent density and spatial correlations in the IBM and correlation ODE model. For simulations

with logistic domain growth the individual density function for species A evolves according to

dcA
dt

= PAp cA

(
1− FA,A(1, 0; t)cA(t)− FA,B(1, 0; t)cB(t)

)
− PAd cA(t)

− (Pgx + Pgy)

(
1− Lx(t)Ly(t)

K2

)
cA(t), (31)

where K2 is the carrying capacity and Lx(t) evolves according to

dLx(t)

dt
= PgxLx(t)

(
1− (Lx(t)Ly(t))

K2

)
. (32)
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An analogous equation exists for Ly(t), and for all simulations presented here K = 300. Finally,

the individual density function for species A with linear domain growth evolves according to

dcA
dt

= PAp cA(1− FA,A(1, 0; t)cA(t)− FA,B(1, 0; t)cB(t))− PAd cA(t)

−
(
PgxLx(0)

Lx(t)
+
PgyLy(0)

Ly(t)

)
cA(t), (33)

where Lx(t) evolves according to

dLx(t)

dt
= PgxLx(0), (34)

that is, linear growth. We also rescale time to allow for ease of comparison between simulations

with different parameters:

t̄ =
(
Pp − Pd − (Pgx + Pgy)

)
t. (35)

3.1 Uniform domain growth

In Fig. 3 we recapitulate results from [14]6. We see that in the case of an IBM with a non-

growing domain and two species a more motile, slower proliferating species (species A) can

dominate over a less motile, faster proliferating species (species B) given a specific parameter

regime. This is the case on a non-growing domain without agent death as can be seen in Fig. 3

(a), and is augmented with agent death as evident in Fig. 3 (b), whereby species B eventually

goes extinct. Importantly, the standard MFA (Eq. (28)) is not able to accurately approximate

the IBM results in either case, whereas the correlations ODE model is able to.

Figure 4 (a) shows that domain growth implemented via GM1 has a similar effect on agent

density as agent death in Fig. 3 (b), allowing species A to dominate (although species B does

not become extinct in this case as there is no agent death). In Fig. 4 (b) we can see that domain

growth implemented via GM2 has the opposite effect, and enables species B to dominate. This

is because GM2 breaks up colinear correlations (correlations between agents that share the same

6The agent motility and proliferation parameters we implement in this section have been chosen to illustrate
a given effect. In Section S4 of the supplementary information we demonstrate that the effects we present in this
manuscript can be reproduced by many other parameter values.
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Figure 3: (Colour online): Including the effects of pairwise correlations renders the correlations
ODE model (Eq. (27)) able to accurately approximate the averaged results from the IBM,
whereas the standard MFA (Eq. (28)) cannot. In (a) the parameters are PAm = 20, PAp = 0.9,

PAd = 0, PBm = 1, PBp = 1 and PBd = 0. In (b) the parameters are PAm = 20, PAp = 0.9, PAd = 0.4,

PBm = 1, PBp = 1 and PBd = 0.4.

row or column) at a rate proportional to the size of the domain. This means species B, which

is more affected by colinear correlations due to its higher proliferation and lower motility rates

compared to species A, increases in ‘fitness’ as the domain grows. Importantly, the standard

MFA is not able to capture the GM1 results, whereas the correlations ODE model is. In the

GM2 scenario, the MFA ultimately predicts the correct dominant species, but the correlations

ODE model more accurately predicts the temporal evolution of the system to t̄ = 20.
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Figure 4: (Colour online): Including the effects of pairwise correlations renders the correlations
ODE model (Eq. (27)) able to accurately approximate the averaged results from the IBM,
whereas the standard MFA (Eq. (28)) cannot. The parameters for both panels (a) GM1 and
(b) GM2 are PAm = 20, PAp = 0.9, PBm = 1, PBp = 1, Pgx = 0.1 and Pgy = 0.1.

19



In Fig. 5 it can be seen that the inclusion of domain growth has a different effect on spatial

correlations depending on the type of growth mechanism implemented. We see in Fig. 5 a

good agreement between the spatial correlations computed from the correlation ODE model

and those calculated from the IBM. For GM1 in Fig. 5 (a) the species A auto-correlations

decrease as species A begins to dominate (long term behaviour). This is because as species A

begins to dominate its density becomes increasingly spatially uniform. In Fig. 5 (b) we see

that species B auto-correlations increase as species B becomes less spatially uniform, due to

proliferation. Meanwhile in Fig. 5 (c) we see that the cross-correlations decrease as species A

begins to dominate.

With GM2 we see that domain growth has a different effect on spatial correlations, as shown

in Fig. 6 (d)-(e). Again we see a good agreement between the spatial correlations predicted

by the correlation ODE model and those calculated from the IBM. It can be seen that with

GM2 the auto-correlations for both species A and B decrease as the domain grows. In Fig. 6

(f) we see that the cross-correlations between decrease with increasing distance, and note that

this is because GM2 breaks up spatial correlations between agents more effectively than GM1.

In Fig. 7 we see that the initial size of the domain influences the evolution of the agent density

in the case of GM2, but not in the case of GM1 with exponential domain growth. In the case

of GM2, as the initial domain size is increased the evolution of the macroscopic agent densities

is accelerated, i.e. species B begins to dominate at an earlier time. This is because colinear

spatial correlations established by agent proliferation, which affect species B more significantly

than species A, are broken down at a rate proportional to the domain size in GM2. This means

the ‘fitness’ of species B increases as the domain grows.

Figure 8 (a)-(b) shows the results from the same two-species scenario with linear domain growth.

As before we see that with GM1 species A dominates. The correlation ODE model is able to

capture this behaviour while the standard MFA is not. In the case of GM2 we see that species

A initially dominates, but as the domain grows species B begins to increase relative to A (and

the density of species B will exceed the density of species A at a later time). Finally, Fig. 8
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(c) and (d) shows the results from the same two-species scenario with logistic domain growth.

In this case we see that species A dominates with both GM1 and GM2. This is because the

domain stops growing when the domain size carrying capacity is reached.
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Figure 8: (Colour online): Including the effects of pairwise correlations renders the correlations
ODE model (Eqs. (31) and (33)) able to accurately approximate the averaged results from the
IBM, whereas the standard MFA cannot. (a) GM1 linear domain growth, (b) GM2 linear domain
growth, (c) GM1 logistic domain growth, (d) GM2 logistic domain growth. The parameters for
all panels are PAm = 20, PAp = 0.9, PBm = 1, PBp = 1, Pgx = 0.1 and Pgy = 0.1.
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3.2 Non-uniform domain growth

To conclude our results we study some biologically motivated examples of non-uniform domain

growth. In these examples we only present results from the IBM. However, we do so aware of

the differing effects that GM1 and GM2 have on the evolution of agent density. We hypothe-

sised that, given the same motility and proliferation parameters for species A and B as in Figs.

3-8, in a two-species scenario non-uniform domain growth could enable species B to dominate

in a faster growing region of the domain, while species A could dominate in a slower growing

(or non-growing) region of the domain. This means non-uniform domain growth could lead to

spatially variable species densities in simulations containing two species.

We choose two ‘canonical’ examples of domain growth that serve to represent idealised ver-

sions of known growth mechanisms in biological systems. The first example we term ‘enteric’.

Enteric growth, that is, intestinal growth, is associated with different regions of the intestine

growing at different rates [22]. For our enteric example domain growth is again uniform is the

vertical direction, while in the horizontal direction ninety percent of the growth events are re-

stricted to the middle third of the x-axis (this ‘third’ of the domain is updated throughout the

simulation as the IBM domain grows). The other ten percent of growth events are distributed

uniformly amongst the two remaining regions.

The second example we term ‘apical’. We use apical to mean domain growth localised to

one end of the domain. This type of growth has been observed in root growth and embryonic

limb development [36, 37]. For our apical example domain growth is uniform in the vertical

direction, while in the horizontal direction growth is restricted to the second half of the x-axis

(this ‘half’ of the domain is updated throughout the simulation as the IBM domain grows).

For both of these growth mechanisms we implement no-flux boundary conditions in the x

direction, and periodic boundary conditions in the y direction. With these boundary conditions

the IBM domain can be thought of as a cylinder, and could therefore represent a growing root

or the developing intestine [22]. We use no-flux boundaries to augment the differences between

GM1 and GM2 on the density of agents in apical growth [36, 37]. We only present results
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for linear and exponential domain growth in a two-species scenario, and in all simulations the

domain grows to a horizontal length of 1500 lattice sites in the x-axis before the simulation is

terminated. Both agent species are, on average, initially placed uniformly at random at densi-

ties of 0.05 (giving a total initial agent density of 0.1). All figures presented in this section are

column averages taken from 1000 IBM repeats.

In Fig. 9 (a) and (b) density profiles for exponential enteric growth are shown. When GM1 is

implemented species A dominates across the domain, although the density of species A is re-

duced in the region of high growth (see Fig. 9 (a)). However, in Fig. 9 (b) GM2 is implemented

and causes species B to have a higher density in the middle region of the domain. In Fig. 9
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Figure 9: (Colour online): Enteric domain growth. (a) GM1 exponential domain growth, (b)
GM2 exponential domain growth, (c) GM1 linear domain growth, (d) GM2 linear domain
growth. The parameters for all panels are PAm = 20, PAp = 0.9, PBm = 1, PBp = 1, Pgx = 0.1 and
Pgy = 0.1.

(c) and (d) the density profiles for linear enteric growth are shown. As before, when GM1 is
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implemented this enables species A to dominate across the domain (see Fig. 9 (c)). However,

in Fig. 9 (d) GM2 is implemented and this causes species B to have a slightly higher density in

the middle region of the domain. Figures for apical non-uniform domain growth can be found

in the supplementary information (Section S5).

In conclusion, with initial conditions that are, on average, spatially uniform for two species

non-uniform growth can establish spatial variation in species density across the domain given

certain parameter values. The development of this spatial variability is directly attributable to

the differing effects of GM1 and GM2 on spatial correlations between agents in the IBM, as

evidenced by the fact that when implemented with the same parameter values GM1 and GM2

produce different agent density profiles.

4 Discussion and conclusion

In this work we have studied the effect of two growth mechanisms on spatial correlations in

agent populations containing multiple species. We chose two different, yet potentially biolog-

ically relevant growth mechanisms [23–25], to highlight how understanding the form of the

domain growth in biological systems is important. Biologically, our growth mechanisms are

simple descriptions of growth in the underlying tissue upon or within which a cell population is

situated, a scenario often associated with migratory cell populations such as neural crest stem

cells during embryonic development [5, 8, 15]. It is important to acknowledge that in reality it is

unlikely that domain growth in biological systems is captured by algorithms as simple as GM1

and GM2. However, more realistic growth mechanisms may exist that exhibit similar effects on

spatial correlations as GM1 and GM2.

Our key finding is that the specific type of growth mechanism can influence the dominant

species, as shown in Figs. 4, 7 and 8. Under certain parameter regimes a more motile, slower

proliferating species will dominate under growth mechanism GM1, whereas a less motile, faster

proliferating species will dominate under growth mechanism GM2. This is because GM2 breaks

down colinear correlations more effectively than GM1, and so benefits the faster proliferating

species. Interestingly, this result suggests that the way in which a domain grows could play
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a role in determining cell population fates in biological systems, and to our knowledge is not

a result that has been previously reported. To conclude our results section we studied some

biologically motivated examples of non-uniform domain growth. We found that we were able to

establish spatial variability in species densities (Fig. 9), and that this spatial variability changed

depending on the way domain growth was implemented. This shows that non-uniform growth

can establish spatially variable species densities on a domain, which is an intriguing result.

In this work all models studied are two-dimensional. The correlation ODE model has been

derived for three dimensions on a non-growing domain [19], and so this is an obvious extension

to the work presented here. In addition, we have also only considered the case when Pgx = Pgy .

We did this to reduce the complexity of the equations, however, the results presented here could

be extended to cases where Pgx 6= Pgy .

A final consideration is whether the work presented here could be extended to other types

of model, such as an off-lattice IBM whereby agents can occupy any position in space (while

taking volume exclusion into account, if necessary). Research has been directed towards in-

cluding spatial structure in continuum approximations of off-lattice IBMs [38–40]. The effect

of the domain growth mechanisms on the evolution of the agent density in an off-lattice IBM,

as with the work presented here, will depend on how effectively the growth mechanisms break

up spatial correlations established by agent proliferation.
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Supplementary information

S1: Inclusion of agent proliferation, motility and death in the

density functions

We first display how to include agent proliferation, motility and death in the individual density

functions. To do so we require to introduce further notation. We indicate a site unoccupied by

an agent in the following manner, ρ
Nx×Ny

0 (m; t), that is, the joint probability of lattice site m

not being occupied on a domain of size Nx ×Ny at time t. We also introduce the summation,

m∑
n

ρ
Nx×Ny

A,A (m,n; t) = ρ
Nx×Ny

A,A ((i, j), (i+ 1, j); t) + ρ
Nx×Ny

A,A ((i, j), (i− 1, j); t)

+ ρ
Nx×Ny

A,A ((i, j), (i, j + 1); t) + ρ
Nx×Ny

A,A ((i, j), (i, j − 1); t), (36)

which indexes over the von Neumann neighbourhood of the site indicated as the upper index.

The sum of the individual density functions on a domain of size Nx ×Ny at [t+ δt) for motile

and proliferating agents is

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t+ δt) = (1− δtPgxNx − δtPgyNy)

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(Nx − 1)ρ
(Nx−1)×Ny

A (m; t)

+ δtPgy

Nx∑
i=1

Ny−1∑
j=1

(Ny − 1)ρ
Nx×(Ny−1)
A (m; t)

+ δt
PAm
4

Nx∑
i=1

Ny∑
j=1

[
m∑
n

[
ρ
Nx×Ny

0,A (m,n; t)− ρNx×Ny

A,0 (m,n; t)
]]

+ δt
PAp
4

Nx∑
i=1

Ny∑
j=1

[
m∑
n

[
ρ
Nx×Ny

0,A (m,n; t)
]]

− δtPAd ρ
Nx×Ny

A (m; t) +O(δt2). (37)
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As we assume translational invariance Eq. (37) can be simplified to obtain

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t+ δt) = (1− δtPgxNx − δtPgyNy)

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(Nx − 1)ρ
(Nx−1)×Ny

A (m; t)

+ δtPgy

Nx∑
i=1

Ny−1∑
j=1

(Ny − 1)ρ
Nx×(Ny−1)
A (m; t)

+ δt
PAp
4

Nx∑
i=1

Ny∑
j=1

[
m∑
n

ρ
Nx×Ny

0,A (m,n; t)

]

− δtPAd ρ
Nx×Ny

A (m; t) +O(δt2). (38)

If we recognise that ρ
Nx×Ny

0,A (m,n; t) = ρ
Nx×Ny

A (m; t)− ρNx×Ny

A,A (1, 0; t)− ρNx×Ny

B,A (1, 0; t) we can

rewrite Eq. (38) as

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t+ δt) = (1− δtPgxNx − δtPgyNy)

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A (m; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(Nx − 1)ρ
(Nx−1)×Ny

A (m; t)

+ δtPgy

Nx∑
i=1

Ny−1∑
j=1

(Ny − 1)ρ
Nx×(Ny−1)
A (m; t)

+ δtPAp

Nx∑
i=1

Ny∑
j=1

[
ρ
Nx×Ny

A (m; t)− ρNx×Ny

A,A (1, 0; t)− ρNx×Ny

B,A (1, 0; t)
]

− δtPAd ρ
Nx×Ny

A (m; t) +O(δt2). (39)

From Eq. (39) we can obtain

dcA(t)

dt
= PAp (cA(t)− ρNx×Ny

A,A (1, 0; t)− ρNx×Ny

A,B (1, 0; t))− PAd cA(t)− (Pgx + Pgy)cA(t), (40)

which is Eq. (27) in the text.

The derivation of the pairwise density functions for multispecies without domain growth can

be found in [14]. However, we outline the derivation for the auto-correlations below. The ad-
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dition of agent motility and proliferation is the same for GM1 and GM2. For agents colinear

in the horizontal direction, that is, ry is zero, and rx > 1, the evolution of the pairwise density

functions for motile and proliferative agents with GM1 is

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t+ δt) =

(1− δtPgxNx − δtPgyNy)

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(rx − 1)ρ
(Nx−1)×Ny

A,A (rx − 1, 0; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(Nx − 1− rx)ρ
(Nx−1)×Ny

A,A (rx, 0; t)

+ δtPgy

Nx∑
i=1

Ny−1∑
j=1

(Ny − 1)ρ
Nx×(Ny−1)
A,A (rx, 0; t)

+ δt
PAm
4

Nx∑
i=1

Ny∑
j=1

[
n∑
k

[
ρ
Nx×Ny

A,0,A (m,n,k; t)− ρNx×Ny

A,A,0 (m,n,k; t)
]

+
m∑
k

[
ρ
Nx×Ny

0,A,A (m,n,k; t)− ρNx×Ny

A,A,0 (m,n,k; t)
] ]

+ δt
PAp
4

Nx∑
i=1

Ny∑
j=1

[
m∑
k

[
ρ
Nx×Ny

0,A,A (m,n,k; t)
]

+

n∑
k

[
ρ
Nx×Ny

A,0,A (m,n,k; t)
]]

− δt2PAd ρ
Nx×Ny

A,A (rx, 0; t) +O(δt2). (41)
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If rx = 1

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t+ δt) =

(1− δtPgxNx − δtPgyNy)

Nx∑
i=1

Ny∑
j=1

ρ
Nx×Ny

A,A (rx, 0; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(rx − 1)ρ
(Nx−1)×Ny

A,A (rx − 1, 0; t)

+ δtPgx

Nx−1∑
i=1

Ny∑
j=1

(Nx − 1− rx)ρ
(Nx−1)×Ny

A,A (rx, 0; t)

+ δtPgy

Nx∑
i=1

Ny−1∑
j=1

(Ny − 1)ρ
Nx×(Ny−1)
A,A (rx, 0; t)

+ δt
PAm
4

Nx∑
i=1

Ny∑
j=1

[
n∑

k 6=m

[
ρ
Nx×Ny

A,0,A (m,n,k; t)− ρNx×Ny

A,A,0 (m,n,k; t)
]

+
m∑

k 6=n

[
ρ
Nx×Ny

0,A,A (m,n,k; t)− ρNx×Ny

A,A,0 (m,n,k; t)
] ]

+ δt
PAp
4

Nx∑
i=1

Ny∑
j=1

[
m∑

k 6=n

[
ρ
Nx×Ny

0,A,A (m,n,k; t)
]

+ ρ
Nx×Ny

0,A (m,n; t)

+
n∑

k 6=m

[
ρ
Nx×Ny

A,0,A (m,n,k; t)
]

+ ρ
Nx×Ny

A,0 (m,n; t)

]

− δt2PAd ρ
Nx×Ny

A,A (rx, 0; t) +O(δt2). (42)

From which we can obtain the necessary equations [14].
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S2: Analysis of closure approximation

The approximation we employ in Eq. (6) in the main text has been previously published

[16, 17, 26], and in Ross et al. [16] its accuracy for a one-dimensional lattice-based model has

been demonstrated. In terms of one-point density functions this approximation

(Nx − 1)c(Nx−1)×Ny(t) = Nxc
Nx×Ny(t),

is a conservation statement that is exact in systems without proliferation. However, in the

case of the pairwise density functions it is an approximation employed to make the equations

tractable to solve numerically. Without this closure for the pairwise density functions the num-

ber of equations it is necessary to solve increases by a factor of (n+ 1)n/2, where n is the total

number of combinations of domain lengths that are simulated (computed).

For completeness we have attached further analysis of this closure approximation in the case of

the individual density functions (i.e. cNx×Ny(t)). We measure the relative error of the closure

for the individual density functions

RELATIVE ERROR =
cNx×Ny(t)− ((Nx − 1)/Nx)cNx−1×Ny(t)

cNx×Ny(t)
,

and plot the average relative error7 associated with each domain length for this closure in Fig.

S1. It can be seen that the average relative error associated with the closure decreases as the

domain grows larger, meaning the approximation improves as the domain grows. Other plots

examining the error associated with the moment closures presented in this manuscript can be

found in Ross et al. [16].

7To compute the average relative error we proceed as follows: we initialise a domain of length Nx = 100,
Ny = 100, with Pgx = 0.1 and Pgy = 0 (i.e. no growth in the y direction), 500 initial agents (assigned uniformly
at random to lattice sites) and Pp = 1 and Pm = 1. We calculate the relative error associated with the closure
for all domain sizes, for example c109×100(t) = (110/109)c110×100(t), for the duration of the simulation sampling
at equally spaced time intervals. We then sum the absolute values of the relative error for each domain length
closure for each time point, and divide by the number of samples (time points) to generate the average relative
error associated with this closure over the time course of the simulation.
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Figure S1: The average relative error associated with the domain length closure for individual
density functions.
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n
al
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m

p
on

en
t
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G
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2

is

N
x
+
1 ∑ i=

1

N
y
+
1 ∑ j=
1

ρ
(N

x
+
1
)×

(N
y
+
1
)

A
,A

(m
,m

+
(r
x
,r
y
);
t

+
δt

)
= (1
−
δt
P
g
x
(N

x
+

1)
−
δt
P
g
y
(N

y
+

1)
)

N
x
+
1 ∑ i=

1

N
y
+
1 ∑ j=
1

ρ
(N

x
+
1
)×

(N
y
+
1
)

A
,A

(m
,m

+
(r
x
,r
y
);
t)

+
δt
P
g
y
(N

y
)

N
x
+
1 ∑ i=

1

N
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1

( m
j
n
j

(N
y
)(
N
y
)) ρ

(N
x
+
1
)×
N

y

A
,A

(m
,m

+
(r
x
,r
y
);
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+
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P
g
y
(N

y
)

N
x
+
1 ∑ i=

1

N
y ∑ j=
1

( (N
y
−
m
j
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N
y
−
n
j
)

(N
y
)(
N
y
)

) ρ
(N
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+
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A
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(r
x
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y
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+
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P
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)

) ρ
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+
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A
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(r
x
,r
y
−

1)
;t

)

+
δt
P
g
y
(N
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)

N
x
+
1 ∑ i=

1

N
y ∑ j=
1

( (m
j
−

1)
(N

y
−
n
j
)

(N
y
)(
N
y
)

) ρ
(N

x
+
1
)×
N

y

A
,A

(m
,m

+
(r
x
,r
y

+
1)

;t
)

+
δt
P
g
x
(N

x
)

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( m
in
i

(N
x
)(
N
x
)) ρ

N
x
×
(N

y
+
1
)

A
,A

(m
,m

+
(r
x
,r
y
);
t)

+
δt
P
g
x
(N

x
)

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( (N
x
−
m
i)

(N
x
−
n
i)

(N
x
)(
N
x
)

) ρ
N

x
×
(N

y
+
1
)

A
,A

(m
,m

+
(r
x
,r
y
);
t)

+
δt
P
g
x
(N

x
)

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( (N
x
−
m
i)

(n
i
−

1)

(N
x
)(
N
x
)

) ρ
N

x
×
(N

y
+
1
)

A
,A

(m
,m

+
(r
x
−

1
,r
y
);
t)

+
δt
P
g
x
(N

x
)

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( (m
i
−

1)
(N

x
−
n
i)

(N
x
)(
N
x
)

) ρ
N

x
×
(N

y
+
1
)

A
,A

(m
,m

+
(r
x

+
1
,r
y
);
t)
.

(4
3
)
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e
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l
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)

m
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n
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m
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e
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ce
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)
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n

ct
io

n
s

(r
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ap
ar

t
on

a
d
om

ai
n

of
si

ze
(N

x
+
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)
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a
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il
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y
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g
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w
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ev
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t
o
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th

e
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d
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m
ov

es
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d
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+
(r
x
,r
y
)

d
o
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n
ot

m
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T

h
e

re
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of
th

e
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rm
s
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e
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e

eq
u

iv
al

en
t
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r
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th
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th
e
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zo
n
ta
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ir
ec

ti
on

.
F
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w
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m

e
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at
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n
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an
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d
si

m
p
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E
q
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ob

ta
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N
x
+
1 ∑ i=

1

N
y
+
1 ∑ j=
1

ρ
(N

x
+
1
)×

(N
y
+
1
)

A
,A

(r
x
,r
y
;t

+
δt

)
= (1
−
δt
P
g
x
(N

x
+

1)
−
δt
P
g
y
(N

y
+

1)
)

N
x
+
1 ∑ i=

1

N
y
+
1 ∑ j=
1

ρ
(N

x
+
1
)×

(N
y
+
1
)

A
,A

(r
x
,r
y
;t

)

+
δt
P
g
y

N
x
+
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1

N
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1
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y
−
n
j
−
m
j

+
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j
n
j

N
y

) ρ
(N

x
+
1
)×
N

y

A
,A

(r
x
,r
y
;t

)

+
δt
P
g
y

N
x
+
1 ∑ i=

1

N
y ∑ j=
1

( (N
y
−
m
j
)(
n
j
−

1)

(N
y
)

) ρ
(N

x
+
1
)×
N

y

A
,A

(r
x
,r
y
−

1;
t)

+
δt
P
g
y

N
x
+
1 ∑ i=

1

N
y ∑ j=
1

( (m
j
−

1)
(N

y
−
n
j
)

(N
y
)

) ρ
(N

x
+
1
)×
N

y

A
,A

(r
x
,r
y

+
1;
t)

+
δt
P
g
x

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( N
x
−
n
i
−
m
i
+

2
m
in
i

N
x

) ρ
N

x
×
(N

y
+
1
)

A
,A

(r
x
,r
y
;t

)

+
δt
P
g
x

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( (N
x
−
m
i)

(n
i
−

1)

(N
x
)

) ρ
N

x
×
(N

y
+
1
)

A
,A

(r
x
−

1,
r y

;t
)

+
δt
P
g
x

N
x ∑ i=
1

N
y
+
1 ∑ j=
1

( (m
i
−

1)
(N

x
−
n
i)

(N
x
)

) ρ
N

x
×
(N

y
+
1
)

A
,A

(r
x

+
1
,r
y
;t

).
(4

4
)
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We rewrite Eq. (44) using ñx, m̃x and ˜mxnx, which are constants defined as

ñx =
1

(Nx)(Ny + 1)

Nx∑
i=1

Ny+1∑
j=1

ni, (45)

and

m̃x =
1

(Nx)(Ny + 1)

Nx∑
i=1

Ny+1∑
j=1

mi, (46)

and

˜mxnx =
1

(Nx)(Ny + 1)

Nx∑
i=1

Ny+1∑
j=1

mini =

1

(Nx)(Ny + 1)

Ny+1∑
j=1

[
Nx−rx∑
i=1

(mi)(mi + rx) +

Nx∑
i=Nx−rx+1

(mi)(mi − (Nx − rx))

]

1

(Nx)(Ny + 1)

Ny+1∑
j=1

[
Nx∑
i=1

(mi)(mi + rx)−
Nx∑

i=Nx−rx+1

Nxmi

]

1

(Nx)(Ny + 1)

Ny+1∑
j=1

[
Nx∑
i=1

(mi)(mi + rx) +Nx

(
Nx−rx∑
i=1

mi −
Nx∑
i=1

mi

)]
. (47)

Eqs. (45)-(47) can be evaluated directly. If we do so we obtain:

ñx =
(Nx + 1)

2
; (48)

m̃x =
(Nx + 1)

2
; (49)

and

˜mxnx = Nx

(
Nx

3
+

1

2

)
+
rx
2

(rx −Nx) +
1

6
. (50)

It is important to note that if in Eq. (50) we set rx = 0, for instance for colinear lattice sites,

38



we obtain

˜mxnx = Nx

(
Nx

3
+

1

2

)
+

1

6
. (51)

However, initially we substitute Eqs. (45)-(47) into Eq. (44) to obtain
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+
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1;
t)

+
δt
P
g
y
(N

x
+

1)
(N

y
)

( m̃
y
−

1
−

˜
m
y
n
y

N
y

+
ñ
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)
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)
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P
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˜
m
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n
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N
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m̃
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N
x

) ρ
N

x
×
(N
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+
1
)

A
,A

(r
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−

1
,r
y
;t

)

+
δt
P
g
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(N
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)(
N
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+
1)
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x
−

1
−

˜
m
x
n
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N
x

+
ñ
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N
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) ρ
N
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×
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1
)

A
,A

(r
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1
,r
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).
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T
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E
q
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2
)
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e

eq
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b
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n
b
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u
ti

n
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E
q
s.
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-(
47

)
in

to
E

q
.
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If we now apply the approximation,

ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t) ≈

(
Ny

Ny + 1

)
ρ
(Nx+1)×Ny

A,A (rx, ry; t), (53)

to Eq. (52) we obtain

ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t+ δt) =

(1− δtPgx(Nx + 1)− δtPgy(Ny + 1))ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ δtPgy

(
Ny − ñy − m̃y +

2 ˜myny
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ δtPgy

(
ñy − 1− ˜myny

Ny
+
m̃y

Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry − 1; t)

+ δtPgy

(
m̃y − 1− ˜myny

Ny
+
ñy
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry + 1; t)

+ δtPgx

(
Nx − ñx − m̃x +

2 ˜mxnx
Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ δtPgx

(
ñx − 1− ˜mxnx

Nx
+
m̃x

Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, ry; t)

+ δtPgx

(
m̃x − 1− ˜mxnx

Nx
+
ñx
Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx + 1, ry; t).

(54)

If we rearrange Eq. (54) and take the limit as δt→ 0 we obtain

dρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

dt
= −(Pgx(Nx + 1) + Pgy(Ny + 1))ρ

(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
Ny − ñy − m̃y +

2 ˜myny
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
ñy − 1− ˜myny

Ny
+
m̃y

Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry − 1; t)

+ Pgy

(
m̃y − 1− ˜myny

Ny
+
ñy
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry + 1; t)

+ Pgx

(
Nx − ñx − m̃x +

2 ˜mxnx
Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgx

(
ñx − 1− ˜mxnx

Nx
+
m̃x

Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, ry; t)

+ Pgx

(
m̃x − 1− ˜mxnx

Nx
+
ñx
Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx + 1, ry; t), (55)
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which we can simplify further to obtain

dρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

dt
= Pgx

(
−1 +

(
2 ˜mxnx
Nx

)
− ñx − m̃x

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
−1 +

(
2 ˜myny
Ny

)
− ñy − m̃y

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
ñy − 1− ˜myny

Ny
+
m̃y

Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry − 1; t)

+ Pgy

(
m̃y − 1− ˜myny

Ny
+
ñy
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry + 1; t)

+ Pgx

(
ñx − 1− ˜mxnx

Nx
+
m̃x

Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, ry; t)

+ Pgx

(
m̃x − 1− ˜mxnx

Nx
+
ñx
Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx + 1, ry; t). (56)

If we now evaluate Eqs. (45)-(47) with Eqs. (48)-(50) we obtain

dρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

dt
= (57)

Pgx

(
−1− Nx

3
+ rx

(
rx
Nx
− 1

)
+

1

3Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
−1− Ny

3
+ ry

(
ry
Ny
− 1

)
+

1

3Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry; t)

+ Pgy

(
−1

2
+
Ny

6
− ry

2

(
ry
Ny
− 1

)
+

1

3Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry − 1; t)

+ Pgy

(
−1

2
+
Ny

6
− ry

2

(
ry
Ny
− 1

)
+

1

3Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, ry + 1; t)

+ Pgx

(
−1

2
+
Nx

6
− rx

2

(
rx
Nx
− 1

)
+

1

3Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, ry; t)

+ Pgx

(
−1

2
+
Nx

6
− rx

2

(
rx
Nx
− 1

)
+

1

3Nx

)
ρ
(Nx+1)×(Ny+1)
A,A (rx + 1, ry; t). (58)

Equation (58) is Eq. (23) in the main text.
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Colinear component
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ρ
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We now make the approximation Eq. (53) to obtain

ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t+ δt) = (1− δtPgx(Nx + 1)− δtPgy(Ny + 1))ρ

(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ δtPgy

(
˜myny
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ δtPgy

(
Ny − ñy − m̃y +

˜myny
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)
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ñy
Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx,−1; t)

+ δtPgx(rx − 1)ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, 0; t)

+ δtPgx(Nx − rx)ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t), (61)

which we can simplify to obtain

dρ
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dt
= −Pgx(rx + 1)ρ
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ñy
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)
ρ
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A,A (rx,−1; t). (62)

If we evaluate Eqs. (45)-(47) with (48)-(50) we obtain

dρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)

dt
= −Pgx(rx + 1)ρ

(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ Pgx(rx − 1)ρ
(Nx+1)×(Ny+1)
A,A (rx − 1, 0; t)

+ Pgy

(
−1− Ny

3
+

1

3Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx, 0; t)

+ Pgy

(
−1 +

Ny

3
+

2

3Ny

)
ρ
(Nx+1)×(Ny+1)
A,A (rx,−1; t). (63)

Equation (63) is Eq. (22) in the main text.

45



S4: Parameter sweeps for GM1 and GM2

In Fig. S2 we present a parameter sweep for a domain of initial dimensions Nx = 100 by

Ny = 100, PAp = 0.9, PBp = 1, and sampled at simulation time t = 25 for GM1 and GM2.

The coordinates of this parameter sweep are PAm and PBm , and cA(t)/cB(t) is plotted. Figure S2

shows that, depending on the growth mechanism implemented, species A or species B dominates

the domain for certain parameter values at time t = 25. It is important to remember that for

GM2 the dominant species at a given time point not only depends on both the motility and

proliferation parameters associated with species A and B, but also the initial length of the

domain (species densities under GM1 do not depend on the initial size of the domain, which

Fig. 7 in the main text demonstrates). Therefore, Fig. S2 (b) would be different if the initial

dimensions of the domain were altered. Both (a) and (b) in Fig. S2 would also be different if

we sampled at an alternative simulation time.
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Figure S2: Parameter sweep for (a) GM1 and (b) GM2. Pgx = 0.1 and Pgy = 0.1 and domain
growth is exponential. PAp = 0.9 and PBp = 1, and cA(t)/cB(t) is plotted. The red contour line

in (a) indicates cA(t)/cB(t) = 1.
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S5: Non-uniform domain growth: apical

In Fig. S3 (a) and (b) density profiles for exponential apical growth are shown. In Fig. S3 (a)

GM1 is implemented and this enables species A to dominate across the domain. However in

Fig. S3 (b) GM2 is implemented and this enables species A and B to have similar densities

in the middle region of the domain. Similarly, in Fig. S3 (c) and (d), density profiles for
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Figure S3: (Colour online): Apical domain growth. (a) GM1 exponential domain growth,
(b) GM2 exponential domain growth, (c) GM1 linear domain growth, (d) GM2 linear domain
growth. The parameters for all panels are PAm = 20, PAp = 0.9, PBm = 1, PBp = 1, Pgx = 0.1 and
Pgy = 0.1.

linear apical growth are shown. In Fig. S3 (c) GM1 is implemented and, much like exponential

growth, this results in species A to dominate across the domain. In contrast, in Fig. S3 (d)

GM2 is implemented and this results in species A and B to have similar densities in the middle

region of the growing domain. This result suggests that the form of growth in apical growth can

determine the dominant species at the interface of two differently growing regions, and could
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have interesting implications in biological systems with apical growth [36, 37].
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