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Abstract 
 
While the principal force directing coding sequence (CDS) evolution is selection on 

protein function, to ensure correct gene expression CDSs must also maintain 

interactions with RNA-binding proteins (RBPs). Understanding how our genes are 

shaped by these RNA-level pressures is necessary for diagnostics and for improving 

transgenes. However, the evolutionary impact of the need to maintain RBP 

interactions remains unresolved. Are coding sequences constrained by the need to 

specify RBP binding motifs? If so, what proportion of mutations are affected? Might 

sequence evolution also be constrained by the need not to specify motifs that might 

attract unwanted binding, for instance because it would interfere with exon definition? 

Here, we have scanned human CDSs for motifs that have been experimentally 

determined to be recognized by RBPs. We observe two sets of motifs – those that are 

enriched over nucleotide-controlled null and those that are depleted.  Importantly, the 

depleted set is enriched for motifs recognized by non-CDS binding RBPs. Supporting 

the functional relevance of our observations, we find that motifs that are more 

enriched are also slower-evolving. The net effect of this selection to preserve is a 

reduction in the over-all rate of synonymous evolution of 2-3% in both primates and 

rodents. Stronger motif depletion, on the other hand, is associated with stronger 

selection against motif gain in evolution. The challenge faced by our CDSs is 

therefore not only one of attracting the right RBPs but also of avoiding the wrong 

ones, all while also evolving under selection pressures related to protein structure. 
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Introduction 

 

One of the most captivating problems in molecular evolution is that of multiple 

coding − how the very same DNA sequence can contain several overlapping layers of 

information. This was once believed to primarily characterize viral genomes, where 

open reading frames (ORFs) routinely overlap (Barrell et al. 1976; Normark et al. 

1983; Belshaw et al. 2007; Chirico et al. 2010). It is understood now, however, that 

not only are overlapping genes more common in vertebrates than previously believed 

(Veeramachaneni et al. 2004; Michel et al. 2012), other forms of multiple coding are 

near-ubiquitous (Itzkovitz et al. 2010; Lin et al. 2011; Shabalina et al. 2013; Pancsa 

and Tompa 2016). For example, protein-coding regions can overlap with transcription 

factor binding sites (Stergachis et al. 2013; Birnbaum et al. 2014) (although the 

functionality of the sites is contested (Xing and He 2015; Agoglia and Fraser 2016)), 

functional RNA secondary structures (Chamary and Hurst 2005; Meyer and Miklos 

2005; Pedersen et al. 2006; Smith et al. 2013) and microRNA targets (Lewis et al. 

2005; Hurst 2006; Forman et al. 2008; Fang and Rajewski 2011; Hausser et al. 2013; 

Liu et al. 2015). This means that the evolution of coding sequences (CDSs) is directed 

not only by selection pressures related to the structure of the protein encoded for but 

also by the need to preserve such overlapping regulatory information. 

 

Here, we have examined one particular layer of information in CDSs, namely target 

sites to RNA-binding proteins (RBPs). A constantly changing assortment of RBPs 

accompanies the (pre-)mRNA transcript throughout its life and coordinates gene 

expression (Glisovic et al. 2008; Muller-McNicoll and Neugebauer 2013; Singh et al. 

2015). Although many of these proteins interact preferentially with untranslated 

regions or introns (e.g. Licatalosi et al. 2008; Xue et al. 2009; Ince-Dunn et al. 2012), 

others primarily bind CDSs (e.g. Grellscheid et al. 2011; Änkö et al. 2012; Ascano et 

al. 2012). We have sought to quantify to what extent the evolution of CDSs is 

constrained by the need to preserve or to avoid interactions with RBPs. 

 

To do so, we have studied the enrichment and conservation of particular k-mers 

within CDSs. At least some RBPs recognize and interact with particular (classes of) 

sequence motifs in the mRNA (Ray et al. 2013; Li et al. 2014). If such an RBP 

functionally binds within CDSs, then this should lead to the over-representation and 
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excess conservation (compared to null/neutral expectations) of the relevant motifs. On 

the other hand, it is possible that target sites to other sequence-specific RBPs are 

avoided in CDSs if interactions between CDSs and those RBPs have deleterious 

consequences. For example, if an RBP that normally functions by binding introns 

bound a CDS, it could theoretically interfere with exon definition during pre-mRNA 

processing or simply constitute a waste of the protein. Such avoidance should 

manifest itself in the associated motifs being less frequent than expected by chance. 

The impact on evolutionary rates should be two-fold: on the one hand, the avoided 

motifs themselves are expected to be fast-evolving due to pressure to degrade them. 

On the other hand, those k-mers that are a short mutational distance away from an 

avoided motif should be under selection against substitutions that would give rise to 

the avoided motif. 

 

Such patterns of enrichment and conservation have been studied extensively for 

exonic splice enhancers (ESEs). ESEs are short RNA motifs, enriched at exon ends, 

that promote splicing and are important for the correct identification of the splice sites 

in a wide range of multicellular organisms (Blencowe 2000; Fairbrother et al. 2004; 

Wu et al. 2005; Wang and Burge 2008; Warnecke et al. 2008; Cáceres and Hurst 

2013). They are under purifying selection (Fairbrother et al. 2004; Carlini and Genut 

2006; Parmley et al. 2006; Parmley et al. 2007; Ke et al. 2008; Sterne-Weiler et al. 

2011; Cáceres and Hurst 2013), leading in human and mouse to an estimated 

reduction in the over-all rate of evolution at synonymous sites of about 1.9% − 4% 

(Parmley et al. 2006; Cáceres and Hurst 2013). There is evidence that the pressure to 

conserve ESEs may also have an impact on protein evolution: higher ESE density, as 

well as higher splice factor binding site density, have been found to correlate with 

increased protein disorder (Macossay-Castillo et al. 2014; Smithers et al. 2015). 

Moreover, Parmley et al. (2007) showed that amino acid composition at exon ends, 

where ESEs are most frequent, is biased towards residues that are encoded for by 

codons that are frequent in ESEs (for a case study, see Falanga et al. (2014)). More 

generally, there is evidence that the proportion of an mRNA that is within a short 

distance to a splice site (and therefore likely enriched in splice regulatory 

information) is one of the main determinants of how fast the corresponding protein 

evolves (Parmley et al. 2007). 
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Most ESE function can probably be explained by interactions with RBPs, notably SR 

proteins (Blencowe 2000; Zhou and Fu 2013). The work discussed above on the 

evolution of these motifs therefore constitutes a step towards understanding the 

evolutionary importance of RBP binding more generally. In the present study, we 

expanded the scope of the analysis from splice enhancement alone to all the functions 

CDS-RBP interactions may have (see section 1 of the Discussion for further 

consideration of the functions of RBPs).  

 

We assembled a large set of k-mers that have been demonstrated experimentally to be 

recognized by various RBPs, and scanned human CDSs for hits. Note that we are 

concerned strictly with global biases on mRNA sequence evolution and not with 

predicting individual binding sites, a wholly separate problem that would require a 

different approach (see Materials and Methods for discussion). We found the motifs 

to be both more frequent and more conserved than would be expected by chance from 

their nucleotide composition. We estimate the net effect of the need to preserve them 

to be a decrease of ca. 2.4% in the over-all rate of evolution at human synonymous 

sites − an estimate that is in line with those produced previously for ESEs (Parmley et 

al. 2006; Cáceres and Hurst 2013). This might suggest that ESEs alone capture a large 

fraction of the selective pressures acting on motifs recognized by RBPs as a whole. 

 

Importantly, the task facing CDSs appears to be not simply to maintain necessary 

RBP interactions but also to avoid inappropriate ones. Indeed, although the over-all 

effect is one of motif enrichment, there are also many RBPs whose putative target 

motifs are depleted compared to nucleotide-controlled null, and appear to be 

selectively avoided in CDS evolution. It is possible that these represent RBPs whose 

interactions with CDSs can have deleterious consequences, either because they 

actively interfere with gene expression or because they divert the protein away from 

functional binding sites in other transcript regions. 
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Results 

 

1. Putative RBP target motifs are non-neutrally evolving in CDSs, leading to an 

over-all decrease of ~2.4% in the human rate of synonymous evolution. 

 

1.1. Putative RBP target motifs are enriched over expected in CDSs. 

Is the frequency of putative RBP target motifs in CDSs consistent with neutral 

expectations or are there deviations that would suggest the presence of selection? We 

retrieved data on the experimentally determined sequence specificities of human 

RBPs from several databases. This provided us with 114 RBPs, each one associated to 

a particular set of k-mers with k ranging from 5 to 12 (from now on these k-mers will 

be referred to as RBP motifs; Additional File 1). The motifs were pooled across all the 

sets, resulting in a final list of 1483 unique RBP motifs. The techniques used to 

determine these motifs vary widely, ranging from nuclear magnetic resonance based 

approaches (e.g. Garcia-Mayoral et al. 2008) to high throughput competition assays, 

such as RNAcompete (Ray et al. 2013). We next compiled a set of 10,337 full human 

intron-containing CDSs (concatenations of all the coding regions from the transcript 

variant with the longest CDS). To alleviate problems of statistical non-independence, 

the CDSs were clustered into families of paralogs (Additional File 2). In the analyses 

described below, statistics were either averaged within families or only a single 

randomly picked gene was considered from each, resulting in 5845 independent data 

points for each estimate (see Materials and Methods for further details). 

 

We then scanned the CDSs for RBP motifs and calculated the motif density, that is to 

say, the fraction of the bases in a given CDS that overlapped with any of the motifs. 

The median density was ≈0.573 (Supplementary Spread Sheet 1 in Additional file 4), 

meaning that over half of the sequence in a typical human intron-containing CDS 

overlaps with one or more RBP motifs. Does this deviate from the density that would 

be expected by chance for a set of motifs of this size and of this base content? We 

generated 1000 sets of simulant motifs of the same size and roughly the same 

dinucleotide composition as the set of RBP motifs. We determined the density of the 

simulant sets in our sequences and observed that none of them had a median density 

as high as that observed with real RBP motifs. RBP motifs are therefore enriched in 
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CDSs with a p-value of ≈0.001 (𝑝 =  !!!
!!!

, where n is the number of simulant sets that 

present a median density as great as or greater than that observed with the real motif 

set and m is the total number of simulant sets). This is an indication that there could 

indeed be selection to preserve these motifs. 

 

In order to quantify this enrichment, we can calculate a normalized density value for 

each gene (𝑁𝐷 = !"#$ !"#$%&' – !"#$ !" !"#$%&'() !"#$%&%"$
!"#$ !" !"#$%&'() !"#!"#"$!

). ND is a measure of 

enrichment over the nucleotide-controlled null. An ND value of 0 signifies that the 

motifs are about as frequent as would be expected by chance given their nucleotide 

composition, whereas an ND of 1 means that they are twice as frequent as expected 

and an ND of −0.5 that they are half as frequent. For RBP motifs, we recover a 

median ND value of ≈0.115. 

 

1.2. RBP motifs are under purifying selection. 

If the motif enrichment reported above truly reflects the functionality of (a subset of) 

the k-mers rather than, say, a methodological bias in the simulations, then in addition 

to being enriched, the motifs should also be slower-evolving than expected from their 

nucleotide composition. To test this prediction, we aligned the gene regions 

overlapping the motifs to the homologous regions in the macaque (Macaca mulatta) 

genome and calculated the rate of evolution at synonymous sites (dS). We then 

applied the same procedure to each of the 1000 simulated versions of the RBP motifs 

set. This generated a distribution of simulant dS estimates, from which we calculated 

an empirical conservation p-value (𝑝 =  !!!
!!!

, where n is the number of simulant sets 

that present a dS as low as or lower than that observed with the real motif set and m is 

the total number of simulant sets) and a normalized dS estimate (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑! =
!"#$ !! – !"#$ !" !"#$%&'() !!

!"#$ !" !"#$%&'() !!
). RBP motifs show a significant reduction in dS (raw dS ≈ 

0.064; normalized dS ≈ −0.041; p ≈ 0.003). This suggests that CDSs are indeed under 

selection to preserve RBP motifs, underlining their functionality. 

 

In order to further verify this result using a different method, we compared 

evolutionary rates at fourfold degenerate sites that overlapped RBP motifs to rates at 

those that did not, performing the analysis separately for each dinucleotide (see 
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Supplementary Text 1 in Additional File 5 for details). Although the effects recovered 

were weaker than those obtained in the dS analysis reported above, the majority of 

dinucleotides do evolve more slowly within RBP motifs than elsewhere (χ2 ≈ 4, p < 

0.05 from χ2 test; p ≈ 0.017 from a paired one-tailed Wilcoxon signed rank test 

comparing the rates obtained for each dinucleotide in motifs and non-motifs). It 

appears therefore that our results cannot simply be due to a bias in the normalization 

procedure that would cause a few fast-evolving dinucleotides (such as CG) to be over-

represented in simulants when compared to the true motifs. 

 

1.3. RBP motif enrichment is stronger in genes that are expressed more tissue-

specifically. 

The hypothesis of RBP motif functionality possibly makes a further prediction, 

namely that the motifs should be enriched more in genes that are more highly 

expressed or expressed in a greater number of tissues. This is because various errors 

made during gene expression should have greater fitness consequences if the 

transcript is more abundant, assuming that all else is equal. Selection on regulatory 

signals that help ensure correct gene expression should therefore be stronger, leading 

to higher enrichment. 

 

We obtained FANTOM5 expression data (Fantom Consortium et al. 2014) for the 

genes in our dataset. For each gene, we calculated the following expression 

parameters: expression breadth (fraction of tissues where the gene is expressed), 

median expression, maximum expression, and median expression in tissues where the 

gene is expressed (Supplementary Spread Sheet 18 in Additional File 4). After 

Bonferroni correction, we find that ND indeed correlates significantly with three of 

these variables (Table 1). However, contrary to our expectations, the sign of the 

correlation is negative rather than positive. In addition, the relevant parameter seems 

to be the number of tissues in which the gene is expressed more so than transcript 

abundance in any given tissue. In other words, it appears that the more tissue-specific 

a gene’s expression pattern, the more RBP motifs are enriched. This might reflect 

greater levels of regulation in more narrowly expressed genes. This tendency must be 

stronger than any increased purifying selection on genes with greater expression 

breadth.  
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We were concerned that the negative correlation between ND and expression 

parameters could be reflecting properties of simulant motifs rather than of the true 

RBP motifs. Namely, the formula for calculating ND 

(𝑁𝐷 = !"#$ !"#$%&' – !"#$ !" !"#$%&'() !"#$%&%"$
!"#$ !" !"#$%&'() !"#$%&%"$

) requires one to divide by the mean of 

simulated densities. If simulated density correlated positively with expression breadth, 

this could lead to a negative correlation between ND and expression breadth without 

there being any relationship between true motif density and expression. We therefore 

repeated the analysis using Z-scores rather than ND 

(𝑍 = !"#$ !"#$%!" – !"#$ !" !"#$%&'() !"#$%&%"$
!"#$%#&% !"#$%&$'( !" !"#$%&'() !"#$%&%"$

). Z-scores should be more robust to 

fluctuations in the simulated mean, as this parameter does not appear in the 

denominator. It is therefore reassuring that we observed a negative correlation 

between Z and expression breadth (ρ ≈ −0.156, p < 2.2 * 10-16; Spearman rank 

correlation). In addition, raw motif density also correlates negatively and significantly 

with expression breadth (ρ ≈ −0.123, p < 2.2 * 10-16; Spearman rank correlation), 

demonstrating that the effect we observe for ND cannot be explained solely by 

patterns of simulated density. 

 

To conclude, although the sign of the correlation is different from what was 

hypothesized, the fact that RBP motif enrichment correlates significantly with 

expression parameters adds further support to the claim that these motifs are 

functional in CDS. 

 

1.4. The need to preserve RBP motifs leads to an over-all reduction of ~2−3% in 

primate and rodent ds. 

It has been estimated (Parmley et al. 2006; Cáceres and Hurst 2013) that the need to 

preserve ESEs causes a reduction of about 1.9% − 4% in the over-all rate of evolution 

at synonymous sites (dS). What would be the analogous estimate for RBP motifs? To 

find out, one can multiply normalized dS by ≈0.573, that is to say, the fraction of the 

sequence in the median human CDS that is made up of RBP motifs. This provides us 

with an estimate for the over-all reduction in the dS of the median gene that can be 

attributed to the pressure to preserve RBP motifs. This statistic turns out to be 

≈−0.024. It therefore appears that the need to preserve RBP motifs indeed places a 

weak but detectable constraint on sequence evolution within human protein-coding 
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regions. The magnitude of the effect we report for RBP motifs in CDSs is in line with 

previous estimates obtained for ESEs. However, not all RBP motif related constraint 

seems to be splice-associated: the net decrease in dS is similar between intron-

containing and intronless sequences (Supplementary Text 2 in Additional File 5, 

Supplementary Spread Sheet 7 in Additional File 4, and Additional File 3), suggesting 

that splicing-independent factors are important in directing RBP motif evolution. 

 

We next asked whether our results concerning selection on RBP motifs in CDSs could 

be confirmed in another system. We repeated the analysis on 15,631 mouse (Mus 

musculus) CDSs, using motifs derived for mouse RBPs (Additional File 1; 

Supplementary Spread Sheet 10 in Additional File 4). We employed the rat (Rattus 

norvegicus) genome for estimating conservation. We recovered a lower median motif 

density than in human (≈0.339 and ≈0.573, respectively). However, this is likely 

simply because the set of motifs was smaller in mouse (736 motifs compared to the 

1483 in human). The extent of enrichment (ND ≈ 0.128; p ≈ 0.010) was similar to that 

obtained in human. Excess conservation was slightly more pronounced (raw dS ≈ 

0.165; normalized dS ≈ −0.063; p ≈ 0.010), leading to an estimate of ≈2.1% for the 

over-all reduction in dS that would be due to the need to preserve RBP motifs. Data 

from mouse therefore also provides evidence for purifying selection on RBP motifs, 

and leads to similar conclusions with regards to the magnitude of this constraint. 

 

1.5 RBP motif related constraint is as strong in CDSs as it is in introns and 

untranslated regions (UTRs). 

We have provided evidence that RBP motifs are under selection in CDSs. However, is 

the over-all evolutionary impact of this selection substantially weaker in CDSs than in 

the non-coding regions of protein-coding genes? This might be expected as the latter 

regions are not under the additional constraint of specifying protein structure. They 

could therefore be particularly prone to the accumulation of regulatory signals, such 

as RBP binding sites. We analysed RBP motif density and conservation in 5’UTRs, 

3’UTRs, full introns and exon proximal intronic regions (the 100 bp immediately 

upstream or downstream from an exon; Supplementary Spread Sheets 13-17 in 

Additional File 4). We found evidence for RBP motif conservation in all 

compartments and in all bar the intronic sequence from the downstream flanks of 

exons the effect was significant (Table 2).   
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Contrary to our expectations, the over-all constraint (the product of the motif density 

and the nucleotide-normalized conservation estimate) was stronger in CDSs than in 

any of the non-coding regions (Table 2). This could be reflecting the fact that 

synonymous sites are not subject to selective pressures related to amino acid 

sequence. The selection acting on non-coding signals in CDSs could therefore be 

disproportionately concentrated at synonymous sites, leading to a strong effect at the 

level of dS. However, any such reasoning should be taken with a grain of salt as the 

conservation statistics were obtained slightly differently for CDSs and for the other 

sequence regions (using PAML codeml for CDSs and PAML baseml for the non-

coding sequence). We therefore merely note that we find no evidence for unusually 

weak RBP motif related constraint in CDSs, and refrain from drawing conclusion 

from more fine-scale comparisons. 

 

In conclusion, we have attempted to quantify the extent to which excess conservation 

at RBP motifs leads to a global decrease in dS. We have found this figure to be about 

2.4% − approximately the same level of constraint as can be observed in the non-

coding regions of protein-coding genes. We emphasize that the figures we provide are 

to be taken as rough estimates only, as they are sensitive to the number of motifs 

defined as RBP motifs and to the procedure used for calculating the neutral 

expectation. Note also that our approach does not discriminate between strong 

selection acting on a few of the motifs in our set and weak selection acting on many. 

In the sections to follow, we will attempt to clarify this issue.  
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2. Nucleotide-controlled density varies greatly among motifs putatively 
recognized by different RBPs, with depletion no less frequent than enrichment. 
 

2.1. When RBP motifs are grouped based on the cognate RBP, the enrichment p-

values of the resulting motif sets distribute bimodally. 

We determined above that RBP motifs were both more frequent and more conserved 

in CDSs than expected from their nucleotide composition, leading to a slight decrease 

in over-all dS. It remains unclear, however, what the contributions of the motifs 

putatively recognized by different RBPs are to this result. Are more or less all RBP 

motifs enriched over expected or is the over-all enrichment largely driven by a subset 

of the motifs? Could some RBP motifs be not enriched but depleted instead? For 

instance, an intronic splice regulator binding within an exon could hypothetically 

interfere with exon recognition and so the presence of the cognate motifs within exons 

might be deleterious. 

 

We repeated the analysis of motif density but instead of pooling the motifs, we 

considered the k-mers associated to each RBP separately. From here on, we will use 

the phrase motif set to refer to the motifs putatively recognized by a particular RBP. 

In total, there are therefore 114 motif sets, each corresponding to one RBP (see 

Supplementary Spread Sheet 19 in Additional File 4 for the sizes of the motif sets). 

As above for the pooled analysis, we generated 1000 approximately dinucleotide-

matched simulated versions of each motif set so that we could calculate ND and an 

enrichment p for the motifs putatively recognized by each RBP (Supplementary 

Spread Sheet 2 in Additional File 4).  

 

Some motif sets were very rare, leading to concerns over the reliability of estimating 

ND and other parameters in such cases. Because of this issue, we removed motif sets 

where hits to neither the true motifs nor the simulant sets reached a pre-defined 

density threshold (see Materials and Methods). After this filtering step, 81 motif sets 

remained (Additional File 1), containing a total of 1213 unique motifs. The 

enrichment p-values obtained for most of them were non-significant. However, there 

was a peak at either extreme (near 0 and near 1) when they were plotted out as a 

histogram (Figure 1A), leading to a significantly non-unimodal distribution (D ≈ 

0.069; p ≈ 0.005; Hartigans’ dip test).  
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In other words, a large proportion of the motifs fall into one of two classes: a (near-) 

significantly enriched class and a (near-)significantly depleted class. The over-all 

enrichment over expected that is obtained when all the motifs are pooled is therefore 

the average of many competing trends: the motifs putatively recognized by some 

RBPs are enriched, whereas others distribute at random frequencies or are altogether 

depleted.  

 

2.2. The bimodal distribution of enrichment p-values is specific to RBP motifs. 

Is this bimodal distribution of p-values specific to RBP motifs or could it be an 

artefact of our method for estimating k-mer enrichment? In the latter case, a similar 

distribution of p-values should also occur with motifs that are not expected to be 

biologically meaningful. We therefore replaced each motif within each motif set with 

a random k-mer of the same length and repeated the density analysis with these 

random motifs. We then generated 1000 sets of approximately dinucleotide-matched 

simulant motifs for each random motif set in order to calculate the enrichment p-

values, identically to the analysis performed above for RBP motifs. 

 

Unlike the RBP motifs, the random motifs showed no tendency for extreme p-values 

(black line in A; Supplementary Spread Sheet 3 in Additional File 4). To formally 

confirm this visual observation, we classed the p-values into two groups: below 0.1 or 

above 0.9, and between 0.1 and 0.9 (included). We then counted the number of p-

values in either group and found the proportion to be significantly different for the 

RBP motifs and for random k-mers (χ2 = 75.593, p < 0.001). In order to test the 

significance of the depletion effect specifically, we also compared the proportion of p-

values above 0.9 to those below or equal to 0.9 for RBP motifs and for random k-

mers. This difference was also significant (χ2 = 132.819, p < 0.001). The bimodal 

distribution of enrichment p-values is therefore unlikely to result from methodological 

biases. We also considered the possibility that differences in stop codon content 

between the motifs and their simulants could be contributing to the depletion 

observed. The details of this analysis can be found in Supplementary Text 3 in 

Additional File 5, and Supplementary Figures 2 and 3, also in Additional File 5. 

Briefly, we found that although this factor might play some role in determining ND, it 

does not seem to explain the over-all pattern. 
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In conclusion, the tendency for extreme enrichment p-values exhibited by RBP motif 

sets is probably not due to methodological factors, as control motifs not thought to be 

biologically meaningful do not display this pattern. It is therefore likely that it is a 

reflection of the functionality of at least some of the motif sets. 
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3. The variation in enrichment between different sets of RBP motifs likely 

reflects functional differences. 

 

3.1. Motif sets that are more strongly enriched also tend to be more conserved. 

We have seen above that the extent of enrichment varies between sets of motifs 

putatively recognized by distinct RBPs. If this variation reflects differences in the 

functional importance of the motifs, then it should correlate with evolutionary rate: 

those motif sets that are more enriched should also be more conserved. To test this 

prediction, we calculated dS, normalized dS and a conservation p-value separately for 

each motif set (Supplementary Spread Sheet 4 in Additional File 4). As predicted 

under a functional hypothesis, we recovered a significant correlation between a motif 

set’s ND and its normalized dS (ρ ≈ −0.507; p ≈ 1.388 * 10-6; Spearman rank 

correlation; Figure 2A; see Supplementary Figure 4 in Additional File 5 for 

qualitatively similar results obtained using enrichment Z-scores instead of ND, which 

controls for differences in the variance of the simulated density values; see 

Supplementary Figure 5 in Additional File 5 for a version of Figure 2 where each data 

point is labelled according to the associated RBP). Similarly, there is a significant 

positive correlation between enrichment p-values and conservation p-values (ρ ≈ 

0.503, p ≈ 1.75 * 10-6; Spearman rank correlation). The variation in the extent of 

enrichment, therefore, indeed likely results from functional differences between sets.  

 

We repeated this analysis also for intronless CDSs and recovered similar patterns to 

those observed in intron-containing ones, once again underscoring the importance of 

processes other than splicing for determining RBP motif usage and evolution 

(Supplementary Text 2 in Additional File 5, and Supplementary Spread Sheets 8 and 

9 in Additional File 4). We also performed the analysis using mouse CDSs and mouse 

RBPs (Supplementary Spread Sheets 11 and 12 in Additional File 4; Additional File 

2). Like in human, we obtained a significant negative correlation between ND and 

normalized dS (ρ ≈ −0.312; p ≈ 0.005; Spearman rank correlation), and a significant 

positive correlation between enrichment p-values and conservation p-values (ρ ≈ 

0.352; p ≈ 0.001; Spearman rank correlation).  
 

It could be pointed out that there is a significant correlation between the ND and the 

raw density of motif sets (ρ ≈ 0.292, p ≈ 0.008; Spearman rank correlation), and that 
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the reliability of estimated dS values is expected to depend on the amount of 

information available, which in its turn depends on the raw density. Therefore, the 

correlation between ND and normalized dS could be due to less noisy estimation of 

normalized dS in motif sets with greater ND. This is worrying because raw density is 

partially determined by methodological factors, such as the number of motifs in the 

set (ρ ≈ 0.674, p ≈ 5.515 * 10-12; Spearman rank correlation between motif number 

and raw density) and the length of the motifs (ρ ≈ −0.323, p ≈ 0.003; Spearman rank 

correlation between median motif length and raw density). However, this alternative 

explanation predicts that in addition to the negative correlation between ND and 

normalized dS, there should also be one between raw density and normalized dS. This 

prediction is incorrect: there is no significant correlation between the raw density of a 

motif set and its normalized dS (ρ ≈ 0.007, p ≈ 0.949; Spearman rank correlation). 

This confound is therefore unlikely to explain our results. We also note that several of 

the motif sets that present particularly extreme values for both ND and for normalized 

dS are composed of very few motifs (see, for instance, CUGBP, Elav-Like Family 

Member 1 (CELF1) and Sterile Alpha Motif Domain Containing 4A (SAMD4A) in 

Supplementary Figure 5 in Additional File 5) and might therefore give rise to less 

reliable estimation of normalized dS. Could our results be due to the presence of noisy 

outliers? This does not seem to be the case: we repeated the analysis after having 

removed all motif sets with fewer than 5 motifs and the significant correlation 

between ND and normalized dS remained (ρ ≈ −0.520, p ≈ 5.773 * 10-4; Spearman 

rank correlation). 

 

It therefore appears likely that the motif sets that show the strongest enrichment are 

those recognized by RBPs whose interactions with CDSs are the most important to 

maintain. Do the associated RBPs also show preferential binding in CDSs in 

experimental studies? We annotated the RBPs as either CDS-binding, non-CDS-

binding or unknown based on published high-throughput crosslinking and 

immunoprecipitation studies (CLIP-Seq) (Licatalosi et al. 2008; Xue et al. 2009; 

Hafner et al. 2010; Konig et al. 2011; Van Nostrand et al. 2016) (see Supplementary 

Spread Sheet 5 in Additional File 4 for references to data sources). The motif sets that 

were associated with CDS-binding RBPs indeed had greater raw density (p ≈ 0.016; 

one-tailed Mann-Whitney U-test), greater ND (p ≈ 0.006; one-tailed Mann-Whitney 

U-test) and lower enrichment p-values (p ≈ 0.009; one-tailed Mann-Whitney U-test; 
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Figure 1B) than those annotated as non-CDS-binding. This concordance with 

experimental data both lends credence to the motif to RBP mapping and provides 

further support for the functional relevance of our observations. 

 

In summary, the motif sets that are more strongly enriched in CDSs also tend to be 

slower-evolving, suggesting that they represent a subset of RBP motifs whose 

presence in CDSs has particular functional importance. 

 

3.2. The depletion of certain motif sets is likely due to purifying selection to avoid 

them. 

We noted above that despite the over-all enrichment of RBP motifs over nucleotide-

controlled null in CDSs, many of the motif sets associated to individual RBPs were 

depleted instead. As this depletion is not observed for random k-mers (black line in 

Figure 1A), it most likely reflects selection to avoid motifs recognized by RBPs 

whose interactions with CDSs can be deleterious, either because they constitute a 

waste of the protein on inappropriate binding or because they interfere with gene 

expression. The latter type of scenario is easy to imagine in the case of splicing: an 

exon is partially defined by the factors that bind to it and so a change in the 

complement of binding partners could hypothetically interfere with exon recognition. 

 

The implications of this avoidance for CDS evolution are likely two-fold. Firstly, one 

expects purifying selection against the avoided motifs, resulting in a general 

constraint on the sequence space available in CDS evolution. A read-out of this effect 

would be a rarity of substitutions that give rise to an avoided motif. Secondly, when 

the avoided motifs do occur, there should be positive selection to degrade them. They 

should therefore be faster-evolving than expected from their nucleotide composition. 

The magnitude of the second selection pressure will depend on the efficiency of the 

first: if the purifying selection against the avoided motifs is sufficiently strong, then 

they might almost never go to fixation in a context where their presence is deleterious. 

For instance, it could be that the majority of the hits observed for such motifs are in 

locations where the local mRNA secondary structure prevents the RBP from 

accessing the site and so these motifs, although present in the sequence, would very 

infrequently actually interact with the RBP. In this case, no positive selection to lose 

the motifs is expected and the avoided motifs should instead be neutrally-evolving. It 
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is also possible that certain RBP-CDS interactions, although deleterious in most cases, 

can be adaptive when they occur at very specific locations. In this latter scenario, the 

avoided motifs would be rare but under purifying selection when present. 

 

In order to determine whether there was any evidence for selection to degrade certain 

motifs, we pooled the motifs from those sets whose enrichment p-value was above 0.9 

in intron-containing CDSs (the strongest candidates for being avoided; from here on, 

we will refer to these motifs as the depleted group) and calculated their density and 

rate of evolution in intron-containing CDSs. This resulted in a set of 432 motifs with a 

median density of ≈0.069, a median ND of ≈−0.130 and an enrichment p-value of 1 

(i.e. significant depletion). There is no evidence for positive selection on the motifs: 

rather, they are evolving at roughly the rate that would be expected by chance from 

their nucleotide composition (raw dS ≈ 0.068; normalized dS ≈ 0.011; conservation p ≈ 

0.600). This might suggest that purifying selection to avoid the motifs is sufficiently 

efficient to mostly prevent them from going to fixation at locations where their 

presence is deleterious. It is also possible, however, that because of the rarity of the 

depleted group motifs, we simply lack the power to pick up on any positive selection 

that is occurring. Moreover, if the avoidance only concerns certain gene regions, this 

might dilute any signal of positive selection further. For instance, the avoidance might 

be stronger in the outer regions of exons (the exon flanks) than at the very centre, as 

the flanks appear to be more crucial for splice regulation. This is evidenced by their 

enrichment in both splice-altering (Woolfe et al. 2010) and pathogenic (Wu and Hurst 

2016) single-nucleotide polymorphisms.  

 

To test this hypothesis, we extracted 69 base pairs from the extreme 5’ end, the 

extreme 3’ end and the very centre of 4563 human internal coding exons and 

calculated the dS of the depleted group. In the 5’ flank, depleted group motifs are 

indeed evolving faster than expected from their base composition but this effect is 

non-significant (5’ flanks: raw dS ≈ 0.073; normalized dS ≈ 0.116; conservation p ≈ 

0.915). In exon cores and 3’ flanks, however, the same motifs are evolving at chance 

rates (cores: raw dS ≈ 0.068; normalized dS ≈ 0.024; conservation p ≈ 0.635; 3’ flanks: 

raw dS ≈ 0.072; normalized dS ≈ 0.045; conservation p ≈ 0.727). Given the non-

significance of the effects, it appears that even when considering the different exonic 
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sub-regions separately, there is little evidence for increased rates of evolution in 

regions overlapping depleted group motifs. 

 

We next sought to directly test for purifying selection against the depleted group. We 

determined all four-fold degenerate sites in our set of intron-containing CDSs such 

that a single base substitution at the site would give rise to one of these motifs. We 

then aligned the CDSs to macaque orthologs and found that at ≈1.4% of such sites, 

the base that would create a depleted group motif were it used at that position in 

human was indeed present at the orthologous site in the macaque sequence (the site 

counts have been weighted based on site degeneracy − see Materials and Methods). 

We repeated the same analysis on 1000 sets of dinucleotide-matched simulant motifs 

and found the corresponding percentage to be ≈1.6% on average. This difference is 

slight but significant (one-tailed empirical p ≈ 0.009 from the distribution of simulant 

values). This is evidence for selection against substitutions that would give rise to a 

depleted group motif. 

 

Another way to test for purifying selection against certain RBP motifs is to consider 

the variation among motif sets. If motif depletion is largely driven by purifying 

selection to avoid, it is expected that the more a motif set is depleted, the more motif 

gain is selected against over evolution. To test this hypothesis, we repeated the 

analysis of sites that are a single substitution removed from a motif but this time 

separately for the individual RBP motif sets (Supplementary Spread Sheet 6 in 

Additional File 4). For each motif set, we calculated the fraction of one-removed sites 

where the base that would give rise to one of the motifs in the set in human was 

present in macaque. We then normalized this statistic by subtracting from this value 

the mean fraction observed for simulated sets and dividing the difference by the 

simulated mean. We then calculated the correlation between these normalized 

fractions and ND. As predicted, this correlation was significantly positive (ρ ≈ 0.538, 

p ≈ 3.530 * 10−7; Spearman rank correlation; Figure 2B). Analysis of individual motif 

sets therefore also provides evidence that the depletion of certain motif sets is due to 

purifying selection to avoid them. 

 

The fact that CDSs co-exist in the cell with RBPs therefore has the effect of carving 

out a sub-region of sequence space within which CDSs preferentially evolve. 
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Deviating from these constraints may not only lead to the loss of necessary CDS-RBP 

interactions but might also provoke inappropriate ones. 
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Discussion 

 

1. An estimate for the decrease in the synonymous rate of evolution that is due to 

selection to preserve interactions with RNA-binding proteins. 

 

In this study, we have sought not simply to test whether the need to preserve RBP 

binding constrains CDS evolution but also to quantify the evolutionary impact of any 

such dual coding. We estimate that the need to conserve motifs putatively recognized 

by RBPs leads to a decrease of ca. 2−3% in the over-all rate of evolution at 

synonymous sites in both primates and rodents compared with a nucleotide controlled 

null. This reduction in evolutionary rate, however, is not distributed uniformly across 

the RBP motifs, appearing to be driven by a subset of the motifs that are particularly 

enriched and conserved, while others occur at chance frequencies or are altogether 

depleted. Note also that the very low figure that we provide for the over-all decrease 

in evolutionary rates is likely an underestimate because the nucleotide-controlled null 

has been intentionally designed to be conservative. It is possible that some of the 

control sites overlap with functional RBP targets and are therefore conserved, leading 

to an overly low expected rate of evolution. 

 

The estimate that we have produced for RBP motifs is comparable to the 1.9%−4% 

range that can be deduced from similar analyses on exonic splice enhancers (ESEs) 

(Parmley et al. 2006; Cáceres and Hurst 2013). This might indicate that ESEs alone 

capture a large fraction of the selective pressures acting on putative RBP target motifs 

more generally. This should not be taken to imply that all RBP-related constraint is 

due to the need to ensure correct splicing: we found both the over-all level of 

constraint, as well as the enrichment and conservation patterns of the individual sets 

of motifs putatively recognized by particular RBPs, to be remarkably similar between 

intron-containing and intronless sequences (Supplementary Text 2 in Additional File 

5). This suggests that splicing-independent factors may be surprisingly important in 

shaping the RBP motif content of CDSs. This result concords with previous findings 

that ESEs are both enriched and conserved (compared to nucleotide-controlled null) 

also in genes that do not undergo splicing, indicating that they too might be relevant 

to processes other than splicing (Pozzoli et al. 2004; Savisaar and Hurst 2016). 
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Our data do not inform us on which particular splicing-independent functions might 

be the most relevant in directing RBP motif evolution. However, it is well established 

that RBPs that bind the CDS can indeed have such roles. For instance, the serine-

arginine rich splice factor 1 (SRSF1) is crucial for maintaining genome stability (Li 

and Manley 2005; Tuduri et al. 2009), whilst the serine-arginine rich splice factors 3 

and 7 (SRSF3 and SRSF7) have been shown to act as adapters in the nucleo-

cytoplasmic transport of the intronless H2a mRNA (Huang and Steitz 2001; Huang et 

al. 2003). Other RBPs, such as fragile X mental retardation 1 (FMR1) (Kao et al. 

2010) and Heterogeneous Nuclear Ribonucleoprotein A2 (HNRNPA2) (Shan et al. 

2003), are involved in the trafficking of mRNAs within neurons. RBPs that bind in 

the CDS can also function in translation. This includes roles as both positive (Sanford 

et al. 2004; Peng et al. 2011) and negative (Darnell et al. 2011) regulators of 

translation, as well as in the regulation of alternative translation initiation site usage 

(Bonnal et al. 2005). As a final example, insulin like growth factor 2 mRNA binding 

protein 1 (IGF2BP1) has been found to stabilize some of its mRNA targets (Noubissi 

et al. 2006). Several of the RBPs alluded to in this paragraph or in the cited literature 

are indeed associated to motif sets that have positive normalized density (i.e. are 

enriched over expected) in intronless CDSs. However, because our method inherently 

comes with a certain amount of uncertainty with regards to the motif to RBP 

mapping, we prefer not to draw inferences with regards to the importance of any 

individual RBPs (see Materials and Methods). 

 
2. Evidence that coding sequence evolution is constrained by the need to prevent 

inappropriate interactions with RBPs. 

 

A novel result of this study is the finding that coding regions appear to be under 

selection to avoid certain RBP motifs. This is supported by evidence for selection 

against substitutions that would generate such a motif. We also predicted that when 

the presumed avoided motifs do occur, they would be evolving faster than random 

expectations, reflecting selection for degradation. We found no such evidence. This 

may suggest that the purifying selection to avoid the motifs is sufficiently efficient to 

prevent their fixation in locations where they might have a deleterious effect. Given 

the rarity of these motifs, however, it is also possible that we simply lack power to 

detect any increase in evolutionary rates.  
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This pattern of conserving certain regulatory sequences, yet selectively avoiding 

others, is likely not specific to RBP motifs but is rather a general feature of genome 

evolution. Indeed, there is evidence that the 3’UTRs of genes that are co-expressed 

with a microRNA are depleted in target sites to that microRNA, most likely to prevent 

inappropriate down-regulation (Bartel and Chen 2004; Farh et al. 2005; Stark et al. 

2005; Chen and Rajewsky 2006), although see Iwama et al. (2007). Other examples 

of such avoidance selection include selection against spurious transcription factor 

binding sites in prokaryotes (Hahn et al. 2003) and in yeast (Babbitt 2010), as well as 

against mononucleotide runs within coding regions in various organisms, potentially 

to decrease the probability of transcriptional or translational error (Ackermann and 

Chao 2006; Gu et al. 2010; Itzkovitz et al. 2010). To our knowledge, the present work 

is the first large-scale study to consider selection to avoid RBP motifs.  

 

Importantly, our results suggest that multiple coding between regulatory and protein 

structure information is not just about increased purifying selection at the locations 

where overlapping regulatory signals occur. It also places a more large-scale bias 

upon the sequence space available in coding region evolution. Not only are regions 

where necessary regulatory elements appear constrained not to lose them, all coding 

sequence is expected to be under some level of evolutionary constraint so as not to 

gain inappropriate signals. The latter constraint is likely to be weaker: given a 

functional motif, a large fraction of the possible mutations are expected to disrupt it, 

whereas a much more limited number of mutations would turn a non-motif into an 

(avoided) motif.  

 

Finally, we would like to emphasize that our categorization of RBP motifs as 

preferred or avoided (or neither) is necessarily a gross simplification. Many relevant 

factors, which might help refine our crude approximations, have not been taken into 

account. For instance, we have not attempted to predict the mRNA secondary 

structure around motif hits. This could be relevant, as certain motifs may be 

preferred/avoided only when the site is accessible. Another important variable that is 

not considered is that of the context in which the motif hits appear. This includes both 

the sequence context – the other k-mers occurring in the vicinity – and the gene 

anatomic context, for instance, whether the site is located at an exon end or in the 
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exon core. Some of the motif sets that currently appear to distribute and evolve 

according to chance expectations might turn out to show evidence of selection once 

such factors have been accounted for. However, analyses of this type have a great 

propensity to produce spurious patterns and so they should only be performed with 

explicit, well-motivated hypotheses in mind. 

 

3. Future directions 

 

Our results indicate that although the need to preserve RBP interactions has a 

detectable and significant impact on CDS evolution, the effect is slight (though, as 

touched upon in section 1 of the Discussion, the figures that we provide are likely 

underestimates). Studies on ESEs have reached similar conclusions (Parmley et al. 

2006; Cáceres and Hurst 2013). However, these results appear, at first sight, to 

contradict a separate line of work where researchers have experimentally introduced 

large numbers of mutations into exons to determine the effect on splicing (Pagani et 

al. 2003; Pagani et al. 2005; Tournier et al. 2008; Gaildrat et al. 2012; Di Giacomo et 

al. 2013; Mueller et al. 2015; Julien et al. 2016; Soukarieh et al. 2016; Tajnik et al. 

2016). Such studies have inferred an unexpectedly large proportion of exonic sites to 

be involved in splicing (over 90% according to the highest estimate (Julien et al. 

2016)), suggesting that the need to maintain correct RNA processing could, on the 

contrary, be a major factor in CDS evolution. Are the results from these two 

independent fields of investigation comparable? Why do they appear to lead to such 

contrasting views on the prevalence and the evolutionary impact of exonic splice 

regulation (and of exonic RBP interactions more globally)? Finding answers to these 

questions will help us understand better the evolutionary dynamics of non-coding 

information within CDSs but might also shed light on other fundamental problems, 

such as estimating the extent to which variation in alternative splicing patterns is 

functional.   

 

  



 25 

Materials and Methods 

 

Caveats and methodological clarifications 

The aim of the current work was to understand better how selection pressures related 

to RBP-binding have shaped human CDSs. It must be emphasized that our results are 

only indirectly relevant to the related problem of determining where on (pre-)mRNAs 

interactions with RBPs actually occur. Primary sequence is only one determinant of 

where an RBP binds, and can be more or less important depending on the protein (Li 

et al. 2014). For example, the binding preferences of many RBPs appear to be highly 

sensitive to local mRNA secondary structure (e.g. Wu et al. 2004; Aviv et al. 2006; 

Oberstrass et al. 2006; Skrisovska et al. 2007; Li et al. 2010; Masliah et al. 2013; 

Lambert et al. 2014). Because of this, our method, which consists solely in scanning 

the sequence for particular k-mers, cannot be used to determine individual binding 

sites with any accuracy. However, if the over-all density or rate of evolution of a set 

of motifs deviate from neutral expectations, this is likely an indication that selection 

has acted upon the motifs. It is precisely these kinds of patterns that we study and 

quantify in the current paper. 

 

If one wishes to obtain a snapshot of the protein-RNA interactions occurring in a 

population of cells at a given time, approaches such as ours are inappropriate. One 

then typically turns to various genome-wide experimental methods based on the 

crosslinking and immunoprecipitation of protein-RNA complexes, followed by high-

throughput sequencing of the RNA fragments (CLIP-seq) (Licatalosi et al. 2008; Xue 

et al. 2009; Hafner et al. 2010; Konig et al. 2011; Van Nostrand et al. 2016). Although 

caveats apply (Kishore et al. 2011; Sugimoto et al. 2012; Friedersdorf and Keene 

2014; Lambert et al. 2014)), these methods are the state of the art for localizing RBP 

target sites on RNA.  

 

However, data from CLIP-seq studies cannot easily be used to assess the long-term 

evolutionary impact of RBP-protein interactions, which is our goal in this paper. By 

its very nature, the method does not distinguish between spurious binding and 

evolutionarily relevant interactions − that a given interaction is observed, even if 

repeatably and significantly above background, does not always mean that it has 

fitness relevance or an impact on sequence evolution. In addition, CLIP-seq data does 
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not allow one to precisely control for nucleotide composition biases, a crucial 

confound in any analysis of molecular evolution. Finally, producing estimates of 

global evolutionary impact is further rendered difficult by a high false negative rate 

(Darnell 2010; though see Van Nostrand et al. 2016). 

 

Computational methods, such as the one used in this work, are therefore more 

appropriate for answering questions on sequence evolution. Several caveats must, 

nevertheless, be bourn in mind. Firstly, although the motifs used in this study were 

derived through experiments conducted on particular RBPs, there is nevertheless no 

direct link between motif and RBP during the sequence analysis. Similar motifs can 

be recognized by different RBPs (for instance, in our dataset, the motif CCATACC is 

associated to both poly(RC) binding protein 1 (PCBP1) and to heterogeneous nuclear 

ribonucleoprotein K (HNRNPK)). This means that when a set of motifs displays 

interesting distributional or evolutionary properties, there is no guarantee that this is 

necessarily due to interactions with the RBP to which we have associated that set of 

motifs, rather than to any other roles the motifs might have. We note that motif sets 

associated to RBPs that have been experimentally observed to preferentially bind 

within coding sequence are also at a greater density (raw and normalized) in coding 

regions than those predicted to bind elsewhere (section 3.1. in Results). This suggests 

that the motif to RBP mapping does indeed have global validity. However, it is still 

advisable to limit interpretation to over-all patterns (such as the relationship between 

enrichment and conservation measures) rather than to draw conclusions regarding 

particular RBPs. 

 

In addition, the extent of sequence-specificity is expected to vary between RBPs (Li 

et al. 2014; Jankowsky and Harris 2015). Therefore, if a set of motifs associated to a 

particular RBP distributes in accordance with random expectations, this does not 

necessarily mean that interactions with this protein are unimportant for CDSs. It may 

simply indicate that in vivo, sequence is not a very important determinant of where 

this RBP binds. On a similar note, the quality of the motif sets is likely to vary 

depending on the protein and the method used to derive the motifs, with different 

techniques plagued by different biases (Marchese et al. 2016). This could also 

partially explain why certain sets of motifs show stronger deviations from neutrality 

than others.  
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General methods 

The majority of the analysis was conducted using custom Python 3.4.2. and Perl 

v5.22.2 scripts (code available at www.github.com/rosinaSav/RBP_motifs). Unless 

otherwise noted, only standard libraries, NumPy 1.9.1. (van der Walt et al. 2011) and 

Biopython 1.64 (Cock et al. 2009) were used. R version 3.2.1. (R Core Team 2013) 

was used for plotting and for pre-made statistical tests. Bedtools 2.19.1 (Quinlan and 

Hall 2010) was used for operations on sequence coordinates. The analysis of human 

and macaque was based on assemblies GRCh38 and MMUL1, with the annotations 

corresponding to Ensembl release 78 for CDSs and Ensembl release 85 for non-

coding regions (Cunningham et al. 2015). For the mouse and rat analysis, genome 

assemblies GRCm38 and Rnor_6.0 with the annotations from Ensembl release 80 

were used. The genome sequences were obtained from the UCSC database (Karolchik 

et al. 2004). Gene annotations were downloaded as .gtf files from the Ensembl FTP 

site (Cunningham et al. (2015); ftp.ensembl.org/pub, last accessed 25 August 2015 for 

human (release 78) and mouse, 30 October 2015 for rat and 19 August 2016 for 

human (release 85) and macaque). Ensembl BioMart was used for retrieving the 

macaque CDS sequences (Kinsella et al. 2011; 

http://www.ensembl.org/biomart/martview; last accessed 21 February 2015). The 

pairwise alignments of human and macaque non-coding regions were retrieved from 

the Ensembl Compara database (Herrero et al. 2016) using a local installation of the 

Ensembl database and API (release 85). 

 

The RBP motif sets 

Consensus motifs for the various RBPs were retrieved from several sources, detailed 

below. Some sources store position weight matrices (PWMs) or position-specific 

scoring matrices (PSSMs), while others use consensus sequences. We converted the 

PWMs/PSSMs into consensus sequences by representing each site in the matrix as the 

IUPAC symbol corresponding to all those bases that presented a value greater than 0 

(in the case of PWMs) or 0.25 (in the case of PSSMs) at that site. 

 

RBPDB 

The all experiments and all proteins CSV files were downloaded from 

rbpdb.ccbr.utoronto.ca/download.php (Cook et al. 2011; last accessed 11 November 
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2015). Those experiments that were not performed in Homo sapiens(/Mus musculus) 

or for Homo sapiens(/Mus musculus) RBPs, or that did not report a sequence motif 

were excluded. The consensus motifs from the remaining experiments were retained. 

In addition, PWMs were downloaded from the same website and converted into 

consensus sequences, as described above. 

 

RBPmap 

The RBPmap package was downloaded from rbpmap.technion.ac.il/download.html 

(Paz et al. 2014; last accessed 12 November 2015). PSSMs for human/mouse proteins 

were converted into consensus motifs. RBPmap does not distinguish between human 

and mouse and so the PSSMs retained for either analysis were identical, except that 

PSSMs originating from RNAcompete were ignored for mouse (this was to avoid 

including a large set of PSSMs determined originally for human in the mouse 

analysis). 

 

SFmap 

SFmap consensuses were obtained from sfmap.technion.ac.il/SF_list.html (Paz et al. 

2010; last accessed 12 November 2015) and added to the list of motifs. SFmap does 

not distinguish between human and mouse and so all the motifs were included when 

analysing either species. 

 

CISBP-RNA 

The entire Homo sapiens dataset was retrieved from cisbp-

rna.ccbr.utoronto.ca/bulk.php (Ray et al. 2013; last accessed 11 November 2015). The 

PSSMs labelled direct (signifying that the motifs were experimentally determined for 

that particular RBP rather than inferred from proteins with similar domains) were 

retained and converted into consensus sequences. Mouse consensuses were derived 

similarly, except that indirect PSSMs were also included. 

 

Motifs from the different sources were then pooled. This resulted in 183 RBPs in 

human and 188 in mouse, each associated to a set of k-mers. N (fully ambiguous) 

bases at the very beginning or at the very end of motifs were removed. The motifs 

were then filtered to only leave those with length between 5 and 12 bases (included). 

Motifs that contained parentheses (signifying variable motif length) were removed. 
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After this filtering step, 133 RBPs remained in human and 163 in mouse. However, 

because the source databases differed in naming conventions, some of the RBP 

identifiers that had been retained referred to the same protein. For human, the 

remaining RBP identifiers were therefore fed to Ensembl BioMart and converted to 

Ensembl gene identifiers. This step was undertaken to verify whether or not the 

identifiers were recognized as valid HGNC symbols. Those that were not were 

manually converted into HGNC symbols using the GeneCards database 

(www.genecards.org (Safran et al. 2010); last accessed 12 November 2015). For 

mouse, the protein identifiers were input into the Mouse Genome Informatics (MGI 

(Bult et al. 2016); last accessed 19 October 2016) web site as a batch query. The 

output was used to update all identifiers to the current symbol recognized for the 

protein. Hnrnpcl1, which was not recognized at all by MGI, was discarded. This step 

resulted in several synonymous identifiers being collapsed, leaving us with a total of 

117 RBPs for human and 81 for mouse. Three of the human RBPs were removed 

from the dataset: microRNA 1236 (MIR1236; because it is a microRNA gene rather 

than an RBP), poly(A) binding protein, cytoplasmic 4 (PABPC4; the consensus was 

AAAAAAA, making normalization for dinucleotide composition impossible) and 

peptidylprolyl isomerase E (cyclophilin E) (PPIE; the consensus was WWWWWW, 

making it once again impossible to generate simulants). Pabpc4 was removed from 

the mouse set for similar reasons. The final number of RBPs retained was therefore 

114 for human and 80 for mouse. 

 

In human, two consensus sequences were added manually: the consensus 

UUWGDUU was added to ELAV like RNA binding protein 1 (ELAVL1), while the 

consensus RWUUYAUUUWR was added to ELAV like neuron-specific RNA binding 

protein 2 (ELAVL2). This is because in these cases, the retained motifs included both 

consensus sequences lifted directly from a database, as well as consensuses that we 

had derived from a PWM/PSSM. Both, however, were based on the same original 

publication. The new motifs were added to summarize these existing consensuses in a 

broader consensus that would combine the information from both sources.  

 

For all RBPs, the remaining consensuses were then expanded into all the non-

ambiguous motifs that would match the consensus. Identical motifs were collapsed. 

This resulted in the final motif sets (Additional File 1). 
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The random motifs (used only to generate the distribution indicated by a black line 

in Figure 1A) 

The sequence of the human genome (GRCh38) was obtained from the UCSC Genome 

Browser website (Karolchik et al. 2004). Only reference chromosomes were 

considered: unplaced, unlocalized and alternative sequences were excluded. The 

counts of each of the 4 DNA bases were summed across all the chromosomes and 

divided by the total number of canonical (A, T, C or G) bases. 

 

In each of the RBP motif sets, the motifs were then replaced by random motifs of the 

same length. To generate a motif of length k, k canonical bases were randomly picked 

(using numpy.random.choice()), with the probability of each base being chosen 

corresponding to its mononucleotide frequency in the human genome, as determined 

above.  

 

The sequence sets 

Full CDSs 

The sets of intron-containing and intronless human CDS sequences were the same as 

those used in Savisaar and Hurst (2016). The methods used for generating these 

sequence sets were detailed in the cited publication and will only briefly be 

summarized here. All intronless/intron-containing ORFs from GRCh38 were 

downloaded from the Ensembl database (release 78). For intronless genes, only ORFs 

from genes that exclusively produced intronless transcripts (according to the 

transcript annotations available in the Ensembl database) were kept. The ORFs were 

then checked for reading frame integrity and completeness. If several transcripts 

corresponded to one gene, the one with the longest ORF was kept. The remaining 

transcripts were then aligned to macaque orthologs. Only those that had an ortholog to 

which they aligned with a dS below 0.2 and a dN/dS below 0.5 were kept. This filtering 

step was necessary to minimize the proportion of pseudo-genes in the set. Finally, the 

sequences were BLASTed all against all and clustered into paralogous families based 

on the results. Mouse full CDSs were obtained similarly (using GRCm38, Ensembl 

release 80), except that the dS threshold was set to 0.3 during the filtering. 

 

Exon flanks and cores 
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To generate the sets of exon flanks/cores, we recovered all of the internal fully coding 

exons in our set of human intron-containing genes that were at least 211 base pairs 

long (based on Ensembl release 78 annotations; only one randomly picked gene was 

considered per paralogous family). The exons were trimmed so as to both start and 

end with full codons. (The length threshold was set to 211 because three 69 base pair 

long non-overlapping regions were to be extracted from each exon (3 * 69 = 207) and 

at least 4 base pairs had to be left over in case any nucleotides were lost because of 

trimming.) Three sequence regions were then extracted: the first 69 base pairs at the 

5’ end of the exon, the final 69 base pairs at the 3’ end and 69 base pairs from the 

very centre. If the number of codons separating the 5’ region from the 3’ region was 

even, meaning that it was not possible to define the exact mid-point (when 69 is 

subtracted from an even number, the result is odd), the core was defined so as to be 

separated from the 5’ flank by n codons and from the 3’ flank by n − 1 codons. 

 

Non-coding sequences 

A set of human CDSs was retrieved and filtered for ORF integrity and conservation 

level as per the procedure used above, except that Ensembl release 85 annotations 

were used. The sequences were clustered into putative paralogous families as 

described above. The chromosomal coordinates of the introns, 5’UTRs and 3’UTRs 

associated to the transcripts in the set were retrieved based on Ensembl gene 

annotations (release 85, one transcript was randomly picked from each paralogous 

family). In addition, 100 base pairs were extracted from immediately upstream and 

immediately downstream of each exon (only the intronic flank was used for terminal 

exons). The full introns set was filtered further, firstly by randomly picking only one 

intron from each transcript (to limit the size of the dataset for computational reasons), 

and secondly by excluding all introns that overlapped with any exons, as defined by 

Ensembl annotations. 

 

The coordinates were then used to retrieve the LASTZ_NET human-macaque 

pairwise alignment from a local installation of the Ensembl Compara database 

(release 85), using the Ensembl API. Only alignments that corresponded to a single 

genome alignment block and that contained no N bases in either the human or the 

macaque sequence were retained. 
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Motif density and ND 

To calculate the density of the full set of motifs, we counted the number of bases that 

overlapped with any of the motifs in the set in each CDS and divided this count by the 

length of the CDS. We used the full CDS, that is to say, all of the coding sequence 

between the start and the stop codon in the relevant transcript variant. We did not take 

into consideration the positions of exon-exon junctions. Bases encompassed by more 

than one motif were only counted once (i.e. overlapping motifs were collapsed). We 

calculated an ND value separately for each gene (see main text for the calculation of 

ND and below for the generation of simulant motifs) and used the median density and 

the median ND as our statistics (averaged across paralogous families). Because less 

data was available, a different approach was used when calculating the densities of 

individual motif sets (the motifs associated to a particular RBP). Namely, rather than 

producing a density estimate per gene, we summed the number of overlapping bases 

across all the sequences and divided that by the summed length of the sequences. This 

produced a single point estimate for density and for ND for each set of motifs. Counts 

and lengths were averaged across paralogous families before the division step.  

 

1000 (for the full set density analysis in human CDSs) or 100 (for the full set density 

analyses in human non-coding sequences and for the mouse analysis) simulant 

versions of the RBP motifs set were generated in order to calculate the enrichment p-

value and ND. The motifs were divided into dinucleotides in the two possible phases. 

To generate each of the motifs in the 1000/100 simulant sets, the necessary number of 

dinucleotides were sampled randomly with replacement from the pool of 

dinucleotides. If the motif length was odd, an additional base was sampled from the 

mononucleotide composition of the motif set. This resulted in 1000/100 sets of 

simulant motifs, with the motif number, motif lengths and the dinucleotide 

composition matched to the true set of motifs (the match being approximate in the 

case of dinucleotide composition). The resulting simulants were screened, such that 

no simulated motifs were allowed that also appeared in the set of real motifs. In 

addition, no simulants could contain a mononucleotide run that was longer than the 

longest run of that base in the real motif set. Finally, all the motifs within a particular 

simulant set had to be unique. In the analysis of motif enrichment independent of stop 

codon content, simulants were additionally constrained to be devoid of the substrings 

TAA, TGA and TAG (see Supplementary Text 3 in Additional File 5). Simulants were 
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generated similarly for the individual motif sets (1000 simulant sets were always 

used). 

 

Hits were then predicted in the sequences to each of the simulated motif sets, 

generating an empirical distribution of simulated density values. From this 

distribution, ND and p were derived as described in the main text (see above for 

differences between the processing of the full motifs set and the individual sets). The 

normalization step is even more important when considering individual sets of motifs 

(motifs grouped based on the putative cognate RBP), as in addition to controlling for 

nucleotide composition biases, this step largely eliminates the confounding factor of 

the sets varying in the number and length of the motifs. For instance, the smallest sets 

only consist of a single motif whereas the largest in human − composed of k-mers 

putatively recognized by the RBP transformer-2 protein homolog beta (TRA2B) − has 

218 motifs. 

 

After calculating the density of the individual motif sets, we noticed that some were 

very rare, leading to concerns over whether there was sufficient information to 

reliably estimate ND and other parameters in those cases. In human, we decided to 

only include those motif sets in the subsequent analysis that filled one of two criteria: 

either the hits to the real motifs totalled at least 100 bp in the intron-containing CDSs, 

as well as in each of four other sequence sets (intronless CDSs, exon 5’ flanks, exon 

cores and exon 3’ flanks) or the hits to at least half of the simulant sets did. The 

reasoning behind this rule was that if the real motifs were rare, whereas the simulants 

were not, or the other way around, then this was potentially a biologically meaningful 

pattern, whereas if both were rare, then one simply had a lack of information. The 

mouse filtering was similar, except that only the density in intron-containing CDSs 

was considered. Only one RBP was filtered out in this process (Raver1). 

 

Rate of evolution at synonymous sites 

dS estimates were calculated identically to Savisaar and Hurst (2016), which details 

the methods used. Only a brief summary will therefore be provided here. Sequence 

regions overlapping with RBP motifs were extracted and aligned to homologous 

regions in macaque (Macaca mulatta). The rate of evolution at synonymous sites was 

calculated using the Goldman and Yang (Goldman and Yang 1994) method, as 
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implemented in the codeml programme that is part of the Phylogenetic Analysis by 

Maximum Likelihood (PAML) (Yang 2007) suite. This procedure was then repeated 

for each of 1000 simulant sets, enabling us to calculate a normalized dS estimate and 

an enrichment p-value. One randomly picked gene was considered from each 

paralogous family. 

 

Rate of evolution of non-coding sequence 

To calculate rates of evolution for non-coding sequences, the baseml programme from 

the PAML suite was used (model = 1). The statistic used, termed here dNC,  

corresponds to the tree length reported by the programme. 

 

Conservation at four-fold degenerate sites overlapping different dinucleotides 

The four-fold degenerate sites in intron-containing sequences were divided into two 

groups: those that overlapped an RBP motif hit and those that did not. Within each 

class, we then further sub-divided the sites based on the overlapping dinucleotide. 

Each site was counted twice, once as belonging to the dinucleotide in which it was the 

second base and once as belonging to the dinucleotide in which it was the first base. 

For each dinucleotide class within either site type (motif or non-motif), we 

determined the fraction of sites where the orthologous position in macaque did not 

exhibit the same base as in human. In order to obtain an over-all estimate of the 

difference in evolutionary rate between motif and non-motif, we averaged the rates 

calculated for different dinucleotides but weighted them by the frequency of each 

dinucleotide within the subset of sites overlapping with RBP motifs, thereby 

controlling for any differences in dinucleotide composition between motif and non-

motif regions. A random member was included fro each paralogous family. 

 

Human-macaque comparison at four-fold degenerate sites that are a single base 

substitution away from a putatively avoided motif in human 

We determined all four-fold degenerate sites in our set of full human intron-

containing CDSs (one randomly picked gene from each paralogous family) such that 

a single base substitution at that site could generate a putatively avoided motif (a 

motif with enrichment p-value above 0.9 in full intron-containing CDSs). We then 

scored each site based on the identity of the orthologous macaque base. The following 

scores were possible: 0 (the base present in macaque is either identical to that present 
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in human or is a base other than the one(s) that would give rise to an avoided motif in 

human), 0.25 (the base present in macaque would give rise to an avoided motif in 

human. Of the 3 possible base substitutions in human, all three would generate a 

putatively avoided motif), 0.5 (the base present in macaque would give rise to an 

avoided motif in human. Of the 3 possible base substitutions in human, two would 

generate a putatively avoided motif) and 0.75 (the base present in macaque would 

give rise to an avoided motif in human. Of the 3 possible base substitutions in human, 

only the one used in macaque would generate a putatively avoided motif). The scores 

were summed across all sites and the sum divided by the number of sites considered. 

The analysis was then repeated on 1000 sets of simulated motifs that broadly matched 

the dinucleotide composition of the putatively avoided motifs, allowing us to 

calculate a p-value for the statistic obtained. 

 

The reasoning behind the scoring system is that macaque presenting the base that 

would generate the avoided motif in human constitutes stronger evidence against 

avoidance against that motif if other substitutions were possible that would not have 

generated the motif than when any substitution would have led to a putatively avoided 

motif. Note that there are several caveats to this analysis. Firstly, because we did not 

use an outgroup, we do not know on which the branch the substitution occurred in 

cases where the human and the macaque sequence differ. However, more frequently 

than expected by chance, macaque also does not have the base that would give rise to 

the putatively avoided motif in human, suggesting that this was also the case in the 

most recent common ancestor. Secondly, it is possible that a substitution that would 

generate a particular putatively avoided motif would simultaneously disrupt another 

such motif that overlaps with the first, meaning that the substitution would not 

necessarily lead to an increase in avoided motif density. Our analysis did not consider 

this issue. Thirdly, in macaque, we only analysed the base present at the particular site 

considered. We therefore did not account for any other potential differences between 

human and macaque at sites nearby, which could mean that even though a particular 

substitution would lead to a putatively avoided motif in human, it might not do so in 

macaque. 
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Annotating the motif sets based on the properties of the associated RBP 

 

To annotate the motif sets based on the binding profile of the associated RBP, we 

searched the literature for high-throughput crosslinking and immunoprecipitation 

(CLIP-seq) studies conducted on that RBP. Only one study was considered per RBP. 

Each RBP was annotated as either CDS or other based on whether or not the study 

reported an enrichment of binding clusters in the CDS (if no CLIP-seq studies could 

be found, the RBP was annotated as NA). The interpretation of the authors was 

followed when deciding how to report the results of a particular study. For instance, if 

the authors reported CDS clusters to be rare but did not control for the fact that the 

combined length of coding regions is much shorter than that of introns, we still 

annotated the RBP as other. The annotations, as well as the sources used, are listed in 

Supplementary Spread Sheet 5 in Additional File 4. 

 

Expression analysis 

 

The phase 1 and 2 combined normalized .osc file was retrieved from the FANTOM5 

website (http://fantom.gsc.riken.jp/5/datafiles (Fantom Consortium et al. 2014); last 

accessed 11 February 2016). The data was filtered to only leave samples where the 

sample name contained the substring adult, pool1. All brain tissues except for the full 

brain sample and the retinal sample were removed. Peak coordinates were converted 

to hg38 coordinates using CrossMap 0.2.2. (Zhao et al. 2014). For each transcript in 

our set of intron-containing protein-coding genes (based on Ensembl release 78), we 

defined a region of 1001 base pairs centered on the start coordinate of the Ensembl 

transcript annotation as the promoter and associated all peaks that overlapped that 

promoter to that peak. If several peaks were associated to a single transcript, we 

summed the tags per million (TPM) within each sample across the peaks. The TPM 

were then averaged across paralogous families. 

 

  



 37 

Acknowledgements 

 

The authors would like to thank Nizar Batada for helpful discussions. This work was 

supported by the Boehringer Ingelheim Fonds (PhD fellowship to R.S.), the European 

Research Council (Advanced grant ERC-2014-ADG 669207 to L.D.H.), and the 

Medical Research Council (MR/L007215/1 to L.D.H.). 

  



 38 

Tables	

	

Table	1:	Spearman	correlation	between	normalized	density	(ND)	and	various	
expression	parameters,	determined	based	on	FANTOM5	data.		

 expression 
breadth 
(fraction of 
tissues where 
gene is 
expresseda) 

maximum 
expression 

median 
expression 

median 
expression in 
tissues where 
the gene is 
expressed 

ρ ≈−0.151 ≈−0.035 ≈−0.157  ≈−0.016 
pb ≈9.576*10−30 

(≈3.830*10−29) 
≈0.010 
(≈0.038) 

≈3.071*10−32 
(≈1.228*10−31) 

≈0.280 
(1.000) 

a A gene is considered to be expressed in a given tissue if more than 5 tags per million map to the 

promoter region (see Materials and Methods for further details). 
b The parentheses contain the Bonferroni-corrected p-value. 

 

Table	2:	Motif	density	and	conservation	parameters	for	various	genic	regions.			

 CDSs 5’UTRs 3’UTRs introns upstream 
intronica 

downstream 
intronica 

median 
motif 
density 

≈0.573 ≈0.537 ≈0.573 ≈0.578 ≈0.580 ≈0.560 

median NDb ≈0.115 ≈0.145 ≈0.103 ≈0.129 ≈0.167 ≈0.130 
enrichment 
pc 

≈0.001 ≈0.010 ≈0.010 ≈0.010 ≈0.010 ≈0.010 

dNC
d or dS

e ≈0.064 ≈0.052 ≈0.043 ≈0.055 ≈0.051 ≈0.054 
normalized 
dNC

d or 
normalized 
dS

e 

≈−0.041 ≈−0.019 ≈−0.026 ≈−0.034 ≈−0.035 ≈−0.017 

conservation 
pc 

≈0.003 ≈0.030 ≈0.040 ≈0.010 ≈0.030 ≈0.149 

global 
reductionf 

≈−2.4% ≈−1.0% ≈−1.5% ≈−2.0% ≈−2.0% ≈−0.9% 

a Upstream/downstream intronic regions correspond to 100 bp slices immediately 

upstream/downstream from an exon. 
b normalized density 
c One-tailed p derived from an empirical distribution of simulant statistics. 1000 simulants were used 

for CDSs and 100 in the other cases. 
d rate of evolution at non-coding sites. Used for all sequence regions except for CDSs. 
e rate of evolution at synonymous sites. Used for CDSs. 



 39 

f The global reduction is the product of the motif density and the conservation statistic (multiplied by 

100). It is an estimate for the extent to which the (synonymous) substitution rate is decreased in the 

relevant region because of selection to preserve RBP motifs. Note that in the table, the density and the 

normalized conservation estimates have been rounded to the third decimal, whereas exact values were 

used when calculating the global reduction. 
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Figures 
 

 
 
Figure	 1:	 A.	 Each data point corresponds to the probability that a given motif set 

(recognized by a particular RBP) would be found at its current density (or higher) by 

chance given the underlying dinucleotide composition. The black line traces the 

distribution of enrichment p-values obtained in the same sequences for size-matched 

sets of random k-mers. Note that RBP motifs display a peak at either extreme of the 

distribution whereas the random motifs do not. In other words, RBP motifs show a 

disproportionate tendency to occur at a density that deviates from neutral 

expectations. Importantly, this can mean both enrichment (p-value approaching 0) and 

depletion (p-value approaching 1). B. As A, except that only RBPs for which we 

found crosslinking and immunoprecipitation studies on binding preferences are 

shown. Motif sets associated to CDS-binding RBPs (blue) have a peak near 0 

(enrichment), whereas the other sets (yellow) have a peak near 1 (depletion). 
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Figure 2: A. Correlation between a motif set's normalized density (ND) and its 

nucleotide-normalized dS from alignment to macaque. Motif sets that are more 

strongly enriched are also more conserved, controlling for nucleotide composition. 

The dashed lines intersect the plot at the points where expected and observed 

frequencies would be equal. B. Correlation between ND and the nucleotide-

normalized propensity to gain the motifs over evolution (measured by determining 

how frequently macaque sites that are orthologous to human fourfold degenerate sites 

that are a single base substitution away from the motif in human contain the base that 

would give rise to the motif in human). Note that because our analysis did not make 

use of an outgroup, we cannot know on which branch the substitution occurred in 

cases where the human and macaque sequence differ. See caption to subplot A for 

interpretation of the dashed lines. 
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