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Abstract

Many compelling video post-processing effects, in particular
aesthetic focus editing and refocusing effects, are feasible if
per-frame depth information is available. Existing computa-
tional methods to capture RGB and depth either purposefully
modify the optics (coded aperture, light-field imaging), or
employ active RGB-D cameras. Since these methods are
less practical for users with normal cameras, we present an
algorithm to capture all-in-focus RGB-D video of dynamic
scenes with an unmodified commodity video camera. Our
algorithm turns the often unwanted defocus blur into a valu-
able signal. The input to our method is a video in which the
focus plane is continuously moving back and forth during
capture, and thus defocus blur is provoked and strongly vis-
ible. This can be achieved by manually turning the focus
ring of the lens during recording. The core algorithmic in-
gredient is a new video-based depth-from-defocus algorithm
that computes space-time-coherent depth maps, deblurred
all-in-focus video, and the focus distance for each frame. We
extensively evaluate our approach, and show that it enables
compelling video post-processing effects, such as different
types of refocusing.

1. Introduction
Many cinematographically important video effects that nor-
mally require specific camera control during capture, such
as focus and depth-of-field control, can be computationally
achieved in post-processing if depth and focus distance are
available for each video frame. This post-capture control is
on high demand by video professionals and amateurs alike.

In order to capture video and depth in general, and specif-
ically to enable post-capture focus effects, several methods
were proposed that use specialized camera hardware, such
as active depth cameras [31], light-field cameras [26], or
cameras with coded optics [18].

We follow a different path and propose one of the first
end-to-end approaches for depth estimation from – and fo-
cus manipulation in – videos captured with an unmodified
commodity consumer camera. Our approach turns the of-
ten unwanted defocus blur, which can be controlled by lens

aperture, into a valuable signal. In theory, smaller apertures
produce sharp images for scenes covering a large depth range.
When using a larger aperture, only scene points close to a
certain focus distance project to a single point on the image
sensor and appear in focus (see Section 3). Scene points at
other distances are imaged as a circle of confusion [30]. The
limited region of sharp focus around the focus distance is
known as depth of field; outside of it the increasing defocus
blur is an important depth cue [21].

Unfortunately, depth of field in normal videos cannot be
changed after recording, unless a method like ours is applied.
Our approach (Figure 1) takes as input a video in which
focus sweeps across the scene, e.g. by manual change of
lens focus. This means temporally changing defocus blur is
purposefully provoked (see Section 3). Each frame thus has a
different focus setting, and no frame is entirely in focus. Our
core algorithmic contribution uses this provoked blur and
performs space-time coherent depth, all-in-focus color, and
focus distance estimation at each frame. We first segment the
input video into multiple focus ramps, where the focus plane
sweeps across the scene in one direction. The first stage of
our approach (Section 4.1) constructs a focus stack video for
each of them. Focus stack videos consist of a focus stack
at each video frame, by aligning adjacent video frames to
the current frame using a new defocus-preserving warping
technique. At each frame, the focus stack video comprises
multiple images with a range of approximately known focus
distances (see Supplemental Section 1), which are used to
estimate a depth map in the second stage (Section 4.2) using
depth-from-defocus with filtering-based regularization. The
third stage (Section 4.3) performs spatially varying deconvo-
lution to remove the defocus blur and produce all-in-focus
images. And the fourth stage of our approach (Section 4.4)
further minimizes the remaining error by refining the focus
distances for each frame, which significantly improves the
depth maps and all-in-focus images in the next iteration of
our algorithm. Our end-to-end method requires no sophisti-
cated calibration process for focus distances, which allows it
to work robustly in practical scenarios.

In a nutshell, the main algorithmic contributions of our
paper are: (1) a new hierarchical alignment scheme between
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Figure 1. We capture focus sweep videos by continuously moving the focus plane across a scene, and then estimate per-frame all-in-focus
RGB-D videos. This enables a wide range of video editing applications, in particular video refocusing. Please refer to the paper’s electronic
version and supplemental video to more clearly see the defocus effects we show in our paper.

video frames of different focus settings and dynamic scene
content; (2) a new approach to estimate per-frame depth
maps and deblurred all-in-focus color images in a space-
time coherent way; (3) a new image-guided algorithm for
focus distance initialization; (4) and a new optimization
method for refining focus distances. We extensively validate
our method, compare against related work, and show high-
quality refocusing, dolly-zoom and tilt-shift editing results
on videos captured with different cameras.

2. Related Work
RGB-D Video Acquisition Many existing approaches for
RGB-D video capture use special hardware, such as pro-
jectors or time-of-flight depth cameras [31], or use multi-
ple cameras at different viewpoints. Moreno-Noguer et al.
[23] use defocus blur and attenuation of the a projected
dot pattern to estimate depth. Coded aperture optics enable
single-shot RGB-D image estimation [1, 5, 18, 19, 20], but
require more elaborate hardware modification. Stereo corre-
spondence [3] or multi-view stereo approaches [43] require
multiple views, for instance by exploiting shaky camera mo-
tions. Shroff et al. [36] shift the camera’s sensor along the
optical axis to change the focus within a video. They align
consecutive video frames using optical flow to form a focus
stack, and then apply depth from defocus to the stack. Un-
like all mentioned approaches, ours works with a single un-
modified video camera without custom hardware. There are
also single-view methods based on non-rigid structure-from-
motion [32], which interpret clear motion cues (in particular
out-of-plane) under strong scene priors, and learning-based
depth estimation methods [7, 10, 33, 37].

Depth from Focus/Defocus Focus stacking combines mul-
tiple differently focused images into a single all-in-focus (or
extended depth of field) image [29]. Depth-from-(de)focus
techniques exploit (de)focus cues within a focus stack to
compute depth. Focus stacking is popular in macro photog-
raphy, where the large lens magnification results in a very
small depth of field. By sweeping the focus plane across a
scene or an object, each part of it will be sharpest in one

photo, and these sharp regions are then combined into the all-
in-focus image. Depth from focus additionally determines
the depth of a pixel from the focus setting that produced
the sharpest focus [8, 24]; however, this requires a densely
sampled focus stack and a highly textured scene. Depth from
defocus, on the other hand, exploits the varying degree of
defocus blur of a scene point for computing depth from just
a few defocused images [28, 38]. The all-in-focus image is
then recovered by deconvolving the input images with the
spatially-varying point spread function of the defocus blur.
Obviously, techniques relying on focus stacks only work
well for scenes without camera or scene motion.

Suwajanakorn et al. [40] proposed a hybrid approach that
stitches an all-in-focus image using motion-compensated
focus stacking, and then optimizes for the depth map using
depth-from-defocus. Their approach is completely automatic
and even estimates camera parameters (up to an inherent
affine ambiguity) from the input images. However, their
approach is limited to reconstructing a single frame from
a focus stack, and cannot easily be extended to videos, as
this requires stitching per-frame all-in-focus images. Our
approach is tailored for videos, not just single images.

Refocusing Images and Videos Defocus blur is an impor-
tant perceptual depth cue [9, 21], thus refocusing is a pow-
erful, appearance-altering effect. However, just like RGB-D
video capture, all approaches suitable for refocusing videos
require some sort of custom hardware, such as special lenses
[22, 26], coded apertures [18] or active lighting [23]. Special
image refocusing methods are difficult to extend to videos
as they rely on multiple captures from the same view, for
example, for depth from (de)focus [40].

A single image captured with a light-field camera with
special optics [26, 41] can be virtually refocused [13, 25],
but the light-field image often has a drastically reduced spa-
tial resolution. Miau et al. [22] use a deformable lens to
quickly and repeatedly sweep the focus plane across the
scene while recording video at 120 Hz. They refocus video
by selecting appropriately focused frames. Some approaches
exploit residual micro-blur that is hard to avoid even in a



photograph set to be in focus everywhere. It can be used for
coarse depth estimation [34], or removed entirely [35].

Defocus deblurring is also related to motion deblurring
[6, 12, 42]. Their characteristics differ; motion blur is, for
instance, mostly depth-independent.

3. Preliminaries
Both our lens model and aspects of video recording influence
algorithm design.

focus distance
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Figure 2. Thin-lens model and circle of confusion.

Defocus Model We assume a standard video camera with
a finite aperture lens that produces a limited depth of field.
According to the thin-lens model (Figure 2), the amount of
defocus blur is quantified by the diameter c of the circle of
confusion [30]:

c =
Af |D − F |
D(F − f)

=
f2|D − F |
ND(F − f)

, (1)

where A=f/N is the diameter of the aperture, f is the focal
length of the lens, N is the f -number of the aperture, D is
the depth of a scene point and F is the focus distance. We
assume fixed aperture and focal length, and a focus distance
F changing over time. Therefore, the defocus blur of a 3D
point only depends on its depth D and the focus distance
F , which we express as the point-spread function K(D,F )
corresponding to the circle of confusion in Equation 1. We
model the color of a defocused image V at a pixel x using

V (x) = (K(D(x), F ) ∗ I)(x), (2)

where I denotes the all-in-focus image. Note that K is spa-
tially varying, because each pixel x may have a different
depth D(x). For brevity, we hence omit the pixel index x.

Video Recording We record our focus sweep input video
simply by manually adjusting the focus on the lens, roughly
following a sinusoidal focus distance curve – leading to sev-
eral focus ramps (see Figure 3). The exact focus distance for
each video frame is unknown; reading it out from the camera
is difficult in practice and may require low level modification
of the firmware. We use the Magic Lantern1 software for
Canon EOS digital DSLR cameras to record timestamped
lens information at about 4 Hz. In practice, focus distance
values are not measured for most frames, timestamps may
not be exactly aligned with the time of frame capture, and the
recorded focus distances are quantized and not fully accurate.
There is also natural variation in the focus distance curves as

1http://www.magiclantern.fm

people cannot exactly reproduce a curve. Therefore, our al-
gorithm uses the sparsely recorded lens information only as
a guide and explicitly optimizes for the dense correct focus
distances at every frame (Section 4.4).

4. All-In-Focus RGB-D Video Recovery
Given a video V with frames {Vt}t∈T containing one or
more focus sweeps, we formulate our algorithm as a joint op-
timization framework that seeks the optimal depth maps Dt,
all-in-focus images It, and focus distances Ft for all frames
t∈T . Let us assume that Ws→t(·) is a warping function that
aligns an image at time s with time t, while preserving the
original defocus blur (explained in Section 4.1). Then, we
can construct a focus stack at each frame t by warping all
input video frames to it using {Ws→t(Vs)}s∈T (in practice,
we only warp keyframes, as explained later). We seek the
optimal depth map Dt and all-in-focus image It, and focus
distances {Ft}t∈T which best reproduce the focus stack at
frame t with the defocus model in Equation 2. Dt, It and Ft,
for t∈T , are the unknowns we solve for. The core ingredient
of our joint optimization is a data term that penalizes the
defocus model error of the focus stack at all frames:

Edata =
∑
t∈T

∑
s∈T

wt,s ‖K(Dt, Fs) ∗ It −Ws→t(Vs)‖2 . (3)

We introduce the weighting term wt,s to give lower weights
to pairs of frames that are further apart, and which
hence need warping over longer temporal distances. In
our implementation, we use a Gaussian function wt,s =

exp(− |t−s|2/2σ2
w) with σw set to 85 percent of the length

of each focus ramp.
Simultaneously estimating depth, deblurring the input

video and optimizing focus distances from purposefully de-
focused and temporally misaligned images is highly chal-
lenging; many invariance assumptions used by correspon-
dence finding approaches break down in this case. To solve
this joint optimization problem efficiently, we decompose
it into four subproblems, or stages, that we solve itera-
tively: defocus-preserving alignment (Section 4.1), depth
estimation (4.2), defocus deblurring (4.3), and focus refine-
ment (4.4). Initialization and implementation details can
be found in Supplemental Section 1. Each subproblem re-
quires solving for a subset of the unknowns by minimizing
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Figure 4. Downsampling (bottom) ef-
fectively reduces defocus difference,
helping correspondence finding.

a cost functional like
Equation 3, with ad-
ditional regularization
terms explained later.
We adopt a multi-scale,
coarse-to-fine approach.
At each resolution level,
we perform three itera-
tions of the four stages,
each of which is solved
for the entire length of the input video. The multi-resolution
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Figure 3. Overview of our approach. For each video frame, we first align neighboring frames to it to construct a focus stack. We then estimate
spatially and temporally consistent depth maps from the focus stacks, and compute all-in-focus images using non-blind deconvolution.
Finally, we refine the focus distances for all frames. We perform these steps in a coarse-to-fine manner and iterate until convergence.

approach improves convergence, but more importantly,
any focus difference between two video frames is reduced
when the images are downsampled in the pyramid (see
Figure 4). This insight enables us to compute reliable initial
correspondence fields with less influence from different
defocus blurs. Once all parameters are estimated at a
coarse level, the higher level of the pyramid uses them as
initialization for its iterations.

4.1. Patch-Based Defocus-Preserving Alignment

Here, we construct a focus stack for each frame of the input
video using patch-based, defocus-preserving image align-
ment. The result are the warping functionsWs→t for pairs (s,
t) of frames, while all other unknowns (I , D and F ) remain
constant. Two frames in the focus sweep video, Vs and Vt,
generally differ in defocus blur and maybe scene or camera
motion. The main challenge of the defocus-preserving align-
ment is to compute a reliable correspondence field that is
robust to both complex motion and defocus changes between
the frames.
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Figure 5. Comparison of focus stack
alignment from near to far focus
(Figure 4). Without refocusing to
match blur levels, both optical flow
and PatchMatch fail. With refocus-
ing, PatchMatch improves on flow
(used by Shroff et al. [36]).

Using standard cor-
respondence techniques,
such as optical flow, to
directly warp the input
video frame Vs to Vt
is prone to failure, be-
cause the different defo-
cus blurs in the two im-
ages are not modeled by
standard matching costs.
Optical flow will try to
explain differences in de-
focus blur using flow dis-
placements, which pro-
duces erroneous correspondences (see Figure 5).

The solution is to compensate any focus differences be-
fore computing correspondences [36]. We therefore refocus
the target frame Vt to match the focus distance Fs of the
source frame s using the refocusing operator R(Vt, Fs) =
K(Dt, Fs) ∗ It. In the first iteration at the coarsest resolu-

tion level, the refocusing operator returns the input frame Vt
unchanged, as the downsampling in the pyramid has already
removed most of the defocus blur. In subsequent iterations,
the refocusing operator uses the current estimates of frame
t’s depth map Dt and all-in-focus image It to perform the
refocusing. The embedding of this focus difference compen-
sation and alignment process into the overarching coarse-to-
fine scheme enables reliable focus stack alignment even for
large scene motions and notable defocus blur differences.

We use PatchMatch [2] to robustly compute the warp-
ing function Ws→t between the source frame Vs and the
refocused target frame R(Vt, Fs). PatchMatch handles com-
plex motions and is fairly robust to the remaining focus
differences, while traditional optical flow techniques tend
to fail in such cases. PatchMatch correspondences are not

Correspondences for the BOOK dataset
(from the �rst frame to the last frame).

always geometrically cor-
rect (see right), as they
exploit visually similar
patches from other re-
gions of the image which
have similar defocus blur
(note the purple and yel-
low regions on the left,
which indicate vertical motion along the edge of the books).
In our case, this is an advantage, as it improves the warping
quality while preserving defocus blur. At the coarsest level
of the pyramid, we initialize the PatchMatch search using
optical flow [39]; at this level, focus-induced appearance
differences are minimal. We also constrain the size of the
search window to find the best matches around the initial
correspondences. This encourages the estimated correspon-
dence field to be more spatially consistent. Since the warping
is computed by refocusing the target frame, the defocus blur
in the source frame is preserved, which is crucial for con-
structing valid focus stacks from a dynamic focus sweep
video.

We apply the estimated defocus-preserving warping op-
erators Ws→t to create a focus stack video with per-frame
focus stacks, as shown in Figure 6. However, we do not warp
all frames to all others, to prevent artifacts introduced by
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Figure 6. Defocus-preserving align-
ment. We refocus the input frame Vt

(center) to match the focus distances
of neighboring frames Ft±1 (red ar-
rows), and compute correspondences
(green arrows) between neighboring
frames, Vt±1, and the corresponding
refocused image R(Vt, Ft±1).

aligning temporally dis-
tant videos frames in
which the scene may
have changed drastically.
Instead, we first segment
the input video into con-
tiguous focus ramps (see
Figure 3), Ti ⊂ T for
i∈R, which contain only
temporally close frames.
For each input video
frame t, we then create
a focus stack by warp-
ing the other frames in
its ramp to it using our
defocus-preserving align-
ment. This reduces the computational complexity of align-
ment from O(|T |2) for all-pairs warping, to O(|T |2/|R|)
for all-pairs warping within each focus ramp.

4.2. Filtering-Based Depth Estimation

The second stage of our approach estimates spatially and
temporally consistent depth maps Dt for all focus stacks,
while keeping all other variables constant. In this case, our
data term Edata from Equation 3 measures how well the
estimated depth maps fit to the defocus observations in all
focus stacks, which is equivalent to depth from defocus
[28] applied per video frame. This step requires the pixel-
wise alignment across each focus stack, computed in the
previous stage, to measure the fitting error. Since this error
is individually penalized at each pixel, it can lead to spatial
inconsistencies in the depth map. To avoid this issue, we
introduce a long-range linear Potts model. In contrast to
the pairwise Potts model which compares depth values only
between immediately adjacent pixels, our version performs
long-range comparisons which benefit globally consistent
depth estimation, yet prevents erroneous smoothing of actual
features in the depth map:

E
spatial

smoothness =
∑
t∈T

∑
x

∑
y 6=x

min(α(x,y) |Dt(x)−Dt(y)|, τd), (4)

where τd is the truncation value of the depth difference.
We use the bilateral weight α between two pixels x and
y, α(x,y) = exp

(
−‖x−y‖

2

2σ2
s
− ‖I(x)−I(y)‖

2

2σ2
r

)
, to encour-

age consistent depth estimation between nearby pixels with
similar colors, where σs and σr denote the standard devi-
ation for the spatial and range terms, respectively. We use
σs=0.075× the image width, and σr=0.05.

In addition, we want the depth maps to be temporally
coherent across all frames. We minimize the discrepancy

between depth maps using

E temporal
smoothness =

∑
t∈T

∑
s∈T\t

‖Dt −Ws→t(Ds)‖2 , (5)

which encourages temporal consistency over extended depth
map sequences. The total cost function for depth map estima-
tion is defined by combining the data term from Equation 3
and the smoothness terms from Equations 4 and 5:

argmin
D

Edata + λssE
spatial

smoothness + λtsE
temporal

smoothness, (6)

where λss=1 and λts=0.2 are balancing weights.
The direct minimization of Equation 6 requires global

optimization with respect to all depth images, which is com-
putationally expensive. Instead, we solve an efficient approx-
imation of the global optimization problem. We pose the
minimization task as a labeling problem, and first estimate
spatially consistent depth maps for all frames by applying
a variant of cost-volume filtering [11], and then refine the
per-frame depth maps to enforce temporal consistency [16].

We start by computing per-frame depth maps Dt in three
steps. (1) We evaluate the data term (Equation 3) for n pre-
defined, uniformly spaced depth layers, and store the er-
ror for each pixel x and depth label d in the cost volume
C(x, d). As in previous depth-from-defocus techniques [28],
we perform this evaluation in the frequency domain, where
convolution can be efficiently computed using element-wise
multiplication. (2) We apply fast joint-bilateral filtering [27]
on each depth-cost slice, to minimize the long-range spatial
smoothness term in Equation 4. For this, we use the all-in-
focus image It as the guide image in computing the bilateral
weight α. As in the previous section, we take the estimated
all-in-focus image It from the previous iteration, and assume
It=Vt in the first iteration of the coarsest resolution level.
(3) We select the spatially optimal depth for each pixel using
Dt(x)=argmind C(x, d).
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Figure 7. Our keyframe-based smooth-
ing produces more consistent depth
than local smoothing of adjacent frames.
(The pixel should have constant depth
in this scene.)

After computing
depth maps indepen-
dently from each
focus stack, we apply
temporal smoothing to
make the depth maps
consistent over time.
We use a keyframe-
based approach with
a sliding temporal
window. For each frame t, we align the depth maps of the
previous and following two keyframes to the current depth
map Dt using our warping operator Ws→t computed on
the all-in-focus images. The updated depth map Dt is the
Gaussian-weighted mean of aligned depth maps. The used
keyframes are not restricted to be from the same focus
ramp as the frame t; this enforces temporal consistency also



across focus ramp boundaries. In Figure 7, we show that our
approach successfully produces temporally coherent depth
maps, compared to the unfiltered input depth maps and also
the simpler local filtering of adjacent frames, as some bias
remains due to the short temporal range of the filtering.

4.3. Defocus Deblurring
Input Frame (crop) Without Deconvolution Prior With Deconvolution Prior

Figure 8. Deconvolution can result in ring-
ing artifacts, which are suppressed by our
deconvolution smoothness prior.

Now that we have
computed the depth
maps Dt, we esti-
mate all-in-focus im-
ages It using non-
blind deconvolution
with the spatially
varying point-spread
function (PSF) corre-
sponding to the depth-dependent circle of confusion (Equa-
tion 1). While the disc shape of the PSF is a good approxima-
tion of the actual shape of the camera aperture, in practice,
its sharp boundary causes ringing artifacts in the deconvolu-
tion process due to zero-crossings in the frequency domain
[18], see Figure 8. We therefore adopt the smoothness term
introduced by Zhou et al. [44] to prevent ringing artifacts:

E all-in-focus
smoothness =

∑
t∈T
‖H ∗ It‖2, (7)

where H is an image statistics prior.
The smoothness term uses a learning approach to capture

natural image statistics. We first take sample images at the
same resolution as the input image from a database of natural
images, and then apply the Fourier transform to the samples
to compute the frequency distribution of image statistics.
The final image statistics of the natural image dataset H is
obtained by averaging the squared per-frequency modulus of
all sample distributions. The smoothness term Equation 7 en-
forces the all-in-focus image It to follow a similar frequency
distribution as the learned one in H . The image statistics
prior H only needs to be computed once for each video
resolution to be processed, and can then be reused for new
videos. For the details of the smoothness term, we refer the
reader to Zhou et al. [44].

The total cost function of the defocus deblurring is a
combination of the data term in Equation 3 and the learned
smoothness term in Equation 7:

argmin
I

Edata + λasE
all-in-focus

smoothness , (8)

where λas=10−3 balances the two cost terms. We compute
the optimal all-in-focus image It by performing Wiener de-
convolution independently on a range of n depth layers, each
with a fixed, depth-dependent point spread function, and then
composite the sub-images to obtain the all-in-focus image
It.

4.4. Focus Distance Refinement
This step refines the focus distances to reduce the data term
Edata (Equation 3). As explained in Section 3, we can at
best read out temporally sparse focus distance values from
the camera, which are moreover subject to inaccuracies. To
overcome this difficulty, we refine the focus distances for all
frames in the final stage of our approach. By rearranging the
terms associated with the focus distance Ft in Equation 3,
we define the focus refinement subproblem as

argmin
Ft

∑
s∈T

ws,t ‖R(Vs, Ft)−Wt→s(Vt)‖2 . (9)

Without Focus Distance Re�nement With Focus Distance Re�nement

Figure 9. Focus distance refinement
improves depth maps (top) by reduc-
ing texture copy artifacts, and also
removes halos in all-in-focus images
(middle). The refined focus distances
(bottom) correctly reflect the con-
stant focus at the beginning and end
of the video.

We optimize this equa-
tion by gradient descent.
Since the cost function
is highly nonlinear in Ft,
we compute the gradi-
ent numerically by ex-
amining the costs for fo-
cus distances Ft±δ with
δ = 5 mm. In practice,
we refocus each source
frame Vs to focus dis-
tances Ft± δ, and com-
pare it to the aligned tar-
get frameWt→s(Vt) (see
Supplementary Figure 3).
We then set the focus distance Ft to the new minimum.

We demonstrate the performance of our focus distance
refinement in Figure 9. It improves the depth estimation
as well as visual quality of the all-in-focus images by sup-
pressing excessive edge contrasts. Because this strategy frees
us from requiring artificial patterns or special hardware for
the accurate calibration of focus distances, it allows for our
flexible and simple acquisition of the focus sweep video.

5. Results and Evaluation
We thoroughly evaluate our proposed video depth-from-
defocus approach for reconstructing all-in-focus RGB-D
videos. We first show qualitative results on natural, dynamic
scenes with non-trivial motion, captured with static and mov-
ing video cameras. We then compare our approach against
the two closest approaches, by Shroff et al. [36] and Suwa-
janakorn et al. [40]. We further evaluate the design choices
made in our approach with an ablation study on a ground-
truth dataset. Lastly, we evaluate our focus refinement opti-
mization in Supplemental Section 3.

We show all-in-focus images and depth map results on
a range of datasets in Figure 10, in Supplemental Figure 2
and in our video. Our depth maps capture the gist of each
scene, including the main depth layers and their silhouettes,
and the depth gradients of slanted planes with sufficient tex-
ture. As demonstrated by the results, our approach works
for dynamic scenes, and handles a fair degree of occlusions,
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BOOK dataset (dynamic scene with static camera, 28 frames, 1 focus ramp)
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Figure 10. RGB-D video results. We show reconstructed all-in-
focus images and depth maps for three focus sweep videos with
various combinations of scene and camera motion. The image crops
(top: input frame cropped, bottom: all-in-focus images cropped)
focus on regions at the near, middle and far end (from left to right)
of the scene’s depth range. Note that each input frame is in focus
in only one of the three crops, while our all-in-focus images are in
focus everywhere. Please zoom in to see more details.
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Figure 11. Comparison of our approach to Suwajanakorn et al. [40]
on their dynamic dataset. Left: Input focus stack, focused near (left)
to far (right), and their estimated depth map for the last frame only.
Right: We reconstruct all-in-focus images and depth maps for all
frames of this dynamic sequence (also see our video).

dis-occlusions and out-of-plane motions. It also properly
reconstructs the depth and all-in-focus appearance of small
objects, like the earrings in sequence TALKING2 (Supple-
mental Figure 2), which is highly challenging. Note that our
approach also works if scene and camera are rather static,
where approaches requiring notable disparity for depth es-
timation would fail – even on unblurred footage. Similar
to previous depth-from-(de)focus techniques, our approach
works best for textured scenes that are captured in a full
focus stack. Although our depth maps are not perfect, they
are temporally coherent and enable visually plausible video
refocusing applications, as shown in Supplemental Section 4.

Comparison to Shroff et al. [36] This work moves a cam-
era’s sensor along the optical axis to compute all-in-focus
RGB-D videos in an approach similar to ours. However, our
approach improves on theirs in several important ways: (1)
we use a commodity consumer video camera that does not
require any hardware modifications like in their approach,
(2) our defocus-preserving alignment finds more reliable cor-
respondences than optical flow, (3) our depth maps are more
detailed and temporally coherent, and (4) our all-in-focus
images and hence refocusing results improve on theirs. We
simulate their focus stack alignment approach by replacing
PatchMatch in our implementation with optical flow [39].
Figure 5 shows that PatchMatch achieves visually better
alignment results.

Comparison to Suwajanakorn et al. [40] This recent
depth-from-focus technique computes a single depth map
with all-in-focus image from quick focus sweeps of around
30 photos of static scenes with little camera motion. Their
approach first reconstructs the all-in-focus image by align-
ing the input photos and stitching the sharpest regions. This
will fail for videos, as dynamic scenes break their alignment
strategy of concatenating the optical flows. Any estimated
per-frame depth maps are also most likely not temporally
coherent. Our approach, on the other hand, computes tempo-
rally coherent all-in-focus RGB-D videos of dynamic scenes.
Our robust defocus-preserving alignment (Section 4.1) en-
ables us to construct per-frame focus stacks for dynamic
scenes (moving scene and camera), and hence to compute
per-frame depth maps and all-in-focus images. On top, we
implement keyframe-based temporal consistency filtering
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Figure 12. Validation of design choices using an ablation study (lower RMSE is better). Our approach is best overall, but each components
is required for achieving best results.

(Section 4.2) to remove any flickering from the depth maps.
We visually compare our results to theirs on one of their
datasets in Figure 11. We use their provided camera parame-
ters without further focus distance refinement (Section 4.4).

Validation of Design Choices We performed a quantita-
tive ablation study to analyze the influence of the design
choices in our algorithm. For this, we synthetically defocus
10 frames from the MPI-Sintel dataset ‘alley_1’ [4] using
two focus ramps, and apply additive Gaussian noise with
σ=3/255 to simulate camera imaging noise. We then pro-
cess the resulting video while disabling or replacing individ-
ual components of our approach. In Figure 12, we evaluate
the accuracy of the estimated depth maps and all-in-focus im-
ages using the root-mean-squared error (RMSE) compared
to the ground truth. Our full approach produces overall the
best results. One can clearly see the importance of each com-
ponent in our approach, as leaving them out significantly
degrades the quality of the estimated depth maps or all-in-
focus images, or both. We also evaluate how accurately each
alternative explains the input defocus images when refocus-
ing the all-in-focus image using the estimated depth map.
Without temporal smoothing, refocused images have lower
RMSE than our full approach, but the images lack temporal
consistency (which is not measured by RMSE).

6. Discussion and Conclusion

Limitations Our approach relies on aligning all frames of
a focus ramp to each other. This works well for focus ramps
of up to around 30 frames, but becomes more difficult for
longer ramps, as more motion needs to be compensated. This
is significantly more difficult than for example the alignment
required for HDR video reconstruction [14], which only
needs to align three subsequent frames instead of 30–100.
While our alignment approach produces good results within
one ramp, even a long one, the consistency across long ramps
becomes more difficult to enforce. This may lead to popping
artifacts in the all-in-focus video.

As in previous depth-from-defocus methods, each aligned
focus stack yields a single depth map. However, this lim-
its objects in adjacent video frames to have similar depths,
which restricts their motion in depth.

Large occlusions are also problematic as the focus stack
alignment degrades in quality when part of the scene is not
visible during a focus ramp, for example at the image bound-
aries. Like static depth-from-defocus methods, we assume
the appearance of objects as well as lighting remain constant.
Additionally, untextured regions are harder to reconstruct,
and may show some temporal flickering, similar to previous
depth-from-defocus methods but also passive, image-based
depth reconstruction approaches in general.

We employ a simple blur model, which uses a spatially
varying convolution with a point-spread function. This may
cause blurs across depth boundaries, which can create ha-
los in the depth maps (see discussion in Lee et al. [17]). A
potential solution are more sophisticated, multi-layer defo-
cus blur models [15], which are harder to integrate into our
optimization. Our depth maps are plausible. They may not
entirely match the quality of depth maps from RGB-D cam-
eras or multi-camera systems, but they were recorded with a
completely unaltered camera, along with focus distances and
all-in-focus frames, and enable video focus post-processing
at good quality. Our goal was to explore what is possible
with unaltered hardware and what information may lie in
typical artifacts, even auto-focus pulls.

Conclusion We presented the first algorithm for space-time
coherent depth-from-defocus from video. It reconstructs all-
in-focus RGB-D video of dynamic scenes with an unmodi-
fied commodity video camera. We open a different view on
RGB-D video capture by turning the often unwanted defo-
cus blur artifact into a valuable signal. From an input video
with purposefully provoked defocus blur, e.g. by simply turn-
ing the lens, we compute space-time-coherent depth maps,
deblurred all-in-focus video and per-frame focus distance.
Our end-to-end approach relies on several algorithmic con-
tributions, including an alignment scheme robust to strongly
varying focus settings, an image-based method for accurate
focus distance estimation, and a space-time-coherent depth
estimation and deblurring approach. We have extensively
evaluated our method and its components, and show that it
enables compelling video refocusing effects.
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