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Abstract: Comparing with wheeled or tracked moving machines, legged robots have potential advantages, 

especially when considering moving on discontinuous or rough terrain. For many bipedal robots, balance 

in the standing position is easy to maintain by having sufficient contact area with the ground. For some 

bipedal robots, the Zero Moment Point (ZMP) control method has been successfully implemented in which 

the center of mass is aligned above the support area.  However, the balancing issue while standing becomes 

challenging when the contact area is very small. This paper  presents a controller which is developed to 

balance a bipedal robot with coupled legs which has point foot contact. It is necessary to investigate the 

non-linear characteristics of the system. A pole-placement control method is used, and noise issues with 

sensing higher motion derivatives are investigated  The simulation-based evaluation indicates limitations 

that need to be addressed before experimental implementation. 

Keywords: center of mass (CoM), balance, bipedal robot, pole placement 



1. INTRODUCTION 

Considering moving on rough terrain, such as soft and uneven 

surfaces, legged robots have potential advantages comparing 

with wheeled or tracked vehicles (Hardarson, 1970). The 

isolated foot support area avoids the requirement 

forcontinuous ground.In the last few decades, bipdal robots 

have attracted researchers` attention. Several successful two-

leg walking robots have been presented to show the motion 

mechanism principles, such as Asimo (Sakagami, 2002), 

ATLAS and PETMAN (Raibert, 2010). Considering the 

standing position, most of these platforms solve the balancing 

problem by having sufficient foot contact area with the ground. 

The Zero Moment Point control method has been successfully 

implemented to maintain balance by controlling the centre of 

mass above the support area while the robot is standing or 

slowly walking (Erbatur, 2002). An intermittent control 

strategy might be a solution to solve the body sway issue with 

a smaller foot contact (Bottaro, 2005). However, the problem 

is still very challenging when the support area is limited to 

point contact. 

The Bath Bipedal Hopper (BBH) is a small size hydraulic 

actuated bipedal hopping robot, which is developed to design 

and test advanced controllers. The foot support area of the 

BBH is very small, and can be approximated by a point. One 

mode of operation is balancing while standing rather than 

hopping, and control for this mode is considered in this paper. 

A double inverted pendulum model is used to represent the 

BBH. A pole-placement controller is developed and tested in 

simulation. Evaluation indicates the feasibility of this method 

and makes suggestions for further research. 

2. HARDWARE OF THE BATH BIPEDAL HOPPER 

As Fig. 1 shows, the basic design concept of the BBH comes 

from kangaroos, which are the largest animal using a bipedal 

hopping mechanism on the planet. The BBH has an upper body 

and two lower legs. The upper body consists of a main 

controller, which is an industrial PC (PC104 format), a 

manifold integrated with proportional valves and supporting 

framework. A hydraulic cylinder actuates the fore-aft hip 

rotation of both legs, i.e. this motion of the legs is coupled 

together.  The two lower legs are hydraulic actuators with 

position sensors in parallel. There is an inertia measurement 

unit (IMU) attached with the upper body to measure the body 

rotation angel. An encoder is used to measure the angle at the 

hip point.  Each foot consists of an aluminium alloy 

hemisphere covered in hard rubber. The BBH was designed to 

achieve locomotion using kangaroo-like hopping.. Fig. 2 

shows a simplified 3D model of BBH. 

 

Include a table of key dimensions / parameter valves 
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Fig. 1. Hardware of the Bath Bipedal Hopper 

 

Fig. 2. Simplified 3D model of the BBH 

3. MODELLING 

3.1 Double inverted pendulum model 

The inverted pendulum model has been successfully used to 

help design one-leg hopping robots (Kajita, 1989). A double 

inverted pendulum model is appropriate to analyse the motion 

of the BBH. As shown in Fig. 3, the model consists of two 

rigid bodies, an upper body and a lower body (representing the 

leg-pair), connected with revolute joint 1 (hip joint). The 

bottom of the lower body, i.e. the foot,is connected to the 

ground using revolute joint 2 in the model. Using small angle 

approximations, we are trying to maintain the combined 

Centre of Mass (CoM) of the overall model vertically above 

revolute joint 2 by applying an active torque at revolute joint 

1. 

 

Fig. 3. Double inverted pendulum model 

3.2 Dynamic analysis 

The force analysis of the upper body is shown in Fig. 4. 

 

Fig. 4. Upper body force analysis (put this figure at bottom of 

page) 

Consider the force on upper body and taking moments about 

the revolute joint 1 gives (1), (2) and (3): 
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where, uM  is the mass of upper body, ul  is length from the 

upper body`s CoM to revolute joint 1, ll  is the length of lower 

body, uJ  is the moment of inertia of upper body. Combine (1), 

(2) and (3) gives:
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Fig. 5 presents the force analysis of the lower body; taking 

moment about revolute joint 2 gives (5) and (6). 

 

Fig. 5. Lower body force analysis (put Figs 5 and 6 at bottom 

of page) 
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 lM  is the mass and lJ  is the moment of inertia of the lower 

body. Combining (1), (5) and (6) gives: 
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 Considering the overall model, the combined CoM position is 

shown in Fig. 6. 

 

Fig. 6. Position of combined CoM 

According to the geometry relations, the position of the 

combined CoM can be expressed as (8) and (9): 
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Considering small angle approximation: 
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 Combining (4), (7) and (12) gives the plant model: 
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 where, 
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4. CONTROLLER DESIGN 

According to the plant model, the pole-placement method can 

be used to develop the controller. The closed-loop block 

diagram is shown in Fig. 7.  

 

Fig. 7. Block diagram of pole-placement controller 

The controller is implemented using two digital filters, )(1 sF  

and )(sG , where )(1 sF  is a forward path compensator and 

)(sG  plays the same role as the state feedback gains in a state-

feedback controller. The closed-loop transfer function of the 

above block diagram is: 
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The roots of polynomial )(sA  indicate the stability and the 

time domain response of the whole system. By specifying 

different polynomials of )(sG  and )(sF , the roots of )(sA  

can be arranged at any desired positions. According to the 

plant model: 
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It is necessary to have the same number of equations and 

unknowns, which determines the degrees of polynomials 

)(sG  and )(sF  (Plummer, A. R. 1991). Define n and m. 

Using, 
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Therefore, 
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 The variables in )(sG  and )(sF  can be calculated from 

solving (17) with polynomials as given in (19), (20), (24), (25) 

and (26), i.e. solving the following matrix equation: 
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(27) 

)(sA  will be chosen as the denominator of a fifth order 

Butterworth filter. A Butterworth filter has a flat frequency 

response in the passband (). Therefore, determining the vector 

of )(sG  and )(sF  coefficients gives a controller achieveing 

these desired closed-loop poles. 

A simple simulation test can be done by using the physical 

configuration parameters of the BBH, as Table 1 shows. 

Table 1. Physical parameters 

Parameters Symbol Value Unit 

Mass of the 

upper body 
uM  

7.5 kg 

Mass of the 

lower leg 
lM  

0.75 kg 

Length of the 

upper body 
ul  

44.4 mm 

Length of the 

lower leg 
ll  

95 mm 

Gravitational 

acceleration 

g  9.81 m/s2 

Fig. 8 shows the step response with these parameters. With a 

higher cut-off frequency, the system presents a faster step 

response (as expected) and acceptable overshoot. 

 

Fig. 8. Step response with closed-loop poles for cut-off 

frequencies of7 rad/s, 5 rad/s, 3 rad/s and 1 rad/s. 

5. EVALUATION OF THE CONTROLLER 

5.1 Minimize the jerk gain 

There are four unknowns in )(sG , which are the feedback 

gains related to the output angle, angular velocity, angular 

acceleration and the derivative of angular acceleration, also 

named the jerk. It is necessary to minimize the jerk gain, or 

even make it as zero, because of the noise caused by derivative 

calculations. By setting the jerk gain as zero, )(sG  is going to 

be a second order polynomial and )(sF  can be a constant 

value. Such as: 
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 Additionally, )(sA  should be a fourth-order polynomial, 

which is: 
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Then, there will be four unknowns in five equations, which 

will not give a minimal degree of solution. In order to solve 

this set of equations, an extra unknown  can be introduced by 

setting the )(sA  as: 
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Combining (17), (19), (20), (28), (29) and (31) gives: 
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As in the last section, this can be solved for the  F(s) and G(s) 

coefficients and the extra unknown  . However,   needs to 

be evaluated to ensure that it is always a positive value, which 
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means it is a stable poleposition.   can be calculated from 

(32), which for the plant parameters in Table 1, gives: 
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 Since t )(sA  is specified to represent stable poles, as a result, 

0ma , 1ma , 2ma  and 3ma  are positive values. According to 

(33),   is always negative. In another words, a pole in )(sA  

is always placed in the right half plane, so the closed-loop 

system is not stable. Therefore, the jerk feedback cannot be 

cancelled or avoided in the controller.  

5.2 Noise tolerance 

The appearance of noise in physical circumstance would bring 

significant effect on the control performance of the system. As 

Fig. 9 shows, by implementing )(sH  as a forward 

compensator, (36) indicates that the reciprocal of )(sH  can be 

used as a filter to attenuate the noise. 

 

Fig. 9. Closed-loop block diagram with )(sH  filter 
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Substituting (35) into (34): 
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 According to the previous discussion, )()( sHsAm  can be 

given by the polynomial with desired stable poles, and the 

steady state gain is calculated to give unity gain in the closed 

loop. If )(sH  is specified as the denominator of a second order 

low pass filter, which includes two roots of )(sA , it can be 

used to attenuate the noise without influencing the servo 

performance of the system. In order to give a unity steady state 

gain: 
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However, it is necessary to evaluate that if the noise will be 

amplified by using different )(sH . Fig. 10 is the noise 

amplitude against frequency according to different )(sH .  

 

Fig. 10. Frequency response of output angel (y) to noise (e) for 

different cut-off frequency of )(sH , as 0.7 rad/s, 1 rad/s, 3 

rad/s, 5 rad/s, 7 rad/s and 10 rad/s, respectively. 

At high frequencies, there is no significant amplification of the 

noise, especially when )(sH  has faster response poles. 

However, another aspect need to be investigated is the 

frequency response of the control signal and noise, as Fig. 11 

shows 

 

Fig. 11. Frequency response of control signal (u) to noise (e) 

for different cut-off frequency of )(sH , as 0.7 rad/s, 1 rad/s, 3 

rad/s, 5 rad/s, 7 rad/s and 10 rad/s, respectively. 

At high frequencies, the noise amplification is increasing 

dramatically. This leads to the discussion of the poles 

selection, which is a balance according to the investigation of 

the system`s performance (Chen, 1995). 

6. CONCLUSIONS 

The foot contact area is a significant criteria when considering 

the quiet standing position of a humanoid robot. Most of the 

successful bipedal robot maintain balance by improving the 

mechanical structure with the combination of ZMP control 

method. Investigation of the control of a small size bipedal 
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robot with point foot contact has been done in this paper. 

According to this specific configuration, pole-placement 

method is used to develop the controller. According to the 

calculation, the minimal degree of solution indicates the 

minimal number of feedback variables. Frequency response 

shows that the noise signal is not significantly amplified 

through all frequency band. However, the noise signal has a 

dramatically effect on the control signal. 

An estimator or observer can be built to estimate state 

variables value without doing high demand of derivative 

calculations. According to hardware limitations, experimental 

results will be presented to demonstrate the feasibility of this 

controller in further research. 
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