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Abstract  24 

Drought indicators are used as triggers for action and so are the foundation of drought 25 

monitoring and early warning. The computation of drought indicators like the standardized 26 

precipitation index (SPI) and standardized streamflow index (SSI) require a statistical 27 

probability distribution to be fitted to the observed data. Both precipitation and streamflow 28 

have a lower bound at zero, and their empirical distributions tend to have positive skewness. 29 

For deriving the SPI, the Gamma distribution has therefore often been a natural choice. The 30 

concept of the SSI is newer and there is no consensus regarding distribution. In the present 31 

study, twelve different probability distributions are fitted to streamflow and catchment 32 

average precipitation for four durations (1, 3, 6, and 12 months), for 121 catchments 33 

throughout the United Kingdom. The more flexible three- and four-parameter distributions 34 

generally do not have a lower bound at zero, and hence may attach some probability to values 35 

below zero. As a result, there is a censoring of the possible values of the calculated SPIs and 36 

SSIs. This can be avoided by using one of the bounded distributions, such as the reasonably 37 

flexible three-parameter Tweedie distribution, which has a lower bound (and potentially 38 

mass) at zero. The Tweedie distribution has only recently been applied to precipitation data, 39 

and only for a few sites. We find it fits both precipitation and streamflow data nearly as well 40 

as the best of the traditionally used three-parameter distributions, and should improve the 41 

accuracy of drought indices used for monitoring and early warning.  42 
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1. Introduction 53 

It is widely written that drought is a complex phenomenon that is notoriously hard to define. 54 

The challenges of drought definition have been acknowledged for at least 30 years, certainly 55 

since Wilhite and Glantz [1985], and recently Lloyd-Hughes [2014] argued that a universal 56 

definition is simply impracticable. Given the vagueness of the concept of drought, it is 57 

perhaps unsurprising that there has been a proliferation of drought indicators over the last two 58 

decades: Lloyd-Hughes [2014] counted over 100 different indicators, with no sign of 59 

abatement in this trend in the international literature. While there is some merit in applying 60 

different indicators for different purposes – recognizing the widely acknowledged multi-61 

faceted nature of the drought hazard, from meteorological, hydrological, agricultural, socio-62 

economic, etc – there is also benefit in seeking indicators that are consistent and comparable. 63 

Indicators provide crucial information to support the recognition of drought onset and 64 

termination, and thus duration, as well as the relative severity and rarity of events. They are 65 

used as triggers for action and communication (or declaration of drought) and so are the 66 

foundation of drought monitoring and early warning.  67 

One of the more popular indicators, now recommended by the World Meteorological 68 

Organization (WMO) [Hayes et al., 2011] as an indicator for meteorological drought, is the 69 

Standardized Precipitation Index (SPI) first formulated by McKee et al. [1993], see section 70 

3.4 for details. A key advantage of the SPI is that, by virtue of the standardization process, it 71 

enables comparison between locations and between different times of year. It is also flexible 72 

in that it can be aggregated across a range of timescales (e.g. 1, 3, 6, 12 months), which are 73 

relevant for different types of drought impacts. As such, the SPI has been widely applied in 74 

monitoring and early warning systems (e.g. see the review by Bachmair et al., 2016) and is 75 

extensively used for other purposes.  76 

While the SPI is widely seen as a de facto indicator of choice, it is not without limitations. By 77 

construction the SPI is inherently sensitive to the time period used for standardization, and 78 

the choice of statistical distribution used to effect the transformation to a normal distribution. 79 

The impact of record length and standardization period has been analyzed [e.g. Wu et al. 80 

2005, Núñez et al., 2014].  The choice of distributions has been discussed since the early days 81 

of the SPI; the question is far from academic and can have major implications for drought 82 

severity and characteristics. The original paper [McKee et al., 1993] employed the gamma 83 

distribution, and this has been widely adopted and is sometimes seen as a default; it has 84 
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generally been shown to perform relatively well across most of Europe [Lloyd-Hughes and 85 

Saunders, 2002]. However, a later systematic test across Europe [Stagge et al., 2015] found 86 

that while the Gamma distribution could still broadly be recommended as a default, other 87 

distributions perform better in some areas, and at some aggregation timescales. Other authors 88 

have noted limitations with the Gamma distribution, in particular under (over) estimation of 89 

wet (dry) extremes [e.g. Sienz et al., 2012].  Some authors [e.g. Guttman, 1999] have 90 

advocated three parameter distributions such as the Pearson Type 3 as more flexible 91 

alternatives.  92 

In the last decade there has been an increased interest in the application of the SPI concept to 93 

other domains of the hydrological cycle.  A Standardized Precipitation and 94 

Evapotranspiration Index (SPEI), developed by Vicente-Serrano et al. [2010] has become 95 

very popular, and other studies have sought to apply standardization to runoff [Shukla and 96 

Wood, 2008], streamflow [e.g. Vicente-Serrano et al. 2012], groundwater [Bloomfield and 97 

Marchant, 2013] and snowmelt [Staudinger et al., 2014]. Finding suitable distributions is as 98 

important for these variables as it is for the SPI, but this topic has been relatively under-99 

researched. Unlike for the SPI and SPEI, for streamflow there is not even a broad consensus 100 

on the most appropriate distributions to use. For the standardized streamflow index (SSI), 101 

there are only a few published studies (to the authors’ knowledge) that address choice of 102 

distribution, and they all tend to focus on a limited number of sites or a localized 103 

geographical domain. Vicente-Serrano et al. [2012] examined distributions for 98 sites in the 104 

Ebro basin in Spain, finding that no distribution worked best, partly due to the substantial 105 

variations in streamflow regimes, even over a relatively limited area. These authors instead 106 

advocate an approach of empirically choosing best distributions for each month and location. 107 

Soláková et al. [2014] examined a range of distributions for a single site in Italy, compared to 108 

a non-parametric approach.  For groundwater, the Standardized Groundwater Index (SGI) 109 

[Bloomfield and Marchant, 2013] has been developed using a non-parametric approach due 110 

to the inappropriateness of most distribution fits for a range of boreholes in the UK. For 111 

meteorological data covering larger areas, most of the systematic tests of distributions have 112 

been applied to readily-available, continuous gridded datasets, e.g. Stagge et al. [2015] for 113 

Europe, rather than to catchment observations. 114 

The aim of this paper is to systematically test distributions for application to the SPI and SSI 115 

using a large dataset of 121 near-natural catchments across the whole of the UK, with respect 116 

to  117 
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1) goodness-of-fit and general distributional behavior, including visual inspection of the 118 

fitted probability density functions, 119 

2) the degree to which unbounded distributions have mass below zero (as hydrological 120 

data have a lower bound at zero), 121 

3) effects of seasonality and catchment characteristics on the goodness-of-fit. 122 

One immediate purpose of the study is to provide guidance for application of such 123 

standardized indicators in the UK; the SPI has not been routinely employed beyond a few 124 

research studies [e.g. Hannaford et al. 2011; Bloomfield and Marchant, 2013; Folland et al. 125 

2015], with the SSI even less so. Standardized indices are not routinely used in drought 126 

monitoring and early warning (with the exception of in Scotland, where an SPI variant is used 127 

[Gosling, 2014]), but there is increasingly an appetite for consistent indicators for drought 128 

definition [e.g. Collins et al., 2015]. There is a pressing need to tackle this question, given the 129 

diversity of catchment types seen in the UK, to provide recommendations for application of 130 

the SPI and SSI in monitoring and early warning systems and other applications.  A related 131 

paper [Barker et al., 2016] further tests the utility of the SPI and SSI in the UK, using them to 132 

investigate the propagation from meteorological to hydrological drought and relating the 133 

propagation characteristics to catchment characteristics. By virtue of the scale of the dataset 134 

and diversity of climatic and landscape characteristics seen in the UK (as discussed in  135 

Barker et al., [2016]), we envisage the test application presented here could be of wide 136 

international relevance, given the paucity of studies that have addressed comprehensively the 137 

question of distribution choice for both precipitation and river flow in parallel. 138 

 139 

2. Data 140 

2.1 Precipitation and streamflow data 141 

Monthly mean streamflow and precipitation data for 121 catchments in the UK benchmark 142 

network were used for the analysis. The benchmark network comprises catchments with near-143 

natural river flow regimes and long, good-quality flow records [Bradford and Marsh, 2003]. 144 

Here, “near-natural” is defined as catchments having minimal net influence of abstractions, 145 

discharges or impoundments. The benchmark catchments are located throughout the country 146 

(Figure 1a), and can be considered to be representative of the range of catchment conditions 147 

encountered across the UK. The catchment areas vary between 3.07 and 4587 km2 (Figure 148 
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1b). The selected catchments have at least 30 years of both river flow and precipitation 149 

records within the period October 1929 to September 2014 (Figures 1c and 1d).  150 

Daily mean streamflow and catchment average monthly precipitation totals were provided by 151 

the National River Flow Archive (NRFA) [Marsh and Hannaford, 2008]. For streamflow, 152 

each individual month was required to have at least 25 days of valid daily mean flow 153 

observations for a monthly mean flow (expressed in m3/s) to be calculated and used in this 154 

study. The mean and median record lengths are 47.3 and 44.9 years, respectively, when 155 

missing data are included. Almost half of the catchments (59 of 121) have complete records 156 

between their individual start and end dates, and the remainder has on average 2.7% missing 157 

data. The longest record, for the Dee at Woodend in northeast Scotland, spans the whole 85-158 

year period October 1929 to September 2014 and has no missing data. There were two 159 

ephemeral streams in the initial catchment selection, with 4% and 13% of monthly flows 160 

equal to zero. Because of this relatively large amount of zeroes in the dataset, these 161 

catchments were removed so that all monthly flow observations for the selected 121 162 

catchments exceed zero. This was done to avoid the complication of treating the data for 163 

some catchments differently to the rest, and to enable a straightforward comparison of the 164 

proposed distribution functions. It also avoids having to distinguish between instances of a 165 

zero flow recording because of a lack of rainfall, and because of frozen conditions (although 166 

the latter tend not to be long-lasting in the UK). 167 

The periods of record for the catchment average monthly precipitation data differ slightly 168 

from those for the streamflow records, with mean and median record lengths being slightly 169 

longer, at 47.8 and 46.6 years, respectively. However, the precipitation records for all 170 

catchments end in December 2012, nearly two years before the last river flow record. The 171 

longest record is again the one for the Dee at Woodend, starting in October 1929 and ending 172 

in December 2012, without any missing data. Only four of the catchments have missing 173 

precipitation data between their individual start and end dates, on average 2.3%. The monthly 174 

precipitation totals equaled zero for one month each in four catchments. These single 175 

observations were set to 0.01 to avoid having zeroes in the dataset. The monthly precipitation 176 

totals were converted to monthly averages expressed in mm/day. 177 

 178 

 179 

 180 
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2.2 Catchment descriptors 181 

Indices describing the characteristics of each catchment were also supplied by the NRFA 182 

[Marsh and Hannaford, 2008; Bayliss, 1999]. These include catchment AREA, SAAR (the 183 

standard average annual rainfall 1961-1990), SMDBAR (the average soil moisture deficit 184 

1960-1990. This is only available for 31 catchments), and BFIHOST, a base flow index 185 

which is a measure of catchment responsiveness derived using the 29-class Hydrology of Soil 186 

Types (HOST) classification. There is a strong association between BFIHOST and the 187 

Baseflow Index derived using a hydrograph separation approach, where the Baseflow Index 188 

is a measure of how large the groundwater contribution to streamflow is. Both indices vary 189 

between 0 and 1, with higher values indicating a greater contribution of base flow and 190 

therefore higher catchment storage, or permeability. Here we consider catchments having 191 

BFIHOST values exceeding 0.5 to be permeable and catchments with values less than 0.5 to 192 

be impermeable. Most of the permeable catchments are located in the southeast of the UK 193 

(see Figure 1a for aquifer outcrop areas). 194 

 195 

3. Methods 196 

3.1 Overview 197 

Data series were extracted for each calendar month separately, so that, for example, a series 198 

could consist of river flows for January 1965, January 1966, January 1967, and so on. These 199 

data series were then transformed to standardized indices: the standardized precipitation 200 

index (SPI) for precipitation data and, separately, the standardized streamflow index (SSI) for 201 

river flow data. The first step in the transformation was to fit a statistical probability 202 

distribution to the data series (e.g. to the series of January river flows). A range of different 203 

distributions considered potentially suitable for precipitation and river flow data were tried in 204 

this step. Next, the fitted distribution was used to transform the original data to the quantiles 205 

of a Normal distribution with mean = 0 and standard deviation = 1. These quantiles, or 206 

“normal scores” of the Normal distribution constitute the standardized indices. A range of 207 

goodness-of-fit tests were then applied to the standardized indices to investigate which 208 

statistical distribution best fitted the original precipitation and river flow data. The novel part 209 

of the present study is to systematically test a range of statistical distributions for suitability 210 

of describing precipitation and river flow data. In addition to the goodness-of-fit tests, the 211 
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mass below zero was assessed for the original distributions, and the influences of seasonality 212 

and catchment characteristics on the goodness-of-fits were investigated. 213 

 214 

3.2 Aggregated time series 215 

Separate data series were derived for each calendar month, so that series consisting of data 216 

for all Januaries were extracted separately from series consisting of data for all Februaries, 217 

etc. In addition to these monthly series, longer aggregations of 3, 6 and 12 months were also 218 

derived, with separate (backward-looking) aggregated series ending in each of the 12 219 

calendar months of the year. The aggregations are averages of the monthly values in the 220 

aggregation duration, so that, for example, the 6-month precipitation aggregation for August 221 

2010 is the average daily rainfall total for March to August 2010. A missing value in one or 222 

more of the constituent months of the aggregation leads to a missing value for the total 223 

aggregation. 224 

 225 

3.3 Statistical distribution functions 226 

In total twelve different probability distributions with two, three or four parameters were 227 

considered to be potentially suitable for fitting to the monthly aggregations of precipitation 228 

and river flow data (Table 1). Not all of the distributions have a lower bound at zero (like 229 

observed precipitation and streamflow do), but unbounded distributions were included in the 230 

study as they have been used for deriving standardized indices in the past [e.g. Guttman, 231 

1999]. The magnitude of the associated problem of part of the fitted distribution potentially 232 

falling below zero is therefore also assessed in the present study.  233 

The sole four-parameter distribution investigated is the Kappa distribution, and the three-234 

parameter distributions include the Generalized Logistic, Pearson type 3, Generalized 235 

Extreme Value (GEV) and Tweedie. Of these, only the Tweedie distribution has a lower 236 

bound at zero. The two-parameter distributions include the Gamma, Lognormal, Normal, 237 

Gumbel and Weibull distributions. Of these, the Normal and Gumbel distributions lack a 238 

lower bound. Probably with the exception of the Tweedie, these are all well-known 239 

distributions to the hydrologist, and apart from the Tweedie [e.g. Dunn and Smyth, 2005] and 240 

the Kappa distributions [e.g. Hosking and Wallis, 1997], their probability density functions 241 

are described in Stagge et al. [2015].  242 
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In addition, a lower bound at zero was imposed on the three- and four-parameter distributions 243 

for which a bounded version of the distribution is not already investigated. That is, a lower 244 

bound at zero was imposed for the Generalized Logistic and the Kappa distributions. When 245 

such a constraint is applied to the Pearson type 3 distribution, it reduces to the Gamma 246 

distribution, which is already included. Similarly, the already included 2-parameter Weibull 247 

distribution is a variation of the GEV with a lower bound at zero. The imposition of the lower 248 

bound reduces the number of parameters to be estimated by one, so that the three- and four-249 

parameter distributions become two- and three-parameter distributions, respectively. In 250 

figures and tables of this paper, the short-hands “GenLog”, “P3”, “Kappa3” and “Kappa4” 251 

may be used to denote, in turn, the Generalized Logistic, the Pearson type 3, and the 3- and 4-252 

parameter Kappa distributions. 253 

To the authors’ knowledge the Tweedie distribution has only rarely been applied to 254 

hydrological data. Dunn [2004] and Hasan and Dunn [2011] applied it to monthly rainfalls in 255 

Australia, and found that it fitted the data well. The Tweedie is in fact a family of 256 

distributions, whose special cases include the Normal (ξ = 0), Poisson (ξ = 1), Gamma 257 

(ξ = 2), and Inverse Gaussian (ξ = 3) distributions [e.g. Tweedie, 1981; Dunn and Smyth, 258 

2005]. When the parameter ξ has a value between 1 and 2, the distribution describes series 259 

that can contain exact zeroes as well as positive continuous data, whereas for ξ ≥ 2 the 260 

support is for positive continuous data only [Hasan and Dunn, 2011]. Although the present 261 

study does not include data equal to zero, the Tweedie family of distributions has two 262 

attractive features: the lower bound (for ξ ≥ 1), and that its three parameters make it flexible. 263 

Of the other proposed distributions, only the Kappa distribution with a lower bound imposed 264 

at zero have both these characteristics. However, a drawback of the Tweedie is that the 265 

probability density functions can only be written in closed form for the special cases where ξ 266 

equals 0, 1, 2 or 3. For other values of ξ numerical methods need to be used, which makes 267 

parameter estimation more time-consuming [e.g. Dunn and Smyth, 2008]. 268 

Please see Appendix A for further details about the Tweedie distribution, and Appendix B for 269 

details about the distribution fitting procedures. 270 

 271 

3.4 Transformation to the standardized indices, SPI and SSI 272 

Once distributions are fitted, the observations (i.e. the aggregated series) are transformed to a 273 

Normal distribution with mean = 0 and standard deviation = 1, N(0,1), to obtain the 274 
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standardized index as described by, for example, McKee et al. [1993], Guttman, [1999], and 275 

Lloyd-Hughes and Saunders [2002]. That is, each observation corresponds to a quantile, x, of 276 

the fitted cumulative distribution function, F(x) = P(X≤x), of the distribution of choice (say, 277 

for example, the Gamma distribution). By setting 278 

),()( yGxF   279 

where G(y) is the cumulative distribution function of the N(0,1) distribution, the 280 

corresponding quantile y of the N(0,1) distribution can be found for each observation. The 281 

quantile y, or “normal score”, is the unitless standardized index for the observation, i.e. the 282 

SPI or SSI. Hence, the SSI is derived in the same manner as the SPI, but using streamflow 283 

rather than precipitation data. 284 

During dryer than average conditions the index will be negative and during wetter than 285 

average conditions the index will be positive. Because of uncertainty at the extremes of the 286 

distribution, estimates of the index exceeding an absolute value of 5 were truncated and set to 287 

the limiting value. Approximately 95% of the calculated indices will occur within the 288 

range -2 to +2, and 68% within the range -1 to +1. The exact definitions of different drought 289 

severities differ between studies, but spells in the latter range are often denoted as normal to 290 

mildly dry/wet, and spells outside the range -2 to +2 as extremely dry/wet. 291 

 292 

3.5 Testing the goodness-of-fit 293 

A range of goodness-of-fit tests were applied to investigate how well the different statistical 294 

distributions describe the observed data. However, the tests were applied to the transformed 295 

indices, rather than to the original precipitation and river flow data. In this way, all the 296 

goodness-of-fit tests are applied to normally distributed data with mean = 0 and standard 297 

deviation = 1, and the results are straightforward to compare.  298 

The tests include the Shapiro-Wilk test, the Anderson-Darling test, the Cramér-von Mises test 299 

and the Kolmogorov-Smirnov test. The Anderson-Darling test is a modification of the 300 

Cramér-von Mises test, giving more weight to the tails of the distribution [e. g. Farrell and 301 

Rogers-Stewart, 2006]. Razali and Wah [2011] compared the power of several tests, and 302 

concluded that of the four tests investigated the Shapiro-Wilk test was the most powerful test 303 

for normality closely followed by the Anderson-Darling test, and that the Lilliefors test 304 

always outperformed the least powerful Kolmogorov-Smirnov test. However, none of these 305 
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tests perform well for small sample sizes of fewer than 30 cases [Razali and Wah, 2011], 306 

which is the smallest number of years of record required for a catchment to be included in the 307 

present study. Because the Shapiro-Wilk, Anderson-Darling and Cramér-von Mises tests 308 

gave nearly identical results in this study (and the Kolmogorov-Smirnov test accepted nearly 309 

all of the fitted three-parameter distributions so that no distinction between them could be 310 

made), only results from the Shapiro-Wilk test will be presented. The significance level 311 

chosen for this study is 5% (p-value = 0.05 for the Shapiro-Wilk test). 312 

 313 

3.6 Visual inspection of fitted distributions 314 

A visual inspection of a selection of the fitted distributions was carried out, mainly to assist in 315 

the interpretation of why certain distributions were rejected, but also to investigate if there 316 

were any obvious systematic differences in how the distributions fit to the data. For the 1-317 

month precipitation and streamflow aggregations, all the instances for which the p-value from 318 

the Shapiro-Wilk test of normality was <0.05 were plotted as histograms, and the curve for 319 

the rejected probability density function added. On each plot, a selection of other fitted 320 

distributions were plotted for comparison with the rejected one. To look for clear systematic 321 

differences, each selection of distributions was plotted regardless of aggregation duration and 322 

Shapiro-Wilk p-value, and subjected to a brief visual overview. 323 

 324 

3.7 Proportion of the fitted distribution below zero 325 

Probability distributions that are not bounded below at zero may have a proportion of the 326 

fitted distribution occurring for sub-zero quantiles, that is, the cumulative probability 327 

distribution F(x=0) > 0. Precipitation and river flow data, on the other hand, cannot be 328 

negative and in the present study F(x=0) should be zero as all the data exceed zero. The 329 

magnitudes of F(x=0) for the fitted distributions were therefore assessed. 330 

 331 

3.8 Effects of seasonality and catchment characteristics 332 

The effects of seasonality and catchment characteristics on the goodness-of-fit were 333 

investigated for two different measures of goodness-of-fit. First, the rejection rate for each 334 

distribution was used, which means stratifying the p-values from the Shapiro-Wilk test on 335 
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values below and above 0.05 (the significance level). Second, the average p-values from the 336 

Shapiro-Wilk test were investigated. Rejection rates were compared for the winter and 337 

summer seasons, and for permeable versus impermeable catchments. Seasonal average p-338 

values for each catchment were used in a correlation analysis with different catchment 339 

descriptors. Because of the non-normal distribution of some of the catchment descriptors, 340 

correlations were estimated using the non-parametric Spearman’s rho. Again, a 5% 341 

significance level was employed, based on a two-sided test. 342 

The winter season here comprises October to March and the summer season April to 343 

September. Only the 1-month aggregation was used for the seasonal analysis, as the longer 344 

the aggregation period for the standardized index is, the less clear the distinction between the 345 

seasons become.  346 

 347 

4. Results 348 

4.1 Goodness-of-fit 349 

The goodness-of-fit of the selected statistical distributions to the standardized precipitation 350 

and streamflow data was assessed, and the results are presented in Table 2. The proportion of 351 

occurrences for which the normal distribution cannot be rejected at the 5% significance level 352 

(p-value = 0.05) by the Shapiro-Wilk test is shown for all four aggregation durations 353 

separately, as well as for all the durations lumped together. In all cases, the 12 calendar 354 

months and 121 catchments, are lumped together. Table 2 only shows results for distributions 355 

with rejection rates less than 15% for SPI and 20% for SSI, and the remainder of the paper 356 

will concern only these distributions. Of the two-parameter distributions, only the Gamma is 357 

included in the table. This means that the only distributions with a lower bound at zero that 358 

remain in the study are the Gamma, the Tweedie and the three-parameter Kappa distributions. 359 

All the unbounded three- and four-parameter distributions are retained. Overall, the rejection 360 

rates are higher for the streamflow than for the precipitation data. This seems reasonable 361 

since streamflow is affected by the natural and human-induced state of the catchment, e.g. 362 

soil moisture content and ground water levels, which can lead to highly variable and non-363 

linear responses to the, in comparison, more regularly-behaving precipitation data. 364 

In the past, the Gamma distribution was often used when calculating the SPI [e.g. McKee et 365 

al., 1993; Lloyd-Hughes and Saunders, 2002; Stagge et al., 2015] because it has a lower 366 
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bound at zero, which agrees with the observed distribution. Others [e.g. Guttman, 1999] have 367 

argued that three-parameter distributions such as the Pearson type 3 provide a better fit. 368 

Although the Gamma distribution has a positive skewness, which generally reflects the 369 

behavior of the observed data, distributions with separate location, scale and skewness 370 

parameters are more flexible. Table 2 shows that the Gamma distribution is rejected 371 

considerably more frequently than any of the three- or four-parameter distributions for both 372 

precipitation (9.9%) and streamflow (19.2%).  373 

For both the SPI and the SSI, the distributions rejected the fewest times are the four-374 

parameter and three-parameter Kappa distributions. For the SPI, the Pearson type 3 has the 375 

same rejection rate as the three-parameter Kappa distribution, at 1.2% of cases. The Pearson 376 

type 3 and the Kappa distributions perform consistently well across all the different durations 377 

(Table 2), whereas the rejection rates vary for the other distributions. The Gamma, 378 

Generalized Logistic and the two Kappa distributions tend to be rejected less frequently for 379 

longer durations than shorter, for both SPI and SSI (Table 2), but the variation with duration 380 

is not necessarily monotonic and some distributions seem to fit best for the intermediate 381 

durations.  382 

For streamflow, the one month aggregation period is likely to be more useful for drought 383 

characterization than it is for precipitation, as there is already a degree of aggregation 384 

inherent in streamflow time series, primarily resulting from catchment storage (e.g. Chiverton 385 

et al., 2015). For the 1-month SSI, the Gamma distribution is rejected for 29.5% of the cases, 386 

whereas the four-parameter Kappa and the Tweedie show the best fits with rejection rates of 387 

3.1% and 5.2%, respectively (Table 2).  388 

 389 

4.2 Visual inspection of the fitted distributions 390 

Histograms of the data and fitted distributions were plotted and visually inspected. Two 391 

different sets of comparisons are presented for the 1-month aggregations. Figures 2a-c and 392 

3a-c) show examples of the comparison of the fitted Tweedie and Kappa distributions. 393 

Figures 2d-f and 3d-f show examples of the comparison between the Gamma, the Tweedie 394 

and the best-fitting (according to the Shapiro-Wilk test) of the remaining three-parameter 395 

distributions for the SPI and SSI, respectively. The Gamma was included because of its 396 

traditional use for the SPI, and the Tweedie because it too is bounded below at zero. This 397 

meant the Gamma, Tweedie and Pearson type 3 distributions were compared with each other 398 
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for the precipitation data (Figures 2d-f), and the Gamma, Tweedie, Generalized Logistic 399 

(better than the GEV overall) and GEV (better than the Generalized Logistic for the 1-month 400 

aggregation) distributions were compared for the streamflow data (examples are shown in 401 

Figures 3d-f). Table S1 summarizes the overall findings of the present study for these 402 

distributions. 403 

With the exception of the very flexible Kappa distributions, the tested theoretical 404 

distributions generally struggle to fit bimodal or multimodal data (Figures 2 and 3).  405 

However, for non-trivial proportions of cases, both the three- and four-parameter Kappa 406 

distributions show signs of over-fitting, resulting in sharp drops/rises and/or sharp bounds at 407 

the lower and/or upper ends of the distribution, as well as the peak of the probability density 408 

function occurring in unexpected locations (Figures 2a-c and 3a-c). In addition, the four-409 

parameter Kappa distribution does not necessarily encompass all the observed data within its 410 

lower and upper bounds (Figures 2a, 2c and 3a), although this occurs also for other 411 

distributions such as the GEV (Figure 3f). The effect on the SPI and SSI of observed data 412 

occurring outside the bounds will be that the index value becomes undefined (or infinite). 413 

The fitted distribution dropping/rising sharply at the tails means that the magnitudes of 414 

droughts (or wet periods) will not be well distinguished by the SPI and SSI. The Kappa 415 

distributions generally provide a better fit than the Tweedie distribution, as measured by the 416 

Shapiro-Wilk p-value (Table 2, Figure 4). However, from an SPI and SSI application 417 

perspective, the Tweedie characterizes the tails of the distributions better (Figures 2a-c and 418 

3a-c).  419 

The two-parameter Gamma distribution often gets rejected for bimodal and multimodal data, 420 

whereas most of the time the “traditional” three-parameter distributions, although struggling, 421 

are accepted (e.g. Figures 2d and 3d). These more flexible distributions tend to fit a 422 

reasonably symmetric probability density function, with the Tweedie distribution fitting a 423 

somewhat more (positively) skewed curve than the Generalized Logistic, GEV and Pearson 424 

type 3 distributions. This “inbetween” behavior explains why the fit of the accepted Tweedie 425 

distributions is often slightly worse than that of the more commonly used three-parameter 426 

distributions. This can be seen in the generally lower average of the p-values from the 427 

Shapiro-Wilk test for the Tweedie distribution compared with the other distributions (Figure 428 

4). For precipitation data, the instances for which the Gamma and Tweedie distributions are 429 

not accepted typically coincides with the fitted Pearson type 3 curve having a slight or 430 

pronounced negative skewness (similar to Figure 2d). For streamflow, the typical situation 431 
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where the Gamma and Tweedie are rejected is for very peaked, positively skewed data, 432 

particularly for cases with one or more very extreme values (e.g. Figure 3e). The less flexible 433 

fit of the Gamma distribution also sometimes leads to the lower tail not describing the data 434 

well (Figure 2f). 435 

In about half of the cases where the Pearson type 3 distributions are not accepted for the 1-436 

month precipitation data, a sharply peaked curve with a very positive skewness has been 437 

fitted (e.g. Figure 2b). The fits of the Tweedie and Gamma distributions tend to be both less 438 

peaked and less skewed in these cases, and are generally accepted. A closer investigation of 439 

the rejected Pearson type 3 occurrences suggests that, particularly for bimodal and 440 

multimodal data, the maximum likelihood method has converged on sets of sub-optimal 441 

parameter values, as the curves plotted using parameter values based on L-moments provide a 442 

(generally accepted) fit more similar to the Tweedie and Gamma distributions. For the 443 

Generalized Logistic and GEV fitted to 1-month streamflow data, the distributions fitted 444 

using L-moments also often differ substantially to those fitted using maximum likelihood. 445 

However, in these cases the data often have a single peak combined with extreme outliers 446 

(similar to Figure 3e) and the generally less peaked density curves based on the L-moments 447 

do not on the whole provide a better fit as measured by the p-value from the Shapiro-Wilk 448 

test. 449 

In very nearly all the cases where the Generalized Logistic distribution fitted to streamflow 450 

data is rejected, the fitted density curve is more peaked than for the GEV, Tweedie and 451 

Gamma distributions. In about a third of the cases the distribution of the observed data is very 452 

peaked, similar to Figure 3e. However, in the example in Figure 3e the fitted Generalized 453 

Logistic distribution is accepted, and in fact, the Generalized Logistic seems to cope well 454 

with very peaked data compared with these other distributions, particularly when also very 455 

extreme values are present in the dataset (e.g. Figures 3e-f). The Gamma distribution copes 456 

particularly poorly with very extreme values. 457 

Apart from the above mentioned general difficulties in fitting distributions to very peaked or 458 

multi-peaked data, or to series that contain very extreme values, it is difficult to find any 459 

particular patterns for the rejected GEV distributions. However, the GEV is so flexible that 460 

the fitted distributions not infrequently have an abrupt upper bound when fitted to negatively 461 

skewed data (Figure 3f). Correspondingly, there is a problem when the fitted distribution has 462 

a lower bound greater than zero, which can occur for the four-parameter Kappa (Figures 2a-c 463 
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and 3a), the Generalized Logistic (Figure 3e), the Pearson type 3 (Figures 2e-f), as well as for 464 

the GEV (Figure 3e and 5b).  465 

Abrupt upper bounds, as well as lower bounds greater than zero, can be avoided altogether by 466 

using the Tweedie distribution, which similarly to the Gamma and three-parameter Kappa 467 

distribution is bounded below at zero but not above. However, as discussed above, the 468 

Tweedie allows for more flexibility in the skewness compared with the Gamma. Table 2 469 

shows that the fit of the Tweedie is second only to the four-parameter Kappa distribution for 470 

1-month streamflow, and is very nearly as good as the Generalized Logistic for all the 471 

aggregation durations lumped together (but both are outperformed by the two Kappa 472 

distributions). When lumping all the durations together for precipitation, the Tweedie is 473 

outperformed by all but the Gamma and GEV distributions, despite having a very low 474 

rejection rate at 2.4%.  475 

 476 

4.3 Behavior at the lower tail 477 

Figures 2e, 3b and 3e show how the fitted Pearson type 3, Generalized Logistic, GEV and 478 

four-parameter Kappa distributions can have part of their mass for quantiles below zero (i.e. 479 

F(0) > 0), whereas neither precipitation totals or streamflows can be negative. Observed data 480 

could be zero, but in the present study all the data are above zero. 481 

The Tweedie distribution is bounded below, but in contrast to the Gamma and three-482 

parameter Kappa distributions, both of which have zero probability for zero 483 

precipitation/streamflow, certain parameter values of the Tweedie distribution lead to a 484 

positive mass at zero. This means that potentially, if the fit is such that F(0) >> 0, then the 485 

same problem would occur as for the distributions that are not bounded below at zero. That 486 

is, there would be a lower limit to the SPIs and SSIs. However, for the catchments in the 487 

present study, the fitted Tweedie distributions reflect the observed data well and do not have 488 

much mass at zero. As can be seen from Table 3, the vast majority of cases has F(0) < 0.01, 489 

corresponding to an SPI/SSI of -2.33.  490 

Some of the other distributions can also be considered to have acceptably low proportions of 491 

F(0), particularly for precipitation. For example, the Pearson type 3 has F(0) ≤ 0.03 492 

(corresponding to an SPI of -1.88) for all but one out of in total 5808 cases. For streamflow, 493 

the values of F(0) are slightly larger.  494 
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Figure 5 shows how the fit of the density curve at the lower tail can affect the estimated SPI 495 

and SSI during a drought. The 1976 drought was long and severe in the southeast of the UK. 496 

Figure 5 shows example histograms and fitted distributions for the Tove at Cappenham 497 

Bridge (hydrometric number 33018). For streamflow, the Gamma distribution fits particularly 498 

poorly to the data at the lower tail, and data never reach into the lower tail of the distribution. 499 

This leads to underestimation of the drought, in the same way as when three-parameter 500 

distributions have part of their mass for quantiles less than zero, i.e. F(0)>0 (Figures 5b and 501 

5e). The fitted GEV has a lower bound, leading to an overestimation of drought severity 502 

(Figures 5b and 5e). The smallest flow observation is below the lower bound of the GEV, and 503 

the SSI 1 – which therefore originally was estimated at minus infinity – was capped at a value 504 

of -5. 505 

For precipitation, the fitted probability density curves added to the histograms of the observed 506 

6-month aggregation show no obvious visual differences (Figure 5a), but the time series plots 507 

reveal how the different distributions’ behaviors at the lower tail affect the SPI 1 and SPI 6 508 

estimates of severe droughts (Figures 5c and 5d). 509 

The SPI 6 time series shows a similar drought progression as the SSI 1 during 1975 and 1976, 510 

suggesting that a 6-month aggregation of precipitation reflects the storage in the catchment. 511 

However, note that streamflow (SSI 1) in this particular catchment also responds to heavy 1-512 

month precipitation (SPI 1) occurrences not seen in the longer SPI 6 aggregation. This 513 

reflects the non-linear relationship between precipitation and runoff, and supports the need 514 

for a separate drought index for streamflow. The geology of the Tove catchment is 515 

predominantly Chalk, but with 50% overlain by Boulder Clay, a low-permeability superficial 516 

deposit. This accounts for the slow response (storage of water in the permeable Chalk 517 

aquifer) as well as the fast response (fast runoff from the impermeable areas overlain by 518 

clay). 519 

 520 

4.4 Effect of seasonality and catchment characteristics on goodness-of-fit 521 

For 1-month precipitation, all distributions except the four-parameter Kappa had smaller 522 

rejection rates for winter than for summer, but the differences between the seasons were 523 

small. In absolute terms, all the differences were smaller than 1.2 percentage units, except for 524 

the Gamma which had a 2.5 percentage unit difference. For 1-month streamflow, all the 525 

distributions had smaller rejection rates for winter than for summer. The differences were 526 
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smaller than 4.4 percentage units for all the distributions, except for the Gamma and the 527 

Pearson type 3, which had 22.9 and 28.9 percentage unit difference, respectively. 528 

For all the distributions except the Gamma, the absolute difference in rejection rate (lumping 529 

all the aggregation durations together) between streamflow in permeable and impermeable 530 

catchments was 1.6 percentage units or less, with no consistent variation in the direction of 531 

change. For the Gamma distribution, the difference was 6.8 percentage units, with fewer 532 

rejections for the impermeable catchments. When only the 1-month aggregation is 533 

considered, the differences become slightly larger but still vary in the direction of change. 534 

The absolute differences are smaller than 4.0 percentage units, except for the Gamma 535 

distribution for which the difference is 13.9 percentage units with fewer rejections in 536 

impermeable catchments. 537 

Figure 6 shows the seasonal average p-value from the Shapiro-Wilk test for 1-month 538 

streamflow in each catchment, for the same selection of distributions as used for the visual 539 

inspection in section 4.2. In Figure 6, each dot represents the average of six p-values 540 

(averages over April – September for summer, and over October – March for winter). The 541 

Gamma distribution is the only distribution for which the average p-values are smaller than 542 

0.05 – the statistical significance level for rejection – and these low values all occur in 543 

summer. The other distributions also tend to have lower, and spatially more variable, average 544 

p-values in summer than in winter, echoing the findings above that rejection rates are higher 545 

in summer than in winter. However, the fact that the average p-values are generally much 546 

greater than 0.05 suggests that when one of the better-fitting distributions is rejected it tends 547 

to be an isolated occurrence, rather than reflecting a larger-scale failure over several months 548 

in the same season. The corresponding maps for the 1-month precipitation analysis did not 549 

reveal any obvious seasonal or geographical differences in the goodness-of-fits (not shown). 550 

Correlations between seasonal average p-values and catchment descriptors are shown in 551 

Table 4. There is little evidence of catchment characteristics (AREA and SAAR) influencing 552 

the goodness-of-fit of the 1-month precipitation data, particularly in winter, as most 553 

distributions fit these data well. For 1-month streamflow, the majority of the correlations are 554 

rather weak and not significant at the 5% level, although a couple of correlations each for the 555 

Gamma and GEV distributions exceed 0.4. Broadly, correlations are often positive (but not 556 

necessarily significant) for SAAR and AREA, and negative for SMDBAR. Correlations with 557 
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BFIHOST are also mostly negative, but with notable exceptions for the Generalized Logistic 558 

and GEV distributions in summer.   559 

 560 

4.5 Influence of season and duration on the Tweedie parameter ξ 561 

As mentioned in the methods section, the Tweedie is a family of distributions whose special 562 

cases include the Normal (ξ = 0), Poisson (ξ = 1), Gamma (ξ = 2), and Inverse Gaussian 563 

(ξ = 3) distributions [e.g. Tweedie, 1981; Dunn and Smyth, 2005]. The value of the parameter 564 

ξ is constrained in the estimation procedure to be at least 1.2 (see Appendix B for further 565 

details), which means that the estimated Tweedie distribution will never correspond to a 566 

Normal or a Poisson distribution. However, in the height of winter (January) the ξ values tend 567 

to approach 1 from above for both 1-month precipitation and 1-month streamflow (not 568 

shown), in response to the distributions being rather symmetric. In contrast, more positively 569 

skewed distributions in the height of summer (July), lead to ξ values being clustered between 570 

2 and 3, i.e. suggesting distributions more similar to the Gamma and Inverse Gaussian. Most 571 

of the time ξ values do not go far above 3 for 1-month precipitation, whereas for 1-month 572 

streamflow in the summer half-year they are not unusual up to 5 and may go as high as 7. 573 

Distributions tend to become more symmetric with increasing aggregation duration, and the 574 

longer the duration the more the ξ values tend to approach 1 from above.  575 

 576 

5. Discussion 577 

Following the general acceptance of the SPI as a tool for drought monitoring, there has been 578 

a growing interest in the application of standardization methods to other variables such as 579 

streamflow. Time series of drought indices like the SPI and SSI require a statistical 580 

distribution function to be fitted to the observed (generally monthly) precipitation and 581 

streamflow data. Previous research has underlined the challenges associated with finding 582 

appropriate probability distributions for these purposes, and there is generally limited 583 

consensus on which to choose, which highlights the importance of testing distributions in the 584 

region of interest. For example, Stagge et al. [2015] tested a range of distributions for the 585 

SPI, using gridded precipitation data across Europe. Although they concluded that the 586 

Gamma distribution generally showed a good fit for aggregations longer than one month, the 587 

UK was one of the regions for which rejection rates were high. The present paper uses 588 
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observed streamflows and catchment average rainfalls from a diverse set of catchments in the 589 

UK. It extends the SPI study of Stagge et al. [2015] by also investigating the Generalized 590 

Logistic, Pearson type 3, GEV, Tweedie and four-parameter Kappa distribution, as well as 591 

versions of the Generalized Logistic and Kappa distributions constrained to have a lower 592 

bound at zero (making them two- and three-parameter distributions, respectively). In 593 

addition, the inclusion of distributions that do not necessarily have a lower bound meant we 594 

also investigated how many of the fitted distributions have a significant proportion of their 595 

mass below zero.  596 

Longer aggregations of data tend to have a more symmetric shape of the distribution than 597 

shorter aggregations, which often have a positive skewness. Different distributions therefore 598 

fit the data with varying success, and the practitioner could apply different distributions to 599 

different aggregation durations and types of data. The ideal statistical distribution would be 600 

bounded below by zero, but would have enough flexibility to fit the full range of behaviors 601 

exhibited by the observed data for UK conditions. The Shapiro-Wilk test for goodness-of-fit 602 

would suggest that the three-parameter Kappa distribution fulfils these expectations. 603 

However, both the three- and four-parameter Kappa distributions were found to over-fit the 604 

data, and to include fitted probability density functions with abrupt drops/rises and, in the 605 

case of the four-parameter Kappa, sharp bounds at its lower and upper tails (Figures 2a-c and 606 

3a-c). Such behavior at the tails is highly detrimental for accurately discerning the severity of 607 

extreme droughts (or periods of wetness) as measured by the SPI or SSI. Further, when the 608 

peak of the probability density function is displaced (often resulting in a negative skewness, 609 

as in Figures 2a-c and 3c), this also results in a bias in the general characterization of dry 610 

versus wet conditions. Typically, conditions that should be considered wet are labelled dry. 611 

The over-fitting is a result of the Kappa distribution being very flexible, and the sample sizes 612 

being rather small and the data exhibiting bi- or multimodality. While increased sample sizes 613 

can be expected with time, at present it may be better to use a less flexible distribution like 614 

the Tweedie. Future work on the three-parameter Kappa distribution could include 615 

investigating the parameter values that lead to sharp drops at the tails of the probability 616 

density function and then, if possible, constraining the parameter space accordingly when 617 

fitting the distribution. 618 

Of the options investigated in the present study, the Tweedie family of distributions largely 619 

meets the criteria of a sensible and reasonably flexible fit combined with a lower bound at 620 
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zero.  It can therefore be expected that future applications of SPI and SSI in the UK would 621 

benefit from employing this distribution. Given the suitability of the Tweedie distribution 622 

across a wide range of catchment types, it is likely that it will perform well also in other 623 

settings. Given the previous lack of suitability of any one parametric method in past SSI 624 

applications [Vicente Serrano et al., 2012; Soláková et al., 2014], we recommend further 625 

research to examine the suitability of the Tweedie distribution in other environments. Its 626 

general suitability for both SPI and SSI suggests it could also be applied to standardized 627 

indicators used for other compartments of the hydrological cycle. The fact that the Tweedie 628 

distribution can have positive mass at zero makes it particularly suitable for arid and semi-629 

arid climates and for ephemeral streams, which is desirable given the acknowledged issues 630 

associated with application of the SPI in arid locations [Wu et al., 2007].  631 

Despite its clear potential, there are practical drawbacks associated with the Tweedie 632 

distribution. Only for a small number of special cases can the distributions be written in 633 

closed form. Numerical methods therefore need to be used, making distribution fitting time 634 

consuming. Thus, while the Tweedie family is the most suitable choice when computational 635 

resources allow, for some applications it may be less desirable than conventional 636 

distributions. For example, for large gridded datasets, computer time requirements are likely 637 

to be high. However, this does not preclude its use, as once distribution parameters are 638 

derived, future applications (e.g. in updating a monitoring and early warning system on a 639 

monthly basis using parameters already estimated for a fixed reference period) would be no 640 

more computationally demanding than for other distributions.  641 

This study has also provided valuable information on the applications of other distribution 642 

functions. Although not ideal, for the catchments and aggregation durations used in the 643 

present study, the proportions of the fitted theoretical distributions falling below zero may be 644 

acceptably small for some of the best-fitting three-parameter distributions: the Pearson type 3 645 

(for precipitation), and the GEV and Generalized Logistic (for streamflow) distributions.  646 

When investigating statistical distributions suitable for the standardized precipitation 647 

evapotranspiration index (SPEI), Vicente-Serrano et al. [2010] found that goodness-of-fit 648 

tests struggled to distinguish between candidate distributions. Instead, they made the final 649 

selection based on the behavior of the tails of the distributions. They found that the thicker 650 

tail of the Generalized Logistic (termed Log-logistic in their paper) could more easily 651 

accommodate the extremes of the lower tail, than could the Pearson type 3, the Lognormal 652 
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and the GEV distributions. Vicente-Serrano and Beguería [2015] investigated the difference 653 

between the GEV and the Generalized Logistic in even more detail regarding goodness-of-fit, 654 

behavior at the tails of the distribution, and fraction of cases with no solution, and reaffirmed 655 

their preference for the Generalized Logistic. However, Stagge et al. [2016] subsequently 656 

argued that the GEV models the extreme tails better and that the Generalized Logistic 657 

consistently underestimate these values, although they conclude that there is significant 658 

uncertainty due to extrapolation regardless of distribution. Considering the subjectivity of the 659 

visual inspection in the present study and the limited sample sizes used for the goodness-of-660 

fit tests, we will not argue either way from a goodness-of-fit perspective of the extreme tail. 661 

However, a thicker tail like that of the Generalized Logistic distribution is an advantage when 662 

parameters have been estimated for a fixed reference period, and the same distribution 663 

parameters are later used when updating the series [compare Tanguy et al., 2015]. The 664 

reference period may not have included very extreme values, and a thick-tailed distribution 665 

makes it less likely that an unprecedentedly large future observation results in a standardized 666 

index that is undefined or equal to infinity. In this context it is also worth mentioning that an 667 

imposed lower bound needs to be at zero, rather than above (or below) zero. A lower bound 668 

above zero will result in calculated standardized climate indices that are either undefined or 669 

equal to negative infinity for observations that fall below the lower bound. Note that using a 670 

fixed reference period assumes that data is stationary, and the distribution parameters would 671 

need to be re-assessed to take into account the effect of climate, or other environmental, 672 

change. 673 

The rejection rates for the distributions tended to be greater in summer than in winter for both 674 

precipitation and streamflow, although the differences were generally rather small for 675 

distributions that fitted the data well. For both variables, the seasonal differences presumably 676 

reflect the more erratic behavior of convective activity in summer, and the more regular 677 

behavior of frontal precipitation in winter. For streamflow, soil moisture deficits are also 678 

more variable in summer than in winter, leading to a less regular runoff response. These 679 

results can be compared with those of Stagge et al. [2015], who found no seasonal 680 

differences in rejection rates for Weibull distributions fitted to 1-month gridded precipitation 681 

data across Europe.  682 

Rather than stratifying on overall rejection/acceptance rates, using the seasonal average p-683 

value from the Shapiro-Wilk test for individual catchments makes possible a spatial 684 

evaluation based on a more nuanced measure of goodness-of-fit. For streamflow (Figure 6), 685 
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the most spatially and seasonally consistent (least variable) p-values are those for the 686 

Tweedie and unconstrained Kappa distributions, although for summer both struggle with an 687 

area of small, and predominantly very permeable, catchments in the southeast. Permeable 688 

catchments with a large groundwater contribution to flows exhibit persistence of wet and dry 689 

spells that can last several years [e.g. Wilby et al., 2015]. This can lead to clusters of high 690 

and/or low values in the record (and thus bi- or multi-modal empirical distributions), making 691 

statistical distribution-fitting difficult. Compared with the northwest, the southeast has a 692 

comparatively continental climate: evaporation is larger, which leads to higher soil moisture 693 

deficits and potentially erratic flow responses, particularly in permeable catchments. Also, 694 

although average rainfall is lower, heavy convective rainfalls in summer are more common. 695 

For small catchments, this means that localized convective rainfalls can have a greater impact 696 

on the streamflow than it would in larger catchments. The correlation analysis between 697 

summer average p-values and catchment characteristics supports the above reasoning in so 698 

far as to the sign of the correlations, and the pattern can largely be generalized to most of the 699 

distributions, and to winter. However, statistically significant relationships are few and 700 

mainly occur for the poorer-fitting distributions. 701 

 702 

6. Conclusions 703 

Drought indicators can be used as triggers for action and declaration of drought, and form the 704 

foundation of drought monitoring and early warning. Standardized indices such as the SPI 705 

(for precipitation) and SSI (for streamflow) allow fair comparison between different locations 706 

and different seasons. They are also flexible in that they can be aggregated across a range of 707 

timescales (e.g. 1, 3, 6, 12 months), which are relevant for different types of drought impacts. 708 

The derivation of the SPI and SSI require a statistical distribution to be fitted to the observed 709 

data. Here, we have presented a study of the goodness-of-fit and tail behavior of twelve 710 

different distributions for a diverse set of 121 catchments in the UK, as well as the influence 711 

of seasonality and catchment characteristics on these fits.  712 

Both precipitation and streamflow data are bounded below at zero, as precipitation and flows 713 

cannot be negative. Their empirical distributions also tend to have positive skewness, and 714 

therefore the Gamma distribution has often been a natural and suitable choice for describing 715 

the data statistically [e.g. Stagge et al., 2015]. However, after transformation of the data to 716 
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Normal distributions to obtain the SPIs and SSIs for the UK catchments, the distributions are 717 

rejected in 9.9% and 19.2% of cases, respectively, by the Shapiro-Wilk test.  718 

The best fitting distributions are the three- and four-parameter Kappa distributions (the 719 

former being a version of the latter with a lower bound at zero imposed). However, both were 720 

seen to over-fit to the data, resulting in sharp drops and rises of the probability density 721 

function near the tails, making it difficult to accurately discern the severity of extreme 722 

droughts (or periods of wetness) from the calculated SPI and SSI.  723 

Other three-parameter distributions traditionally used in hydrological applications, such as 724 

the Pearson type 3 for precipitation and the Generalized Logistic and GEV distributions for 725 

streamflow, fit the transformed data reasonably well, with rejection rates of 5% or less. 726 

However, in most cases these three-parameter distributions do not have a lower bound at 727 

zero. This means that the lower tail of the fitted distribution may potentially go below zero, 728 

which would result in a lower limit to the calculated SPI and SSI values (as observations can 729 

never reach into this lower tail of the theoretical distribution). In contrast, the Tweedie 730 

distribution is a flexible three-parameter distribution that has a lower bound at zero. It fits 731 

both precipitation and streamflow data nearly as well as the best of the traditionally used 732 

three-parameter distributions, with rejection rates of 2.4% and 3.9% for precipitation and 733 

streamflow, respectively. The Tweedie distribution has only recently been applied to 734 

precipitation data, and only for a few sites. As far as the authors are aware, it has never been 735 

applied to streamflow data. The Tweedie probability density function can only be written in 736 

closed form for a few special cases, which means that parameter estimation is time 737 

consuming. However, recent advances in parameter estimation methods, and implementation 738 

of these methods in the R package “tweedie” [Dunn, 2015], mean that the use of the Tweedie 739 

distribution is now a viable option. The Tweedie distribution thus has significant potential for 740 

use in future drought indicator applications in the UK, and has properties which make it well 741 

suited for use in other environments. Particularly, its possibility of having mass at zero makes 742 

it a proposition for drier climates. A further advantage is its encompassing of several other 743 

distributions as special cases, which allows a greater flexibility in the possible shapes of the 744 

distribution without having to make an a priori distributional choice. More generally, the 745 

Tweedie could have utility for a range of other hydrological applications, suggesting further 746 

research is needed to explore its full potential.  747 
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This study also investigated the effect of seasonality and catchment characteristics on the 748 

goodness-of-fit of the statistical distributions. For both precipitation and streamflow data, 749 

most distributions were found to have larger rejection rates in summer than in winter, 750 

although for well-fitting distributions the differences were rather small. Similarly, catchment 751 

characteristics generally had little impact on the suitability of a distribution.  752 
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Appendix A. The Tweedie family of distributions 896 

The concept of the Tweedie family of distributions was comprehensively outlined by Tweedie 897 

[1984], and further explored by Jørgensen [1987]. The Tweedie family of distributions is a 898 

special class within the so called exponential dispersion models (EDMs). A random variable 899 

Y that follows an EDM has a probability density function on the form 900 

 







 )(

1
exp),(),;( 


 yyaμyf , 901 

where )('][   YE  is the mean, 0  is the dispersion parameter,   is the canonical 902 

parameter and )(  is the cumulant function (the latter two are both known). The function 903 

),( ya  cannot generally be written in closed form, apart from for some special cases. The 904 

variance is given by )(]var[ VY   where )('')(  V  is the variance function viewed 905 

as a function of the mean μ. The Tweedie family of distributions is a class of EDMs 906 

characterized by the variance function V(μ) having a power relationship to the mean, μ, as 907 

 )(V for )1,0( , where ξ specifies the particular distribution. Special cases include 908 

the Normal (ξ = 0), Poisson (ξ = 1), Gamma (ξ = 2), and Inverse Gaussian (ξ = 3) 909 

distributions [e.g. Dunn and Smyth, 2001; Hasan and Dunn, 2011]. Apart from for these 910 

special cases, numerical methods need to be used for estimating the distribution parameters 911 

[e.g. Dunn and Smyth, 2001; 2008]. Although time consuming compared with parameter 912 

estimation for distributions with explicit analytic forms, the implementation of such methods 913 

in the R package ‘tweedie’ [Dunn, 2015] means that application of the Tweedie distribution 914 

is now a more practicable option. 915 

When the Tweedie parameter ξ has a value between 1 and 2, the distribution describes series 916 

that contain exact zeroes as well as positive continuous data. Dunn [2004] refers to this 917 

particular case as a Poisson-gamma distribution, and explains the underlying assumptions 918 

when applying it to precipitation data as follows. If the number of precipitation events 919 

occurring within a time period is assumed to have a Poisson distribution, and the magnitude 920 

of each event is Gamma distributed, then the total precipitation amount within the time period 921 

can be found as the Poisson sum of the Gamma distributed random variables. This 922 

distribution has also been referred to as a compound Poisson distribution by, for example, 923 

Jørgensen and Paes de Souza [1994] who used it to model total insurance claims costs per 924 
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insured unit (assuming the number of individual claims within the unit to be Poisson 925 

distributed and the cost for each individual claim to be Gamma distributed).  926 

The EDMs are a generalization of (linear) exponential families, and describe the error 927 

distribution of generalized linear models (GLMs) [e.g. Jørgensen, 1987]. Hasan and Dunn 928 

[2011] note that a framework is therefore already in place for fitting GLMs based on the 929 

Tweedie distributions, and for diagnostic testing. Further, it is straight-forward to incorporate 930 

covariates into the modelling procedure. This has been done by, for example, Lorance et al. 931 

[2010] for estimating fish landings per unit effort using generalized additive models with 932 

explanatory variables such as depth, area and year. 933 

 934 

  935 
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Appendix B. Fitting statistical distribution functions 936 

A range of two- and three-parameter probability distributions was investigated, as well as one 937 

four-parameter distribution: the Kappa distribution. The three-parameter distributions 938 

included the Generalized Logistic, Pearson type 3, Generalized Extreme Value (GEV) and 939 

Tweedie, as well as the Kappa distribution with a lower bound at zero imposed (which 940 

reduces it to a three-parameter distribution). The two-parameter distributions included the 941 

Gamma, Lognormal, Normal, Gumbel and Weibull distributions, as well as the Generalized 942 

Logistic distribution with a lower bound at zero (which reduces it to a two-parameter 943 

distribution). The definitions of the probability density functions are given in Stagge et al. 944 

[2015], except for the Tweedie which is described by Dunn and Smyth [2005] and the Kappa 945 

which is described in Hosking and Wallis [1997]. The constraints of a lower bound at zero 946 

were implemented based on the equations for the lower bounds given in Hosking and Wallis 947 

[1997]. It can be noted that the distribution that is referred to as the Generalized Logistic in 948 

the present paper and in Stagge et al. [2015], follow the definition in Hosking and Wallis 949 

[1997]. Others, for example Vicente-Serrano et al. [2010] and Vicente-Serrano and Beguería 950 

[2015], refer to this same distribution as the Log-logistic distribution.  951 

Computationally, the aggregation of the data into durations longer than a month and the 952 

fitting of the distributions to the aggregated series were done using the function fitSCI in the 953 

R package ‘SCI’ (which calls other packages to do the actual fits) [Gudmundsson and Stagge, 954 

2015]. All of the distributions except the Tweedie, the Kappa and the distributions bounded 955 

below at zero are available within the ‘SCI’ package. In order to incorporate these latter 956 

distributions into the ‘SCI’ framework, new start functions for parameter estimates were 957 

written (start.fun in the fitSCI function). For all distributions except the Tweedie, the starting 958 

values for the maximum likelihood estimation of the parameter values were based on L-959 

moments. The initial, complete, set of L-moment-based parameter estimates were obtained 960 

according to Hosking and Wallis [1997], using the samlmu, pelglo and pelkap functions in 961 

the R package ‘lmom’ [Hosking, 2015]. For the constrained distributions, these initial 962 

parameter estimates were then amended to make the distributions conform to having a lower 963 

bound at zero, based on the equations for the lower bounds given in Hosking and Wallis 964 

[1997]. For the Generalized Logistic distribution, the location and scale parameter estimates 965 

were kept, and the shape parameter, k, amended. Similarly, for the Kappa distribution, all L-966 

moment-based parameter estimates except the parameter k were kept, and k was amended.  967 
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For the Tweedie distribution, the start function obtained the parameter estimates by calling 968 

the function tweedie.profile in the R package ‘tweedie’ [Dunn, 2015]. The Tweedie 969 

parameters μ (the mean), ξ (the power) and ϕ (the dispersion) are estimated using maximum 970 

likelihood as described by Dunn [2015] and Dunn and Smyth [2005], using their suggested 971 

order of preference regarding estimation method. When ξ is close to one, the probability 972 

density function becomes multimodal, reflecting that at this limit it is a Poisson distribution 973 

which is discrete [Dunn and Smyth, 2005]. The value of the parameter ξ was therefore 974 

constrained. Dunn [2015] recommends a minimum ξ of 1.2 for data containing zeroes and 1.5 975 

for data without zeroes. The higher limit results in fewer distributions being fitted with mass 976 

at zero (F(0)>0). However, there is a trade-off with the fit of the distributions, as particularly 977 

for longer aggregation durations the distributions become more symmetrical and the optimum 978 

value of ξ decreases towards 1. In the present study ξ ≥1.2 has been used as we found the 979 

values of F(0) in Table 3 acceptable. 980 

If possible, the parameter values for the distributions available in ‘SCI’ are estimated using 981 

maximum likelihood. However, if the maximum likelihood method fails to converge, an 982 

attempt is first made to estimate the parameter values using L-moments, and failing that too, 983 

the method of moments is used. For the bounded distributions and the four-parameter Kappa 984 

distribution, L-moment estimators were used if the maximum likelihood procedure did not 985 

converge. For most distributions, the maximum likelihood procedure failed to converge for 986 

(much) less than one percent of cases. However, for the GEV and the four-parameter Kappa 987 

distribution the failure rates were 2.6% and 3.4% (GEV) and 23% and 40% (Kappa) for 988 

precipitation and river flow data, respectively.  989 

Once the distributions had been fitted, the standardized indices were calculated using the 990 

function transformSCI in the R package ‘SCI’. The function ptweedie in the ‘tweedie’ 991 

package was amended to cope with i) the SCI function transformSCI passing the vector of 992 

quantiles to ptweedie as mode list rather than numeric, and ii) the vector of quantiles 993 

containing missing values. 994 

 995 

  996 
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Tables 997 

 998 

Table 1. Statistical probability distributions investigated. Bold italic font denote distributions with a lower bound at zero. Arrows indicate where 999 

a distribution with fewer parameters is a special case or variant of a more general distribution. 1000 

 1001 

 

4 parameters 

(very flexible) 
 

3 parameters 

(flexible) 
 

2 parameters 

(less flexible) 

     
  Generalized Logistic    → 

Generalised Logistic  

(lower bound imposed) 

     
  Pearson type 3    → Gamma 

     
  

Generalized Extreme 

Value 
   → { 

Weibull 

Gumbel 

     
  Tweedie (→)* Normal 

     
    Lognormal 

     
Kappa4 → 

Kappa3 

(lower bound imposed) 
  

     
* The way the Tweedie distribution is constrained in the present study, it does not include the Normal distribution as an option. 1002 

  1003 
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 1004 

Table 2. Percentage of occurrences for which the normal distribution is rejected at the 5% significance level by the Shapiro-Wilk test for SPI 1005 

and SSI of different aggregation durations, and for all durations together.  Results are lumped together for the 121 catchments and the 12 1006 

calendar end months. Distributions in bold italic font have a lower bound at zero. 1007 

Distribution All SPI SPI 1 SPI 3 SPI 6 SPI 12 All SSI SSI 1 SSI 3 SSI 6 SSI 12 

Gamma 9.9 17.5   6.5   7.0   8.6 19.2 29.5 18.9 12.3 16.0 

Generalized Logistic 1.8   3.7   1.4   1.6   0.6   3.8   9.0   3.7   1.6   0.9 

Pearson type 3 1.2   2.1   0.6   0.9   1.2 10.5 25.9 11.6   3.5   1.0 

GEV 3.5   1.2   1.2   3.9   7.6   4.7   6.6   2.8   3.0   6.4 

Tweedie 2.4   2.1   0.8   2.0   4.8   3.9   5.2   2.5   2.5   5.4 

Kappa3 1.2   1.7   0.9   1.5   0.6   2.2   5.5   1.7   1.0   0.8 

Kappa4 0.7   1.2   0.4   0.8   0.5   1.3   3.1   1.3   0.3   0.3 

 1008 

 1009 

 1010 
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Table 3. Counts of F(0) in different magnitude intervals. If F(0) is large, then a large part of the fitted theoretical distribution occurs for data 1011 

values at or below zero. Results are lumped for the 121 catchments, the four aggregation durations, and the 12 calendar end months.  1012 

  Precipitation Streamflow 

Magnitude of F(0) Lower bound of 

SPI (or SSI) 

corresponding to 

F(0) 
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F(0) ≤ 0.01 SPI ≤ -2.33 5358 5694 5557 5798 5746 5373 5653 5458 5791 5631 

0.01 < F(0) ≤ 0.02 -2.33 < SPI ≤ -2.05   322   100   216     10     40   255   106   248     17     98 

0.02 < F(0) ≤ 0.03 -2.05 < SPI ≤ -1.88   104     13     32       0     15   137     14     70       0     53 

0.03 < F(0) ≤ 0.04 -1.88 < SPI ≤ -1.75     22       1       3       0       6     31       0     20       0     20 

0.04 < F(0) ≤ 0.05 -1.75 < SPI ≤ -1.64       1       0       0       0       0       6       5       4       0       3 

0.05 < F(0) ≤ 0.06 -1.64 < SPI ≤ -1.55       1       0       0       0       0       1       2       2       0       3 

F(0) > 0.06 SPI > -1.55       0       0       0       0       0       5     28       6       0       0 

 1013 

 1014 

  1015 
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Table 4. Correlation between seasonal average p-value from the Shapiro-Wilk goodness-of-fit test and different catchment descriptors, for 121 1016 

catchments. Correlations significant at the 5% level are shown in bold font.  1017 

  1-month streamflow 1-month precipitation 

 Catchment 

descriptor 

Gamma Generalized 

Logistic 

GEV Tweedie Kappa3 Kappa4 Gamma Pearson 

type 3 

Tweedie 

 

Kappa3 Kappa4 

Winter BFIHOST -0.35  0.11 -0.10 -0.05 -0.05 -0.04      

SMDBAR* -0.26 -0.36 -0.56 -0.34 -0.37 -0.24      

SAAR  0.44  0.27  0.45  0.15  0.34  0.35  0.03  0.17  0.03  0.10  0.15 

AREA  0.20  0.01  0.13  0.14 -0.02  0.12 -0.05 -0.03 -0.03 -0.09  0.14 

Summer BFIHOST -0.05  0.46  0.23 -0.05  0.17  0.11      

SMDBAR* -0.35  0.05 -0.14 -0.32 -0.10 -0.43      

SAAR  0.57 -0.31  0.00  0.34  0.06  0.34 -0.23  0.18 -0.11  0.33  0.15 

AREA  0.07 -0.05  0.04  0.10 -0.14  0.12  0.09  0.19  0.17  0.12  0.03 

* SMDBAR is only available for 31 catchments. 1018 
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Figures with captions 1019 

 1020 

 1021 
  1022 

 1023 

Figure 1. Location (a) and size (b) of the 121 study catchments in the UK. Record lengths 1024 

excluding missing data for streamflow (c) and precipitation (d). 1025 

  1026 
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 1027 

Figure 2. Examples of histograms of observed monthly mean precipitation and fitted 1028 

probability density functions for a) Esk at Cropple How (hydrometric number 74007), b) 1029 

Gifford Water at Lennoxlove (20007), c) Leet Water at Coldstream (21023), d) Tweed at 1030 

Boleside (21006), e) Ancholme at Toft Newton (29009), and f) Dun at Hungerford (39028). 1031 

The green circle shows the mass at zero for the fitted Tweedie distribution, which for 1032 

convenience is shown on the same axis as the probability density function although it is a 1033 

dimensionless probability between 0 and 1. 1034 

  1035 
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 1036 

Figure 3. Examples of histograms of observed monthly mean streamflows and fitted 1037 

probability density functions for a) Ruchill Water at Cultybraggan (hydrometric number 1038 

16003), b) Trout Beck at Moor House (25003), c) Falloch at Glen Falloch (85003), d) Beult 1039 

at Stile Bridge (40005), b) Monnow at Grosmont (55029) and c) Ewelme Brook at Ewelme 1040 

(39065). The green circle shows the mass at zero for the fitted Tweedie distribution, which 1041 

for convenience is shown on the same axis as the probability density function although it is a 1042 

dimensionless probability between 0 and 1. 1043 
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 1045 

 Figure 4. P-values for distributions accepted by the Shapiro-Wilk tests of normality for the 1046 

SPI (light grey boxes) and SSI (blue boxes), for all 121 catchments, four aggregation 1047 

durations, and 12 calendar end months lumped together. The box shows the inter-quartile 1048 

range, the whiskers the maximum and minimum values, the thick line the median and the 1049 

black diamond the mean of the p-values.  1050 
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 1052 

 Figure 5. Effect of distribution choice on the calculated SPI and SSI. Example histograms 1053 

and fitted distributions (see Figures 2 and 3 for line types) for a) 6-month mean precipitation, 1054 

and b) 1-month mean streamflow for the Tove at Cappenham Bridge (hydrometric number 1055 

33018), and time series for the c) SPI 1, d) SPI 6 and e) SSI 1 drought indicators.  1056 
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 1058 

Figure 6. Seasonal average p-values for the Shapiro-Wilk goodness-of-fit test for SSI 1 at 1059 

individual catchments, for a selection of distributions. 1060 


