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Abstract-Magnetic induction tomography (MIT) is an imaging 

modality with a wide range of potential applications due to its 

non-contact nature. MIT is a member of the electrical 

tomography family that faces the most difficult imaging 

challenges, due to its demanding measurement accuracy 

requirements and its difficult forward and inverse problems.  This 

paper presents for the first time split Bregman total variation 

(TV) regularization to solve the MIT inverse problem. 

Comparative evaluations are presented between proposed TV 

algorithm and more commonly used Tikhonov regularization 

method. Tikhonov regularization which is based on the 𝒍𝟐 −
𝒏𝒐𝒓𝒎  is solved linearly while TV is solved using the Split 

Bregman formulation, which has been shown to be optimal for 

𝒍𝟏 − 𝒏𝒐𝒓𝒎 regularization. Experimental results are quantified by 

a number of image quality measurements, which show the 

superiority of the proposed TV method both on low conductivity 

and high conductivity MIT data. Significant improvement in MIT 

imaging results will make the proposed TV method a great 

candidate for both types of MIT imaging. 

 

Index Terms-Total variation regularization, Split Bregman, 

magnetic induction tomography, MIT inverse problem, eddy 

current forward problem 

 

 

 

I.  Introduction 
Magnetic induction tomography (MIT) is an emerging new 

tomographic imaging technique, based on the measurement of 

mutual inductances in a coil array, which can be modeled by 

eddy current theories. MIT is able to produce reconstructed 

images of all three passive electromagnetic properties (PEP), 

i.e., permeability, permittivity and conductivity [1][2]. Initially, 

metallic based MIT was developed for molten metal flow 

monitoring [1]. In the past few years, low conductivity MIT has 

been primarily developed for medical imaging applications 

such as imaging brain function or stroke detection [3], and has 

lately being proposed as potential multi-phase flow imaging 

technique. High conductivity MIT has also been widely used in 

industrial applications such as non-destructive testing (NDT) 

for material characterization [4].  

 

Although MIT is capable of imaging all PEP, it usually aims at 

visualizing the conductivity distribution of the object under 
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test, which can be achieved by modeling eddy currents in the 

forward model [5] and then identifying the conductivity 

distribution inverse problem. The inverse problem in MIT is 

severely ill posed, so regularization is needed. Tikhonov 

regularization method, based on solving the least square 

solution, is widely used to solve the inverse MIT problem [6]. 

However, this leads to suboptimal results, with over smoothed 

reconstructed images that show blurred edges and boundaries 

between materials. A better option is to use an 𝑙1 − 𝑛𝑜𝑟𝑚 

regularization, such as total variation (TV) functional, which 

has been shown to improve image quality in MIT and other 

applications, and has received considerable attention in the past 

few years [7][8][9]. However, the TV functional has few 

drawbacks. TV is non-differentiable, which is commonly 

avoided by using an approximation. Smooth approximations of 

TV can have an effect in image quality, blurring sharp edge 

[10]. This effect can be reduced by tuning the parameter that 

controls the approximation of TV, which can lead to slow down 

in convergence. In addition, TV method suffers from low 

contrast recovery [10][11].  

Iterative methods based on the Bregman iteration have been 

proposed as a possible solution to these problems. The use of 

Bregman iterations for TV minimization introduced in [12] 

fixed the low contrast recovery problem of standard TV, by 

providing a sequence of solutions that allows to recover the 

contrast lost by the TV functional and to lead to lower error 

[10]. Furthermore, the split Bregman formulation presented in 

[13] further exploited Bregman iterations to provide an 

efficient method to minimize convex non-differentiable 

functional, like TV. This avoids the need of using smooth 

approximations of TV. In addition, the split Bregman method 

solves a constrained optimization problem, which has been 

shown to outperform the unconstrained TV problem and avoids 

choosing the regularization parameter with the L-curve or 

similar method [14][15]. However, the feasibility of split 

Bregman TV for improving image quality has not been 

assessed for MIT. 

 

In this work, we compare Tikhonov and TV regularization 

methods and evaluate them on experimental MIT data. The TV 

problem is efficiently solved using the Split Bregman 

formulation. Methods are quantitatively evaluated on 

experimental phantoms in both low and high conductivity MIT 

settings. 

 

 

 

II. Methodology 
A. Forward problem 
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To solve the forward problem, the MIT domain is separated 

into two regions: the non-conductive region Ω𝑠 and the eddy 

current region Ω𝑒, (Figure 1), where Ω𝑐 = Ω𝑠 + Ω𝑒 . 

 

 
Figure 1: Domains in MIT forward model 

 

The forward problem is solved using an edge finite element 

method (FEM), with the aid of magnetic vector potential (𝐴) 

[16]. The ( 𝐴, 𝐴 ) formulation, can be obtained from the 

Maxwell’s equations [17]: 

 

∇ ×
1

𝜇
∇ × 𝐴 + 𝑗𝜔𝜎𝐴 =  𝐽𝑠                                   (1) 

 

where 𝐽𝑠  is the source current density, 𝜎  is electrical 

conductivity and 𝜇 is magnetic permeability, and 𝜔  is angular 

frequency. Source current is modeled by Biot-Savart theory 

[18] 

𝐵𝑠 = ∫
𝜇0𝐼

4𝜋|𝑟|3
𝑑𝑙⃗⃗  ⃗ × 𝑟                                     (2) 

 

where 𝑟 is the distance between the current segment 𝑑𝑙 and the 

fixed point, and 𝜇0 represents the free space permeability. By 

introducing electric vector potential 𝑇𝑠, defined as, 

 

𝐽𝑠 = ∇ × 𝑇𝑠                                              (3) 

 

In free space, according to the Ampere’s law, the current 

density 

 𝐽𝑠 = ∇ × 𝐻𝑠                                              (4) 

 

so 𝑇𝑠 can be described by 𝐻𝑠 , and 

 

 𝐻𝑠 = 
1

𝜇0
 𝐵𝑠                                              (5) 

 

the equation (1) is transferred to  

 

∇ ×
1

𝜇
( ∇ × 𝐴) + 𝑗𝑤𝜎𝐴 = ∇ × 𝑇𝑠                      (6) 

 

We discretize equation (6) by applying Galerkin’s formulation 

and introducing basis function 𝑁𝑖 for edge FEM, which leads to 

the Galerkin’s approximation [17,19]. 

 

∫ (∇ × 𝑁𝑖 ∙
1

𝜇
∇ × 𝐴)𝑑𝑣

Ω𝑐

+ ∫ (𝑗𝜔𝜎𝑁𝑖 ∙ 𝐴)𝑑𝑣
Ω𝑐

 

= ∫ (∇ × 𝑁𝑖 ∙ 𝑇𝑠)𝑑𝑣
Ω𝑠

                                         (7) 

 

where 𝑁𝑖 is the linear combination of edge shape functions and 

the right hand side in equation (7) can easily been calculated 

from equation (3), and Ω𝐶  is entire region and Ω𝑆 is the current 

source region (excitation coil).  Then the induced voltage in 

measuring coil can be calculated by using the volume 

integration equation 

 

𝑉𝑚𝑛 = −𝑗𝜔 ∫ (𝐴 ∙ 𝐽0)Ω𝑠
𝑑𝑣                             (8) 

 

where 𝐽0 is the unit current density passing through coil. Due to 

the relationship between induced voltage in the sensing coil and 

conductivity, the element of the Jacobian matrix can be 

expressed by 

𝜕𝑉𝑚𝑛

𝜕𝜎𝑥
= −𝜔2

∫ 𝐴𝑚∙𝐴𝑛Ω𝑥
𝑑𝑣

𝐼
                               (9) 

 

where 𝐴𝑚 is the forward solver of excitation coil 𝑚 excited by 

𝐼 , 𝐴𝑛  is the forward solver of sensor coil excited by unit 

current, 𝜎𝑥 is the conductivity of pixel 𝑥 and Ω𝑥 is the volume 

of the perturbation. 

 

 

B. Inverse problem 
The inverse problem is defined as the retrieval of the unknown 

conductivity 𝜎 from the measured boundary voltage 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 

represented by the nonlinear equation 

 

𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐹(𝜎) + 𝑒                              (10) 

 

where F is the forward operator and 𝑒  is the noise in the 

measurements. In MIT, it is common to linearize this equation 

for difference data [15] 

 

𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐹(𝜎0) = 𝐽(𝜎 − 𝜎0)                          (11) 

 

where 𝐽 is the Jacobian or sensitivity matrix (𝐽 ∈  𝑅𝑚×𝑛), which 

can be obtained from forward problem. Let ∆𝜎 =  𝜎 − 𝜎0 , 

∆𝑣 = 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐹 (𝜎0)  and 𝜎0  be the initial estimate 

conductivity, then equation (9) can be reduced to  

 

∆𝑣 = 𝐽∆𝜎                                             (12) 

 

The conventional method is to solve the least-square problem: 

 

𝑥𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎
1

2
‖𝐽∆𝜎 − ∆𝑣‖2                 (13) 

 

 Tikhonov regularization method 

Since the inverse problem is ill posed, a Tikhonov 

regularization penalty term 𝐺𝑇𝐾 (∆𝜎)  can be added to the 

optimization problem [20] 

 

𝑥𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎(‖𝐽∆𝜎 − ∆𝑣‖2 + 𝐺𝑇𝐾 (∆𝜎))            (14) 

𝐺𝑇𝐾 (∆𝜎) = 𝛾2‖𝑅 (∆𝜎 − ∆𝜎0)‖
2                         (15) 

 

where R is a regularization matrix and 𝛾 is the regularization 

parameter. 

Minimizing this function means that the least square of the 

difference between measured voltage and the estimated voltage 

is minimized while the solution is kept reasonably close to the 

estimated image ∆𝜎0. The equation (14) to be minimized can be 

expanded as follows. 
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𝑥𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎{𝑀(∆𝜎)}                           (16) 

𝑀(∆𝜎) = ∆𝜎𝑇𝐽𝑇𝐽∆𝜎 − 2(∆𝑣)𝑇𝐽∆𝜎 + ∆𝑣𝑇∆𝑣 

 +𝛾2[𝑅 (∆𝜎 − ∆𝜎0)]
𝑇[𝑅 (∆𝜎 − ∆𝜎0)]    (17) 

 

where equation (17) is the cost function. The minimum of cost 

function can be obtained by setting its first derivative equal to 

zero: 

 

𝐽𝑇∆𝑣 − 𝐽𝑇𝐽∆𝜎 − 𝛾2𝑅𝑇𝑅∆𝜎 + 𝛾2𝑅𝑇𝑅∆𝜎0 = 0  (18) 

 

After simplifying equation (18), it can be obtained: 

 

(𝐽𝑇𝐽 + 𝛾2𝑅𝑇𝑅)∆𝜎 = 𝐽𝑇∆𝑣 + 𝛾2𝑅𝑇𝑅∆𝜎0           (19) 

 

The standard Tikhonov method is obtained by replacing R by I, 

the identity matrix, R=I, and assuming ∆𝜎0 = 0, 

 

∆𝜎 = (𝐽𝑇𝐽 + 𝛾2𝐼)−1𝐽𝑇∆𝑣                        (20) 

 

Although standard Tikhonov is widely used for many 

applications, recently a hybrid Tikhonov regularization was 

shown to produce better imaging results [21]. To provide a fair 

comparison with the proposed TV algorithm we chose the most 

advanced hybrid Tikhonov method based on combining 

Laplacian and Tikhonov based regularization terms [21]   

 

∆𝜎 = (𝐽𝑇𝐽 + 𝛾2𝑅1 + 𝜆2𝑅2)
−1𝐽𝑇∆𝑣                       (21) 

 

where 𝑅1 is an Laplacian regularization term, 𝑅2 is an identity 

matrix, and 𝛾 and 𝜆 are the regularization factors for 𝑅1  and 

𝑅2, respectively. The hybrid Tikhonov method has good quality 

in challenging low conductivity MIT data [21]. Here we 

empirically selected the regularization parameters for low 

conductivity and high conductivity reconstruction and used the 

same parameters in all experimental studies. 

 

 Total variation problem solved using the Split Bregman 

formulation 

The total variation problem is defined by adding a penalty term 

to equation (15), the 𝑙1 − 𝑛𝑜𝑟𝑚 of the gradient of the image, or 

the so called, total variation regularization term 𝐺𝑇𝑉 (∆𝜎) 

 

𝐺𝑇𝑉 (∆𝜎) = 𝛼𝑅(∆𝜎) = 𝛼‖∇ ∆𝜎‖1                    (22) 

 

where 𝛼 is the regularization parameter, ∇ is the gradient and 

‖∙‖1 is the 𝑙1 − 𝑛𝑜𝑟𝑚. We used an isotropic version of the TV 

functional as proposed in [13] given by 

 

 ‖∇ ∆𝜎‖1 = ∑ √(∇𝑥∆𝜎)𝑖
2 + (∇𝑦∆𝜎)

𝑖

2
𝑖                        (23) 

 

Then the problem we wish to solve is the constrained 

optimization problem 

 

𝑥𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎𝛼‖∇∆𝜎‖1  
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝐽∆𝜎 − ∆𝑣‖2 < 𝜌            (24) 

 

which can be solved using standard constrained optimization 

algorithms. However, these methods are computationally 

demanding for large-scale problems. In addition, the TV 

functional is not differentiable, which is usually avoided by 

substituting TV by an approximated functional.  

 

TV regularization was applied to metallic MIT in [8][9], so 

further evaluation was needed for low conductivity MIT. 

Additionally, a more efficient approach is to use the Bregman 

iteration, which is an iterative method based on Bregman 

distance [12]. For a given convex function 𝐶 (𝑥), the Bregman 

distance between 𝑥 and 𝑦 can be defined as 

 

𝐷𝐶  (𝑥, 𝑦) = 𝐶 (𝑥) − 𝐶 (𝑦)− < 𝑠, 𝑥 − 𝑦 >                  (25) 

 

where 𝑠  is the subgradient of 𝐶  at 𝑦 , and <,>  denotes the 

scalar product. In this case, we set 𝐶 (𝑥) = 𝛼𝑅 (𝑥) be the total  

variation function and assume that ∆𝜎 is the optimal solution 

and ∆𝜎𝑘 is the iterative solution. Then, the Bregman iterative 

algorithm equivalent to equation (24) can be expressed as 

 

∆𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎 𝐷𝛼𝑅  (∆𝜎, ∆𝜎𝑘) +
𝜆

2
‖𝐽∆𝜎 − ∆𝑣‖2               

  (26) 

 

where the subgradient of the total variation function at the (𝑘 +
1) 𝑡ℎ-iteration is  

 

𝑠𝑘+1 = 𝑠𝑘 − 𝜆𝐽𝑇(𝐽∆𝜎𝑘+1 − ∆𝑣)                       (27) 

 

Equation (26) and (27) are the basic formulation of Bregman 

iterative algorithm, which can be simplified to [15]  

 

∆𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎{ 𝛼𝑅 (∆𝜎) +
𝜆

2
‖𝐽∆𝜎 − (∆𝑣)𝑘‖2}           (28) 

(∆𝑣)𝑘+1 = (∆𝑣)𝑘 + ∆𝑣 − 𝐽∆𝜎𝑘+1                      (29) 

 

Based on the Bregman iterative algorithm, split Bregman 

methods can extend the utility of the Bregman iteration to the 

minimizations of more general 𝑙1 − 𝑛𝑜𝑟𝑚  regularization 

terms. 

Equation (28) can be solved now at each iteration with 

conventional unconstrained optimization algorithms. However, 

the term 𝑅 (∆𝜎) is non-differentiable and difficult to minimize. 

The Split Bregman iteration method is introduced to address 

this. An auxiliary variable 𝑑 can be used to convert equation 

(28) to a constrained optimization problem, easier to solve 

 

(∆𝜎, 𝑑) = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎,𝑑

1

2
‖𝐽∆𝜎 − ∆𝑣𝑘‖2 + 𝛼‖𝑑‖1   

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑑 =  ∇ ∆𝜎                              (30) 

 

To solve this constrained problem, we as above, after applying 

the Bregman iteration method, the equation (30) can be written 

as 

 

(∆𝜎𝑘+1, 𝑑𝑘+1) = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎,𝑑

1

2
‖𝐽∆𝜎 − ∆𝑣𝑘‖2 

+𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∇∆𝜎 − 𝑏𝑑

𝑘‖
2
      (31) 

𝑏𝑑
𝑘+1 = 𝑏𝑑

𝑘 + ∇∆𝜎𝑘+1 − 𝑑𝑘+1                           (32) 
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Then minimizing equation (31) can be achieved by minimizing 

∆𝜎 and 𝑑 separately as following [13, 14]: 

 

 ∆𝜎𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛∆𝜎
1

2
‖𝐽∆𝜎 − ∆𝑣𝑘‖2 

+
𝛽

2
‖𝑑𝑘 − ∇∆𝜎 − 𝑏𝑑

𝑘‖
2

 

 𝑑𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑑𝛼‖𝑑‖1 +
𝛽

2
‖𝑑 − ∇∆𝜎𝑘+1 − 𝑏𝑑

𝑘‖
2
 

 

Solutions to ∆𝜎𝑘+1 and 𝑑𝑘+1 are given by analytic expressions 

that can be efficiently computed [13]. Hence, the split Bregman 

method provides a sequence of solutions (∆𝜎𝑘+1,𝑑𝑘+1) that 

converges to the solution of the constrained optimization 

problem (24). One of the benefits of the split Bregman 

formulation is that it does not require explicit calculation of the 

derivatives of the TV functional, which must be otherwise 

approximated because of the no differentiability of the TV 

functional. These approximations used by more standard 

approaches are generally non optimal and lead to slow 

convergence.   

 

 

C. Experimental setup 
Experimental data were acquired from two different MIT 

systems. MIT system comprises the measuring subsystem, 

conditioning electronics part, data acquisition & processing 

subsystem, and the computer used to reconstruct and process 

the images. Though there are some different types of MIT 

systems, the characteristics of their components are nearly the 

same to some degree. The measuring subsystem includes an 

array of coils placed around the measuring space. The size, 

number and position of the coils vary in different MIT systems. 

The conditioning electronics consist of amplification circuit, 

precision rectifier and low pass filtering. During the 

experimental process, two sets of measurement are acquired, 

background data ( 𝐵 ) and the measuring data ( 𝐵 + ∆𝐵 ). 

Background data, considered as reference data, are obtained 

without any object in the measuring space, while measuring 

data are captured with the target in the measuring space. After 

recording these two datasets, the difference between them 

produces the information of the perturbation signal (∆𝐵). In this 

experimental study, two types of MIT system have been used. 

 

 Low conductivity MIT system 

The MIT system described in this section is the Bath MK-III 

system (see Figure 2), designed for low conductivity sample 

imaging. It consists of the following components, 

 A signal generator 

 A National Instrument based data acquisition system (NI 

PXle-1073) 

 A sensor array containing 16 air-core inductive and 

metallic shields, the diameter of the tank is 23cm. 

 A host computer 

 

 
Figure 2: Bath MK-III magnetic induction tomography system 

 

The working frequency of this system is selected to be 13MHz 

and the LabView program is used to control the signal 

generator and to achieve the data acquisition/ channel 

switching tasks [22]. The channel-switching card NI2593 was 

employed in our system to accomplish the 2 × 8: 1 multiplexer 

scheme, and thus 8 coils were dedicated to transmitters while 

the other 8 coils were dedicated to receivers. So the data 

collection pattern of this system is as following: Tx1-Rx2, 

Tx1-Rx3, …Tx1-Rx7, Tx2-Rx3, Tx2-Rx4, …Tx2-Rx8, …and 

Tx8-Rx6, which can provide 8 × (8 − 2) = 48 measurements.  

Then the image reconstruction system extracts those 

independent measurements to LabView and Matlab program to 

display the reconstructed images. 

 

 High conductivity MIT system 

The Bath MK-II system (Figure 3) consists of the following 

components:  

 A signal generator 

 A National Instrument based data acquisition system (NI 

USB-6259) 

 A channel switching board 

 A sensor array containing several inductive coils  

 A host computer 

 

 
Figure 3: Bath MK-II magnetic induction tomography systems 

 

The channel switching process can be accomplished by the 

ADG406 multiplexers, which is a 16:1, monolithic CMOS 

analogue multiplexer, and thus when the first coil is set as the 

transmitting coil, the rest of the coils are reading the 

measurements sequentially. For a MIT system with a 𝑛 number 

of coils, the unique coil pairs are 1-2,1-3,1- 𝑛…2-3,2-(𝑛 −
1)…(𝑛 − 1)- 𝑛. The data collection pattern can be described as 

the following sequence: exciting coil 1 as the first cycle and 

measuring voltage from the other coils (2 to 𝑛 − 1); exciting 

coil 2 as the second cycle, and measuring the voltage from coil 

3 to coil 𝑛 − 1, and so on and so forth. This provides 𝑚 =
𝑛 (𝑛 − 1)/2 independent measurements, which are imported 
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into the image reconstruction. In the case of 8-channel system, 

there are 
8×7

2
= 28 measurements. 

 

 

D. Data sets 
Seven experimental datasets were acquired with low 

conductivity and high conductivity MIT systems. Four sets of 

experimental tests were carried out for low conductivity MIT 

system in Figure 2 at a frequency of 13𝑀𝐻𝑧. The other three 

sets of experimental tests were carried out for high conductivity 

MIT system in Figure 3 by setting amplitude to 15𝑉𝑝−𝑝 and 

frequency to 100𝑘𝐻𝑧 . Free space measurements data were 

selected to be the background data.  

All datasets were reconstructed using both Tikhonov and total 

variation regularization methods.  

 

 

 

 

 

III. Results 
A large number of experimental data was used to evaluate these 

two algorithms. These experiments are numbered from  

L1-L28, which will be used in image analysis in section (V). 

 

A. Low conductivity MIT  
 Test 1 in low conductivity MIT   

The experimental setup can be seen in Figure 4. The 

conductivity of background is 1.58 𝑆 𝑚⁄  and the samples tested 

were four insulating inclusion bottles, with diameters of 2, 6.5, 

9.5 and 13 cm. 

 

  
(a) Four different sizes of 

inclusion 
(b) Displacement of 

inclusion 

Figure 4: The real experimental setup. 

 

Table1 and Table2 show the images reconstructed by Tikhonov 

regularization and Total variation regularization algorithms. 

Reconstructed images are shown for bottles with 2, 6.5, 9.5 and 

13 cm diameter (in row) and for different positions of the bottle 

(in column). 

 

Table 1. Reconstructed images of different sizes samples in 

position 1 and position 2 
Diameter Algorithm Position 1  (L1-L4) Position 2(L5-L8) 

2 cm Tikh. 
 

  

 

TV 
 

 
 

 

 

6.5 cm Tikh. 
 

  

 

TV 
 

 
 
 

 

 
9.5 cm Tikh. 

 

  

 

TV 
 

  

 

13 cm Tikh. 
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TV 
 

  

 
 

 

Table 2. Reconstructed images of different sizes samples in 

position 3 and position 4 
Diameter Algorithm Position 3(L9-L12) Position 4(L13-L16) 

2 cm Tikh. 
 

  

 
TV 
 

  

 
6.5 cm Tikh. 

 

  

 
TV 
 

  

 
9.5 cm Tikh. 

 

  

 
TV 
 

  

 

13 cm Tikh. 
 

  

 
TV 
 

  

 
 

 

 Test 2 in low conductivity MIT  

The experimental setup can be seen in Figure 5. The samples 

tested were two bottles of 0.9% saline water in two different 

positions, while the background was free space or tap water. 

The conductivity of 0.9% saline water samples is 1.58 𝑆 𝑚⁄  and 

the conductivity of this tap water background is 0.06 𝑆 𝑚⁄ . 

 

  
(a) Background-free space (b) Background- tap water 

Figure 5: The real experimental setup. 

 

Table 3 and 4 show separately the reconstructed images 

obtained when the background is free space and tap water. The 

images show reconstructions by Tikhonov regularization and 

Total variation regularization method for first inclusion, second 

inclusion and both inclusions together. 

 

Table 3. Reconstructed images of two bottles saline water in 

free space background 

 Sample1 (L17) Sample2 (L18) Sample 1+2 (L19) 

Tikh. 
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TV 
 

   

 
 

 

Table 4. Reconstructed images of two bottles saline water in 

tap water background 

 Sample1 (L20) Sample2 (L21) Sample 1+2 (L22) 

Tikh.  
 

   

 
TV 
 

   

 
 

 

 Test 3 in low conductivity MIT   

The experimental setup can be seen in Figure 6. The 

background was 3% saline water and the samples were three 

bottles of different sizes with inclusion of 0.9% saline water.  

 

  
Figure 6: Experimental 

setup in Test 3. 
Figure 7: Experimental 

setup in Test 4. 

 

Table 5 shows the reconstruction images for Tikhonov 

regularization and Total variation regularization method for 

small, medium and large size of inclusion. 

 

Table 5. Reconstructed images of three different sizes samples 

in 0.9% saline water background 

 Small size  (L23) Medium size (L24) Large size  (L25) 

Tikh.  
 

   

 
TV 
 

   

 
 

 Test 4 in low conductivity MIT  

The experimental setup can be seen in Figure 7. The samples 

tested were two bottles of silicon oil working as non-conductive 

inclusions and 5% saline water considered as conductive 

background.  

Table 6 shows the reconstruction images obtained by Tikhonov 

regularization and Total variation regularization methods, 

where columns correspond to one silicon oil inclusions, silicon 

oil inclusion at a different position and two silicon oils 

inclusions together. 

 

Table 6.Reconstructed images of two bottles of silicon oil in 

 5% saline water background 

 Sample 1 (L26) Sample 2 (L27) Sample 1+2 (L28) 

Tikh. 

   

 

TV 
 

   

 

 

 

B. High conductivity MIT  
High conductivity MIT experiments involves 9 experiments  

(we call them H1-H9), which includes various positioning of 

metallic sample (s). 

 Test 5 in high conductivity MIT 

The sample tested in Test 5 was a rectangular aluminum object, 

and the experimental setup is shown in Figure 8. 
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(a) Real conductive 

distribution in position 1 
(b) Rectangular aluminium 

sample in position 1 or 2 
Figure 8. Experimental setup. 

 
Table 7 shows the images reconstructed using Tikhonov and 

Total variation regularization methods for two positions of the 

steel sample. 

 

Table 7. Reconstructed images of a rectangular aluminum 

sample in position 1 and position 2 

 Position 1  (H1) Position 2 (H2) 

Tikh. 

  

 

TV 
 

  

 
 

 

 Test 6 in high conductivity MIT 

Test 6 is a circular aluminum sample placed in four different 

positions and the experimental setup is shown in Figure 9.  

 

  
(a) Real conductive 

distribution in position 1 
(b) Circular aluminum 

sample in position 1,2,3,4 
Figure 9. Experimental setup. 

 
Table 8 shows the reconstruction images obtained by this test. 

The images correspond to reconstructions by Tikhonov and 

Total variation regularization algorithm for four different 

positions of the sample.  

 

Table 8. The images of a circular aluminum sample in four 

different positions 

 Position 1 (H3) Position 2 (H4) 

Tikh. 

  

 

TV 
 

  

 

 Position 3 (H5) Position 4 (H6) 
Tikh. 

  

 
TV 
 

  

 

 

 
 Test 7 in high conductivity MIT  

Test 7 used two circular aluminum samples placed in different 

positions separately (shown in Figure10).  

  
(a) Real conductive 

distribution 
(b) Two samples in 

different positions 

separately 

Figure 10. Experimental setup. 
 

Table 9 shows the reconstructed images obtained after this test 

by Tikhonov and Total variation regularization algorithms, for 

two circular aluminum samples in different positions 

separately. 
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Table 9. Reconstructed images of two circular aluminum 

samples in different positions 

 Position 3& 7 (H7) Position 2 & 7(H8) Position 2 & 6(H9) 

Tikh. 
 

   

 
TV 
 

   

 

 

 

IV. Result analysis and discussions 
It can be seen from imaging results of both low conductivity 

and high conductivity samples that TV can produce higher 

quality images. To further demonstrate this, the image quality 

measures are used to quantitatively show comparison between 

TV and Tikhonov based algorithms. In this case shape 

deformation (SD), resolution (RES) and amplitude ration (AR) 

was selected from GREIT image quality parameters [23]. SD 

shows part of reconstructed images (after some theresholding) 

that does not fit in a circular shape. For higher quality 

reconstruction SD should be low and uniform for the same 

sample size and shape.  Resolution (RES) measures the size of 

reconstructed inclusion as a fraction of size of entire imaging 

region; this is equivalent to a measure of point spread function 

(PSF) size. RES should be uniform and small, in order to more 

accurately represent shape of the inclusion based on their 

conductivity values. AR measures the ratio of image pixel 

amplitudes in the inclusion area to that in the reconstructed 

image. A uniform and smaller AR is a measure of higher 

quality image. GREIT parameters are widely used for image 

quantification and quality measures, we refer to [23] for more 

detailed descriptions. Figure 11 show SD, RES, and AR, for 

low conductivity experiments from L1-L28. Apart from very 

few points in SD, the TV are universally outperforms the 

Tikhonov algorithm in terms of all image quality measures.  

The fact that the neighboring measurements were excluded in 

low conductivity MIT system, this sometimes create some 

deformation in shape of inclusions as this act as missing data 

MIT, this is perhaps responsible for larger numbers for SD, and 

size dependent SD in both algorithms. 

Figure. 12 show SD, RES and AR for 8 experiments in high 

conductivity objects. Apart from SD for experiment H9, in all 

other examples the TV shows better performance compared to 

standard Tikhonov method. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. Figures of merit for experiments L1-L28 in metallic 

sample(s) 

 
(a) 

 
(b) 
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(c) 

Figure 12. Figures of merit for experiments H1-H9 in metallic 

sample(s) 

 

The total variation method produced reconstructed images with 

improved quality for both low conductivity and high 

conductivity MIT systems. As it can be seen from the results, 

the differences in the dimension and position of the objects 

cannot be distinguished from the reconstructed images obtained 

by Tikhonov regularization method but total variation lead to 

improved recovery of the size and shape of the target and in 

particular sharper boundaries between different conductivity 

regions.  

Previous work for MIT has used Tikhonov method for 

conductivity flow imaging [21], which evaluated several saline 

solutions with different dimensions/conductivity values in a 

low conductivity MIT system. The results presented in [21] 

showed that the reconstructed images are smooth enough but in 

the case of testing two or more objects simultaneously, the 

reconstruction could not reliably recover conductivity contrasts 

and imaging resolution. However, according to our 

experimental results, total variation method improved 

conductivity contrast in all these images. Moreover, in this 

work, we have proposed and validate the use of the split 

Bregman method for minimizing the TV problem in MIT and 

have compared it to commonly used Tikhonov method. 

Previous studies have shown that Bregman iteration methods 

for TV correct some of the deficiencies of standard TV and lead 

to improve results [10][13][14]. A comparison between 

different types of TV and Bregman-based TV methods in MIT 

will be considered in further work. This paper comprehensively 

demonstrate the advantage of TV method against commonly 

used method. 

It is common practice in MIT to use linear for experimental 

difference data, which is more robust and less sensitive to the 

effect of modeling error and noise in measured data. The 

proposed been validated using experimental data covering a 

wide range of scenarios, with different size and location of 

inclusions. However, the validation has focused on 2D, so 

further studies need to be done to address the 3D inverse 

problem. Besides, due to the nature of eddy currents, the MIT 

forward problem is a large-scale problem, which will increase 

the demand of computational resources. Extension to nonlinear 

with experimental data and absolute imaging is still remaining a 

challenging, partly due to lack of good experimental data and 

matching with the forward models.   

Overall, image quality parameters show consistency good 

performances in both low and high conductivity case, but as 

expected metallic MIT tests shows more robust imaging results. 

Some experiments in low conductivity case present more 

challenges dues to low conductivity contrasts between 

background and inclusions.  In these cases TV performed well 

enough to recover images that not recovered well by Tikhonov 

algorithm.  

 

 

V. Conclusion 
A TV method based on the Split Bregman formulation, is 

presented and validated experimental MIT data. Quantitative 

image quality analysis shows significant improvement of image 

qualities by using proposed TV algorithm. In experimental 

work presented here the total variation algorithm produced high 

quality images, making it a suitable candidate for image 

reconstruction in both metallic imaging and low conductivity 

MIT imaging. It is anticipated that the high quality images that 

can be obtained using TV algorithm and its robustness against 

image reconstruction parameters, can help stimulate new 

applications for MIT in both industrial tomography and 

medical imaging. 
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