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Abstract 26 

Modular hip implants are at risk of fretting-induced postoperative complications most likely 27 

initiated by micromotion between adjacent implant components. A stable fixation between 28 

ball head and stem-neck taper is critical to avoid excessive interface motions. Therefore, the 29 

aim of this study was to identify the effect of trunnion roughness and length on the modular 30 

taper strength under typical intraoperative assembly forces.  31 

Custom-made Titanium trunnions (standard/mini taper, smooth/grooved surface finish) were 32 

assembled with modular Cobalt-chromium heads by impaction with peak forces ranging from 33 

2 kN to 6 kN. After each assembly process these were disassembled with a materials testing 34 

machine to detect the pull-off force as a measure for the taper strength. 35 

As expected, the pull-off forces increased with rising peak assembly force (p<0.001). For low 36 

and moderate assembly forces, smooth standard tapers offered higher pull-off forces com-37 

pared to grooved tapers (p<0.038). In the case of an assembly force of 2 kN, mini tapers 38 

showed a higher taper strength than standard ones (p=0.037). 39 

The results of this study showed that smooth tapers provided a higher strength for taper junc-40 

tions. This higher taper strength may reduce the risk of fretting-related complications espe-41 

cially in the most common range of intraoperative assembly forces. 42 

 43 

199 words (max. 200 words) 44 

45 
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1. Introduction 46 

Modular hip prostheses are commonly used in operation routines of total hip replacements 47 

and offer at least one conical taper junction connecting the femoral stem-neck with the ball 48 

head. This concept was established in the 1970s to allow surgeons more flexibility in the 49 

choice of head material and diameters, and head-stem offsets for a more individualised ana-50 

tomical reconstruction of the patient’s hip joint [1] while retaining the femoral stem and to 51 

substantially reduce the inventory [2]. It was assumed that due to an optimized positioning of 52 

the artificial joint the revision rates could be decreased. However, the latest clinical data do 53 

not reflect the desired positive effects [3–6] with revision rates of up to 86 % for a double-54 

tapered modular hip prosthesis after a follow-up time of less than five years [4]. In recent 55 

years concerns have arisen regarding fretting [7,8], wear [9,10] and corrosion at modular taper 56 

junctions [8,9,11–15] further increasing the number of revision surgeries [5,8,9,12,16]. The 57 

resulting postoperative complications include, but are not limited to, pain [7,13,17], soft tissue 58 

damage [7,11], the formation of pseudotumours [7,15,18,19] and osteolysis [20,21] and are 59 

frequently associated with high metal ion levels in the blood and/ or urine [15,22–24]. Despite 60 

the fact that the precise failure mechanism at taper interfaces is not yet completely elucidated, 61 

it is undisputed that micromotion between the adjacent implant components plays a role for 62 

this clinical concern [9,25–28]. Previous experimental [28–33] and numerical studies [34,35] 63 

have evaluated micromotion at taper interfaces: the documented values report a large range 64 

from a few microns to more than 40 µm indicating that several factors such as, the prosthesis 65 

geometry, manufacturing tolerances of the taper, the location of the taper connection (head-66 

stem or stem-neck), taper surface topography and the assembly conditions may influence the 67 

micromotion levels [28–32,35]. These may be linked to changes in the location and size of the 68 

taper contact area [36] and the assembly force. Taper junctions are exposed to high bending 69 

and torsional loads during daily activities supporting the occurrence of micromotion. These 70 
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can provoke mechanical, as well as electrochemical initiated, processes in the fluid environ-71 

ment of the hip joint leading firstly, to fretting [27,37,38] and mechanically assisted crevice 72 

corrosion [9,14,16,39] and secondly, to a cascade of adverse local tissue responses [5,13,40] 73 

in the form of pseudotumours [18,19,39,15], allergic reactions and middle to high grade tissue 74 

damage [11,15]. The material susceptibility to fretting and corrosion seems to be an important 75 

factor in the failure mechanism as well. However, no consistent consensus currently exists 76 

either for similar or for mixed material couplings [16,25,27,37,38]. Fretting-induced postop-77 

erative complications were first reported in significant numbers for large diameter metal-on-78 

metal hip joint articulations [11,41–43] and these device designs appear to negatively enhance 79 

taper issues due to higher friction moments at the interface especially in case of low lubrica-80 

tion [44]. Besides fretting-induced complications, an insufficient taper strength caused, for 81 

example, by an inadequate intraoperative assembly, may also provoke a loosening of the taper 82 

connection [11]. Cases of disassembly of the ball head after dislocation [45,46] or during 83 

closed reduction of a dislocated femoral component [47,48] have also been observed in clini-84 

cal applications. 85 

The current state-of-the-art implies that a firm and permanent fixation of the implant compo-86 

nents is critical to minimize postoperative issues [10,16,25,49,50]. Although this fact is well 87 

known, explicit guidelines to assemble the implant components are currently rarely available 88 

in manufacturer’s operative procedure guidelines [51–53]. Moreover, those handling instruc-89 

tions, for example, describing the procedure to assemble a ball head onto a stem taper, are 90 

kept very vague [51–53]. It is hypothesised that design-, implantation- and surgeon specific 91 

parameters may influence the risk of excessive interface motions and subsequently fretting 92 

and corrosion due to inadequate assembly and fixation of these modular implants. 93 

Therefore, the aim of this study was to determine the effect of taper surface roughness and 94 

length on the stem-head taper junction strength under typical intraoperative assembly forces. 95 
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2. Materials and methods 96 

2.1. Materials, profilometry and assembly 97 

Three groups of titanium custom-made trunnions (Figure 1A, Ti6Al4V alloy, ASTM F136, in 98 

total n = 15, Corin Group PLC, Cirencester, UK) with a 12/14 conical taper connection, dif-99 

ferent taper lengths and surface finishes were used for mechanical testing: smooth, standard 100 

tapers (Group 1) vs. grooved, standard tapers (Group 2) vs. grooved, mini tapers (Group 3). 101 

The taper length of the mini tapers was approximately 6.5 mm shorter compared to the stand-102 

ard tapers (14.5 mm) while retaining the taper size (maximum cone diameter 14 mm). Prior to 103 

the assembly, the taper surfaces were cleaned with ethanol to remove any potential surface 104 

contamination and the profile of the stem tapers’ outer surface was scanned with a contact-105 

less, high-resolution, three-dimensional measurement instrument (ProScan2000 Surface Pro-106 

filometer, Scantron Industrial Products Ltd, Taunton, UK). Two different surface areas were 107 

scanned per test sample with a scan area of 1 mm2 and a step size of 0.002 mm in both direc-108 

tions each. Based on the scans, the average roughness values Rz and Ra were determined for 109 

each trunnion. Additionally, the taper interface of the ball heads and trunnions were helically 110 

scanned with a coordinate measuring machine using a ruby stylus for digitisation of the ge-111 

ometry (Incise, Renishaw, Gloucestershire, UK, Figure 1B and C). The surface profiling was 112 

primarily used to determine the taper angles and to estimate the location of the press-fit and 113 

the contact area (Figure 1B and C). The data sets were analysed using a custom script 114 

(MATLAB R2011b; MathWorks, Natick, MA, USA). The centre of mass for each helix was 115 

determined allowing the identification of the taper axis that was used as a basis for a subse-116 

quent best-fit algorithm. Due to a very robust algorithm, the proximal plane of the trunnions’ 117 

and the ball heads’ plane at the open end, respectively, did not have to be aligned absolutely 118 

horizontally during scanning, an angle deviation of up to 3° was acceptable. Based on the 119 

outcome of this analysis, the taper angle difference, defined as the angle of the head subtract-120 
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ed by the angle of the trunnion, was calculated (Figure 1B). The components were then as-121 

sembled at ambient environmental conditions with a 28 mm cobalt-chromium ball head (LC-122 

CoCr29Mo alloy, ASTM F1537, size L) by an impaction using a previously described cus-123 

tom-made drop-rig [54] to mimic the intraoperative procedure. The drop tower consisted of 124 

two vertical sliders guiding a horizontal beam with a drop weight attached (total mass 2.4 kg). 125 

The drop weight was capped with a nylon disc to reduce the risk of multiple impactions due 126 

to a rebound effect. The drop rig was pre-calibrated in order to identify the relationship be-127 

tween drop height and peak assembly force. Based on the simulated peak assembly force the 128 

drop height ranged between 22 mm and around 60 mm. Each trunnion-head pair was consecu-129 

tively assembled along the taper axis with different peak forces ranging from 2 kN to 6 kN 130 

(sequence of assembly: F1 = 2 kN, F2 = 2 kN, F3 = 4 kN, F4 = 2 kN, F5 = 6 kN, F6 = 2 kN). 131 

The assembly forces were chosen in alignment with typical intraoperative forces [55,56].  132 

 133 

2.2. Disassembly and statistics 134 

After each assembly process the implant components were disassembled using a materials 135 

testing machine (Series 5965, Instron, Norwood, MA, USA) to measure the pull-off force as 136 

an indicator for the taper strength (Figure 2). The trunnions were rigidly attached to the test-137 

ing machine base and almost the complete ball head was enclosed by a second fixture that 138 

was directly coupled to the materials testing machine’s actuator and the axial load cell (Figure 139 

2). According to ISO 7206-10: 2003 the pull-off tests were performed at a stroke rate of 140 

0.008 mm/s with a data acquisition rate of 10 Hz. In order to ensure that the pull-off forces 141 

were not influenced by the consecutive test protocol, the results of all of the 2 kN tests were 142 

statistically compared. The average pull-off force for each sample at a load level of 2 kN (F1, 143 

F2, F4, F6) was calculated and then used for the following analyses to keep the sample size for 144 

the assembly load levels constant (n = 15).  145 
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For statistical analyses non-parametric and parametric tests with a type-I-error probability of 146 

α = 0.05 were performed (SPSS Statistics 20, Munich, Germany). For further correlation 147 

analyses, the pull-off forces were z-standardized leading to a variable’s mean of zero and a 148 

standard deviation of one. Correlations between two metric variables were assessed using 149 

linear regression. 150 

 151 

3. Results 152 

3.1. Profilometry & taper angles 153 

The trunnion surface showed a regular shaped pattern similar to a wave profile with a groove 154 

depth of approximately 15.5 µm (grooved)/ 7.5 µm (smooth) and a groove spacing of around 155 

300 µm (grooved) and 150 µm (smooth), respectively (Figure 3). Independent of the taper 156 

length, grooved tapers had significantly higher roughness values in terms of both Rz 157 

(16.76 ± 0.57 µm vs. 7.97 ± 1.45 µm, p = 0.001, Mann-Whitney U) and Ra (4.14 ± 0.54 µm 158 

vs. 2.92 ± 0.44 µm, p = 0.003, Mann-Whitney U) in z-axis than those with a smooth surface 159 

finish (Figure 3). The ball heads exhibited on average a taper angle of 5.67 ± 0.05° leading to 160 

a mean taper angle mismatch for standard trunnions of 0.10 ± 0.05°. Since both, the standard 161 

and the mini tapers, exhibited a 12/14 taper connection, the taper angles of the mini tapers 162 

were larger compared to the standard tapers resulting in a taper angle mismatch of approxi-163 

mately zero (- 0.03 ± 0.02°). 164 

 165 

3.2. Pull-off forces 166 

For all of the performed mechanical tests, the consecutive testing of the implant components 167 

did not influence the pull-off forces at the trunnion-head interface (0.216 ≤ p ≤ 0.922, Krus-168 

kal-Wallis / one way ANOVA). Overall, independent of the taper length and the surface fin-169 

ish, the recorded pull-off forces were on average 24.9 % (± 9.3%) of the assembly force. For 170 
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both surface modifications, the pull-off force of standard tapers increased significantly with 171 

rising peak assembly force (Group 1 & 2, 2 kN: 0.549 ± 0.084 kN vs. 4 kN: 0.954 ± 0.101 kN 172 

vs. 6 kN: 1.436 ± 0.145 kN, p < 0.001, two way ANOVA, Figure 4). For assembly forces of 4 173 

kN or less, standard stem tapers with a smooth surface finish had significantly higher pull-off 174 

forces compared to those with a grooved surface (Group 1 & 2, 0.820 ± 0.239 kN vs. 175 

0.684 ± 0.202 kN, p < 0.001, two way ANOVA, Figure 4). Following a 6 kN impaction, no 176 

influence of the surface finish on the pull-off force was detected (Group 1 & 2, 177 

1.435 ± 0.145 kN, p = 0.426, one way ANOVA, Figure 4). Similar to the standard tapers, a 178 

positive correlation between assembly and pull-off force was also determined for the mini 179 

tapers (Group 3, linear regression, adj. R2 = 0.804, p < 0.001). Only in case of an assembly 180 

force of 2 kN, grooved mini tapers exhibited a significantly higher taper strength compared to 181 

grooved standard tapers (Group 2 & 3, 0.630 ± 0.113 kN vs. 0.497 ± 0.041 kN, p = 0.037). 182 

However, with rising assembly force this effect became smaller and smaller: at 4 kN still a 183 

trend was observed (Group 2 & 3, p = 0.065, Welch Test) whereas for the highest assembly 184 

force of 6 kN no effect could be found anymore (Group 2 & 3, p = 0.266, one way ANOVA, 185 

Figure 4). Independent of the assembly force, for the standard tapers a significant influence of 186 

the taper angle mismatch on the taper junction strength was not observed (Group 1 & 2, 187 

0.403 ≤ p ≤ 0.990, linear regression). In contrast, the pull-off forces of the mini tapers tended 188 

to increase with decreasing angular mismatch in the assessed range of -0.05° to -0.01° for all 189 

assembly forces (Group 3, 0.022 ≤ p ≤ 0.093, linear regression). Z-standardized pull-off forc-190 

es of mini tapers showed a significant negative correlation with the taper angle difference 191 

(Group 3, adj. R2 = 0.718; p < 0.001, Figure 5). 192 

 193 

  194 
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4. Discussion 195 

Fretting-induced postoperative complications of modular hip prostheses have become a seri-196 

ous problem in total hip arthroplasty [57]. Micromotion between adjacent implant compo-197 

nents appears to be critical for this clinical concern [9,25–28]. In combination with fluid in-198 

gress into crevices resulting from angular differences of adjacent implant components or an 199 

insufficient taper fixation, this may lead to fretting and/ or corrosion [9,16,27,37–39,15], dra-200 

matically limiting the functional life of a hip replacement [3–6,28]. Additionally, misalign-201 

ments and even a complete disassembly of a prosthesis component can be caused under ad-202 

verse circumstances by an insufficient taper strength [45–48]. Although these clinical prob-203 

lems are well documented, no explicit instructional guidelines to assemble the implant com-204 

ponents are provided for most of the implants available on the market. Since the importance 205 

of a stable, rigid connection of taper junctions has been identified [10,16,25,49], this experi-206 

mental study focused on the impact of trunnion roughness and length on the taper junction’s 207 

strength under typical intraoperative assembly forces.  208 

In the presented study only one taper design with a 12/14 taper was assessed with one specific 209 

material coupling (Ti - CoCr). This fact may limit the transferability of the results to other 210 

designs and/or material combinations. Due to differences in the taper geometry of cobalt-211 

chromium and ceramic ball heads, it is expected that the location of the press-fit, the size of 212 

the contact area and the prevalent contact pressure will be different for the two materials. The 213 

taper angle of ceramic ball heads is usually higher compared to metal heads suggesting that 214 

the press-fit area is located nearer to the closed end of the taper connection. Therefore, a gen-215 

eral statement on the effect of the assessed influencing parameters cannot be easily drawn 216 

without any further investigations. For the assembly process a custom-made drop tower was 217 

used which utilised a plastic cap at the impactor’s end. This scenario does not represent the 218 

clinical situation in which the implant components were usually assembled by one or more 219 



  Page 10/ 21 

metal hammer blows. Due to the plastic end cap, the applied kinetic energy was reduced 220 

compared to a metal-on-metal blow as a consequence of a damping effect. This study is fur-221 

thermore limited by assessing the surface topography of the trunnions only, as the profilome-222 

ter measurements of the head female tapers could not be made because of the nature of the 223 

profilometer used in this study. The initial contact situation at the stem-head taper directly 224 

after assembly was evaluated, rather than the assessment of changes in taper strength due to 225 

any subsequent dynamic loading that may mimic the usual daily activity of a patient. Thus, 226 

due to this lack of dynamic loading, potential interface micromotions were not recorded.  227 

The surface topography of the tapers used in this experimental study was comparable to 228 

threaded taper designs available on the market [17,58]; they offered a repetitive distinct sur-229 

face pattern with a specific groove height and spacing between two adjacent threads. The 230 

rough tapers showed an average maximum profile height (Rz) comparable to the Profemur 231 

(Wright Medical), Synergy (Smith and Nephew), Summit and Corail (DePuy Synthes) pros-232 

thesis with values between 16.02 µm and 17.38 µm, however, their average roughness (Ra) 233 

was lower (4.14 µm vs. 2.23 - 3.35 µm) [58]. The groove depth of the clinically used threaded 234 

designs is smaller compared to the rough tapers (7.24 - 13.49 µm vs. ≈ 15.5 µm) [58]. The 235 

roughness value Ra of the smooth tapers was comparable to the clinically used ones named 236 

before as well as to the Trilock and Silent stem tapers (DePuy Synthes, 2.09 - 2.83 µm vs. 237 

2.92 ± 0.44), whereas, Rz conformed to the Secure-fit Max threaded design (Stryker, 238 

7.23 µm) and the non-threaded designs ABG II (Stryker), Taper-lock (Zimmer), Accolade 239 

(Stryker) and SROM (DePuy Synthes, 6.1 - 7.5 µm) [58]. It should be noted, that the test 240 

method used to determine the surface topography of the tapers deviated from the one applied 241 

by Munir et al. [58]. In the present study only 2D characteristics were assessed, whereas Mu-242 

nir et al. used an interference microscope and a post-processing step to determine 3D topo-243 

graphical surface features as well.  244 
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This experimental study clearly demonstrated that the taper length and the surface roughness 245 

can significantly influence the taper junction strength predominantly in the most common 246 

range of intraoperative assembly forces. As expected and in agreement with other studies, the 247 

pull-off forces increased significantly with rising peak assembly force [50,59–62]. A doubling 248 

of the assembly force resulted in a 1.7 times higher pull-off force whereas a tripling gave rise 249 

to a 2.6-fold increase of the taper strength. Rehmer et al., MacLeod et al. and Ihesiulor et al. 250 

found a significant higher mean pull-off force/ assembly force ratio (25% vs. 33 - 67%) com-251 

pared to this study [50,61,63]: possible reasons may be differences in the topography and 252 

roughness of the taper surfaces, the taper length and head size  leading to discrepancies in the 253 

location of the interlock and the contact force. Additionally, varying assembly procedures 254 

(dynamic vs. static) and rigs, disassembly test speeds as well as different material combina-255 

tions may also have played a role [50,61,63]. The prosthesis design also affects the taper junc-256 

tion strength and its variability substantially [59]. The taper angle mismatch is suspected to be 257 

of considerable importance as well [60]. A correlation between head size and taper strength 258 

has already been found [61]: 36 mm metal heads exhibited a significantly lower pull-off force 259 

compared to 28 mm ones when impacted with peak forces of 5 kN or less. This finding has 260 

been associated with the high failures rates in large diameter hip replacements [61]. Previous 261 

studies reported an increased seating of the head on the stem taper (primary seating) for high 262 

assembly forces [33,62]. This seems to result in a more favourable taper contact situation with 263 

a high contact pressure in the stem-head interfaces associated with the observed improved 264 

taper strength [62] and a reduction in micromotion [33].  265 

Following an impaction of 4 kN or less, smooth standard tapers exhibited a higher taper 266 

strength, most probably due to a more favourable contact situation. The spacing between two 267 

adjacent grooves and their depths is much smaller for the smooth surface finish compared to 268 

the grooved tapers. Only in case of high assembly loads, small local plastic deformations of 269 
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the grooves are expected suggesting an increasing contact area comparable to smooth tapers. 270 

Witt et al. found a significant increase in the area and the number of ridges being in contact 271 

with rising assembly force [36]. In a similar manner, Fallahnezhad et al. determined in their 272 

FE-Analysis an increasing contact length and pressure with rising assembly force, whereas 273 

the contact length of CoCr/Ti couplings was always larger compared to CoCr/ CoCr junctions 274 

[60]. Furthermore, a positive correlation between assembly force and the amount of perma-275 

nent plastic deformation has been reported [36]. Besides the reduced taper strength of rough 276 

tapers following a slight or moderate impaction, these tapers seem to be also more susceptible 277 

to fretting than smooth tapers [64]. Furthermore, a positive correlation between taper surface 278 

roughness (Rpk) and wear rates has been reported [17]. In an in vitro study, Panagiotidou et 279 

al. found a noticeable rupture of the oxide film during dynamic loading at a modular Ti/ CoCr 280 

junction with a rough surface profile, whereas the fretting and corrosion damage for a smooth 281 

taper was marginal [64].  282 

Discrepancies in the taper strength between standard and mini tapers following a light ham-283 

mer blow may also be traced back to differences in the contact area and contact pressure. As 284 

expected and in alignment with a FE-Analysis, the contact of standard tapers occurs proximal-285 

ly (closed end of taper connection) due to a positive angular mismatch [60,65], in contrast to 286 

mini tapers with a mismatch of almost zero and therefore an unpredictable location of the area 287 

being in contact (proximal, distal or across the whole taper length). This statement is in 288 

agreement with a previously published study: Witt et al. found out that the location of the 289 

damaged area is irregularly distributed along the whole taper surface in case of a small taper 290 

angle difference [36]. Cook et al. expects an influence of the angular mismatch within the 291 

stem-head taper connection on the generation of wear particle [10]. However, Kocagoz et al. 292 

could not confirm a direct correlation between angular mismatch and wear and corrosion 293 

scores [65]. But, the angular mismatch seems to be inversely correlated with the amount of 294 
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interface micromotions [33].  295 

It is speculated that the intraoperative assembly procedure has a significant influence on the 296 

initial contact situation [60] and subsequently a big influence for the clinical performance. In 297 

addition to the assembly force, impaction angle, the number of impactions and the instrumen-298 

tation tool, the presence of contaminants in the interface due to an insufficient cleaning is also 299 

considered as potentially critical. An inadequate assembly associated with the impact not 300 

aligned axially may increase the presence of crevices within conical taper connections, allow-301 

ing fluid ingress and ultimately the creation of corrosion. During surgery some surgeons as-302 

semble the modular components by multiple impactions and under different conditions i.e. 303 

wet or dry. It has been shown, that the impact force of the first hammer blow is the most im-304 

portant one with regard to the taper strength [50,59]. The assembly force sequence in case of 305 

multiple impactions [59] and the taper condition prior to the assembly (wet or dry) may also 306 

change the pull-off forces either in a positive or negative way, depending on the prosthesis 307 

design [59]. The presence of bone chips contaminating the tapers can exhibit interface mi-308 

cromotions more than double that compared to clean tapers [30]. Weisse et al. demonstrated, 309 

that contaminants such as bone chips, tissue or blood in the stem-head taper interface can re-310 

duce the static fracture load of ceramic ball heads by up to 90% compared to non-311 

contaminated interfaces [66]. It should furthermore be considered that, depending on the sur-312 

gical approach chosen, a dynamic assembly of the stem-head taper junction with a hammer or 313 

a head impactor can be excessively difficult or impossible. It can also be speculated that the 314 

tapers cannot be easily cleaned to remove any contaminants in the interface prior to the as-315 

sembly [57]. To the authors’ knowledge there are currently no data available implying that the 316 

number of fretting complications directly correlates to a specific surgical approach. This sug-317 

gests that not only the assembly force and condition (wet or dry) but rather several factors 318 

affecting the risk of fretting e.g. the taper design, angular mismatch, head diameter and the 319 
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used materials. Nevertheless, for further developments of modular components this issue 320 

needs to be adequately addressed. 321 

Although there are currently no data available confirming that a high taper strength is directly 322 

linked with a reduced risk of fretting complications, it seems to be highly probable that this 323 

hypothesis is true. Fretting can only occur if there are crevices present, which allow fluid in-324 

gress [27]. In case of a high taper strength accompanied with an extremely high contact pres-325 

sure the crevices within the taper junction may be negligibly small avoiding fluid ingress and 326 

preventing the initiation of corrosion. A few experimental in vitro studies have already as-327 

sessed the influence of assembly load, axial load and assembly condition (wet vs. dry), re-328 

spectively, on the onset of fretting. Goldberg et al. and Mroczkowski et al. assessed the fret-329 

ting corrosion behaviour using an in vitro electrochemical test set-up [27,49]. The open circuit 330 

potential (OCP) decreased with rising cyclic load whereas the fretting current increased. This 331 

can be seen as a result of a removal of the oxide film and a subsequent repassivation within 332 

the taper connection [49]. The force threshold to initiate taper fretting is significantly higher 333 

for implants assembled with a strong impaction (6.7 - 8.0 kN) in air (onset at a load of ≈ 2.5 334 

kN [49]) than those pressed only by hand (for wet and dry condition, onset at a load less than 335 

0.5 kN [49]) or statically assembled with 2.0 kN (onset at a load less than 1.3 kN [27]). How-336 

ever, during daily living activities, modular taper connections are not only exposed to pure 337 

axial loads but rather to a combination of axial and rotational loads. In addition, a positive 338 

correlation between assembly force and the minimum torque required to initiate fretting pro-339 

cesses in the interface has already been reported [54]. The determined values for load and 340 

torque at the onset of fretting can easily be reached during daily living activities [27,54]. 341 

Baxmann et al. showed with an in-vitro fretting test system that fretting wear with indications 342 

of particle detachment can occur in case of a low contact pressure (normal load ≤ 50N) com-343 

bined with high interface motions (≥ 25N) [67]. Chu et al. found out in their FE Analysis that 344 
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a separation of contact in the taper connection can cause wear and corrosion [68]. Based on 345 

the current knowledge, a correlation between taper strength and fretting damage seems possi-346 

ble but cannot be directly deduced. 347 

As already mentioned by MacLeod et al., the initial contact situation directly after the assem-348 

bly procedure does not permit direct conclusions on the long-term performance [61]. Never-349 

theless, the taper strength may be one of several contributors to estimate the risk of fretting. 350 

 351 

5. Conclusions 352 

This study has demonstrated that trunnion-specific parameters as well as the assembly force 353 

have a significant impact on the stem-head taper strength. High assembly forces gave rise to a 354 

greater pull-off force; this may decrease the interface micromotions and ultimately the risk of 355 

fretting and wear. Nevertheless, it should be considered that an excessively high hammer 356 

blow may provoke damage to the bony structure and/or the surrounding tissue during surgical 357 

assembly. Therefore, an assembly force of around 4 kN appears to be a reasonable compro-358 

mise in agreement with the previous recommendation made by Rehmer et al. [50] and 359 

Haschke et al. [33]. 360 

An important finding is that smooth tapers are more appropriate to use in taper connections 361 

with modular metal heads in the future since these tapers offer a higher taper strength, espe-362 

cially, in the most common range of intraoperative assembly forces. It is furthermore suspect-363 

ed, that rough tapers are more susceptible to fretting than smooth ones [64]. The results also 364 

indicate that mini tapers can exhibit comparable taper strength to those of standard tapers 365 

even if they offer an overall smaller taper surface area. There is thus evidence that it is not the 366 

overall taper surface area that is essential, but rather the actual taper contact area, which is 367 

affected by, but not limited to the surface topography, taper angle mismatch and the assembly 368 

force. 369 
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