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From blast wave to observation

H.J. van Eerten and R.A.M.J. Wijers

Astronomical Institute ’Anton Pannekoek’, Kruislaan 403,1098SJ Amsterdam, the Netherlands

Abstract. Gamma-ray burst (GRB) afterglows are well described by synchrotron emission originating from the interaction
between a relativistic blast wave and the external medium surrounding the GRB progenitor. We introduce a code to reconstruct
spectra and light curves from arbitrary fluid configurations, making it especially suited to study the effects of fluid flows
beyond those that can be described using analytical approximations. As a check and first application of our code we use it
to fit the scaling coefficients of theoretical models of afterglow spectra. We extend earlier results of other authors to general
circumburst density profiles. We rederive the physical parameters of GRB 970508 and compare with other authors.

We also show the light curves resulting from a relativistic blast wave encountering a wind termination shock. From high
resolution calculations we find that the observed transition from a stellar wind type light curve to an interstellar medium type
light curve is smooth and without short-time transitory features.

Keywords: gamma rays: bursts - gamma rays: theory - plasmas - radiationmechanisms: nonthermal - shock waves
PACS: 98.62.Nx; 98.70.Rz; 95.30.Lz; 95.30.Gv

INTRODUCTION

In the fireball model, Gamma-Ray Burst (GRB) afterglows are thought to be the result of synchrotron radiation
generated by electrons during the interaction of a stronglycollimated relativistic jet from a compact source with
its environment (for recent reviews, see [22, 18]). Initially the resulting spectra and light curves have been modelled
using only the shock front of a spherical explosion and a simple power law approximation for the synchrotron radiation
(e.g. [27, 17, 24]). One or more spectral and temporal breakswere used to connect regimes with different power law
slopes. For the dynamics the self similar Blandford-McKee (BM) approximation of a relativistic explosion was used
[1]. These models have been refined continuously. More details of the shock structure were included (e.g. [6, 10]),
more accurate formulae for the synchrotron radiation were used (e.g. [26]) and efforts have been made to implement
collimation using various analytical approximations to the jet structure and lateral spreading behavior (see [9] for an
overview). On top of that, there have been studies focussingon arrival time effects (e.g. [12]) and some numerical
simulations (e.g. [19, 7, 2]).

In this paper we introduce a code to reconstruct spectra and light curves from AMRVAC, a high performance
relativistic hydrodynamics code [15]. We verify our methodby applying it to the analytically well understood BM
solution. Because different authors have recently startedusing the circumstellar density structure as a fitting parameter
when fitting the BM solution to afterglow data[25], we generalize existing scaling coefficient prescriptions from the
literature [6] from insterstellar medium (ISM, for which the inverse radial slope of the density distributionk is zero)
and stellar wind (k = 2) to generalk. These scaling coefficients are tabulated in the appendix andcan be directly
used when fitting to afterglow data. We finish this part of the paper by comparing fit results to GRB970508 using our
prescription to those of other authors.

Following this, we apply our radiation code to study the visible effect of the blast wave encountering a wind
termination shock. Our simulations, done at high resolution to make sure we accurately probe the timescales at which
the encounter is expected to take place, confirm the prediction of [19] of a smooth transition between two power law
regimes in the observerd light curve.

With the exception of the wind termination shock section, most of the work presented in this paper is also presented
in [3].

DESCRIPTION OF THE RADIATION CODE

The code takes as input a series of snapshots of relativistichydrodynamics configurations on a grid. The grids represent
a spherically symmetric fluid configuration and all grid cells are assumed to emit a fraction of their energy as radiation.
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This fraction of course has to be small enough not to affect the dynamics, since the post-processing approach does not
allow for feedback. For the time being we restrict ourselvesto the optically thin case. In this section and the next we
will use BM solution for adiabatic expansion of the blast wave to provide the content of the grid snapshots. The BM
solution takes two input parameters:E52, the explosion energy in units of 1052 erg andn0, the circumburst number
density at a characteristic distance of 1017 cm.

Four ignorance parameters are provided to the code at runtime: p, ξN, εE andεB, denoting respectively the slope
of the relativistic particle distribution, the fraction ofparticles accelerated to this relativistic distribution at any given
time, the fraction of thermal energy that is carried by the relativistic electrons and the fraction of thermal energy that
resides in the (tangled-up) magnetic field.

In this work we consider synchrotron radiation only. All grid cells contain a macroscopic number of radiating
particles and the radiation from these particle distributions is calculated following [24] and [23], but with two important
differences: the transition to the lab frame is postponed aslong as possible and no assumption about the dynamics of
the system is used anywhere as this should be provided by the snapshot files.

For the emitted power per unit frequency of a typical electron we have

dP′
<e>

dν ′ (ν ′) =
p−1

2
·

√
3qe

3B′

mec2 ·Q

(

ν ′

ν ′
cr,M

,
ν ′

ν ′
cr,m

)

, (1)

Here qe denotes the electron charge,me the electron mass andB′ the local magnetic field strength. Comoving
quantities are primed. The functionQ contains thelocal shape of the spectrum, including the local effect of electron
cooling, resulting inQ ∝ ν1/3 for values belowνcr,m, in Q ∝ ν(1−p)/2 betweenνcr,m andνcr,M and an exponential drop
beyondνcr,M. It incorporates an integration over all pitch angles between electron velocities and the local magnetic
field and an integration over the accelerated particle distribution. We use a power law particle distribution with a lower
cut-off Lorentz factorγm and an upper cut-off Lorentz factorγM. Directly behind the shock front the lower cut-off
is determined by the downstream density, thermal energy andthe ignorance parameters, while the upper cut-off is
initially set to infinity. The evolution of the accelerated particle distribution when a shocked fluid parcel moves further
downstream is determined by adiabatic cooling and synchrotron radiation losses. The characteristic frequenciesν ′

cr,M

andν ′
cr,m are related to the bounding Lorentz factorsγM andγm via ν ′ ∝ B·γ2. More details on equation (1), the critical

frequencies and the full shape ofQ can be found in [3].
We emphasize thatQ describes thelocal synchrotron spectrum for a location where all electrons have undergone

exactly the same amount of cooling. The observed spectrum from the entire blast wave is a superposition of many such
spectra. The result of this superposition is that the exponential drop beyond the locally differingνcr,M gets smoothened
into a steepening of the power law slope of the spectrum by a factor −1/2, and the differentνcr,M values together
determine the position of thecooling break, beyond which this steepening of the slope sets in.

Assuming isotropic radiation in the comoving frame, we arrive at

d2P′
<e>

dν ′dΩ′ (ν
′) =

1
4π

dP′
<e>

dν ′ (ν ′) (2)

per solid angleΩ′.
To get to thereceivedpower per unit volume in the lab frame, we have to apply the correct beaming factors, Doppler

shift the frequency and multiply the above result for a single particle with the lab frame particle density:

d2PV

dν dΩ
(ν ′(ν)) =

ξNn
γ3(1−β µ)3 ·

d2P′
<e>

dν ′dΩ′ (νγ(1−β µ)), (3)

with µ now denoting the cosine of the angle between the fluid velocity and the observer (unprimed, so measured in
the lab frame),β the fluid velocity in units ofc andn the number density.

Finally, the flux the observer receives at a given observer time is given by

F(ν) =
1

r2
obs

∫

d2PV

dν dΩ
(ν ′(ν))(1−β µ)cdAdte. (4)



Hererobs is the observer distance1, approximately the same for all fluid cells (though the differences in arrival times
are taken into account). The areaA denotes theequidistant surface. For every emitting timete a specific intersecting
(with the radiating volume) surface exists from which radiation arrives exactly attobs. The integration over the emission
timeste (represented in the different snapshot files) requires an extra beaming factor and a factor ofc to transform the
total integral to a volume integral.

SCALING COEFFICIENTS AND APPLICATION TO GRB970508

Especially for high Lorentz factors, the shape of the spectrum is dominated by the radiation coming from a very thin
slab right behind the shock front. The observed emission from this slab depends on the various model parameters via
power laws and a heuristic fit function can be constructed with the gradual transition between regimes being handled
by a free parameter, the sharpness factors. While the proportionalities of this function can be determined via simple
scaling arguments, we have to set its scale using our radiation code. Also, in more detailed calculations like those done
here the gradual transitions are included automatically and we can use this to provide the correct dependence ofs on
p andk. This eliminatessas a free parameter, simplifying the fit to the data and allowing the shape of the transition to
help determine whether a particular model fits the data or not. Depending on the order of the peak frequencyνm and
νm we have two options for a fit function.

If the cooling break lies beyond the peak frequency (‘spectrum 1’, for easy comparison to [6]), the flux is best
approximated (i.e. valid up to a few percent) by

F(ν) = Fm,1 ·







(

ν
νm,1

)−
sm,1

3
+

(

ν
νm,1

)−
sm,1(1−p)

2







− 1
sm,1

·

[

1+

(

ν
νc,1

)sc,1/2
]− 1

sc,1

. (5)

HereFm,1 is the flux at the synchrotron peak frequency for an infinite sharp break (i.e. the point where the two power
laws describing regionD andG would intersect when extrapolated),νm,1 the synchrotron peak frequency andνc,1 the
cooling frequency. The peak flux and critical frequencies depend on the physical input for the BM solution (explosion
energy and circumburst density profile) and the ignorance parameters. These dependencies are summarized in the
appendix. The sharpness functionssm,1 andsc,1 are given by

sm,1 = 2.2−0.52p, sc,1 = 1.6−0.38p−0.16k+0.078pk. (6)

When the order of the breaks is reversed (‘spectrum 5’) the smooth power law for both breaks is given by

F(ν) = Fc,5 ·





(

ν
νc,5

)−
sc,5
3

+

(

ν
νc,5

)

sc,5
2





− 1
sc,5

·



1+

(

ν
νm,5

)sm,5 ·
p−1

2





− 1
sm,5

. (7)

whereFc,5 denotes the peak flux for infinite sharpnesssc,5 and the prescriptions for the sharpness are

sc,5 = 0.66−0.16k, sm,5 = 3.7−0.94p+3.64k−1.16pk. (8)

Once again these are valid up to a few percent. Given their accuracies, all sharpness prescriptions are consistent with
[8].

Various authors have used flux scaling equations to derive the physical properties of GRB 970508 from afterglow
data [5, 8, 28, 11]. This provides us with a context to illustrate the scaling laws presented in this paper. We will use the
fit parameters obtained from broadband modeling by [11]. They have fit simultaneously in time and frequency while
keepingk as a fitting parameter. Because the only model dependencies that have been introduced by this approach are
the scalings oft andν (and no scaling coefficients), their fit results are still fully consistent with our flux equations.
Using the cosmologyΩM = 0.27, ΩΛ = 0.73 and Hubble parameterH0 = 71 km s−1 Mpc−1, they have for the

1 For cosmological distancesrobs denotes the luminosity distance and redshift terms(1+ z) need to be inserted in the appropiate places in the
equations.



observer distance in units of 1028 cm robs,28 = 1.635 and redshiftz = 0.835 [16], leading, attobs,d = 23.3 days, to
νc,1 = 9.21·1013 Hz, νm,1 = 4.26·1010 Hz, Fm,1 = 0.756 mJy,p = 2.22 andk = 0.0307.

Both [11] and [5] take for the hydrogen mass fraction of the circumburst mediumX = 0.7, which in our flux
equations is mathematically equivalent (though conceptually different) to settingξN = (1+X)/2= 0.85. Unfortunately
this still leaves us with four variables to determine (εB, εE, E52, n0) and only three constraints (peak flux, cooling and
peak frequency). From a theoretical study of the microstructure of collisionless shocks [13] arrives atεE ∽

√
εB and

we include this as an additional constraint to obtain a closed set of equations.
For the values quoted above we obtain:E52 = 0.155,n0 = 1.28,εB = 0.1057,εE = 0.325. For comparison we give

some of the values obtained by other authors. [5] obtain for the ISM case:E52 = 3.5, n0 = 0.03,εB = 0.09,εE = 0.12.
[8] obtain for the ISM case:E52 = 0.12, n0 = 22, εB = 0.012,εE = 0.57. Both usep = 2.2. Finally [11] obtain for
k = 0.0307:E52 = 0.435,n0 = 0.0057,εB = 0.103,εE = 0.105. This comparison serves to emphasize the sensitivity
of the inferred blast waves physics on the scaling coefficients of the model.

WIND TERMINATION SHOCK ENCOUNTER

FIGURE 1. Results for wind termination shock encounter. The left figure shows a comoving density snapshot of the shock
profile during the encounter at emission timete = 5.49·107 s. The schematic description of [21] is shown for comparisonand a
clear difference between densities further downstream is visible. It should be noted that all different areas of the shock are resolved.
For example, the forward shock region (smallest, rightmostregion) is resolved by∽ 30 cells. The right figure shows the resulting
light curve at 5· 1014 Hz, with 100 data points devoted to 0.3 - 1 day and 100 datapoints to the following 19 days. A smooth
transition to the power law behaviour corresponding to a BM shock wave expanding into a homogeneous environment is visible. To
get complete coverage of all observer times, radiation calculated directly from the BM solution for the blast wave at Lorentz 200
down to 23 has been added to the observed flux.

Different predictions exist in the literature concerning the observable effect of a relativistic blast wave encountering
a wind-termination shock. A short transitory feature is predicted by [21], whereas [19] predict a smooth transition. [21]
present a detailed analysis of the reverse shock behaviour during the encounter, whereas [19] combine an analysis in
a planar geometry with simulation results. We perform an RHDsimulation using AMRVAC and the initial conditions
suggested by [21], with enough temporal and spatial resolution to resolve any short transity features occuring on the
time scales predicted by [21] (i.e. a few hours in observer time). The output of this simulation is then studied using the
radiation code presented in this paper and [3], for an observer frequency of 5·1014 Hz (optical).

The resulting light curve showsno short transitory featurebut a smooth transition instead, confirming lower
resolution results from [19], as can be seen from fig. 1. The discrepancy between our results and [21] can be attributed
partly to the differences in the downstream fluid density profiles between the two studies as illustrated in fig. 1. A more
detailed argument will be presented elsewhere [4].

Following is a short summary of the initial conditions of thesimulation. We start with a BM blastwave profile at
shock Lorentz factor 23, for a shock withE52 = 10.0, n0 = 3, k = 2. We position the wind termination shock at a
radial distance of 1.6·1018 cm. At this point the density increase by a factor 4 and remains fixed further outward. The
ignorance parameters used in the radiation calculation arep= 2.5,ξN = 1.0, εE = 0.1 andεB = 0.01. We have ignored
electron cooling (i.e. keptγM at infinity) and differ from [21] in that we do not take the slight increase in the magnetic



TABLE 1. Constants setting scale of flux

D G H F E

0 5.12·10−17 2.78·10−31 5.68·10−1 1.16·1030 2.95·10−16

k 1.18·104 4.54·107 6.94·10−1 1.36·10−8 2.04·104

kk 9.01·10−1 8.95·10−1 9.27·10−1 1.01 9.41·10−1

p 2.25·1032 5.40·1030

pk 7.27·10−9 1.65·10−8

pkk 9.41·10−1 1.06
pp 1.77 2.99

ppk 8.07·10−1 7.01·10−1

ppkk 1.03 1.01

field in the reverse shock region into account. This increase(approximately a factor 1.2p) is not sufficient to explain
the reported transitory feature and its omission does not alter our conclusions.

The grid resolution is determined by the number of base cells(120) and the maximum refinement levels (i.e. the
number of times a cell can be split in two to increase resolution, 15 in our simulation). This grid represents a radial size
of 6 ·1018 cm, and therefore the pre-break shock width (∆R at Lorentz factor 23) is resolved at an effective resolution
of 1200 cells. The temporal resolution is 1.556·103 s (the encounter lasts∽ 1.4 ·107 s in emission time).
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APPENDIX: SCALING COEFFICIENTS

Below we provide the scaling coefficients and model fit functions for generalk values. The energyE52 has been
normalized to units of 1052 erg, the luminosity distancerobs,28 to 1028 cm and the observer timetobs,d is expressed in
days. The leftmost peak fluxes for infinitely sharp transitions are:

Fm,1 = CD ·

(

CG

CD

) 2
3p−1

·
ξN

r2
obs,28

· ε
1
2
B ·n

2
4−k
0 ·E

8−3k
2(4−k)
52 · t

−k
2(4−k)

obs,d · (1+z)
8−k

2(4−k) mJy, (9)

Fc,5 = CE ·

(

CF

CE

) 2
5

·
ξN

r2
obs,28

· ε
1
2
B ·n

2
4−k
0 ·E

8−3k
2(4−k)
52 · t

−k
2(4−k)
obs,d · (1+z)

8−k
2(4−k) mJy. (10)

(11)

The critical frequencies for the different regimes are given by:

νm,1 =

(

CG

CD

)6/(3p−1)

·

(

εE

ξN

)2

· ε1/2
B ·E1/2

52 · t−3/2
obs,d · (1+z)1/2 Hz, (12)

νc,1 =

(

CH

CG

)2

· ε−3/2
B ·n

−4
4−k
0 ·E

3k−4
2(4−k)
52 · t

−4+3k
2(4−k)
obs,d · (1+z)

− 4+k
2(4−k) Hz, (13)

νc,5 =

(

CF

CE

)6/5

· ε−3/2
B ·n−4/(4−k)

0 ·E
3k−4

2(4−k)
52 · t

−4+3k
2(4−k)
obs,d · (1+z)

− 4+k
2(4−k) Hz, (14)

νm,5 =

(

CH

CF

)2/(p−1)

·

(

εE

ξN

)2

· ε1/2
B E1/2

52 · t−3/2
obs,d · (1+z)1/2 Hz. (15)



The flux functions and critical frequencies still contain the coefficientsCD, etc. They are listed below, withCD0 etc.
denoting purely numerical constants, whose values are tabulated in table 1.

CD ≡
(p−1)

3p−1
·
(

CD0C
k
DkC

k2

Dkk

)1/(4−k)
·

1
3−k

·

(

p−2
p−1

)−2/3

· (17−4k)
10−4k
3(4−k) · (4−k)

2−k
4−k (16)

CE ≡
(

CE0C
k
EkC

k2

Ekk

)1/(4−k)
·

1
3−k

· (17−4k)
−6k+14
3(4−k) · (4−k)

2−3k
3(4−k) (17)

CF ≡ ·
(

CF0C
k
FkC

k2

Fkk

)1/(4−k)
·

1
3−k

· (17−4k)3/4 · (4−k)−1/4 (18)

CG ≡ (p−1) ·
(

CG0C
k
GkC

k2

GkkC
p
GpC

pk
GpkC

pk2

GpkkC
p2

GppC
p2k
GppkC

p2k2

Gppkk

)1/(4−k)
·

1
3−k

·

(

p−2
p−1

)p−1

·(17−4k)
−kp−5k+4p+12

4(4−k) · (4−k)
3kp−5k−12p+12

4(4−k) ·
Γ(5

4 + p
4)Γ( p

4 + 19
12)Γ( p

4 −
1
12)

Γ(7
4 + p

4)(p+1)
(19)

CH ≡ (p−1) ·
(

CH0C
k
HkC

k2

HkkC
p
H pC

pk
H pkC

pk2

HkkC
p2

H ppC
p2k
H ppkC

p2k2

H ppkk

)1/(4−k)
·

1
3−k

·

(

p−2
p−1

)p−1

·(17−4k)
p+2

4 · (4−k)
2−3p

4 ·
Γ(5

4 + p
4)Γ( p

4 + 19
12)Γ( p

4 −
1
12)

Γ(7
4 + p

4)(p+1)
(20)
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