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ABSTRACT
We present a study of the intermediate regime between ultrarelativistic and non-relativistic
flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast
waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra
and light curves are calculated using a separate radiation code that, for the first time, links
a parametrization of the microphysics of shock acceleration, synchrotron self-absorption and
electron cooling to a high-performance hydrodynamic simulation. For the dynamics, we find
that the transition to the non-relativistic regime generally occurs later than expected, the
Sedov–Taylor solution overpredicts the late-time blast wave radius and the analytical formula
for the blast wave velocity from Huang, Dai & Lu overpredicts the late-time velocity by a
factor of 4/3. Also, we find that the lab frame density directly behind the shock front divided
by the fluid Lorentz factor squared remains very close to four times the unshocked density,
while the effective adiabatic index of the shock changes from relativistic to non-relativistic.
For the radiation, we find that the flux may differ up to an order of magnitude depending on the
equation of state that is used for the fluid and that the counterjet leads to a clear rebrightening
at late times for hard-edged jets. Simulating GRB 030329 using predictions for its physical
parameters from the literature leads to spectra and light curves that may differ significantly
from the actual data, emphasizing the need for very accurate modelling. Predicted light curves
at low radio frequencies for a hard-edged jet model of GRB 030329 with opening angle 22◦

show typically two distinct peaks, due to the combined effect of jet break, non-relativistic
break and counterjet. Spatially resolved afterglow images show a ring-like structure.

Key words: plasmas – radiation mechanisms: non-thermal – shock waves – gamma-rays:
bursts – gamma-rays: theory.

1 IN T RO D U C T I O N

Gamma-ray burst (GRB) afterglows can be explained from the in-
teraction between an initially relativistic shock wave of hot fluid
and the medium surrounding the burster. On passage of the shock,
electrons get accelerated to relativistic velocities (even with respect
to the already relativistic local fluid flow) and small-scale magnetic
fields are generated. Under influence of the magnetic field, the elec-
trons will produce synchrotron radiation, which will be seen by
the observer. This model has been very successful when applied
to broadband afterglow data, but thus far model predictions have
been made using simplifying assumptions for the blast wave struc-
ture (approximating the blast wave width by a homogeneous slab;
e.g. Meszaros & Rees 1997; Wijers, Rees & Meszaros 1997; Sari,
Piran & Narayan 1998; Rhoads 1999) or from analytical solutions in

�E-mail: H.J.vanEerten@uva.nl

either the ultrarelativistic or the non-relativistic regime (e.g. Granot,
Piran & Sari 1999; Gruzinov & Waxman 1999; Wijers & Galama
1999; Frail, Waxman & Kulkarni 2000).

Since the beginning of the decade, fluid simulations have been
performed to study afterglow blast waves and their resulting spectra
(see Granot et al. 2001; Downes, Duffy & Komissarov 2002). More
recent simulations have been used to address the specific theoretical
issue of the visible effect of the blast wave encountering a density
perturbation (Nakar & Granot 2007; van Eerten et al. 2009). Very
recently, Zhang & MacFadyen (2009) studied the transition to the
transrelativistic regime and the spreading of a collimated outflow,
using an adaptive mesh technique for the fluid simulation. They
made some simplifying assumptions for the radiation mechanism,
when compared to the early analytical efforts (e.g. Granot et al.
1999), such as approximating the cooling time by the lab frame
time and ignoring synchrotron self-absorption.

The aim of this paper is to present a theoretical and qual-
itative study of the transition regime between relativistic and
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non-relativistic blast waves and the effect on the light curves and
spectra at various wavelengths, using adaptive mesh relativistic fluid
simulations for blast waves from an explosion in a homogeneous
medium, while including all details of the synchrotron radiation
mechanism that have been used for earlier analytical estimates.
Also, we present resolved afterglow images. We study spherical
blast waves and sharp-edged jets obtained by taking conic sections
from a spherically symmetric fluid flow.

Obviously these simulations do not yet fully address the com-
plete GRB afterglow picture of a realistic, two-dimensional dynam-
ical jet, which we address in a future work. However, some GRB
afterglows have power-law decays that last for months without a
jet break, and thus may be (nearly) spherical. These are of course
already addressed in the present work. Also, by studying the conic
sections from spherical flows, we already address some aspects of
jet behaviour, which allows us to probe some outstanding issues,
such as whether the receding jet may lead to visible features in
the late light curve and whether a dynamical jet break must be
truly achromatic. Finally, any fluid flow behaviour typical to higher
dimensional simulations, like lateral spreading of the jet, is best un-
derstood from a direct comparison to one-dimensional simulations
and its effects on the light curve will in practice be modelled as
a deviation from the heuristic description based on analytical ap-
proximations and one-dimensional simulations (i.e. as an additional
smooth jet break). A companion paper is in preparation that will
discuss the practical consequences for broadband afterglow data
fitting from the underlying model from this paper.

This paper is organized as follows. In Section 2, we discuss our
radiation code and how it expands upon an approach outlined earlier
in van Eerten & Wijers (2009, hereafter EW09). A proper treatment
of synchrotron radiation and shock wave generation of accelerated
particles and small-scale magnetic fields requires us to trace some
additional quantities along with the fluid quantities.

In Section 3, we provide the details of our simulations that as-
sume typical GRB parameters. We show how the blast wave starts
out in the ultrarelativistic regime and smoothly approaches the non-
relativistic regime. We discuss the consequences of different equa-
tions of state for the fluid and how our simulations differ from
analytical approximations for the non-relativistic regime. We show
how the fluid lab frame density divided by the fluid Lorentz factor
squared right behind the shock remains always close to four times
that in front of the shock, even though we have differing adiabatic
indices in both the relativistic and non-relativistic regimes. Three
additional quantities needed to be traced and we present results for
the behaviour of these three: the accelerated electron number den-
sity; the magnetic field energy density and the accelerated particle
distribution upper cut-off Lorentz factor. We explain how calcula-
tion of the latter especially is numerically challenging and how it
shapes the spectrum beyond the cooling break.

In Section 4, we take our results from Section 3 and calculate
spectra and light curves. We calculate spectra at 1, 10, 100, 1000
and 10 000 d in observer time. We separately discuss the different
factors contributing to the shape of the light curves: the equation of
state (EOS); the evolution of the magnetic field and the evolution
of the accelerated particle distribution.

We then turn to the specific case of GRB 030329 in Section 5.
We take the explosion parameters that have been established for
this burst by previous authors to set up a simulation. We qualita-
tively compare the resulting light curves to radio data at different
wavelengths, assuming both a spherical explosion and a hard-edged
jet with opening angle of 22◦. We provide spatially resolved radio
images and make a qualitative prediction for the expected signal at

radio wavelengths that will be observable with the next generation
of telescopes, like the Low Frequency Array (LOFAR).

We discuss our results in Section 6. In the appendices, we provide
additional technical details on the numerical implementation of
our approach and a discussion on the theoretical limitations and
assumptions of our approach.

2 TH E R A D I AT I O N C O D E

In this paper, we follow the approach first outlined in EW09, where
we calculate spectra and light curves from the output of a relativistic
hydrodynamics (RHD) code using a separate radiation code. For
the RHD simulations, we use AMRVAC, a high performance code
that includes adaptive mesh refinement (AMR; see Keppens et al.
2003; Meliani et al. 2007). AMRVAC calculates the evolution of the
following conserved variables:

D = γρ ′, S = γ 2h′v, τ = γ 2h′ − p′ − γρ ′c2, (1)

with γ the Lorentz factor, ρ ′ the proper density, h′ the relativistic
(i.e. including rest mass) enthalpy density, v the three-velocity, p′ the
pressure and c the speed of light. In the entire paper, all comoving
quantities will be primed.

In the second stage, we use a radiation code to obtain the received
flux for a given observer frequency, time and distance, from the local
values of conserved variables at any contributing point in the fluid
(we also use two auxiliary quantities, γ and p′, that AMRVAC stores as
well in order to facilitate its calculation of the time evolution of the
conserved variables). The radiation mechanism that is considered
is synchrotron radiation, and a number of parameters have been
introduced in EW09 that capture the underlying radiation and shock
microphysics. There are four of these ‘ignorance’ parameters. The
fraction of the thermal energy that resides in the tangled up magnetic
field that is generated by the passage of a shock εB usually has a value
around 0.01. The fraction of electrons ξN that is accelerated into a
relativistic power-law distribution in energy also by the passage of
a shock is usually of the order of unity in the relativistic regime.
The thermal energy fraction captured by these electrons εE lies
around 0.1 and (minus) the slope of the electron distribution p lies
around 2.5.

The flux calculated by the radiation code is given by

Fν = 1 + z

r2
obs

∫
d2PV

dν d	
(1 − βμ)c dA dte. (2)

Here, z denotes redshift, robs denotes the observer luminosity dis-
tance, d2PV/dν d	 is the received power per unit volume, frequency
and solid angle, dA is the equidistant surface (EDS) element given
by the intersection of the fluid grid with that surface from which
radiation is poised to arrive exactly at tobs and te is the emission time.
Note that in this terminology, flux is defined per unit frequency. The
integral∫

(1 − βμ)c dA dte

is effectively an integral over the entire radiating volume. μ is the
angle between the local fluid velocity and the observer position,
β is the fluid velocity in units of c and the factor (1 − βμ) is a
retardation effect due to the moving of the radiating source. The
detailed dependence of the received power on the ignorance param-
eters and local fluid conditions is explained in EW09. However, in
that paper only ultrarelativistic flows were addressed and in order
to include subrelativistic and non-relativistic flows as well, a num-
ber of features were added to our radiation code. Also, we have
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added synchrotron self-absorption and the possibility to resolve the
signal from the fluid into an image on the sky. We now have a
generic radiation code that is capable of calculating the spatially
resolved synchrotron radiation profile from an arbitrary fluid flow.
The additional physics that we have included is explained below,
with some of the practical numerical issues discussed separately in
Appendix A.

2.1 Realistic equation of state

In EW09, we applied a fixed adiabatic index �ad EOS

p′ = (�ad − 1)e′
th, (3)

where e′
th is the thermal energy density. In practice, �ad was always

set to 4/3. However, when following a fluid from the relativistic
regime (with flow velocities ∼c and thermal energy density domi-
nating the rest mass energy density) down to the classical regime,
this fixed adiabatic index becomes too restrictive. We therefore
apply a Synge-like EOS (Synge 1957) that results in an effective
adiabatic index varying smoothly from 4/3 to its classical limit 5/3:

p′ = ρ ′c2

3

(
e′

ρ ′c2
− ρ ′c2

e′

)
, (4)

where e′ denotes the comoving energy density including rest mass,
e′ = ρ ′c2 + e′

th. This EOS has already been applied in AMRVAC (see
Meliani et al. 2004; Meliani, Keppens & Giacomazzo 2008). Also,
because the radiation code reads both the conserved variables and p′

from disc directly, it does not invoke any EOS itself, and no change
in the radiation code was needed. The resulting effective adiabatic
index is given by

�ad,eff = 5

3
− 1

3

(
1 − ρ ′2c4

e′2

)
. (5)

The effect of an advanced EOS on the behaviour of the fluid is
profound and we discuss this in detail in Section 4.3.

2.2 Electron cooling

The shape of the observed spectrum from a single fluid cell, if
electron cooling does not play a role, follows directly from the
dimensionless function Q(ν ′/ν ′

m), first introduced in EW09. It has
the limiting behaviour Q ∝ (ν ′/ν ′

m)1/3 for small (ν ′/ν ′
m) and Q ∝

(ν ′/ν ′
m)(1−p)/2 for large (ν ′/ν ′

m). The received power depends on this
shape and on the local fluid quantities via

d2PV

dν d	
= (p − 1)

√
3q3

e

8πmec2

ξNnB ′

γ 3(1 − βμ)3
Q

(
ν ′

ν ′
m

)
. (6)

Here, n denotes the lab frame number density (of all electrons, both
accelerated and thermal). B′ denotes the local comoving magnetic
field strength, calculated from the thermal energy density after the
passage of a shock. me and qe denote electron mass and charge,
respectively. The frequency ν ′

m is the synchrotron peak frequency,
and it is related to the lower cut-off Lorentz factor γ ′

m of the power-
law accelerated electrons via

ν ′
m = 3qe

4πmec
γ ′2

m B ′. (7)

If cooling plays no role, the evolution of γ ′
m is completely adiabatic,

which has as a consequence that the total fraction of the local ther-
mal energy density residing in the power-law accelerated particle
distribution remains fixed. γ ′

m will be related to e′
th throughout the

downstream fluid according to

γ ′
m =

(
p − 2

p − 1

)
εEe′

th

ξNn′mec2
. (8)

When cooling does play a role, however, this picture is changed.
It now becomes necessary to introduce an upper cut-off Lorentz
factor γ ′

M as well. In a single fluid element, no accelerated electrons
with energies above γ ′

M will be found, because these have cooled
to energies at or below γ ′

M. The temporal evolution of any electron
Lorentz factor γ ′

e , and therefore of γ ′
m and γ ′

M as well, is given by

dγ ′
e

dt ′ = γ ′
e

3n′
dn′

dt ′ − (γ ′
e )2 σTB ′2

6πmec
, (9)

where σT is the Thomson cross-section, me is the electron mass
and t′ is the comoving time. The final term in this equation reflects
synchrotron radiation losses, and if it is omitted only the adiabatic
cooling term is left and it can be shown that this will result in
the aforementioned fixed relation between γ ′

e and e′
th. In light of the

previous section on the EOS, it may be worth noting that equation (9)
is derived for a relativistic electron distribution with adiabatic index
4/3 and that this remains valid even if the bulk of the fluid becomes
non-relativistic. After all, the power-law accelerated electrons are
relativistic by definition.

The above has the following consequences for the simulations
and radiation code. Because for low values of γ ′

e , the radiation loss
term can be neglected next to the adiabatic expansion term, we will
not apply equation (9) to γ ′

m and continue to calculate γ ′
m locally

using equation (8) in the radiation code. For γ ′
M, this is not an option

and we numerically solve equation (9) in AMRVAC, resetting γ ′
M to

a high value wherever we detect the passage of a shock. This reset
implements the shock acceleration of particles. In Appendix A, we
discuss the numerical issues of this approach in some more detail.
Also, in Appendix B2 we show that the gyral radius even for the
high-energy electrons contributing to the observed spectrum (within
the frequency range under consideration, 108–1018 Hz) is orders of
magnitude smaller than the relevant fluid scales.

Finally, we summarize the consequences of electron cooling for
the spectrum discussed earlier in EW09. The received power from
a fluid element is now given by

d2PV

dν d	
∝ ξNnB ′

γ 3(1 − βμ)3
Q

(
ν ′

ν ′
M

,
ν ′

ν ′
m

)
, (10)

with the relations between the upper and lower cut-off Lorentz
factors and their corresponding critical frequencies given by equa-
tion (7). Q is a generalization of Q and the flux at frequencies ν ′

above ν ′
M drops exponentially. That the resulting spectrum from the

entire fluid does not show an exponential drop is due to the fact that
there will always be some fluid elements contributing for which ν ′

M

is still sufficiently high. The effect of this ‘hot region’ close to the
shock front (with a size that depends on the observer frequency) on
the composite synchrotron spectrum from a shock will be a steep-
ening of the slope by −1/2 instead. The cooling break is found
at that frequency for which the width of the hot region becomes
comparable to the width of the blast wave.

2.3 Magnetic field energy evolution

The magnetic field directly behind a shock has been parametrized
using

B ′2

8π
= e′

B = εBe′
th. (11)

Furthermore we assumed the number of magnetic flux lines thread-
ing a surface comoving with a fluid element to remain invariant,
resulting in

e′
B ∝ ρ ′4/3. (12)
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Transrelativistic afterglow blast waves 303

For relativistic fluids this implies that the fraction εB remains fixed
downstream, because e′

th ∝ ρ ′�ad . For a changing adiabatic index,
it is no longer possible to calculate e′

B a posteriori from e′
th, since

the relation between the two is now no longer fixed. It becomes
necessary to numerically solve in AMRVAC the equation

d

dt ′
e′
B

ρ ′4/3
= 0. (13)

Like γ ′
M, we reset e′

B whenever a shock is encountered. The practical
implementation of the evolving magnetic field is again discussed
in Appendix A. We note here that the assumption of frozen field
lines is not essential, and that we can in principle include different
magnetic field behaviour either by adding a source term to equa-
tion (13) (parametrizing, for example, magnetic field decay through
reconnection) or by implementing a different equation entirely.

2.4 Changing fraction of accelerated particles

Although ξN , the fraction of electrons accelerated by the passage
of a shock, is often assumed to be of the order of unity for highly
relativistic blast waves, it has to be lower at late times because
otherwise there would not be enough energy available per accel-
erated electron to create a relativistic distribution (in other words,
to ensure that γ ′

m > 1). We have implemented this change in our
code by replacing user parameter ξN by ξNNR, i.e. the fraction of
electrons that is accelerated in the non-relativistic limit. The frac-
tion at the relativistic limit we set to one. Because γβ is the most
direct measure of how relativistic the fluid flow locally is, we have
parametrized the simplest possible smooth transition between both
limiting cases by

ξN = βγ + ξN,NR

1.0 + βγ
. (14)

Whenever the passage of a shock is detected, AMRVAC resets the
number density of accelerated electrons n′

acc according to n′
acc =

ξNn′, with ξN determined using the equation above. As with the
magnetic field energy density, we now need to follow n′

acc explicitly.
Because n′

acc is a number density, its evolution is described by a
continuity equation, following

∂

∂t
n′

accγ + ∂

∂xi
n′

accγ vi = 0, (15)

and is therefore easily implemented in AMRVAC.

2.5 Synchrotron self-absorption

In previous work, we have solved equation (2) by first integrating
over A for a given emission time te (and thus for a single snapshot),
followed by an integration over te. If we switch the order of the
integrations then the integral over te represents the solution to a lin-
ear radiative transfer equation without absorption, with the intensity
given by

Iν =
∫

d2PV

dν d	
(1 − βμ)c dte. (16)

The integral over A then represents a summation over all rays. The
full linear radiative transfer equation including synchrotron self-
absorption has the form

dIν

dz
= −ανIν + jν, (17)

with jν ≡ d2PV/dν d	 and dz ≡ c dtobs = (1 − βμ)c dte. The
synchrotron self-absorption coefficient is given by

α′
ν′ = − 1

8πmeν ′2

∫ γ ′
M

γ ′
m

dP ′〈e〉
dν ′ γ ′

e
2 ∂

∂γ ′
e

[
N ′

e(γ
′
e )

γ ′
e

2

]
dγ ′

e . (18)

Here, dP ′〈e〉/dν ′ denotes the emitted power per ensemble electron
and N ′

e(γ
′
e ) the electron number density for relativistic electrons

accelerated to γ ′
e . Integrating N ′

e(γ ′
e) over possible electron Lorentz

factors yields n′
acc by definition. These quantities are defined and

explained in detail in EW09 (see also Appendix A3).
In this treatment of the self-absorption coefficient, we only take

into account transitions between already occupied energy levels
of electrons, leading to the integration limits of equation (18) be-
ing exactly γ ′

m and γ ′
M. In this way, we ignore stimulated emis-

sion arising from a population inversion below γ ′
m. This results in

values of the absorption coefficient that are larger by a factor of
3(p + 2)/4 when compared to Granot & Sari (2002).

In our radiation code, we now calculate the linear radiative trans-
fer equation for each individual ray by not integrating over the
two-dimensional surface A (to get a single flux value from the col-
lection of rays) until after the final snapshot has been processed. In
addition to allowing us to include the effect of self-absorption, we
now also get a spatially resolved signal from the fluid, showing the
expected ring structure (extending predictions from Granot & Loeb
2001 to the non-relativistic regime). We use an adaptive-mesh-type
approach to A in order to ensure an adequate spatial resolution (see
Appendix A4).

3 FLUI D DY NA MI CS

In this section, we describe the setup of our relativistic fluid sim-
ulations and compare the results against the theoretically expected
behaviour.

3.1 Expected early- and late-time behaviour

Both the early- and late-time behaviour of the fluid can be described
by a self-similar solution that is determined completely from the
explosion energy E and the circumburst number density n0.

At early stages, the Blandford–McKee (BM) solution (Blandford
& McKee 1976) for relativistic blast waves predicts the following
relation between the shock front fluid Lorentz factor � and the
explosion time (t, which is the same as the emission time te):

�2 = 17E

16πρ0t3c5
. (19)

The density ρ0 is related to the number density through the proton
mass: ρ0 = mpn0. The shock radius R(t) is then given by

R(t) = ct

(
1 − 1

16�2

)
. (20)

To lowest order R(t) is just ct , while the shock front fluid velocity
β∼ 1. Further analytical equations for the fluid profile (in terms
of pressure p, Lorentz factor γ , number density n, etc.) behind the
shock front can be found in Blandford & McKee (1976).

At late stages, the evolution of the blast wave is described by the
Sedov–Taylor (ST) solution (Sedov 1959; Taylor 1950). For a fixed
adiabatic index 5/3, the shock radius is now given by

R(t) ≈ 1.15

(
Et2

ρ0

)1/5

, (21)

which follows directly from dimensional analysis (except for the
numerical constant). In this classical approximation, the speed of
light c does not appear. The shock front Lorentz factor is approx-
imately one, while β can be found from β ≡ dR(t)/c dt . Again
analytical formulae for the fluid profile exist in the literature (Sedov
1959).
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At some point in time, the evolution of the blast wave will no
longer be adequately described by the BM solution but will become
more and more dictated by the ST solution. An estimate for the
turning point (Piran 2005) can be made by equating the explosion
energy to the total rest-mass energy that is swept up:

E = ρ0c
2 4

3
πR3

NR. (22)

Solving for RNR returns the approximate radius at which the original
explosion energy in the blast wave is no longer dominant over its
rest-mass energy.

Analytical estimates for the bulk fluid flow velocity including
the intermediate regime also exist. One such example is found in
Huang, Dai & Lu (1999) and we discuss it in more detail as well
as compare their prediction for γ (t) right behind the shock front
directly against our simulation results in Section 3.3.1.

3.2 Setup of simulations

We have performed a number of simulations using the typical values
for a GRB exploding into a homogeneous medium. We set up our
simulations starting from the BM solution. The isotropic explosion
energy E = 1 × 1052 erg, the medium number density n0 = 1 cm−3.
We have set the initial shock Lorentz factor to 10 (and the fluid
Lorentz factor therefore ∼7, differing by a factor of

√
2). Although

both AMRVAC and the radiation code are able to deal with far higher
Lorentz factors, the focus for this research is on the transition to
the non-relativistic regime and for that purpose this relatively low
Lorentz factor is sufficient. We have continued the simulations until
the fluid proper velocity in the lab frame β ∼ 0.01.

We have used both the advanced EOS and a fixed adiabatic index
at 4/3 and 5/3. In the advanced EOS simulation, we have also
calculated the other quantities mentioned in the previous section:
εB, ξN and γ ′

M. The value at the shock front for εB was set to
the standard 0.01 and the non-relativistic limit for ξN was set at
ξN,NR = 0.1. Sufficiently high values for γ ′

M at the shock front are
chosen, generally of the order of 107.

In AMRVAC, it is the number of refinement levels that determines the
accuracy of the simulation. We have used 17 levels of refinement and
120 cells at the lowest refinement level. The grid was initially taken
to run from 1016 to 1019 cm. The effective spatial resolution due to
AMR was therefore ∼1.27 × 1012 cm. This should be compared
against the width of the blast wave at the start of the simulation,
when it is the smallest. This is approximately equal to R(t)/�2 ∼
3 × 1015 cm, for a starting shock Lorentz factor of 10.

Convergence of our results has been checked by performing sim-
ulations at different refinement levels and by simulations running
for a shorter time on a smaller grid (thereby increasing the reso-
lution). For the light curves and spectra, we have used simulations
with a shorter running time of 12.2 × 103 d. At this stage, the fluid
velocity directly behind the shock is still 6 per cent of light speed,
but we have full coverage up to 10 000 d in observer time. The
corresponding grid size is 1 × 1017 to 6.7 × 1018 cm, leading to an
effective resolution of 8.3 × 1011 cm. On a standard desktop PC,1

the RHD simulations typically took a few days to complete and the
radiation calculation a few hours.

1 For example, an Intel dual core 1600 MHz processor with 4 GB of ram.

3.3 Results

3.3.1 Blast wave velocity

The solid line in Fig. 1 shows βγ at the shock front for the advanced
EOS simulation. The expected scaling behaviour at the early stage
is dictated by � ∝ t−3/2 and at the late stage by β ∝ t−3/5. We
have plotted this asymptotic behaviour as well, setting the early-
stage scaling coefficient from the initial value at βγ ∼ 7 and the
late-stage scaling coefficient at βγ ∼ 0.016 (this point lies far to
the right outside the plot). The shock velocity is shown to smoothly
evolve from the BM solution to the ST solution. The meeting point
of the asymptotes at t ≈ 1290 d lies at βγ ≈ 0.244. At this point,
βγ for the fluid ≈0.33, so the fluid is still moving at a significant
fraction of the speed of light.

According to equation (22), the predicted radius for the transition
to occur is RNR ≈ 0.38 pc for the initial explosion energy and
circumburst density that we have used, corresponding to a lab frame
time tNR ≈ 450 d. We therefore conclude that the transition point
from the relativistic to the non-relativistic regime is far later than
predicted by tNR.

Also plotted in Fig. 1 is the predicted value for βγ from Huang
et al. (1999), which we have implemented as follows. The starting
point is

dγ

dm
= − γ 2 − 1

Mej + 2γm
, (23)

the differential equation proposed by the authors to depict the ex-
pansion of GRB remnants, simplified to the adiabatic case. Here,
m denotes the rest mass of the swept-up medium and Mej the mass
ejected from the GRB central engine. Our approach starting from
the BM solution is a limiting case where Mej ↓ 0. The Mej term was
included by Huang et al. (1999) to incorporate a coasting phase.
When solving equation (23) we will use a very high (∼107) initial
bulk fluid Lorentz factor γ 0 and by assuming Mej ∼ E/2γ0c

2 we
converge on the limiting scenario used in our simulations. Equa-
tion (23) can be analytically solved to yield

(γ − 1)Mejc
2 + (γ 2 − 1)mc2 = E, (24)

Figure 1. βγ at the shock front for the advanced EOS simulation (solid
line), along with its asymptotic behaviour both at early and late stages. For
comparison, we have also plotted a prediction from Huang et al. (1999) (see
the text).
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which (numerically) leads to γ (t) once we apply

m = 4

3
πR3n0mp, (25)

and

R(t) =
∫ t

0
β(τ )c dτ. (26)

Here, t is measured in the simulation lab frame (i.e. it does not refer
to observer time).

The resulting curve for βγ initially lies below the simulation re-
sult, but ends up above at 4/3 times the simulation value. The initial
and final slopes for the analytical βγ curve are correct by con-
struction. We conclude that the approach from Huang et al. (1999)
initially underestimates the BM phase and significantly overesti-
mates the late-stage flow velocity. The transition point between the
relativistic and non-relativistic regime also lies at an earlier time for
the analytical curve, closer to the analytically predicted tNR.

3.3.2 Blast wave radius

In Fig. 2, we plot the blast wave radius as a function of lab frame
time for three different simulations: fixed adiabatic index at 4/3 and
5/3 and using the advanced EOS. Also, we plot the radius as pre-
dicted from equation (21) and, for the advanced EOS simulation, the
difference between the effective adiabatic index and its relativistic
limit �ad = 4/3. The latter illustrates how relativistic the fluid still is
in terms of temperature (as opposed to flow velocity). At the inter-
secting point, for the γβ asymptotes at 1290 d the effective adiabatic
index is already quite close (�ad,eff ≈ 1.63) to its non-relativistic
limiting value. After 3800 d, when the time evolution of all the radii
has become practically indistinguishable from R(t) ∝ t2/5 from the
ST solution we still see a difference between the different radii. At
this time, the ST radius is 1.358 pc, the �ad ≡ 4/3 radius is 1.197
pc, the �ad ≡ 5/3 radius is 1.388 pc and the advanced EOS radius
is 1.313 pc. Taking the advanced EOS radius as a standard, this

Figure 2. The resulting blast wave radii as a function of lab frame time for
different simulations. The steady slope line shows the radius as predicted by
the ST solution. The different simulations end up in the asymptotic regime
with different radii: the �ad = 5/3 ends up above the ST solution; the
advanced EOS below the ST solution between the others and �ad = 4/3
the lowest. The bottom curve shows the effective adiabatic index for the
advanced EOS minus 4/3. It starts at approximately zero at the left of the
plot and proceeds to its asymptotic limit 1/3 in the non-relativistic case.

implies that ST overpredicts the radius at this stage by 3.4 per cent,
�ad ≡ 5/3 overpredicts the radius by 5.7 per cent and �ad ≡ 4/3
underpredicts the radius by 8.9 per cent. Because all radii follow
close to the same temporal evolution at this stage, these errors will
only very gradually become smaller throughout the further evolu-
tion of the blast wave. Therefore, a derivation of the quantity E/ρ0

from the radius using the ST equation (21) is likely to overpredict
its value by approximately 18 per cent within any time interval of
practical interest.

3.3.3 Density and energy profiles

In Fig. 3, we have plotted the comoving fluid number density profile
(of the protons or the electrons, not both) at five different moments
in time. Because later on we discuss spectra and light curves up
to an observer time of 10 000 d, we have chosen emission times
corresponding to arrival times of the shock front [using tobs =
t − R(t)/c] up to 10 000 d as well. The earliest fluid profile shows
the initial conditions calculated from the BM solution when the
shock Lorentz factor is 10. After some time, the number density
at the shock front can be seen to tend to the value predicted from
the shock-jump conditions for a strong classical shock, which is
n0(�ad + 1)/(�ad − 1) = 4n0 for the classical value of the adiabatic
index 5/3.

What is shown in Fig. 4 is an interesting feature of the blast
wave, which is that the lab frame density directly behind the shock
divided by the squared fluid Lorentz factor directly behind the shock,
D/γ 2 = 4ρ0 throughout the entire simulation. This can be seen
analytically to hold from the Rankine–Hugoniot relations in both the
ultrarelativistic and non-relativistic case, even though the adiabatic
indices have different fixed values, from

D

ρ0γ 2
= �ad + 1/γ

�ad − 1
, (27)

which can be viewed as the relativistic generalization of the clas-
sical compression ratio and holds for arbitrary γ . When we use
an advanced EOS, where we let �ad smoothly evolve from 4/3 to
5/3, we see from the figure that this generalized compression ratio

Figure 3. Comoving number density profile. The profiles were taken at
times corresponding to emission arrival times for the closest part of the
shock front (i.e. with velocity directly towards the observer) at 10, 100,
1000 and 10 000 d. Listed in increasing number and including the initial
profile, these times correspond to lab frame times of 137, 387, 761, 2227
and 12 583 d. Later times correspond to curves peaking further to the right
in the plot.
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Figure 4. Lab frame number density divided by γ 2. This effectively scales
the shock profile to 4 at the shock front. The same lab frame times as in
Fig. 3 have been used.

Figure 5. Thermal energy density profile for the same lab frame times as
in Fig. 3.

remains very close to 4 even at intermediate times. We make use of
this feature for the shock detection algorithm (see Appendix A2).

In Fig. 5, we have plotted the thermal energy density at the same
times as the number density. Unlike the density at the shock front,
the thermal energy density is not expected to tend to a fixed value.
The ST solution instead predicts a steep decline ∝ R(t)−3, which
is why the final shock front thermal energy density is many orders
of magnitude smaller than the initial shock front thermal energy
density.

3.3.4 Magnetic field and particle acceleration

We now turn to those quantities calculated in AMRVAC solely to aid
in the construction of spectra and light curves, and that have no
feedback on the dynamics. In Fig. 6, we have plotted εB. Because
we assumed the number of field lines through a fluid surface element
to remain frozen (see equation 12), the magnetic field energy density
declined less rapidly than the thermal energy and as a consequence
the local fraction εB increased. A discussion on the merit of our
assumption about the magnetic field behaviour is outside the scope
of this work (and from particle-in-cell simulations it can certainly
be argued that it is not perfect; see e.g. Chang, Spitkovsky & Arons
2008). However, our plot does show that at least it does not lead to

Figure 6. The fraction of the thermal energy that resides in the magnetic
field energy εB for the same lab frame times as in Fig. 3.

Figure 7. ξN , the fraction of electrons accelerated to a power law distribu-
tion for the same lab frame times as in Fig. 3.

unphysical values or strong inconsistencies. The maximum value
for εB found in Fig. 6 is 0.037 (up from 0.01 at the shock front),
which is not unreasonably large and, besides, occurs far downstream
in a region that will contribute negligibly to the observed flux. We
emphasize that εB is a relative measure and that both thermal and
magnetic energy densities drop steeply, both with respect to earlier
times and with respect to their value at the shock front at any time.
The numerical method presented in this paper for parametrizing the
magnetic field energy density is quite general and can be readily
modified to study different parametrizations.

In Fig. 7, we have plotted the fraction ξN of electrons that are
accelerated to a power-law distribution. This fraction was taken to
smoothly decrease from unity in the relativistic regime down to
0.1 for our simulation in the non-relativistic regime. The rightmost
profile, with the shock front arriving at 10 000 d, has ξN down to
0.16.

In Fig. 8, we have plotted the normalized values for γ ′
M, the

upper cut-off Lorentz factor of the power-law particle distribution.
Although formally γ ′

M should be reset to infinity at the shock front,
we picked a value corresponding to a cut-off above 1018 Hz through
the entire simulation, for a fluid element heading directly towards the
observer (see also Section 2.2 and Appendix A). In our simulation
settings, this results in γ ′

M peak values of the order of 107, and
because these values are arbitrary as long as they are sufficiently
large we have normalized the γ ′

M profiles. The profiles show two
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Figure 8. Upper cut-off Lorentz factor of the power-law distribution γ ′
m,

normalized to 1 at the shock front, for the same lab frame times as in Fig. 3.

things. First, they show the steep decline directly after the injection
of new hot electrons. This steep decline and the approximately seven
orders or magnitude difference between shocked and unshocked
γ ′

M are numerically challenging, which is why we implemented
the logarithm of γ ′

M in our code instead (again see Appendix A).
Secondly, the width of the profile is a measure for the size of the
hot region discussed in Section 2.2. It can be seen from the figure
that the width of the profile increases over time. The width will
nevertheless remain smaller than the width of the density profile
by far. In our simulations, we resolve the γ ′

M profile and use it to
determine the local refinement level.

4 SP E C T R A A N D L I G H T C U RV E S

Using the simulation data described in the previous section, we have
calculated spectra and light curves at various observation times and
frequencies. We have saved a total number of 10 000 snapshots of
the fluid profile, with 10.8 × 104 s between consecutive snapshots,
corresponding to a resolution c dt ∼ 3 × 1015 cm. Although this
resolution is of the same order as the initial shock width, it is
still sufficient at the early stage because the shock initially nearly
keeps up with its own radiation. The effective resolution is given
by c dt/�2 ∼ 3 × 1013 cm, which is only a factor of 10 larger than
the spatial resolution of 1012 cm and corresponds to a temporal
resolution of dt ∼ 1000 s. It is therefore ensured that the blast wave
in the initial stage is covered by over a hundred snapshots.

4.1 Expected spectral and temporal behaviour

The scaling behaviour for the critical frequencies and the flux is
well known from analytical estimations assuming a homogeneous
radiating slab directly behind the shock front with fluid properties
determined via either the BM or ST solution (see e.g. Wijers &
Galama 1999; Frail et al. 2000; Granot & Sari 2002). We summa-
rize the interstellar medium (ISM) scalings below, with νm denoting
the peak frequency, νA the synchrotron self-absorption critical fre-
quency and νc the cooling break frequency. At the observer times
and frequencies in this paper, we find either νA < νm < νc or
νm < νA < νc.

In the relativistic limit, the corresponding scalings are

νA ∝
{

t0, νA < νm

t−(3p+2)/2(p+4), νA > νm,
(28)

νm ∝ t−3/2, (29)

νc ∝ t−1/2, (30)

for the critical frequencies. Note that t now refers to observer times.
The flux above both peak and self-absorption break scales as

F ∝
{

ν(1−p)/2t3(1−p)/4, ν < νc

ν−p/2t (2−3p)/4, ν > νc
. (31)

If νA < νm, we get the following flux scaling below the peak break:

F ∝
{

ν2t1/2, ν < νA

ν1/3t1/2, ν > νA
. (32)

If νA > νm, we have below the self-absorption break

F ∝
{

ν2t1/2, ν < νm

ν5/2t5/4, ν > νm
. (33)

In the non-relativistic limit, the scalings are

νA ∝
{

t6/5, νA < νm

t−(3p−2)/(p+4), νA > νm,
(34)

νm ∝ t−3, (35)

νc ∝ t−1/5, (36)

for the critical frequencies. The flux above both peak and self-
absorption break scales as

F ∝
{

ν(1−p)/2t (21−15p)/10, ν < νc

ν−p/2t (4−3p)/2, ν > νc
. (37)

If νA < νm, we get the following flux scaling below the peak break:

F ∝
{

ν2t−2/5, ν < νA

ν1/3t8/5, ν > νA
. (38)

If νA > νm, we have below the self-absorption break

F ∝
{

ν2t13/5, ν < νm

ν5/2t11/10, ν > νm
. (39)

The summary above shows that only the temporal behaviour of
the break frequencies and fluxes is altered by the transition to the
non-relativistic regime. We therefore do not expect spectra calcu-
lated from our simulations covering the transition to differ in slope
from the slopes calculated above. The light curve slope, however,
may differ.

4.2 Spectra

In Fig. 9, we have plotted spectra for a number of different obser-
vation times, ranging from 1 to 10 000 d. For comparison, we have
also plotted the different power-law slopes for 1 d as predicted by
Granot & Sari (2002), where we have added a dependence on ξN .
We plot predictions for both ξN = 1 and 0.1. It can be seen that the
simulated spectrum still lies closer to the ξN = 1 prediction, just
as we would expect for an early-time spectrum. Because of shifts
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Figure 9. Spectra at different observer times. The smooth curves show
simulated spectra at different observer times: 1, 10, 100, 1000 and 10 000 d,
with later observed spectra having lower flux in the high-frequency range.
For comparison, we have included predicted slopes at the different power-
law regimes after 1 d, for both ξN = 1 (solid line) and ξN = 0.1 (dashed
line).

in both flux level and position of the spectral breaks for different
values of ξN , the flux does not always lie in between the analyt-
ical predictions. For example, because the peak frequency νm for
the simulation lies close to that of the ξN = 1 prediction and flux
lies also closer to ξN = 1 but below, the resulting flux at higher
frequencies ends up below both predictions.

Fig. 9 proves that our method works and that the asymptotic
behaviour for the spectral slopes matches the predicted slopes. For
frequencies above the self-absorption break and below the cooling
break, this merely confirms that the synchrotron spectral function
Q(ν ′/ν ′

m) has been implemented correctly. The flux at frequencies
above the cooling break, however, shows the consequence of a finite
and evolving upper cut-off γ ′

M. A slope is reproduced that matches
the prediction. It has been explained above and in EW09 how this
slope now arises as a product of the interplay between the hot region
and the blast wave width.

At the low frequencies, where synchrotron self-absorption plays a
role, the simulations also reproduce a spectral slope that corresponds
to what was expected from analytical calculations. The flux level is
now dictated by the radiative transfer equation through a medium
that is no longer completely transparent at these frequencies. As
discussed in Section 2.5, the resulting flux will differ by a factor of a
few from Granot & Sari (2002), due to a difference in approach when
calculating the absorption coefficient from the particle distribution.

We emphasize that Fig. 9 covers 10 orders of magnitude in fre-
quency, eight orders of magnitude in flux and four orders of magni-
tude in observer time. As we expected from analytical calculations,
the spectral slopes in the different power-law regimes do not change
over time. The transitions between the different regimes are smooth.
An explicit calculation of the sharpnesses of the transitions will be
presented in a follow-up paper.

4.3 Light curves

We will use optical light curves to illustrate the consequences of the
different assumptions and model parameters. In Fig. 10, we present
simulated light curves for simulations that differ only in the EOS
used. Electron cooling and self-absorption have been disabled, εB

is fixed at 0.01 and ξN = 0.1 everywhere throughout the simulation.

Figure 10. Comparison of optical (at t × 1014 Hz) light curves for differ-
ent equations of state. The top curve has �ad = 4/3, the centre curve the
advanced EOS and the bottom curve �ad = 5/3. For clarity, as few complica-
tions as possible are included: cooling and self-absorption are switched off;
εB is fixed at 0.01 and ξN = 0.1 everywhere. Also plotted are the expected
relativistic slope 3(1 − p)/4 and non-relativistic slope (21 − 15p)/10.

This allows for a clear view on both the effect of the EOS and of
the transrelativistic break. The latter can be found at ∼1000 d for
all three simulations. This is somewhat earlier than the transition
time determined from the fluid flow in Section 3.3.1, which we
determined to be around 1290 d (the difference is due to relativistic
beaming). The transition time is also later than what is usually
assumed for the non-relativistic transition by nearly a factor of 3.

The difference in flux from the different EOS assumptions can
be traced to the different thermal energy profiles (and hence, for
fixed εB, to magnetic field energies that differ with the same ratios),
with �ad ≡ 4/3 having the highest e′

th. This is illustrated in Fig. 11.
The difference in peak thermal energy densities between the fixed
adiabatic index simulations is a factor of 2, as expected from the
ratio (5/3 − 1)/(4/3 − 1). Because the flux depends on the thermal
energy via the magnetic field strength and γ m (see equations 6 and
7), the flux for �ad ≡ 4/3 is higher than that for �ad ≡ 5/3. The
light curve for the advanced EOS lies between the two limiting

Figure 11. Direct comparison between thermal energy density e′
th profiles

for the different equations of state. The top profile has �ad ≡ 4/3, the centre
curve the advanced EOS and the bottom profile has �ad ≡ 5/3. All snapshots
are taken at 515 d simulation time. The difference in radius between the blast
waves is 2 per cent.
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Figure 12. Left-hand panel: comparison between complete simulation light curve (solid line) at radio frequency 4.8 × 109 Hz and simulation curves where
ξN is kept fixed at 1.0 (dashed line) and 0.1 (dotted line) throughout. The complete curves start out close to ξN ≡ 1 but slowly evolve towards ξN ≡ 0.1.
Right-hand panel: same as left-hand panel, only now for optical frequency 5 × 1014 Hz. As with the radio light curves, the full curve starts near ξN ≡ 1 but
turns to ξN ≡ 0.1.

Figure 13. Fractional difference between complete and fixed εB ≡ 0.01
simulation light curves. Solid line for radio, dashed line for optical.

cases, starting close to the 4/3 curve but moving to the 5/3 as the
flow becomes non-relativistic. This additional decrease in flux has
the consequence that the advanced EOS light curve will be slightly
steeper in the transrelativistic phase than the fixed adiabatic index
light curves.

In Fig. 12, we show the effects of the detailed evolution calcu-
lation of ξN . Aside from the full simulations, we also perform two
simulations that keep ξN fixed throughout at either 1 or 0.1 but are
otherwise identical to the full simulation. At early times in the radio,
before the peak frequency has passed, the ξN ≡ 1 curve lies above
the full simulation curve, where at early times in the optical it lies
below.

Fig. 13 shows the fractional difference between complete and
fixed εB ≡ 0.01 simulation light curves (the light curves themselves
lie very close to each other on a plot using a logarithmic scale),
calculated via (Ffixed−Fcomplete)/Fcomplete, where F is the flux. The
figure shows that the late-time light curves for the fixed εB end up
below the light curves that trace the evolution of the magnetic field.
This can be understood from the fact that evolving e′

B according
to e′

B ∝ (ρ ′)4/3 implies a relative rise of the magnetic field energy
density relative to (but still far below) the thermal energy when

Figure 14. Power-law behaviour of the optical and radio light curves. The
lines plot α, assuming for every two consecutive data points the relation-
ship F i+1 = Fi(t i+1/ti)α . The solid line refers to the radio light curve and
the dashed line to the optical light curve. The horizontal lines denote 0.5,
3(1 − p)/4 = − 1.125, (2 − 3p)/4 = − 1.375, [(21 − 15p)/10] = − 1.65,
(4 − 3p)/2 = 1.75 from top to bottom.

the flow becomes non-relativistic. Fixing εB forces the magnetic
field energy density to follow ρ�ad . The flux spans many orders of
magnitude over time.

A quantitative comparison between the slopes from the radio and
optical light curves for the full simulations is shown in Fig. 14. The
horizontal lines in the plot indicate expected asymptotic values for
the power-law scalings. In the relativistic limit, the expected slope is
1/2 before passage of νm and −1.125 after (using p = 2.5). After the
cooling break passes, a further steepening to −1.375 is expected.
In the non-relativistic regime, the expected slopes before and after
passage of the cooling break are −1.65 and −1.75, respectively.
The plot shows that the relativistic slopes are matched very well.
The radio light curve quickly tends to 1/2 and after passage of the
peak frequency it moves in ∼95 d to −1.125, where it remains until
the onset of the non-relativistic break time. The optical light curve
starts out in the intermediate regime from the passage of νm, with the
passage of the cooling break coming too early for the light curve to
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settle into the pre-cooling break slope of −1.125. The post-cooling
break slope −1.375 is obtained instead and is again maintained
until the non-relativistic break. The light curve slopes in the non-
relativistic regime are less steep than expected. A number of factors
play a role here, as discussed above. The advanced EOS leads to
a steepening of the decay during the transition phase (which lasts
well over 10 000 d), whereas the increase in e′

B relative to e′
th and

the decrease in ξN (leading to an increase in energy per particle)
lead to less steep decay. The change in slope in the non-relativistic
regime is the result of the interplay between these different factors,
with the end result being a slope less steep than expected. The final
non-relativistic slopes differ significantly from those expected from
analytical models, and this has a large impact on fitting models to
observational data.

5 G R B 0 3 0 3 2 9

In the preceding section, we have systematically explored the differ-
ent aspects of transrelativistic blast wave afterglows with respect to
dynamics and radiation for standard values of the input parameters.
We now qualitatively compare radio data for GRB 030329 to sim-
ulation results using physical parameters for this GRB established
by earlier authors as input. GRB 030329 is one of the closest and
brightest GRBs for which an afterglow was found. Because of this
brightness, the afterglow could be monitored for an extended period
of time at various wavelengths and after 6 years its radio signal is
still being observed (Kamble et al. 2009). GRB 030329 is a good
example to use to illustrate the various aspects of the radiation code.

The redshift of GRB 030329 has been determined to be z =
0.1685 (Greiner et al. 2003), which leads to a luminosity distance
of 2.4747 × 1027 cm (for a flat universe with 	M = 0.27, 	� =
0.73 and H 0 = 71 km s−1 Mpc−1). Various authors have determined
the physical properties of the GRB from analytical model fits to the
data (e.g. Berger et al. 2003; Sheth et al. 2003; Willingale et al.
2004; Van der Horst et al. 2005; Huang, Cheng & Gao 2006; Van
der Horst et al. 2008) with various assumptions for the jet structure.
Here, we take the physical parameters established by Van der Horst
et al. (2008). From their conclusion for the jet break time and
cooling frequency at this time, and assuming equipartition between
accelerated particle energy and magnetic field energy (i.e. a fixed
εE ≡ εB in their model), we arrive at E = 2.6 × 1051 erg (for a
spherical explosion), n0 = 0.78 cm−3, p = 2.1, εE = εB = 0.27.
We assume a homogeneous medium and set the hydrogen mass
fraction in this medium to unity. Van der Horst et al. (2008) fix ξN

at unity, but we use a non-relativistic limit ξN,NR = 0.1. Because
GRB 030329 shows clear evidence of a collimated outflow, it is no
longer sufficient to assume a spherical explosion. When calculating
emission from a jet, we assume a hard-edged jet with opening angle
22◦ and no lateral spreading.

We have plotted light curves at 15, 4.8 and 1.4 GHz in Fig. 15, in-
cluding data points from the Westerbork Synthesis Radio Telescope
(4.8 and 1.4 GHz; Van der Horst et al. 2005) for comparison and
the Very Large Array (15 GHz; Berger et al. 2003). Two things are
clearly visible. First, our simulated light curves still differ strongly
from the data, although largely the same input parameters have been
used for the blast wave simulations as those that were derived from
fitting to the data set using an analytical model for the blast wave.
The different assumptions in Van der Horst et al. (2005) account for
this in part, but nevertheless this demonstrates once more the need
for detailed fit prescriptions from simulations (a similar conclusion
was drawn in EW09 for the ultrarelativistic case). Secondly, the
counterjet contribution will stand out clearly for a hard-edged jet
model. For now, the comparison between simulation and data is
still qualitative. Newer data are available and once the simulation
input parameters are fine tuned with respect to the data as well (as
opposed to estimated using an analytical fit to the data), it should be
possible to address the rise of the counterjet in a more quantitative
fashion.

Because of the equipartition constraint on εB and εE, both were
given a relatively high value of 0.27 at the shock front. In the non-
relativistic regime, the magnetic energy density will grow relative
to the thermal energy density further downstream (although both
will decrease strongly in absolute value). At t e ∼ 34.7 yr, the last
time covered by our simulation (set up to cover 10 000 d in observer
time), we find that εB has risen to approximately 0.36 at the back
of the blast wave (0.43 where the blast wave density again equals
the upstream density). Even further downstream, when the density
has fallen three orders of magnitude below the upstream density, εB

peaks at 1.28. This is not unphysical but merely an indication that
magnetic fields have become dynamically important in a region of
the fluid which has no consequence for the light curve.

5.1 Low-frequency array light curves and resolved images

Fig. 16 shows predicted light curves at the very low frequencies
that can be explored in the near future by radio telescopes such as
the LOFAR, assuming four hours of integration time, 25 core sta-
tions and 25 remote stations (Nijboer & Pandey-Pommiers 2009).

Figure 15. Left-hand panel: light curves at 15 GHz, plus data. The upper curve is calculated from a spherical explosion, the bottom from a hard-edged jet
with opening angle 22◦, while the crosses are the data. The receding jet is clearly visible. The bottom-right curve is the radiation from the counterjet alone.
The transition to the non-relativistic regime can be seen from the spherical explosion simulation at around the same time when the counterjet becomes visible.
Centre panel: light curves at 4.8 GHz, plus data. Right-hand panel: light curves at 1.4 GHz, plus data.
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Transrelativistic afterglow blast waves 311

Figure 16. Left-hand panel: simulated light curve at 200 MHz for GRB 030329, top curve for spherical explosion and bottom curve for hard-edged jet with
opening angle 22◦. We have drawn the following slopes from left to right: 1/2, 5/4 and 11/10. LOFAR sensitivity for 25 core and 25 remote stations after 4 h
of integration time is 0.273 mJy and indicated by the horizontal line. Centre panel: simulated light curve at 120 MHz for GRB 030329. LOFAR sensitivity is
0.145 mJy. Right-hand panel: simulated light curve at 75 MHz for GRB 030329. LOFAR sensitivity is 4.2 mJy, too high to be shown in the plot.

GRBs are among the prime targets for LOFAR’s Transient Key
Project (Fender et al. 2006). Most of the time, all light curves lie
below the self-absorption break. This, in combination with the νm

break, a hard-edged jet model and the turnover to the non-relativistic
regime lead to an interesting double-peak structure of the light curve.
First, the signal rises, according to the relativistic rise in the self-
absorption regime that predicts a slope of 1/2. After ∼4 d, a clear jet
break is seen and the resulting drop in slope leads to a decreasing sig-
nal again. Around ∼150 d, the critical frequency νm passes through
the observed frequency band. The slope of the spherical explosion
changes accordingly towards the predicted relativistic 5/4. Around
approximately 600 d, the blast wave has become non-relativistic and
the counterjet starts to contribute (but is still overwhelmed by the
forward jet). The predicted non-relativistic slope for the spherical
explosion is now 11/10.

We have included LOFAR detection thresholds for four hours
of integration time. These sensitivity limits are higher than those
presented in Van der Horst et al. (2008), because LOFAR has been
scaled down in the meantime. The spherical explosion energy is an
overestimation of the actual explosion energy, and the flux levels
corresponding to the jet simulations lie closer to what will actually
be received. However, from Fig. 15 it is clear that our qualitative
comparison systematically underestimates the actual flux levels.
Also, the integration time used in LOFAR can easily be increased,
even up to days. Fig. 16 therefore does not mean that GRB 030329

will not be observable by LOFAR, but only that a larger integration
time than 4 h is likely required.

For 200 MHz, we have calculated spatially resolved images as
well, for spherical explosions. Three images are presented in Fig. 17,
for three different observer times. They show three qualitatively
different types of behaviour. At 15 d, a limb-brightened image is
observed, whereas at 240 d the image on the sky becomes limb
darkened. At 3900 d, another structure is visible and a brighter ring
exists within the image, at a radius of ∼1018 cm. This is a result of
the self absorption break νA being different for different emitting
regions of the blast wave. These images are fully consistent with
predictions from Granot (2007) for the ultrarelativistic case.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we present the results of detailed dynamical simula-
tions of GRB afterglow blast waves decelerating from relativistic to
non-relativistic speeds, as well as spectra and light curves calculated
from these simulations using a method first described in EW09 that
we have extended to include more details of synchrotron radiation.
We summarize our results and conclusions below.

We have performed, for the first time, hydrodynamical simula-
tions of decelerating relativistic blast waves using AMR techniques
including a parametrization for a shock-accelerated electron distri-
bution radiating via synchrotron radiation. From these simulated

Figure 17. Radio images at 200 MHz. Left-hand panel: after ∼16 d. The intensity increases monotonically outwards. The outer radius is 1.91 × 1017 cm.
Centre panel: after ∼270 d. The intensity decreases monotonically outward. The outer radius is 9.7 × 1017 cm. Right-hand panel: after ∼4300 d. A central
bright ring with radius ∼1018 cm appears. At larger radii, the intensity decreases monotonically. The outer radius is 3.4 × 1018 cm.
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blast waves, we have calculated light curves and spectra at various
observer times and frequencies. An advanced EOS was used for the
dynamical simulations, with an effective adiabatic index smoothly
varying between the relativistic and non-relativistic limit. Three ad-
ditional parameters were traced during hydrodynamical evolution:
maximum accelerated particle Lorentz factor; magnetic field energy
density and accelerated particles number density. We assumed that
fewer particles were accelerated by shocks that are less relativistic.
To obtain the observed flux including synchrotron self-absorption,
a set of linear transfer equations was solved for beams traversing
through the blast wave. This method expands upon EW09 by includ-
ing self-absorption and dynamically calculated electron cooling.

We have used standard assumptions for the GRB explo-
sion energy (∼1052 erg) and circumburst particle number density
(∼1 cm−3) for a homogeneous medium and particle acceleration
and magnetic field parameters. By directly comparing against var-
ious analytical models and expected limiting behaviour, we draw a
number of conclusions about the dynamics of our simulations.

(i) We find that the transition of βγ directly behind the shock
front from the relativistic to the non-relativistic regime occurs later
than expected, around ∼1290 d rather than ∼450 d, for the standard
model parameters.

(ii) An analytical calculation of βγ according to Huang et al.
(1999) is found to overestimate the late-time values by a factor 4/3.

(iii) Directly applying the ST solution to late-time afterglow evo-
lution is found to overestimate the radius by a few per cent and
keeping the adiabatic index fixed throughout the evolution of the
blast wave will lead to systematic differences of as much as 10 per
cent.

(iv) The density jump across the shock may be arbitrarily high
for relativistic shocks, but will be a factor of 4 in the non-relativistic
regime. This is known from the shock jump conditions. Our sim-
ulations show that the quantity D/γ 2, a combination of lab frame
density and Lorentz factor directly behind the shock, will remain
close to four times the unshocked density throughout the entire
simulation, even though the effective adiabatic index evolves from
relativistic to non-relativistic.

(v) If we assume the number of magnetic field lines through the
surface of a fluid element a constant, the magnetic field energy will
become relatively larger compared to the thermal energy. It will
remain a small fraction however (assuming only a small amount of
energy is used for magnetic field creation across the shock). Our
approach allows for different assumptions on the magnetic field
energy evolution.

(vi) The upper cut-off Lorentz factor γ ′
M for the shock-

accelerated relativistic power-law electron distribution decreases
on a distance scale much smaller than the width of the blast wave
due to synchrotron losses and determines the shape of the spectrum
near and above the cooling break.

Using the output from the dynamical simulations, we calculate the
flux. The following general conclusions are drawn for the radiation.

(i) Calculated light curves show a transition between the rela-
tivistic and non-relativistic regime at around 1000 d in observer
time, again later than expected.

(ii) The observed fluxes for different assumptions on the EOS
may differ by a factor of a few. This is a direct consequence of
the amount of thermal energy (and therefore magnetic field energy)
directly behind the shock front.

(iii) Implementing a changing effective adiabatic index has the
consequence that the resulting light curve will slowly evolve from

the relativistic limiting value to the non-relativistic value. This tran-
sition takes tens of years in observer time and will lead to a steeper
decay in the afterglow light curve than predicted by analytical mod-
els assuming a fixed index.

(iv) This steepening is a smaller effect than the combined effect
of evolving the magnetic energy density and the accelerated particle
number density. When all effects are included, the final light curve
slopes differ markedly from the analytically expected values. This
implies a significant complication for late-time afterglow modelling.

We have applied our approach to GRB 030329 as well, using
physics parameters derived by Van der Horst et al. (2008) using an
analytical model. It is shown that the resulting radio light curves
differ up to an order of magnitude between simulation and analyt-
ical model, although this can be partly attributed to some different
assumptions. Assuming a hard-edged jet with an opening angle
of 22◦, our simulated light curves show a rebrightening due to the
counterjet around 1000 d. Simulated curves at radio frequencies that
will be observable using LOFAR show that four hours of integration
time is likely not sufficient to distinguish the signal from the noise
and a larger integration time is required. Finally, spatially resolved
images show a bright ring that, depending on the precise power-law
regime that is observed, may be located not only in the centre or on
the edge but also at intermediate radii within the afterglow image.
This is consistent with earlier work by Granot (2007) on afterglow
images in the relativistic phase.

A recent paper (Zhang & MacFadyen 2009) has appeared dis-
cussing afterglow blast waves decelerating to non-relativistic ve-
locities using two-dimensional simulations. The authors find that
lateral expansion of a relativistic GRB jet is a very slow process
and that the jet break is mostly due to the edges of the jet becoming
visible. This implies the hard-edged jet model that we have applied
to GRB 030329 is sufficient to model the jet break at ∼4 d. Zhang &
MacFadyen (2009) do not include synchrotron self-absorption and
calculate the cooling break by assuming the cooling time throughout
the entire blast wave equal to the grid time.

The approach to calculating light curves and spectra from generic
fluid simulations that we present in this paper assumes that syn-
chrotron radiation is the dominant radiative process, particle accel-
eration takes place in a region far smaller than the blast wave width
and the feedback on the dynamics from the radiation is negligible.
We briefly address these issues in Appendix B.
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A P P E N D I X A : N U M E R I C A L
IMPLEMEN TATION

A1 Partial differential equations

AMRVAC was written to solve a system of coupled partial differential
equations. When adding additional equations to the solver, it is
therefore best to use partial differential equations. In the case of the
magnetic field energy e′

B, we start by rewriting equation (13) as

∂

∂t

e′
B

ρ ′4/3
+ vi ∂

∂xi

e′
B

ρ ′4/3
= 0. (A1)

If we multiply this equation by ρ ′γ and add to this the continuity
equation

∂

∂t
ρ ′γ + ∂

∂xi
ρ ′γ vi = 0, (A2)

which we first multiply by e′
B/ρ ′4/3, we obtain

∂

∂t

γ e′
B

ρ ′1/3
+ ∂

∂xi

γ e′
Bvi

ρ ′1/3
= 0. (A3)

This is the type of conservation equation that ARMVAC is specialized

in, and it is therefore the quantity
γ e′

B

ρ′1/3 that we calculate in AMRVAC.
For the evolution of the upper cut-off γ ′

M, we follow a similar
procedure. We start by simplifying equation (9) to

d

dt

ρ ′1/3

γ ′
M

= α
ρ ′1/3B ′2

γ
, (A4)

where α ≡ σT/6πmec, and t refers to lab frame time (i.e. emission
time). The Lorentz factor in the source term arises when we write
the comoving time derivative in the lab frame. We can now follow
a procedure similar to what we did for the magnetic energy density,
but first we rewrite the equation above once more for numerical
reasons. The quantity γ ′

M varies over many orders of magnitude
in a very short time span and any quantity that depends on γ ′

M

linearly is therefore difficult to deal with numerically. We solve this
by rewriting equation (A4) into

d

dt
ln

ρ ′1/3

γ ′
M

= αγ ′
MB ′2

γ
. (A5)

Although there still is a linear dependence on γ ′
M in the source term,

in practice this equation provides a better starting point for AMRVAC.
From combining with the continuity equation, we get

∂

∂t
γρ ′ ln

ρ ′1/3

γ ′
M

+ ∂

∂xi
viγρ ′ ln

ρ ′1/3

γ ′
M

= αγ ′
Mρ ′B ′2, (A6)

with γ ρ ′ ln ρ ′1/3/γ ′
M the quantity of interest. A similar approach

to tracing the effect of cooling in the context of relativistic blast
waves has also been taken by Downes et al. (2002). Although in
our formalism γ ′

M at the shock front should be reset to infinity, and
therefore γ ρ ′ ln ρ ′1/3/γ ′

M to minus infinity, we just take a very low
value for 1/γ ′

M in order to minimize numerical diffusion. In our
simulations, this arbitrarily low value corresponds to a hard cut-off
of the spectrum above ν ∼ 1018 Hz, at frequencies sufficiently far
above our observation range to be of no consequence. The ‘real’
γ ′

M catches up with the numerical γ ′
M almost instantaneously.

A2 Shock detection method

In total, AMRVAC now calculates the evolution of three additional
quantities: nacc (using equation 15), γ e′

B/ρ ′1/3 (using equation A3)
and γ ρ ′ ln (ρ ′1/3/γ ′

M) (using equation A6). All three quantities get
reset wherever a shock is detected. Both the reset values of n′

acc

and e′
B depend on the fluid variables directly behind the shock front

and it is therefore important that we determine the position of the
shock front as accurately as possible. Mathematically speaking, a
shock is a discontinuity in the flow variables with a sudden increase
in entropy across the discontinuity. In practice, however, finding a
shock in a numerical approximation is more involved, both due to
numerical shock diffusion and because, strictly speaking, there is a
shock discontinuity across every grid cell boundary.

This has the consequence that if we try to find shocks by checking
for discontinuities or for entropy jumps, we will find both shocks all
over the numerical diffused shock region and at a random variety
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of positions where the numerical noise happens to rise above a
predetermined shock threshold. This then implies that we keep
on resetting the additional quantities over some region, something
which is especially unwanted in the case of γ ′

M, given our approach
where we take a fluid cell to contain a collection of electrons that
have been shocked exactly at the same time and we critically rely on
the size of the hot region (see Section 2.2 and EW09, appendix D,
for details).

Because the shocked particle number density and the magnetic
field density directly depend on the fluid variables, using, for exam-
ple, a jump in βγ as a trigger, as has been done by Downes et al.
(2002), is not an option in these cases either. Although it serves as
an excellent indicator of the front of a shock, it will not point us
to a location where we can find information on the strength of the
shock, but to an arbitrarily defined position just in front of that.

In this paper, we solve the issues of shock detection with two
shock detection algorithms, both of them making use of the fact
that D/γ 2 directly behind the shock is four times the density just
in front of the shock. For n′

acc and e′
B, we define the shock front

to be at the peak of the Lorentz factor profile, in the region where
D/γ 2 > 3.5ρ0. The numerical constant is arbitrary and could be
taken closer to 4. With this method, we ensure that the shock is
detected at those positions where the fluid quantities are sufficiently
close to their peak values, although multiple shock peaks may be
detected in close proximity of each other due to numerical noise.

For γ ′
M, it is essential that we only detect a single shock front.

Here, we care less about the precise fluid variable values. For the
purpose of resetting γ ′

M we define the shock front to be at that
position where D/ρ0γ

2 crosses the value 3.5. For a single shock
front, this only happens once. Although, in principle, γβ could
have been used instead of D/ρ0γ

2, the latter offers the significant
advantage that it does not change in scale over the course of the
simulation and always remains close to 4, whereas γβ becomes
arbitrarily small.

Fig. A1 illustrates the use of the Lorentz factor profile peak as a
shock detector. It shows that the numerical diffusion is really very
small and that γ ′

M changes over a significantly smaller spatial scale
than ρ ′.

Figure A1. Normalized profiles of γ ′
M (solid line and squares), ρ′ (dashed

line and circles) and ξN (dotted line and triangles). The actual values at the
shock front are 1.9 × 107, 7.0 × 10−24 g cm−3 and 0.31, respectively. The
simulation time is 1400 d. In the lower-left corner, we zoom in on the shock
front, showing exactly where we reset γ ′

M and ξN .

A3 Synchrotron self-absorption

Equation (18) can also be expressed as

α′
ν′ = K ν ′−2

∫ γ ′
M

γ ′
m

dγ ′
e P

(
ν ′

ν ′
cr,e

)

×
⎡
⎣(p + 2)γ ′

e
−(p+1)

(
1 − γ ′

e

γ ′
M

)p−2

+ (p − 2)
γ ′

e
−p

γ ′
M

(
1 − γ ′

e

γ ′
M

)p−3
⎤
⎦, (A7)

where

K = C

√
3q3

e B ′

8πm2
ec

2
. (A8)

Here, we have used the fact that N e(γ ′
e) ∝ γ ′

e(1 − γ ′
e/γ

′
M) (i.e. a

slightly modified power-law distribution). The scaling factor (C) of
N e(γ ′

e) is determined in terms of γ ′
M and γ ′

m from the requirement
that the total number of accelerated electrons constitutes a fixed
fraction ξN of the available electrons. The symbol P denotes the
pitch angle (the angle between magnetic field and particle veloc-
ity) averaged version of the synchrotron function, a dimensionless
function representing the shape of the synchrotron spectrum for a
single electron in the same way Q represents the spectrum of a
distribution of particles. The ν ′

cr,e in the argument is connected to
γ ′

e via equation (7) (see also EW09).
By changing variables from γ ′

e to y = ν′
ν′cr,e

, we obtain

α′
ν′ = K

2

(
4πmec

3qeB ′

)− p
2

ν ′− p+4
2

× [I1(yM, ym) + I2(yM, ym)], (A9)

where the quantities I 1(yM, ym) and I 2(yM, ym) are

I1 ≡ (p + 2)
∫ ym

yM

dy P(y) y
p−2

2

[
1 −

(
yM

y

)1/2
]p−2

(A10)

and

I2 ≡ (p − 2) y
1/2
M

∫ ym

yM

dy P(y) y
p−3

2

[
1 −

(
yM

y

)1/2
]p−3

.

(A11)

As in the case of Q(yM, ym) (see EW09), values of I 1(yM, ym)
and I 2(yM, ym) are tabulated for moderate yM and ym, whereas their
limiting behaviour, for extreme values of yM and ym, is analytically
estimated. Namely, if yM/ym → 1 the integrals of both I1 and
I2 reduce to the expression inside the integral, evaluated at ym,
multiplied by the appropriate range in y-space, i.e. (ym − yM).

For yM � 1, the integrals’ behaviour becomes hard to analytically
estimate, especially for general values of ym and p. Instead, we fit
approximate expressions to the values extrapolated from the tables.

In the case that ym
yM

� 1 and ym is outside the tabulated values,
we can break the integral into two parts by using the last tabulated
value ỹm. For I2, the formula is

I2 = (p − 2) y
1/2
M

×
⎧⎨
⎩

∫ ỹm

yM

dy P(y) y
p−3

2

[
1 −

(
yM

y

)1/2
]p−3

+Q(ym)y
p−1

2
m − Q(ỹm)ỹ

p−1
2

m

⎫⎬
⎭.

(A12)
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For I1, the result is identical, only the terms inside the square
brackets [including Q(x)] have to be evaluated for p → p + 1.

Finally, for yM � 1 the result of both integrals is approximated
by zero.

A4 Adaptive mesh and linear radiative transfer

We do not integrate over A in equation (2) directly, but resolve the
different rays instead. After the integral over te is finished (i.e. the
bundle of linear radiative transfer equations is solved) we can inte-
grate over A to obtain the flux, while the unintegrated result provides
a resolved picture of the emission from the fluid. For spherically
symmetric fluid flow or an observer positioned along the symmetry
axis of a jet, the intensity on surface A is symmetric around a central
point. Because the fluid itself moves at nearly the speed of light, it
is not a priori clear how many rays need to be included and how
they should be spaced along A in order to obtain a good resolution.
An efficient response to this dilemma is to apply the AMR concept
to A. The EDS A contains a grid with every grid cell containing the
intermediate results for a single ray. Every four neighbouring cells
in each direction on the EDS are grouped together in a single block.
The EDS area dA that each cell represents may differ, and if the
resolution threatens to become too low to adequately capture the
radiation profile a block will be split in half along each direction,
spawning new blocks that represent half the size of the parent block
along each direction. The refinement criterion that is used is that the
combined flux from a given block must not differ by more than 1 per
cent (or a lower threshold, as set by the user) from the combined flux
from a coarsened version of the block where only the odd cells are
taken into account (with the odd cells representing an appropriately
increased surface element). Neighbouring blocks may differ one re-
finement level at most. We have plotted an example of this strategy
in Fig. A2. In practice, we set the maximum refinement level similar
to that of the fluid simulation. We also use the fluid simulation grid
refinement structure to determine the starting refinement structure
of the EDS at each iteration for the transfer equation solver, in order
to make sure that we will also capture the blast wave when it still
has a small radius.

Figure A2. Intensity and refinement levels perpendicular to the axis be-
tween the observer and the source. The maximum refinement level drops
quickly to zero away from the edge of the jet. The intensity has been rescaled
to an arbitrary scale suitable for direct comparison between intensity profile
and refinement levels. Note that the lowest refinement level is zero.

APPENDIX B: A PPLICABILITY
O F O U R MO D E L

The radiation code is written to be generally applicable to output
from relativistic fluid dynamics simulations. However, a number of
assumptions and simplifications have been made that are depen-
dent on the physical context. In this appendix, we briefly discuss
the consequences and relevance of our assumptions in the case of
GRB afterglow blast waves decelerating down to non-relativistic
speeds. We discuss the relevance of an alternative radiative process,
inverse-Compton (IC) scattering, of our assumption that particle
acceleration takes places in a region much smaller than the blast
wave width and of adiabatic expansion of the blast wave with the
radiation losses having no effect on the dynamics.

B1 Importance of inverse-Compton scattering

A limitation to the applicability of our approach arises from the fact
that IC radiation, which is not calculated, becomes important when
the ratio P ′

syn/P
′
IC approaches, or drops below, unity. This ratio is

also equal to the ratio between the corresponding energy fields that
power the emission e′

B/e′
ph (Rybicki & Lightman 1986), with e′

ph

being the energy density of the (synchrotron) radiation field. The
effect of IC emission on the emitted spectra has been thoroughly
investigated in Sari & Esin (2001). In this paper, we focus only
on its influence on cooling rates, as the high-energy synchrotron
spectrum is expected to dominate IC emission for a wide range of
physical parameters and radii.

Instead, however, of calculating the entire photon energy density
due to synchrotron radiation, we can use the fact that the cross-
section for IC scattering drops fast beyond the Thomson limit
(Blumenthal & Gould 1970). Thus, we can define an ‘effective’
photon field for an electron of Lorentz factor γ ′

e as

e′
ph,eff (γ

′
e ) = 4π

c

∫ ν′
Thom

0
I ′
ν′,syn dν ′, (B1)

where ν ′
Thom = mec

2

γ ′
eh

(with h denoting Planck’s constant) is the pho-
ton frequency for which the scattering occurs marginally within the
Thomson regime for a head-on collision and I ′

ν′,syn is the synchrotron
specific intensity. Approximating the specific intensity by

I ′
ν′,syn ∼ ξNn′B ′

(
ν ′

ν ′
m

)(1−p)/2

R/�, (B2)

and employing the analytical relations of the BM solution we find
that right behind the shock front

P ′
syn

P ′
IC

≈ 7.5 × 1016 f (p) (5 × 10−8)
3−p

2 ξ
p−2
N ε

3−p
4

B

×ε
1−p

E n
− p+1

4
0 (γ ′

e )
3−p

2 R−1�
5−3p

2 , (B3)

where f (p) = (p − 1)p−2 (p − 2)1−p (3 − p), � is the Lorentz
factor of the shock front and R is the shock radius. By plugging in
standard values of this paper (ξN = 1, p = 2.5, n0 = 1 cm−3, εB =
10−2, εE = 10−1, E = 1052 erg) and making further use of the BM
equations, we find for γ ′

m

P ′
syn

P ′
IC

≈ 1.8 × 10−10 R0.5. (B4)

This means that IC will dominate synchrotron energy losses for the
lowest energy electrons throughout the relativistic phase of the fluid.
A comparison of IC to adiabatic cooling, using the synchrotron loss
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term from equation (9) and (dγ ′
m/dt)syn/(dγ ′

m/dt)IC = P ′
syn/P

′
IC,

gives(
dγ ′

m/dt
)

ad(
dγ ′

m/dt
)

IC

= 10−43 R2.5. (B5)

The corresponding radius after which adiabatic expansion will
sharply take over is about 1.6 × 1017 cm. Moreover, for an elec-
tron of energy γ ′

e = 104 γ ′
m (i.e. of the order of γ ′

M), synchrotron
losses will prevail at approximately 3 × 1017 cm. Therefore, it is
only early on, and certainly not close to the subrelativistic transi-
tion, that IC cooling will affect the evolution of γ ′

M or γ ′
m for the

assumptions made in this paper.

B2 Gyral radius

The gyroradius for an electron with Lorentz factor γe is given by
r ′

g = γemec
2/qeB

′. Using the BM solution and equation (7), we find
that for the most energetic electrons at the shock front that contribute
to received flux within the frequency range under consideration
(108–1018 Hz) this radius lies below

rg = 5.6 × 10−75 ν
1/2
cut-off R

33/8 cm, (B6)

where νcut-off is the cut-off frequency in the lab frame, used to set γ ′
M

at the shock front (i.e. a frequency safely above 1018 Hz). This should
be compared against the size of the hot region, a measure of the
spatial distance over which electrons cool significantly. The cooling
time for high-energy electrons that cool on a scale much shorter than
the scale over which the fluid variables change is approximately
equal to tcool ≈ 6πmec/σT(B ′)2γ ′

M when the electron cools down to
γ ′

M. Using the self-similar parameter as an intermediate step, this

can be linked to a spatial size of the hot region for γ ′
M:

δhot = 8 × 10−52 ν
−1/2
cut-off R

33/8 cm. (B7)

Thus, for νcut-off = 1018−21 Hz the gyroradius of the most energetic
electrons is many orders of magnitude smaller than the size of the
corresponding hot region, justifying our assumption that particle
acceleration takes place locally near the shock front (which we
have implemented by a local injection of hot electrons) and the use
of an advection equation to model the evolution of γ M.

B3 Feedback on the dynamics

A last issue is the possibility of the radiative energy losses becoming
comparable to the initial energy load of the fireball (E) that would
imply a considerable impact on the dynamics of the flow. This could
be explicitly quantified by calculating the total radiative output
during the simulations and comparing it to the explosion energy.
However, we can address this issue in a more qualitative manner by
noting that the low-energy electrons cool predominantly by causing
the expansion of the volume they are occupying (slow cooling),
even at the shock front. Moreover, for values of p > 2 (which is
the case under consideration) these electrons are the main energy
carriers. In combination with the fact that the total energy residing
in relativistic electrons is limited by εE (typically of the order of
10 per cent), we are confident that the total energy radiated through
synchrotron, especially in the subrelativistic regime, will be orders
of magnitude smaller than E, and thus will not affect considerably
the dynamics.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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