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ABSTRACT

We present a powerful new tool for fitting broadband gamma-ray burst afterglow data, which can be used to determine
the burst explosion parameters and the synchrotron radiation parameters. By making use of scale invariance between
relativistic jets of different energies and different circumburst medium densities, and by capturing the output of
high-resolution two-dimensional relativistic hydrodynamical (RHD) jet simulations in a concise summary, the jet
dynamics are generated quickly. Our method calculates the full light curves and spectra using linear radiative transfer
sufficiently fast to allow for a direct iterative fit of RHD simulations to the data. The fit properly accounts for jet
features that so far have not been successfully modeled analytically, such as jet decollimation, inhomogeneity along
the shock front, and the transitory phase between the early-time relativistic and late-time non-relativistic outflow.
As a first application of the model we simultaneously fit the radio, X-ray, and optical data of GRB 990510. We find
not only noticeable differences between our findings for the explosion and radiation parameters and those of earlier
authors, but also an improved model fit when we include the observer angle in the data fit. The fit method will be
made freely available on request and online at http://cosmo.nyu.edu/afterglowlibrary. In addition to data fitting, the
software tools can also be used to quickly generate a light curve or spectrum for arbitrary observer position, jet,
and radiation parameters.

Key words: gamma-ray burst: general – hydrodynamics – methods: data analysis – relativistic processes – shock
waves

Online-only material: color figures

1. INTRODUCTION

Gamma-ray bursts (GRBs) are short intense flashes of gamma
radiation produced by cataclysmic stellar events such as the
collapse of the core of a massive star (Woosley 1993; Paczynski
1998; MacFadyen & Woosley 1999) or a neutron star–neutron
star or neutron star–black hole merger (e.g., Eichler et al. 1989;
Paczynski 1991). During these events a collimated relativistic
outflow is produced that sweeps up the matter surrounding the
GRB. Regardless of the original mass content or launching
mechanism of this outflow (be it a fireball, Mészáros & Rees
1997, or a Poynting-flux-dominated jet, e.g., Drenkhahn 2002),
the expanding blast wave will sweep up circumburst matter and
will eventually start to decelerate. As the blast wave shocks
the circumburst medium, broadband synchrotron radiation is
produced by shock-accelerated electrons, giving rise to an
afterglow signal that can be observed for up to days at X-ray
and optical frequencies, and for up to years at radio frequencies.

Three kinds of parameters determine the shape of the ob-
served afterglow light curves. First, the shock dynamics are set
by the explosion energy and circumburst density. A second set of
parameters captures the physics of synchrotron emission from
shock-accelerated electrons. Finally, the observed flux depends
on the parameters defined by a given observation: frequency,
time, and observer angle.

Ever since the first afterglows were discovered (Costa et al.
1997; Groot et al. 1997), models based on synchrotron radiation
from a decelerating relativistic blast wave have been successful
in describing the broadband data (e.g., Wijers et al. 1997; Sari
et al. 1998; Wijers & Galama 1999; Granot & Sari 2002). The
synchrotron spectrum is typically described as consisting of
a number of connected power-law regimes, with the critical

frequencies connecting the regimes shifting over time and
being determined by the basic spectral shape of synchrotron
emission, synchrotron self-absorption, and cooling of the shock-
accelerated electrons. In order to accurately model the late-
time afterglow emission in the radio, afterglow models based
on a non-relativistic rather than relativistic blast wave have
been applied as well (e.g., Frail et al. 2000). Both the early-
time ultrarelativistic and late-time non-relativistic stages of the
evolution of the shock are self-similar, with solutions given
by Blandford & McKee (1976), hereafter BM, and Sedov
(1959), Von Neumann (1961), and Taylor (1950), hereafter ST,
respectively. The intermediate stage can be approximated (e.g.,
Rhoads 1999; Huang et al. 1999), but this stage is complicated
by the dynamics of jet decollimation. When jet decollimation is
taken into account, a homogeneous jet surface that widens with
the comoving speed of sound is often assumed (Rhoads 1999),
while more recent jet spreading models (Granot & Piran 2012)
do not take the radial structure of the outflow into account. The
jet nature of the outflow ultimately reveals itself as a break in
the light curve, the jet break, and a subsequent steepening of
the light-curve slope. The physics of afterglow jets has been
reviewed in, e.g., Piran (2005), Mészáros (2006), and Granot
(2007).

Purely analytical models are severely limited in that they
do not accurately capture many features of the jet dynamics
(such as the aforementioned jet spreading and deceleration) and
radiation. The simplifications inherent in a purely analytical
approach lead to diverging predictions for a range of features
such as the observed shape of the jet break, the size and shape
of the counterjet (which was launched away from the observer
and is only seen at late times, when relativistic beaming of the
emitted radiation plays a lessened role), the nature and duration
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of the transition to the non-relativistic phase, and the effect
of the orientation of the jet with respect to the observer. To
gain a better understanding of these aspects, various authors
have performed numerical relativistic hydrodynamics (RHD)
simulations of afterglow jets, in one dimension (Kobayashi
et al. 1999; Downes et al. 2002; Mimica et al. 2009; Van
Eerten et al. 2010b), two dimensions (Granot et al. 2001;
Zhang & MacFadyen 2006; Meliani et al. 2007; Ramirez-Ruiz
& MacFadyen 2010; Van Eerten et al. 2011; Wygoda et al.
2011), and occasionally even three (Cannizzo et al. 2004). Over
the past decade, these simulations have steadily increased in
accuracy, mainly through the use of adaptive-mesh refinement
(AMR) techniques, which locally increase resolution during
simulation where needed, and are capable of resolving the six
orders of magnitude difference between the initial width of
the thin relativistic shell and the late-time outer radius of the
decelerated jet. Recent high-resolution simulations have shown
that relativistic jets spread sideways significantly slower than
analytically expected and have a strongly inhomogeneous shock
front (Zhang & MacFadyen 2009; Meliani & Keppens 2010; Van
Eerten et al. 2011; Van Eerten & MacFadyen 2011a; Wygoda
et al. 2011). Furthermore, they show that the transition from
relativistic to non-relativistic expansion is a very slow process
(Zhang & MacFadyen 2009; Van Eerten et al. 2010b) and that jet
orientation strongly affects the jet break even for small observer
angles (Van Eerten et al. 2010a), while for observers both on
and off axes the observed jet-break time differs between different
frequencies due to synchrotron self-absorption (Van Eerten et al.
2011).

An RHD jet simulation can be combined with a numerical
synchrotron radiation calculation to yield a powerful tool to
predict the evolution of the observable broadband afterglow
spectrum in detail. The weaknesses of simplified analytical
models are thus avoided, and local changes in fluid structure and
arrival time effects are correctly accounted for. This calculation
can be performed in different ways, for example, by summing
over the emitted power of all fluid cells in the simulation in
the case of an optically thin fluid (Downes et al. 2002; Nakar &
Granot 2007; Zhang & MacFadyen 2009) or by fully solving the
linear radiative transfer equations including synchrotron self-
absorption (Van Eerten et al. 2010b; Van Eerten & MacFadyen
2011b).

An obvious drawback of simulation-based light curves com-
pared to analytically calculated light curves is that calculating
the former is a time-consuming process. A full jet simulation
takes several thousand CPU-hours to complete. A purely ana-
lytical light curve, on the other hand, can be calculated almost
instantaneously and can therefore be applied to iterative model
fitting, where the procedure of minimizing χ2 requires at least
thousands of light-curve calculations with slightly differing ex-
plosion and radiation parameters. In this paper, we present a
new method to use simulation results directly as a basis for it-
erative fitting of broadband data, which closes the gap between
simulations and analytical models. This method should prove
useful for further constraining the physics of GRB afterglows,
thereby obtaining clues about the nature of the progenitor and
the burst environment. This provides more accurate predictions
for future surveys, including LOFAR (Rottgering 2006), SKA
(Carilli & Rawlings 2004), or ALMA (Wootten 2003), and indi-
rectly benefits gravitational wave predictions for LIGO (Abbott
et al. 2009) and VIRGO (Acernese et al. 2008), where GRBs are
potentially observable as electromagnetic counterparts (Nakar
& Piran 2011; Van Eerten & MacFadyen 2011b). Finally, our

method helps to establish a baseline for studies of the effect of
more detailed models of the microphysics (see, e.g., Van Eerten
et al. 2010b; Panaitescu et al. 2006; Filgas et al. 2011).

This paper is structured as follows. First, we briefly describe
the numerical settings and code used for our RHD jet simulations
of jets expanding into a homogeneous circumburst medium in
Section 2. Our approach is made possible by two properties
of decollimating and decelerating relativistic jets starting from
a BM solution. First, the jet evolution is scale-invariant under
rescaling of both explosion energy and circumburst density,
which we discuss in Section 3. Second, for a given initial
opening angle, the two-dimensional fluid profile of the blast
wave evolves smoothly from a relativistic and purely radial
outflow to a non-relativistic and spherical outflow. This implies
that both the radial and lateral structure of the flow can be
captured with sufficient accuracy by a low-resolution grid with
specialized coordinates that can be determined a posteriori once
the radial and angular extent of the jet at each moment in lab
frame time are known from the high-resolution simulation. The
dynamical evolution and condensed low-resolution description
of jets with various opening angles are discussed in Section 4.
In Section 5, we describe how the simulation results have been
implemented in a broadband fitting code, which we apply to
a case study, i.e., GRB 990510, in Section 6. We discuss our
results in Section 7.

The source code of the broadband fit code will be
made freely available on request or for download from
http://cosmo.nyu.edu/afterglowlibrary. It can be run both on a
single core and in parallel and allows the user either to quickly
generate light curves and spectra for arbitrary explosion param-
eters or, when provided with a data set of observed fluxes in
mJy, to perform a full broadband fit.

2. NUMERICAL JET SIMULATIONS

For this study a total of 19 jet simulations in two dimensions
have been performed using the relativistic adaptive mesh (RAM)
parallel RHD code (Zhang & MacFadyen 2006). The code
employs the fifth-order weighted essentially non-oscillatory
scheme (Jiang & Shu 1996) and uses the PARAMESH AMR
tools (MacNeice et al. 2000) from FLASH 2.3 (Fryxell et al.
2000). For all jet simulations the BM solution for an adiabatic
impulsive explosion is used in spherical coordinates to set the
initial conditions. Instead of the full spherical solution, a conic
section is used that is truncated at a different fixed opening angle
for each simulation. The opening angles are listed in Table 1,
along with the jet energy Ej for each simulation.

The jet energy Ej (the total for both jets) relates to the isotropic
equivalent energy Eiso according to

Ej = Eiso(1 − cos θ0) ≈ Eisoθ
2
0 /2. (1)

All jets expand into a homogeneous medium with number
density n0 = 1 cm−3 (mass density ρ0 = 1 × mp g cm−3,
in terms of the proton mass mp) and have an isotropic equivalent
explosion energy Eiso = 6.25 × 1051 erg; note that due to
the scale invariance of the simulations with respect to n0 and
Eiso, these can be scaled afterward to represent arbitrary values
(see Section 3). All jets start at time tb with fluid Lorentz
factor γb = 25 directly behind the shock, ensuring that for
all simulations γb > 1/θ0. At this point the edges of the jet have
not yet come into causal contact and lateral spreading has not
yet set in, which allows us to use the spherically symmetric BM
solution as the starting point.
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Table 1
Opening Angles θ0 in Radians and Jet
Energies Ej in Erg for Each Simulation

θ0 Ej

(rad) (erg)

1 0.045 6.328 × 1048

2 0.05 7.812 × 1048

3 0.075 1.758 × 1049

4 0.1 3.125 × 1049

5 0.125 4.883 × 1049

6 0.15 7.031 × 1049

7 0.175 9.570 × 1049

8 0.2 1.250 × 1050

9 0.225 1.582 × 1050

10 0.25 1.953 × 1050

11 0.275 2.363 × 1050

12 0.3 2.813 × 1050

13 0.325 3.301 × 1050

14 0.35 3.828 × 1050

15 0.375 4.395 × 1050

16 0.4 5.000 × 1050

17 0.425 5.645 × 1050

18 0.45 6.328 × 1050

19 0.5 7.812 × 1050

The initial outer radii of the jets are given by Rb =
1.3102 × 1017 cm, determined from tb and γb through Rb =
ctb(1 − 1/16γ 2

b ) (Equation (26) from BM, with c being the
speed of light). The initial time tb is determined from γb, Eiso,
and n0 using

17Eiso = 16πmpn0γ
2
b c5t3

b , (2)

which expresses conservation of the total energy (Equation (43)
from BM).

For all simulations the stopping time is determined according
to

tf = 10 × tNR = 9700

(
Eiso

1053n0

)1/3

days. (3)

The time tNR marks the time when the jet is analytically expected
to transition from relativistic to non-relativistic flow and is
determined from comparing the initial explosion energy to the
total rest mass energy of the swept-up matter (Piran 2005).
Numerical simulations have shown that in practice this transition
takes more time to complete, which is why we have chosen to
continue our simulations until two times the transition duration
5 × tNR found numerically by Zhang & MacFadyen (2009).
For Eiso = 6.25 × 1051 erg and γb = 25, it follows for
all 19 simulations that tb = 4.37 × 106 s = 50.6 days and
tf = 3.33 × 108 s = 3849 days; again, these values change
under rescaling of Eiso or n0.

All simulations use an equation of state with the adiabatic
index as a function of comoving density and pressure changing
smoothly from 4/3 for a relativistic fluid to 5/3 for a non-
relativistic fluid (Zhang & MacFadyen 2009; Mignone et al.
2005).

2.1. Resolution and Refinement

The initial width of the shell is ΔRb ∼ Rb/2γ 2
b ≈ 1.05 ×

1014 cm. In order to correctly resolve this initial width, we have
set the initial peak refinement level to 15, which for a grid
running from 0.01×Rb to c× tf and 384 radial cells at the base
level implies a smallest radial cell size of δr = 1.58 × 1012 cm,
since each increase in refinement level doubles the effective

resolution. There are 32 base level cells in the angular direction,
so that δθ = 9.6 × 10−5 rad. Over time, the peak refinement
level is gradually decreased until a peak level of 9 (the same
approach has been applied in Zhang & MacFadyen 2009).

In addition to the global change in peak refinement level,
a number of additional manual derefinement strategies have
been employed in order to prevent the simulation from devoting
too much of its calculation time and memory to resolving
the boundary and non-relativistic sideways shock between the
interstellar medium (ISM) and empty region far behind the
shock front, as well as the Kelvin–Helmholtz instabilities that
arise in the inner low-density regions of the shock due to
velocity shear at the edge. These regions have no relevance for
the jet dynamics or the observed radiation, which is produced
close to the front of the shock. The shock front and its
sideways expansion are fully resolved. The additional manual
derefinement settings are an increasing inner radius behind
which derefinement is enforced. This region expands as r =
1.2 × 1017(t/tb) until γ = 2 (according to BM) and then stops.
Regions where the fluid number density is below 0.75 n0 have
their peak refinement level reduced by 6. The peak level is also
reduced by 6 where the local γ < 1.5, but it is never allowed to
drop below 9 for derefinement based on this criterion. Finally,
the peak level is reduced by 4 where the local γ < 3, but it is
never allowed to drop below 11 for derefinement based on this
criterion.

3. SCALE INVARIANCE OF THE JET

What is straightforward, but perhaps obscured by the richness
of features in the resulting light curves, and what has so far
not been utilized in afterglow modeling, is that the full two-
dimensional evolution of the jet is invariant under scaling of
the initial explosion energy and circumburst medium density:
independent of self-similarity, a more energetic jet (or a jet
in a less dense environment) goes through exactly the same
evolutionary stages as a jet with lower energy (or higher
circumburst density), albeit that each stage occurs at a later
time and larger radius.

The scalings can be understood as follows. The initial setup
of the problem is determined completely by a limited number
of parameters: Eiso, ρ0 (≡n0 × mp, with mp the proton mass),
θ0, and c. The initial Lorentz factor γb is not included in the list
because its precise value is arbitrary as long as γb > 1/θ0. Only
a limited number of independent dimensionless combinations
of these parameters are possible, such as

A = r

ct
, B = Eisot

2

ρ0r5
, θ, θ0. (4)

Any dimensionless quantity that describes the local fluid con-
ditions or global evolution of the jet, such as Lorentz factor γ ,
density ρ/ρ0, or θ95 (the angle with respect to the jet axis within
which 95% of the jet energy is contained), can be expressed
as a function of these parameters, i.e., γ (r, t, θ, Eiso, ρ0, θ0) →
γ (A,B, θ, θ0). Note that at both very early times (no lateral
flow) and very late times (spherical flow) there is no depen-
dency on θ or θ0, which, together with the fact that A be-
comes a constant value both in the ultrarelativistic BM and
non-relativistic ST limits (i.e., A → 1 and A → 0, respec-
tively), accounts for the self-similarity of these limiting cases,
with γ (r, t, θ ) → γ (B), etc. The parameter B is identical to
the ST self-similarity variable ξ−5 and is central to the self-
similarity of the BM solution via Equation (2) above (where

3



The Astrophysical Journal, 749:44 (15pp), 2012 April 10 van Eerten, van der Horst, & MacFadyen

r ∼ ct), which fixes γ 2 and therefore the BM self-similarity
variable χ (B, γ 2(B)).

Even if we do not limit ourselves to either of the self-similar
extremes and leave A and θ in place, we have a set of coordinates
A,B, θ that is invariant under the following rescalings:

E′
iso = κEiso,

ρ ′
0 = λρ0,

r ′ = (κ/λ)1/3r,

t ′ = (κ/λ)1/3t. (5)

The full scale-invariant hydrodynamics equations in terms of
A, B, θ are provided for completeness in Appendix B. The
direct implication of this is that we can determine the value
of any dimensionless quantity for an explosion with E′

iso and
ρ ′

0 simply by probing a simulation with parameters Eiso, ρ at
t, r , rather than at t ′, r ′. Quantities that are not dimensionless,
such as density ρ and internal energy density e, follow from
ρ/ρ0 = ρ ′/ρ ′

0, e/ρ0c
2 = e′/ρ ′

0c
2, etc.

Examples of scalings between jets with different Eiso and ρ0
are given in Figures 1 and 2. The comoving fluid density and
energy density profiles are drawn from the simulations presented
in Van Eerten & MacFadyen (2011b), since the 19 simulations
listed in Table 1 were set up to be unrelated via scaling. In the
case of Figure 1, two simulations are compared for which λ = 1,
whereas λ = 103 in the case of Figure 2. In Figure 1, we set the
outer radius of the left and right panels equal to their respective
ct , resulting in both images being complete mirror images of
each other, which confirms that both simulations are numerically
indistinguishable. Although analytically equivalent, the two
simulation runs in Figure 2 are no longer numerically identical,
which leads to minor differences in (de-)refinement in the inner
regions. However, those inner regions do not contribute to the
observed flux and thus have no observable effect on the light
curves.

4. LATERAL SPREADING AND JET DECELERATION

We have plotted a number of features of a subset of the
19 jet simulations in Figures 3 and 4. The jets follow the
same evolution as those of earlier studies, such as Zhang &
MacFadyen (2009), Van Eerten & MacFadyen (2011a), and
Wygoda et al. (2011). The top plot of Figure 3 shows the
evolution of the on-axis outer radius of the blast wave for
jets with different θ0 in the lab frame of the explosion. All
jet simulations start out relativistically with identical γb, tb,
and blast wave radius Rb. Jets with a wide opening angle do
not have a long spreading phase and undergo a single smooth
transition from R ≈ ct to R ≈ 1.15(Ej t

2/ρ0)1/5 (where
the numerical factor 1.15 follows from the ST solution with
adiabatic index 5/3). The figure shows that for a very wide
jet with θ0 = 0.5, the transition time is well approximated
by the crossing point of the asymptotes for spherical outflow.
However, this does not carry over to smaller angle jets, and the
meeting point of the asymptotes for Ej (θ0 = 0.05) severely
underestimates the turnover point. The reason for this is that
for narrower jets there is also an intermediate phase, where
the jet decelerates due to lateral spreading. Although not as
abrupt as originally predicted (Rhoads 1999, also discussed in
Van Eerten & MacFadyen 2011a; Wygoda et al. 2011) and
occurring throughout the transrelativistic phase of the jet, this
leads to an extended period of jet deceleration in excess of the
asymptotic jet deceleration of the ST phase and adds a second

Figure 1. Direct comparison between comoving number density n in cm−3

(top) and lab frame energy density τ in units of mpc2 (bottom) profiles for jet
simulations with θ0 = 0.2 rad, n0 = 1 cm−3, and Eiso = 5 × 1051 erg (left)
or Eiso = 5 × 1049 erg (right), drawn from Van Eerten & MacFadyen (2011b).
The snapshot times differ by a factor of 1001/3, and for both snapshots the fluid
Lorentz factor directly behind the shock is ∼3.3.

(A color version of this figure is available in the online journal.)

turnover point in the evolution of jet radius and jet velocity. As
the bottom plot of Figure 3 indicates, this intermediate phase
does not follow a simple power law. A full parameterization of
the intermediate phase lies beyond the scope of this work and
will not be required for model fitting based on the simulation
results. In addition, due to inhomogeneity along the shock front,
deceleration will be different for outflows along different angles.

The early-time behavior visible in the bottom plot of Figure 3,
where the peak Lorentz factor initially drops below its expected
value in the BM regime but then moves back to the BM
asymptote, is due to the resolution of the simulations. In the
BM solution, the blast wave is extremely thin (ΔRb ∼ Rb/2γ 2

b )
and we have not been able to achieve full convergence in
two dimensions at early times (the issue is identical to that
illustrated in Figure 5 of Zhang & MacFadyen 2009). By using
the integrated values of the fluid quantities across a single fluid
cell rather than the values at its central coordinate, we have
ensured that all energy of the BM solution is accounted for
during the initialization of the simulation. For this reason, the
drop is only temporary. We emphasize that this is not due to
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Figure 2. Direct comparison between comoving number density n in cm−3

(top) and lab frame energy density τ in units of mpc2 (bottom) profiles for jet
simulations with θ0 = 0.2 rad, Eiso = 5 × 1049 erg, and n0 = 1 × 10−3 cm−3

(left) or n0 = 1 cm−3 (right), drawn from Van Eerten & MacFadyen (2011b).
Unlike in the case of the two simulations of Figure 1, there is now a scaling
factor λ = 103 between fluid quantities ρ and τ for the different fluids as well.
For both snapshots, the fluid Lorentz factor directly behind the shock is ∼4.

(A color version of this figure is available in the online journal.)

lateral spreading of the jet, for if that were the case, the peak
Lorentz factor would not have been able to recover.

Lateral spreading and the inhomogeneity of the shock front
are illustrated in Figure 4. The plots show the time evolution
of various characteristic angles θ95, θ75, θ50 of the outflow, de-
fined as the angles within which a fraction 0.95, 0.75, 0.50
of the volume-integrated rest-frame energy density τ is con-
tained. The green dashed lines indicate the analytically ex-
pected onset of lateral spreading, when γ ∼ 1/θ0. Because
the plots show θ95, . . . rather than the outer edge angle θedge,
these lines have been shifted according to θ (t) → √

0.95θedge

(or
√

0.75θedge or
√

0.50θedge). This means that if the simulations
had followed the analytical estimate, the turnovers for all angles
and fractions would have occurred along the green lines. Be-
cause the jets become strongly inhomogeneous along the shock
front, the turnover is delayed for characteristic angles bounding
smaller energy fractions: the jet energy stays concentrated near
the jet axis even after the edges have begun to expand. Because
narrower jets have smaller values of Ej, they will decelerate
earlier, which leads to the behavior shown in the plots where
θ95, . . . for small jets cross that of large jets with the same Eiso.
Jets with the same Ej do not show this effect (the characteristic
angle curves for wider jets would shift sufficiently far to the left
in the plots if their energies were downscaled to match the Ej

Figure 3. Top: evolution of the blast wave radius R over lab frame time for jets
with θ0 = 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05 rad (top to bottom
in both plots). Dashed green lines indicate asymptotic BM and ST predictions,
both for a spherical blast wave and for θ0 = 0.05 rad. Bottom: evolution of blast
wave velocity βγ for the same opening angle jets. Early-time dashed green line
indicates BM prediction of βrγr ∝ t−3/2; late time indicates βrγr ∝ t−3/5.

(A color version of this figure is available in the online journal.)

of the narrowest jet). For each figure, all curves at late times
tend to the same fixed fractions of π/2 regardless of initial en-
ergy (i.e., the jet becomes spherical and homogeneous along the
shock front). However, in our simulations these limits are only
actually reached by the high-energy fractions. The early-time
turnover behavior confirms the validity of our choice of starting
γb > θ0 (note that for the wide jets γb 
 θ0).

5. “BOX”-BASED BROADBAND AFTERGLOW FITTING

Each of the 19 simulations generates 3000 snapshots, varying
in data size between ∼350 MB at early times and ∼40 MB at
late times (when lower peak refinement levels are utilized).
Therefore, it is currently not practically possible to load the
complete output for a single simulation into computer memory
at once, let alone the combined output of all 19 simulations.
However, if we wish to use the simulations as a basis for
iterative model fitting, we will need to be able to quickly access
the fluid state at any requested point in time and space. We
therefore need to summarize the simulation results in a way that
adequately captures all aspects of the outflow but occupies only
a relatively small amount of computer memory. In this study we
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Figure 4. Lateral spreading of jet simulations with opening angles θ0 = 0.5,
0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05 rad (top to bottom in each plot).
The top plot shows the evolution of θ95, defined as the angle within which 0.95
of the volume-integrated rest-frame energy density τ is contained. Center plot
shows the same for θ75 (0.75 of energy) and the bottom plot for θ50 (0.50 of
energy). Dashed green lines indicate when γ = 1/θ0 for the different opening
angles (shifted to correct for fractions <1) and should therefore be compared
to the initial opening angles of the jets, not to θxx angles at any given time. The
horizontal dotted green lines indicate the values for the limiting angles for the
case of a homogeneous spherical blast wave.

(A color version of this figure is available in the online journal.)

have aimed for <1 GB in total, but the desired size in memory
will be hardware-dependent.

The next three subsections describe the further technical
aspects of producing light curves from the summarized “box,”
rather than the “grid” that originally contains the simulation
data. In Section 5.4 we describe the details of the fit method.

5.1. “Box” Summary of Simulations

The phase space for each fluid variable is set by the variables
Eiso, n0, θ0, r, θ , and t, and the local fluid state is fully specified
by the fluid variables τ , ρ, vr (radial fluid velocity), vθ (angular
fluid velocity), from which the other fluid quantities such as
p (pressure), e, or γ can be derived. By storing e explicitly
along with ρ, vr , vθ , while still including τ , even though the
latter is not needed for the radiative transfer calculation, we
ensure that we can explore the full fluid state at each point in
time and space without having to use the equation of state. This
implies that we will have to store five fluid variables along with
the coordinates and sizes of the fluid cells they refer to (i.e.,
nine quantities in total). The scale invariance discussed in
Section 3 implies that we only need to store a single value for Eiso
and n0. As mentioned already, we have used 19 possible values
for θ0. We calculate light curves for intermediate values of θ0
by interpolating the appropriate results from the 19 simulations,
as we demonstrate in Section 5.3. For the r, θ coordinates we
use 100 entries each. For t we also use 100 entries rather than
3000, and as with the small subset of θ0, we demonstrate in
Section 5.3 that this number is sufficient and that the full light
curve can be calculated using interpolation. All together, we
now have the following number of entries in our summary of
the fluid evolution: Eiso × n0 × θ0 × r × θ × t × variables =
1×1×19×100×100×100×9 = 171,000,000. We will refer
to this summary as the “box,” in order to distinguish it from
grid-based fluid profiles from the simulations.

The reason that we only need as few as 100 cells in the r and θ
directions has already been demonstrated partially by Figures 3
and 4 in the preceding section. These figures illustrate that,
although high-resolution simulations were required in order to
accurately determine the blast wave radius and lateral extent at
each point in time, the evolution from BM to ST profile itself is
smooth. This means that, once the large-scale properties of the
outflow are known, it is possible to use this knowledge to select
at each point in time new coordinates such that the key features
of the outflow are resolved while ignoring parts of the outflow.

The box θ at each point in time will not cover the entire grid
but only runs from 0 to θMAX ≡ θ99/0.99 (i.e., slightly over
the outer angle within which 99% of the volume integrated τ
is contained). Anything outside these angles either is ISM or
contributes a negligible amount of radiation. The lateral cells
within this region are evenly spread. Alternatively we could
have set the cell coordinates using θ00, θ01, etc., but there is no
significant difference in the resulting light curves. The radial
domain runs from 0 to the outer limit RMAX of the blast wave at
each box value of θ . Because the unshocked ISM is at rest, the
outer boundary of the shock wave is readily determined using the
criterion that γ > 1.000001. Even for extremely high resolution,
this point will not exactly coincide with the peak of the blast
wave. We therefore devote 10 cells to the region between R
determined by the τ peak of the blast wave and the first shocked
ISM cell. Of the remaining 90 radial box cells, 80 are devoted
to resolving the blast wave. Since we know from the BM
solution that the blast wave width is ΔR ≈ R/12γ 2 initially and
from the ST solution that ΔR ∝ R eventually, we analytically
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Figure 5. Comoving number densities n for the θ0 = 0.05 rad simulation at
lab frame times t = 57.6 days (top) and t = 186 days (bottom). At these
times the BM solution predicts, respectively, γ = 20.6 and γ = 3.6 behind the
shock front (see also Figure 3). The fluid profiles from the grid at the indicated
angles are drawn with lines, while the box data points are presented by circles.
The angles represent values close to the jet center, edge, and, in the bottom
plot, halfway between center and edge. The grid values are taken exactly at
the listed angles, while the box values are averages centered on these angles
with δθ = 5.75 × 10−4 rad and δθ = 4.4 × 10−3 rad at early and late time,
respectively. This accounts for small differences between box and grid values.
The large θ profile at the left in the bottom plot differs from the others in that
many box cells are used to resolve the steep drop in front of the blast wave
as well, which illustrates that the peak values of n and τ are not numerically
identical in fluid simulations (in this case, the peak value of τ occurs at larger
radius than the peak value of n).

(A color version of this figure is available in the online journal.)

determine the width of the blast wave by ΔR ≡ R/12γ 2, with
γ 2 ≡ γb(t/tb)−3/2 + 1 (where the “1” has been added relative to
BM Equation (24) to obtain the correct asymptotic behavior).
Note that this is only approximately correct on-axis due to two-
dimensional spreading and less accurate for the radial profile
along the outer angles. This does not matter, however, as long
as the approximation is sufficient to resolve the sharp feature
of the blast wave. The final 10 radial cells are spaced between
the origin and the back of the shock. All radial cells are equally
spaced within their respective region. Figure 5 shows radial
fluid profiles for the θ0 = 0.05 simulation for different times
and angles. Profiles for other values of θ0 are similar.

5.2. “Box” Interpolation

The previous subsection refers to interpolation in t as well as
in θ0. Even though 100 time snapshots are adequate to capture
the dynamics of the jet, evaluating the linear radiative transfer
integral at just these 100 emission times (that is, in addition to
any evaluations of the BM solution at times before the initial
simulation time) has been found to lead to noise in the light curve
both at early times and during the rise of the counterjet at late
times (corresponding to early emission times for the counterjet).
The solution to this is to interpolate the fluid profiles between
different emission times, something that is neither difficult nor
time-consuming when done based on the box snapshots. We
have found for light curves with θ0 values between those in
Table 1 that interpolation at the fluid level is more effective than
interpolation at the level of the light curve: calculating two light
curves for adjacent tabulated θ0 values and interpolating between
them will systematically shift the jet break time and post-break
asymptote relative to their actual values for the intermediate θ0.
Therefore, both the time and θ0 interpolation occur at the same
stage.

In practice ∼3000 interpolated times have been found to be
more than sufficient to remove the numerical noise in the light
curve. Implementing the θ0 and t interpolations to obtain the
local fluid state for requested fluid coordinates r, θ, t works as
follows:

1. There are four tabulated entries needed for the interpolation,
determined by the closest surrounding values around the
requested θ0 and t. For each entry, scale θMAX by first
interpolating in t, then in θ0.

2. For all four entries, determine the appropriate RMAX(θ ),
after the θ coordinates’ outer boundaries have been scaled
to their new θMAX. Interpolate this RMAX in t for both θ0
options separately.

3. Obtain the box fluid conditions at r/(κ/λ)1/3, θ for all four
entries, applying both the θMAX scaling and RMAX scalings.

4. Multiply all non-dimensionless quantities by λ.
5. Interpolate the results first in t, then in θ0 to obtain the final

value for the fluid quantity.

We use linear interpolations, which produce converged results
(see Section 5.3).

5.3. Light Curves

We calculate light curves and spectra from the box using
the same method that we have used previously for grid-based
light-curve calculations (Van Eerten et al. 2010a; Van Eerten
& MacFadyen 2011b). The dominant radiation mechanism
is assumed to be synchrotron radiation, and the broadband
emission from each fluid cell is given by a series of connected
power laws similar to those in Sari et al. (1998). The linear
radiative transfer equations are solved simultaneously for a large
number of rays. For each point in lab frame time t, the plane
perpendicular to the direction of the observer and at a fixed
distance REDS from the origin of the box (or grid), defined by
REDS/c = t − tobs, defines the area from which emission will
arrive at exactly the same observer time tobs. This plane is labeled
the equidistant surface (EDS; see also Van Eerten et al. 2010b).
In earlier work we have employed a procedure analogous to
AMR for dynamically changing the number of rays through the
EDSs that are followed simultaneously. For the blast waves of
this study all EDS refinement would have occurred near the
center of the EDS (defined as the intersection of the line from
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the grid origin to the observer and the EDS), in order to resolve
the early-time BM profile, and the refinement level would have
gradually decreased outward. Since this is essentially equivalent
to base 2 logarithmic spacing, for the current study we use fixed
logarithmic spacing between rays in the radial direction instead.
The number of rays is evenly spaced in the angular direction.
This approach is somewhat faster than the dynamical refining
and requires less memory for bookkeeping. In the final step
the rays are integrated over to yield the observed flux. Flux,
observed frequency, and observer time are corrected for redshift
z during the calculation.

In Appendix A, we give the exact expressions for the
emission and absorption coefficients that are calculated while
solving the radiative transfer equations through the evolving
fluid. Their local values depend on a number of parameters
that capture the microphysics behind the synchrotron radiative
process as well as on the local fluid conditions. There are
four such parameters: the power-law slope p of the shock-
accelerated electrons, the fraction εB of magnetic energy relative
to thermal energy, the fraction εe of downstream thermal energy
density in the accelerated electrons, and the fraction ξN of the
downstream particle number density that participates in the
shock-acceleration process. By performing broadband fits on
afterglow data using the box-based fit method from this paper,
these parameters can be determined from the fits for the first
time using the full blast wave evolution.

All simulations start at γb = 25. Before this time the outflow
can be described by a conic section of the spherically symmetric
BM solution. Because the observed flux at a given observer
time contains emission from a wide range of emission times,
initially including times for which γ > γb, the BM solution is
used directly to determine the initial emission and absorption
coefficients. Probing the BM solution between γ = 200 and
γb using 1600 logarithmically spaced emission times has been
found to be more than sufficient to capture the early-time
emission.

We have performed various tests to check the resulting light
curves from box-based calculations. First of all, we have com-
pared box-based light curves to simulation-based light curves
for the simulation underlying the box summary. An example
is shown in Figure 6. At most, the difference between the two
is on the order of a few percent (see bottom plots in figure).
The exceptions are the early-time light curves for observers far
off-axis, when the box approach smoothens out numerical noise
more than the direct simulation calculation does.

In Figures 7 and 8, we show a comparison to results of
earlier studies. The close match between the box radio and
optical light curves (solid and dashed lines for on- and off-axis
observers, respectively) and the grid-based counterparts (thick
dotted lines) in Figure 7 is remarkable given the differences in
the methods by which they were obtained. The grid-based light
curves are drawn from Van Eerten et al. (2010a) and are therefore
based on a simulation with different refinement and resolution
settings and strongly differing isotropic energy compared to
the unscaled simulations of the current work. In addition to
that, the earlier curves have been calculated with a completely
different radiation algorithm, where a summation was done over
the emitted power of each fluid cell (which therefore excludes
the possibility of synchrotron self-absorption), rather than by
employing the linear radiative transfer method used in the
current work. On average (over the logarithmically spaced data
points) the difference between the box light curves and the light
curves from the earlier study shown in the figure is a factor of

Figure 6. Direct comparison between box light curves and simulation light
curves for simulation 8 (θ0 = 0.2 rad) of this paper. In the top plot, box-
based curves are shown for both optical (solid lines) on-axis and off-axis
(θobs = 0.4 rad) and radio (dashed lines) on-axis and off-axis. Off-axis light
curves start lower and peak later than their on-axis counterparts. The simulation-
based curves are drawn as wide dotted lines. The bottom four plots show
the relative differences between box and simulation for all four combinations,
according to (Fbox − Fsim)/Fsim.

(A color version of this figure is available in the online journal.)

1.15, with the biggest difference (a factor of 1.31) occurring for
the optical light curves (both on and off axes) around 400 days.
The fact that the off-axis light curves at some point cross the
on-axis light curves and temporarily show higher flux levels is a
result of relativistic beaming: at its most extreme it leads to the
prediction of orphan afterglows, where the on-axis light curve
remains effectively invisible relative to the off-axis light curve
for observers at very high angles.

In Figure 8, we show a comparison to light curves from
Van Eerten & MacFadyen (2011b). These were obtained from
simulations with lower resolution compared to the current
simulations, which started from γb = 10 rather than γb = 25.
This accounts for the early-time differences up to ∼20 days.
Early-time differences aside, the average difference (over the
logarithmically spaced data points) is a factor of 1.09, with the
biggest difference (a factor of 1.23) occurring at late times for
the two off-axis light curves.

Finally, in Figure 9 we show a comparison between opti-
cal and radio light curves based on a single opening angle
simulation (0.2 rad) and light curves for the same opening
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Figure 7. Direct comparison between box light curves and grid light curves from
Van Eerten et al. (2010a, see Figure 1 of that paper). The simulation from that
paper had θ0 = 0.2 rad, Eiso = 1053 erg, n0 = 1 cm−3, z = 0, dL = 1028 cm,
p = 2.5, εe = 0.1, εB = 0.1, ξN = 1, and the resulting light curves are indicated
by thick dotted lines. The solid curves show the box results for θobs = 0 rad at
109 Hz (radio, top) and 1014 Hz (optical, bottom). The dashed curves show box
results for θobs = 0.4 rad, also at 109 Hz (top) and 1014 Hz (bottom). Because
the radiation was calculated by direct summation of the emitted power of all
fluid elements in Van Eerten et al. (2010a), no synchrotron self-absorption was
included in that work, and for the purpose of comparison we have therefore
disabled synchrotron self-absorption in the box curves for this plot as well.

Figure 8. Direct comparison between box light curves and grid light curves
from Van Eerten & MacFadyen (2011b, see Figure 1 of that paper). We use case
B from that paper with θ0 = 0.4 rad, Eiso = 1.25 × 1049 erg, n0 = 10−3 cm−3,
z = 0, dL = 1028 cm, p = 2.5, εe = 0.1, εB = 0.1, ξN = 1, and the resulting
light curves are indicated by thick dotted lines. The solid curves show the box
results for θobs = 0 rad at 1.43 GHz (radio, top) and 4.56 × 1014 Hz (optical,
bottom). The dashed curves show box results for θobs = 0.8 rad, also at 1.43 GHz
(top) and 4.56 × 1014 Hz (bottom). The emission coefficients in Van Eerten &
MacFadyen (2011b) were larger by a factor of 3/2, and in order to allow for
a direct comparison, the fluxes from Van Eerten & MacFadyen (2011b) have
been divided by 3/2.

angle reconstructed from interpolation between simulations
with θ0 = 0.175 rad and θ0 = 0.225 rad. The figure shows
that interpolated light curves generally match the light curves
calculated from θ0 = 0.2 rad. In this particular example the
greatest discrepancy occurs between the low radio curves around
160 days, where the interpolated curve flux is briefly larger by a
factor of 1.2. Note, however, that the figure represents an extreme
scenario that does not occur in practice: by artificially removing

Figure 9. Direct comparison between box-based light curves with θ0 = 0.2 rad,
where no interpolation with respect to jet opening angle has been applied (thick
dotted curves, using only data from simulation 8 in Table 1), and box-based
light curves at θ0 = 0.2 rad created by interpolation from θ0 = 0.175 and
θ0 = 0.225 rad (solid and dashed curves, using data from simulations 7 and 9).

θ0 = 0.2 for the purpose of testing the interpolation, we have
tested interpolation across Δθ0 = 0.025 rad, whereas in practice
the largest possible difference δθ0 = 0.0125 rad. We conclude
that the range of jet opening angles between θ0 = 0.045 and
θ0 = 0.5 rad is adequately represented by our sample of simu-
lations plus interpolation.

The numerical errors between different simulations and box-
based light curves given above should be compared to the
difference between simulation/box-based light curves on the
one hand and analytically calculated light curves on the other
hand. Although the latter light curves have no numerical noise or
resolution errors by definition, they have systematic errors due to
the simplifications in the underlying assumptions for dynamics
and radiating region that are far larger than the numerical noise
in the former. In Van Eerten et al. (2010a) simulation results are
compared to different analytical models and differences up to an
order of magnitude in flux level and in time (for specific features
such as the off-axis moment of peak flux) are seen, especially
in the transrelativistic phase.

5.4. Fitting Methods

The method to quickly generate the observed flux at an
arbitrary observer frequency and time described in the preceding
subsections allows for iterative fitting of the simulation-based
afterglow model of a decelerating and spreading relativistic jet
to broadband data. This model has at most eight fit parameters:
Eiso, n0, θ0, θobs (observer angle), εe, εB , ξN , and p. Observer
luminosity distance dL and redshift z are assumed to have been
determined separately. Not all fit parameters need to be included
in the fit and any parameter can be fixed to a specific value. For
example, ξN = 1 and θobs = 0 rad are commonly used.

The fit code takes as input the full set of broadband data points,
all expressed in mJy. We use the downhill simplex method
(Nelder & Mead 1965) combined with simulated annealing to
minimize χ2 (Kirkpatrick et al. 1983; Press et al. 1986). We
also use the suggestion from Nelder & Mead (1965) to set
the result for trial parameters outside of a specified parameter
domain (e.g., θobs < 0) equal to a very large number, which
has the effect that the trial will be discarded before the downhill
simplex iteration has completed.
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The code is written in parallel. The broadband data points
are distributed over the different computer cores and each core
calculates the box-based flux counterpart for the data points it
gets assigned, for each iteration of the fit parameters. Although
the code can also be run on a single core, in practice the size
of broadband data sets implies that even if the calculation of
a single data point takes mere seconds, the total amount of
calculation time required for the entire data set can become
substantial. This is relevant especially in the case of an iterative
fit that requires thousands of iterations (although strongly
dependent on computer hardware, number of data points, and
numerical accuracy, the procedure can then still take days to
complete).

In order to obtain a measure of the error on the fit variables,
a Monte Carlo (MC) procedure is followed where the initial
fluxes of the data set are randomly perturbed with an amplitude
based on their error bars, and with a random number drawn
from a Gaussian distribution, and then the fit is redone. This
procedure is repeated a large number of times, i.e., 10,000.
We take the lowest 68.3% of the resulting χ2 values, and the
extremes for the fit parameters within this subset determine their
1σ uncertainties.

Although the code allows for an MC calculation where the full
box calculation is done each time a new model flux is required,
the amount of time needed for the full MC run can become
prohibitive. In order to circumvent the need for 10,000 data
fits (consisting of thousands of flux calculations per data point
each), the code offers an alternative approach for estimating the
fit variable errors by calculating the light curves for fit variables
other than the best fit from a series expansion in terms of the
fit variables around the best fit. This means that instead of a
complete flux calculation, at first the best-fit result is calculated
in detail. In addition to this, the partial derivatives of the flux
with respect to the different fit parameters are calculated. From
the base light curve and the derivatives it is now possible to
estimate the light curves at slightly differing values of the fit
parameters. These are the values that will in practice be probed
when χ2 is minimized for a perturbed data set.

Rather than the derivative ∂F/∂n0 (or any fit parameter other
than p, θobs, θ0), we use ∂ log F/∂ log n0 for this approach. The
reason is that we know from analytical modeling that the flux in
each spectral regime scales according to F ∝ Eα0

ison
α1
0 εα4

e ε
α5
B ξ

α6
N ,

etc., where the coefficients αi are either constant or linearly
dependent on p (see, e.g., Granot et al. 2001). The method
of calculating log F (rather than F) from some base value plus
partial derivatives is therefore accurate beyond a mere first-order
approximation (in case of fixed p). Otherwise, the accuracy of
the series expansion approach is set by the deviation of a given
set of trial values from the best-fit values. The maximum for
this deviation is ultimately determined by the error on the data
points. We did not use the logarithm of the angles because the
observer angle can be equal to zero.

6. GRB 990510: A CASE STUDY

The “box”-based tool for GRB afterglow modeling presented
in this paper can be applied to any broadband data set. Good
spectral and temporal coverage is necessary to accurately de-
termine all of the macro- and microphysical parameters. The
broadband spectrum should span radio to X-ray frequencies
to encompass all three characteristic frequencies of the syn-
chrotron spectrum, and both early- and late-time data are needed
to determine, for instance, the opening angle of the jet and the

observer angle. We note that the tool allows for fitting of limited
data sets by fixing some of the fit parameters.

To demonstrate the capabilities of our tool, we have selected
the afterglow of GRB 990510. There are light curves available
for this source in X-rays, in various optical bands, and at two
radio frequencies. Historically, GRB 990510 was the first strong
case for an achromatic jet break, and the broadband afterglow
has been modeled by several authors, all using analytical
expressions. Here, we show the results of our modeling with
RHD simulations.

The modeling tool requires fluxes in mJy at all frequencies,
which means that some conversions have to be applied to the
optical and X-ray data. The radio data at 4.8 and 8.7 GHz were
taken directly from Harrison et al. (1999). The X-ray count
rates from Kuulkers et al. (2000) were converted to mJy using
the conversion factors given in that paper. In our modeling we
have used the V-, R-, and I-band data from Harrison et al. (1999),
Israel et al. (1999), Stanek et al. (1999), Pietrzynski & Udalski
(1999), Bloom et al. (1999), and Beuermann et al. (1999). We
have corrected the optical magnitudes for Galactic extinction
with E(B − V ) = 0.20 (Schlegel et al. 1998) before converting
the magnitudes into fluxes. Starling et al. (2007) have shown
that the host galaxy extinction is negligible for GRB 990510
based on modeling of the X-ray to optical spectrum.

6.1. Fit Results

We have performed three different fits to the 205 data points
of the GRB 990510 afterglow, for which we show the resulting
fit parameters in Table 2 and the accompanying best-fit light
curves in Figures 10–12. Figure 10 shows the fit results for a fit
with fixed θobs = 0 and ξN = 1, which can be directly compared
to the broadband fits performed by Panaitescu & Kumar (2002),
who use analytical expressions. Figure 11 shows the best-fit light
curves for a fit with ξN as a free parameter and fixed θobs = 0,
and Figure 12 for a fit without any fixed parameters.

Table 2 shows a clear spread in best-fit parameters for the three
fits we performed and also some differences with the results
from Panaitescu & Kumar (2002). These differences can be
mostly attributed to the fact that the synchrotron self-absorption
frequency νa is not very well defined by this particular data set.
The coverage at radio frequencies is fairly sparse compared to
the optical and X-ray bands, and the flux uncertainties in the
radio are also larger than at higher frequencies. For all three
of our fits νa has a value around 109 Hz at 1 day after the
burst, while the peak frequency νm ∼ 1013 Hz at that time.
The good coverage in the optical and X-ray bands enables an
accurate determination of the cooling frequency νc, which is
situated just above the optical bands, and the value of p. In
contrast to the results from Panaitescu & Kumar (2002), we find
p > 2 for all three of our fits rather than 1.8. Although our
p > 2 lies within the error bar of their work, the converse is
not true, which confirms p > 2, and that there is thus no need
to include an additional high-energy cutoff on the relativistic
particle distribution. The value of p has also been determined
by several other authors based on optical and X-ray light-
curve slopes (e.g., Harrison et al. 1999; Kuulkers et al. 2000;
Panaitescu & Kumar 2001) or a combination of light curves and
optical to X-ray spectra (Starling et al. 2008). In those studies
the value for p falls in the range 2.1–2.2, consistent with the p
value we have obtained in our fit without any fixed parameters.

It is clear from Table 2 that adding extra parameters introduces
quite a strong variation in some of the parameters. In particular,
the energy and circumburst density change from the on-axis to
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Table 2
Best-fit Model Parameters and 1σ Errors

Var. PK02 On-axis, Fixed ξN On-axis Off-axis

θ0 (rad) 5.4+0.1
−0.6 × 10−2 7.5+0.2

−0.4 × 10−2 9.46−0.33
+0.03 × 10−2 4.82+0.32

−0.04 × 10−2

Eiso (erg) 9.47+37
−2.27 × 1053 1.8+0.3

−0.1 × 1053 1.04+0.16
−0.02 × 1053 4.388+0.003

−0.605 × 1054

n0 (cm−3) 2.9+0.7
−0.9 × 10−1 3.0+0.4

−1.2 × 10−2 1.15+0.03
−0.19 1.115+0.258

−0.006 × 10−1

θobs(rad) 0 (fixed) 0 (fixed) 0 (fixed) 1.6+0.1
−0.1 × 10−2

p 1.83+0.11
−0.006 2.28+0.06

−0.01 2.053−0.006
+0.007 2.089+0.013

−0.001

εB 5.2+26
−2.9 × 10−3 4.6+0.8

−0.8 × 10−3 2.04+0.04
−0.30 × 10−3 1.36+0.19

−0.03 × 10−3

εe 2.5+1.9
−0.4 × 10−2 3.73−0.68

+0.07 × 10−1 6.8+0.6
−0.1 × 10−1 1.17+0.02

−0.12 × 10−2

ξN 1 (fixed) 1 (fixed) 5.4+0.6
−0.6 × 10−1 5.7+1.0

−1.7 × 10−2

χ2
r · · · 6.389 5.389 3.235

Ej 1.4+3.1
−0.3 × 1050 5.0+1.2

−0.8 × 1050 4.63+0.05
−0.10 × 1050 5.1+0.7

−0.8 × 1051

Notes. The column labeled PK02 lists the fit results from Panaitescu & Kumar (2002), translated from their units and 90% confidence
intervals. For context we also include jet energy Ej results.

Figure 10. Fit results for the GRB 990510 on-axis fit (θobs = 0) with fixed
ξN = 1. The reduced χ2 for 205 data points and six fit parameters is 6.389.
For clarity of presentation, some fluxes have been multiplied by the indicated
factors.

(A color version of this figure is available in the online journal.)

the off-axis fit with more than an order of magnitude, while
in the off-axis fit the opening angle becomes a factor of two
smaller by introducing a non-zero observer angle. This shows
the importance of including the observer angle in broadband

Figure 11. Fit results for GRB 990510 broadband on-axis fit (θobs = 0). The
reduced χ2 for 205 data points and seven fit parameters is 5.389. For clarity of
presentation, some fluxes have been multiplied by the indicated factors.

(A color version of this figure is available in the online journal.)

modeling of GRB afterglows, although this does require well-
sampled light curves across the whole spectrum. More detailed
studies of well-sampled broadband afterglows will be presented
in a future paper.
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Figure 12. Fit results for GRB 990510 broadband off-axis fit, with the observer
angle included as a fit parameter. The reduced χ2 for 205 data points and
eight fit parameters is 3.235. For clarity of presentation, some fluxes have been
multiplied by the indicated factors.

(A color version of this figure is available in the online journal.)

7. DISCUSSION

In this paper, we present a method to directly fit light curves
based on two-dimensional hydrodynamical jet simulations to
broadband afterglow data. This provides a clear improvement
over fits based on analytical models, which are not able to take
complex features of the jet dynamics into account, such as the
radial fluid profile, slow deceleration from ultrarelativistic to
non-relativistic outflow, the sideways spreading, and resulting
inhomogeneity along the shock front. The iterative fit procedure
is possible because (1) we have shown that the jet evolution is
scale invariant with respect to explosion energy and circumburst
medium density, and (2) the results from high-resolution parallel
RHD simulations can be summarized in a very compact form.
The compressed version, a “box” summary, of the simulation
“grid” data is possible once the blast wave lateral extent, radius,
and radial width are known from the data at each emission time.
The predicted flux is calculated for each data point for a given
set of explosion and radiation parameters, and because the code
takes into account both electron cooling and synchrotron self-
absorption, it is applicable to the entire broadband afterglow
spectrum.

In order to set up the boxes, a total of 19 RHD simulations
were performed in two dimensions, with initial opening angles
varying between 0.045 and 0.5 rad. Light curves for intermediate
opening angles between different tabulated simulation results
are obtained via interpolation at the fluid level. The simulations
are run for a long time in order to ensure that late-time non-
relativistic features such as the rise of the counterjet are covered
as well. At very early times the outflow conforms to the self-
similar Blandford–McKee solution, and this is used directly
to calculate radiation from emission times before the starting
point of the simulations. A comparison of the evolution of the
19 simulations reveals that, although hard to predict analytically,
the evolution from strongly collimated BM jet to semi-spherical
Sedov–Taylor blast wave is smooth. For small opening angles,
the intermediate stage between the two asymptotes is more
pronounced.

We present a number of tests for the resolution of box-based
light curves by direct comparison to the simulations underlying
the box summaries and to earlier work. The earlier light curves
have been generated directly from simulations using different
methods: by applying linear radiative transfer and by summation
of the emitted power (in the optically thin case). The differences
between box-based and simulation-based light curves are found
to be a few percent at most, and the box summaries are found
to correctly capture the shock profile at the different stages of
blast wave evolution.

We have used GRB 990510 as a case study to demonstrate
our method, because it has been observed over a wide range
of frequencies. A simultaneous fit has been performed to data
at two radio frequencies, three optical bands, and in X-rays.
There are some substantial differences between our best-fit
values and earlier-fit values found by Panaitescu & Kumar
(2002), but also between the fits with various parameters fixed
that we have performed. Most strikingly, including a non-zero
observing angle in our modeling changes has a large impact on
the obtained values for the blast wave energy and circumburst
density. Furthermore, in contrast with Panaitescu & Kumar
(2002), we find a value for the electron energy distribution index
p > 2 and thus do not need to include a high-energy cutoff on
the relativistic particle distribution.

The more accurate fits possible by the method of this paper
help to further constrain the physics that shape the GRB
afterglows. Explosion energy and circumburst density provide
important clues to the nature of the progenitor star and burst
environment. In addition, the types of fits to data sets covering
a long time span that the method makes possible, where the
complexities of the intermediate stage dynamics and the shape
of the jet break are fully included, are necessary to establish a
baseline for studies of the effect of more detailed models of the
microphysics. The evolution of microphysical parameters, such
as εB , is discussed in various papers (Van Eerten et al. 2010b;
Panaitescu et al. 2006; Filgas et al. 2011).

Even without utilizing the possibility of fitting broadband
data directly to simulation results, given the fact that the box
summaries cover a large number of simulations not just directly
but through scaling and interpolation, exploring the complete
parameter space of impulsive jets in an ISM environment (with
the inclusion of stellar wind environments being straightfor-
ward) should prove useful. It will allow us to test radiation
mechanisms of physical interest other than pure synchrotron
radiation in a realistic context. As long as there is no signifi-
cant feedback on the dynamics of the outflow or dynamically
relevant magnetic field involved, any generalization is possible
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even if it includes scattering. Examples of interest for different
radiative processes are given by Giannios & Spitkovsky (2009)
and Petropoulou & Mastichiadis (2009).

The source code of the broadband fit program described
in this paper is publicly available at http://cosmo.nyu.edu/
afterglowlibrary. The code has different settings: not only can
it be used to fit box-based light curves to a data set and estab-
lish the uncertainties in the best-fit parameters, it can also be
used to generate light curves and spectra directly for arbitrary
frequencies, observer angles, observer times, and explosion and
radiation parameters. This could be helpful for directly explor-
ing how the different regions of the parameter space determine
the shape of the afterglow, and for quickly creating light curves
that can be expected or looked for in surveys (see, e.g., Nakar
& Piran 2011; Roberts et al. 2011; Metzger & Berger 2012).

A number of practical improvements can be made to the code.
In the case of very large data sets, even for the parallel version,
where the data points to be calculated are evenly distributed
on the cores, the total calculation time can become unwieldy.
A remedy to this would be to no longer recalculate the flux
independently for each data point but to calculate the flux at a
fixed (large) number of values for observer time and frequency,
chosen such to evenly cover the available data. The flux at the
exact data point values can then be determined by interpolation
between these values. Because the light curves are smooth, this
will not impact the accuracy of the fit. For very long data sets
(some GRBs have now been observed for several years, e.g.,
GRB 030329, Frail et al. 2000; van der Horst et al. 2008), more
long-term simulation data can be added to the boxes. Boxes can
also be generated for a stellar wind environment, since the same
scale invariances apply. These applications and improvements
will be presented in future work.
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APPENDIX A

EMISSION AND ABSORPTION COEFFICIENTS

The expressions for the emission and absorption coefficient
are drawn from Granot et al. (1999), based in turn on Sari et al.
(1998), and for completeness we provide below the exact forms
that we have implemented in our radiation code.3 The code

3 The terminology used in Van Eerten et al. (2010a) is slightly off, where the
term emissivity has been used to refer to a quantity that should have been
labeled emission coefficient, had it not been for the factor 4π that was left
explicit as well. The terminology has been corrected for the current paper and
now matches Rybicki & Lightman (1979). The coefficient jS in Van Eerten &
MacFadyen (2011b) was larger by a factor of 3/2.

solves the radiative transfer equation using

ΔIν = (jν − ανIν)cΔt, (A1)

where Δt is the lab frame time difference between two snap-
shots, jν is the emission coefficient, and αν is the absorption
coefficient. The code subsequently calculates the flux by in-
tegrating over the area A of the emission plane, according to

Fν = 1 + z

d2
L

∫
dAIν. (A2)

Here, dL is the luminosity distance and z is the redshift.
Separating the coefficients into frequency-dependent and non-
frequency-dependent components, jν = jS × jf and αν =
αS × αf , we use for the non-frequency-dependent components

jS = 9.6323
p − 1

3p − 1

√
3q3

e

8πmec2

ξNn′B ′

γ 2(1 − βμ)2
,

αS =
√

3q3
e (p − 1)(p + 2)

16πm2
ec

2
ξNn′B ′γ (1 − βμ). (A3)

Here, qe is the electron charge, me is the electron mass, n′ is the
comoving number density, B ′ is the comoving magnetic field
strength, β is the fluid flow velocity as fraction of c, and μ is
the angle between the outflow and the observer direction. The
frequency-dependent part jf is given by

jf =

⎧⎪⎨
⎪⎩

(ν ′/ν ′
m)1/3 if ν ′ < ν ′

m < ν ′
c,

(ν ′/ν ′
m)(1−p)/2 if ν ′

m < ν ′ < ν ′
c,

(ν ′
c/ν

′
m)(1−p)/2(ν ′/ν ′

c)−p/2 if ν ′
m < ν ′

c < ν ′,
(A4)

when ν ′
m < ν ′

c and by

jf =

⎧⎪⎨
⎪⎩

(ν ′/ν ′
c)1/3 if ν ′ < ν ′

c < ν ′
m,

(ν ′/ν ′
c)−1/2 if ν ′

c < ν ′ < ν ′
m,

(ν ′
m/ν ′

c)−1/2(ν ′/ν ′
m)−p/2 if ν ′

c < ν ′
m < ν ′,

(A5)

otherwise. Here, ν ′ denotes the comoving observer frequency.
The synchrotron frequency ν ′

m is given by

ν ′
m = 3qe

4πmec
(γ ′

m)2B ′, γ ′
m =

(
p − 2

p − 1

) (
εee

′

ξNn′mec2

)
.

(A6)
The cooling break frequency ν ′

c is estimated using a global
cooling time, leading to

ν ′
c = 3qe

4πmec
(γ ′

c)2B ′, γ ′
c = 6πmecγ

σT (B ′)2tc
, tc ≡ t.

(A7)
Note that both γ ′

m and γ ′
c are comoving with the fluid, while γc

in Sari et al. (1998) is in the rest frame.
For the self-absorption coefficient we ignore the effects of

cooling, because in practice the self-absorption break frequency
ν ′

a � ν ′
c and because otherwise the limit of accuracy is set in

practice by the use of a global cooling time rather than by any
additional level of detail in the calculation of the absorption
coefficient. We have

αf = 1

γ ′
m(ν ′)2

{
(ν ′/ν ′

m)1/3 if ν ′ < ν ′
m,

(ν ′/ν ′
m)−p/2 if ν ′

m < ν ′.
(A8)
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APPENDIX B

SCALE-FREE FLUID EQUATIONS

In our study we have solved the fluid equations using arbitrary
values for explosion energy and density. For reference and in
order to explicitly demonstrate the complete scale invariance
of the simulations, we provide the fluid equations in terms of
dimensionless parameters A, B, θ below.

The special relativistic fluid dynamics equations in spherical
coordinates, assuming symmetry in angle φ in the x–y plane
around the jet axis, are as follows:

∂

ct
γρ +

(
∂

∂r
+

2

r

)
γρβr +

1

r sin θ

∂

∂θ
γρβθ sin θ = 0,

∂

∂ct
(hγ 2 − p − ργ c2) +

(
∂

∂r
+

2

r

)
(hγ 2βr − ργ c2βr )

+
1

r sin θ

∂

∂θ
[(hγ 2βθ − ργ c2βθ ) sin θ ] = 0,

∂

ct
hγ 2βr +

(
∂

∂r
+

2

r

) (
hγ 2β2

r + p
)

+
1

r sin θ

∂

∂θ
hγ 2βrβθ = 0,

∂

ct
hγ 2βθ +

(
∂

∂r
+

2

r

)
hγ 2βθβr +

1

r sin θ

∂

∂θ

(
hγ 2β2

θ + p
) = 0.

(B1)

Here, βr and βθ are the fluid velocity components in the r and
θ directions, respectively, in units of c and h the relativistic
enthalpy density including rest-mass energy density. In terms of
scale-free parameters A and B, the partial derivatives in r and ct
can be expressed as

∂

∂ct
= − A

ct

∂

∂A
+

2B

ct

∂

∂B
,

∂

∂r
= 1

ct

∂

∂A
− 5B

r

∂

∂B
. (B2)

Combining these with the fluid equations above yields the scale-
invariant forms
(

−A
∂

∂A
+ 2B

∂

∂B

)
γ

ρ

ρ0
+

(
∂

∂A
− 5B

A

∂

∂B
+

2

A

)
γ

ρ

ρ0
βr

+
1

A sin θ

∂

∂θ
γ

ρ

ρ0
βθ sin θ = 0,

(
−A

∂

∂A
+ 2B

∂

∂B

)
hγ 2 − p − ργ c2

ρ0c2

+

(
∂

∂A
− 5B

A

∂

∂B
+

2

A

)
hγ 2βr − ργ c2βr

ρ0c2

+
1

A sin θ

∂

∂θ

(hγ 2βθ − ργ c2βθ ) sin θ

ρ0c2
= 0,

(
−A

∂

∂A
+ 2B

∂

∂B

)
hγ 2βr

ρ0c2
+

(
∂

∂A
− 5B

A

∂

∂B
+

2

A

)
hγ 2β2

r + p

ρ0c2

+
1

A sin θ

∂

∂θ

hγ 2βrβθ

ρ0c2
= 0,

(
−A

∂

∂A
+ 2B

∂

∂B

)
hγ 2βθ

ρ0c2
+

(
∂

∂A
− 5B

A

∂

∂B
+

2

A

)
hγ 2βθβr

ρ0c2

+
1

A sin θ

∂

∂θ

hγ 2β2
θ + p

ρ0c2
= 0. (B3)

Quantities such as γρ/ρ0, etc., are dimensionless and therefore
(scale-invariant) functions of the scale-invariant dimensionless
parameters A, B, and θ . For radial outflow and for limiting values
of A, the fluid equations further reduce to self-similarity.
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Panaitescu, A., Mészáros, P., Burrows, D., et al. 2006, MNRAS, 369, 2059
Petropoulou, M., & Mastichiadis, A. 2009, A&A, 507, 599
Pietrzynski, G., & Udalski, A. 1999, GCN Circ., 328, 1
Piran, T. 2005, Rev. Mod. Phys., 76, 1143
Press, W. H., Flannery, B. P., & Teukolsky, S. A. (ed.) 1986, Numerical Recipes.

The Art of Scientific Computing (Cambridge: Cambridge Univ. Press)
Ramirez-Ruiz, E., & MacFadyen, A. I. 2010, ApJ, 716, 1028
Rhoads, J. E. 1999, ApJ, 525, 737
Roberts, L. F., Kasen, D., Lee, W. H., & Ramirez-Ruiz, E. 2011, ApJ, 736, L21
Rottgering, H. J. A., Braun, R., Barthel, P. D., et al. 2006, arXiv:

astro-ph/0610596
Rybicki, G. B., & Lightman, A. P. (ed.) 1979, Radiative Processes in Astro-

physics (New York: Wiley-Interscience)
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics (New

York: Academic)
Stanek, K. Z., Garnavich, P. M., Kaluzny, J., Pych, W., & Thompson, I.

1999, ApJ, 522, L39
Starling, R. L. C., van der Horst, A. J., Rol, E., et al. 2008, ApJ, 672, 433
Starling, R. L. C., Wijers, R. A. M. J., Wiersema, K., et al. 2007, ApJ, 661, 787

14

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://adsabs.harvard.edu/abs/2009RPPh...72g6901A
http://adsabs.harvard.edu/abs/2009RPPh...72g6901A
http://dx.doi.org/10.1088/0264-9381/25/11/114045
http://adsabs.harvard.edu/abs/2008CQGra..25k4045A
http://adsabs.harvard.edu/abs/2008CQGra..25k4045A
http://adsabs.harvard.edu/abs/1999A&A...352L..26B
http://adsabs.harvard.edu/abs/1999A&A...352L..26B
http://dx.doi.org/10.1063/1.861619
http://adsabs.harvard.edu/abs/1976PhFl...19.1130B
http://adsabs.harvard.edu/abs/1976PhFl...19.1130B
http://adsabs.harvard.edu/abs/1999GCN...323....1B
http://adsabs.harvard.edu/abs/1999GCN...323....1B
http://dx.doi.org/10.1086/380436
http://adsabs.harvard.edu/abs/2004ApJ...601..380C
http://adsabs.harvard.edu/abs/2004ApJ...601..380C
http://dx.doi.org/10.1016/j.newar.2004.09.001
http://adsabs.harvard.edu/abs/2004NewAR..48..979C
http://adsabs.harvard.edu/abs/2004NewAR..48..979C
http://dx.doi.org/10.1038/42885
http://adsabs.harvard.edu/abs/1997Natur.387..783C
http://adsabs.harvard.edu/abs/1997Natur.387..783C
http://dx.doi.org/10.1046/j.1365-8711.2002.05282.x
http://adsabs.harvard.edu/abs/2002MNRAS.332..144D
http://adsabs.harvard.edu/abs/2002MNRAS.332..144D
http://dx.doi.org/10.1051/0004-6361:20020390
http://adsabs.harvard.edu/abs/2002A&A...387..714D
http://adsabs.harvard.edu/abs/2002A&A...387..714D
http://dx.doi.org/10.1038/340126a0
http://adsabs.harvard.edu/abs/1989Natur.340..126E
http://adsabs.harvard.edu/abs/1989Natur.340..126E
http://dx.doi.org/10.1051/0004-6361/201117695
http://adsabs.harvard.edu/abs/2011A&A...535A..57F
http://adsabs.harvard.edu/abs/2011A&A...535A..57F
http://dx.doi.org/10.1086/309024
http://adsabs.harvard.edu/abs/2000ApJ...537..191F
http://adsabs.harvard.edu/abs/2000ApJ...537..191F
http://dx.doi.org/10.1086/317361
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://adsabs.harvard.edu/abs/2000ApJS..131..273F
http://dx.doi.org/10.1111/j.1365-2966.2009.15454.x
http://adsabs.harvard.edu/abs/2009MNRAS.400..330G
http://adsabs.harvard.edu/abs/2009MNRAS.400..330G
http://adsabs.harvard.edu/abs/2001grba.conf..312G
http://dx.doi.org/10.1111/j.1365-2966.2011.20335.x
http://adsabs.harvard.edu/abs/2012MNRAS.421..570G
http://adsabs.harvard.edu/abs/2012MNRAS.421..570G
http://dx.doi.org/10.1086/306884
http://adsabs.harvard.edu/abs/1999ApJ...513..679G
http://adsabs.harvard.edu/abs/1999ApJ...513..679G
http://dx.doi.org/10.1086/338966
http://adsabs.harvard.edu/abs/2002ApJ...568..820G
http://adsabs.harvard.edu/abs/2002ApJ...568..820G
http://adsabs.harvard.edu/abs/1997IAUC.6584....1G
http://adsabs.harvard.edu/abs/1997IAUC.6584....1G
http://dx.doi.org/10.1086/312282
http://adsabs.harvard.edu/abs/1999ApJ...523L.121H
http://adsabs.harvard.edu/abs/1999ApJ...523L.121H
http://dx.doi.org/10.1046/j.1365-8711.1999.02887.x
http://adsabs.harvard.edu/abs/1999MNRAS.309..513H
http://adsabs.harvard.edu/abs/1999MNRAS.309..513H
http://adsabs.harvard.edu/abs/1999A&A...348L...5I
http://adsabs.harvard.edu/abs/1999A&A...348L...5I
http://dx.doi.org/10.1006/jcph.1996.0130
http://adsabs.harvard.edu/abs/1996JCoPh.126..202J
http://adsabs.harvard.edu/abs/1996JCoPh.126..202J
http://dx.doi.org/10.1126/science.220.4598.671
http://adsabs.harvard.edu/abs/1983Sci...220..671K
http://adsabs.harvard.edu/abs/1983Sci...220..671K
http://dx.doi.org/10.1086/306868
http://adsabs.harvard.edu/abs/1999ApJ...513..669K
http://adsabs.harvard.edu/abs/1999ApJ...513..669K
http://dx.doi.org/10.1086/309159
http://adsabs.harvard.edu/abs/2000ApJ...538..638K
http://adsabs.harvard.edu/abs/2000ApJ...538..638K
http://dx.doi.org/10.1086/307790
http://adsabs.harvard.edu/abs/1999ApJ...524..262M
http://adsabs.harvard.edu/abs/1999ApJ...524..262M
http://dx.doi.org/10.1016/S0010-4655(99)00501-9
http://adsabs.harvard.edu/abs/2000CoPhC.126..330M
http://adsabs.harvard.edu/abs/2000CoPhC.126..330M
http://dx.doi.org/10.1051/0004-6361/201015423
http://adsabs.harvard.edu/abs/2010A&A...520L...3M
http://adsabs.harvard.edu/abs/2010A&A...520L...3M
http://dx.doi.org/10.1111/j.1365-2966.2007.11500.x
http://adsabs.harvard.edu/abs/2007MNRAS.376.1189M
http://adsabs.harvard.edu/abs/2007MNRAS.376.1189M
http://dx.doi.org/10.1088/0034-4885/69/8/R01
http://adsabs.harvard.edu/abs/2006RPPh...69.2259M
http://adsabs.harvard.edu/abs/2006RPPh...69.2259M
http://dx.doi.org/10.1086/303625
http://adsabs.harvard.edu/abs/1997ApJ...476..232M
http://adsabs.harvard.edu/abs/1997ApJ...476..232M
http://dx.doi.org/10.1088/0004-637X/746/1/48
http://adsabs.harvard.edu/abs/2012ApJ...746...48M
http://adsabs.harvard.edu/abs/2012ApJ...746...48M
http://dx.doi.org/10.1086/430905
http://adsabs.harvard.edu/abs/2005ApJS..160..199M
http://adsabs.harvard.edu/abs/2005ApJS..160..199M
http://dx.doi.org/10.1051/0004-6361:200810756
http://adsabs.harvard.edu/abs/2009A&A...494..879M
http://adsabs.harvard.edu/abs/2009A&A...494..879M
http://dx.doi.org/10.1111/j.1365-2966.2007.12245.x
http://adsabs.harvard.edu/abs/2007MNRAS.380.1744N
http://adsabs.harvard.edu/abs/2007MNRAS.380.1744N
http://www.arxiv.org/abs/1102.1020
http://adsabs.harvard.edu/abs/1991AcA....41..257P
http://adsabs.harvard.edu/abs/1991AcA....41..257P
http://dx.doi.org/10.1086/311148
http://adsabs.harvard.edu/abs/1998ApJ...494L..45P
http://adsabs.harvard.edu/abs/1998ApJ...494L..45P
http://dx.doi.org/10.1086/321388
http://adsabs.harvard.edu/abs/2001ApJ...554..667P
http://adsabs.harvard.edu/abs/2001ApJ...554..667P
http://dx.doi.org/10.1086/340094
http://adsabs.harvard.edu/abs/2002ApJ...571..779P
http://adsabs.harvard.edu/abs/2002ApJ...571..779P
http://dx.doi.org/10.1111/j.1365-2966.2006.10453.x
http://adsabs.harvard.edu/abs/2006MNRAS.369.2059P
http://adsabs.harvard.edu/abs/2006MNRAS.369.2059P
http://dx.doi.org/10.1051/0004-6361/200912970
http://adsabs.harvard.edu/abs/2009A&A...507..599P
http://adsabs.harvard.edu/abs/2009A&A...507..599P
http://adsabs.harvard.edu/abs/1999GCN...328....1P
http://adsabs.harvard.edu/abs/1999GCN...328....1P
http://dx.doi.org/10.1103/RevModPhys.76.1143
http://adsabs.harvard.edu/abs/2005RvMP...76.1143P
http://adsabs.harvard.edu/abs/2005RvMP...76.1143P
http://dx.doi.org/10.1088/0004-637X/716/2/1028
http://adsabs.harvard.edu/abs/2010ApJ...716.1028R
http://adsabs.harvard.edu/abs/2010ApJ...716.1028R
http://dx.doi.org/10.1086/307907
http://adsabs.harvard.edu/abs/1999ApJ...525..737R
http://adsabs.harvard.edu/abs/1999ApJ...525..737R
http://dx.doi.org/10.1088/2041-8205/736/1/L21
http://adsabs.harvard.edu/abs/2011ApJ...736L..21R
http://adsabs.harvard.edu/abs/2011ApJ...736L..21R
http://www.arxiv.org/abs/astro-ph/0610596
http://dx.doi.org/10.1086/311269
http://adsabs.harvard.edu/abs/1998ApJ...497L..17S
http://adsabs.harvard.edu/abs/1998ApJ...497L..17S
http://dx.doi.org/10.1086/305772
http://adsabs.harvard.edu/abs/1998ApJ...500..525S
http://adsabs.harvard.edu/abs/1998ApJ...500..525S
http://dx.doi.org/10.1086/312219
http://adsabs.harvard.edu/abs/1999ApJ...522L..39S
http://adsabs.harvard.edu/abs/1999ApJ...522L..39S
http://dx.doi.org/10.1086/521975
http://adsabs.harvard.edu/abs/2008ApJ...672..433S
http://adsabs.harvard.edu/abs/2008ApJ...672..433S
http://dx.doi.org/10.1086/511953
http://adsabs.harvard.edu/abs/2007ApJ...661..787S
http://adsabs.harvard.edu/abs/2007ApJ...661..787S


The Astrophysical Journal, 749:44 (15pp), 2012 April 10 van Eerten, van der Horst, & MacFadyen

Taylor, G. 1950, Proc. R. Soc. A, 201, 159
van der Horst, A. J., Kamble, A., Resmi, L., et al. 2008, A&A, 480, 35
Van Eerten, H., Zhang, W., & MacFadyen, A. 2010a, ApJ, 722, 235
Van Eerten, H. J., Leventis, K., Meliani, Z., Wijers, R. A. M. J., & Keppens, R.

2010b, MNRAS, 403, 300
Van Eerten, H. J., & MacFadyen, A. I. 2011a, arXiv:1105.2485
Van Eerten, H. J., & MacFadyen, A. I. 2011b, ApJ, 733, L37
Van Eerten, H. J., Meliani, Z., Wijers, R. A. M. J., & Keppens, R. 2011, MNRAS,

410, 2016

Von Neumann, J. (ed.) 1961, Collected Works ed. A. H. Taub (Oxford:
Pergamon)

Wijers, R. A. M. J., & Galama, T. J. 1999, ApJ, 523, 177
Wijers, R. A. M. J., Rees, M. J., & Meszaros, P. 1997, MNRAS, 288, L51
Woosley, S. E. 1993, ApJ, 405, 273
Wootten, A. 2003, Proc. SPIE, 4837, 110
Wygoda, N., Waxman, E., & Frail, D. A. 2011, ApJ, 738, L23
Zhang, W., & MacFadyen, A. 2009, ApJ, 698, 1261
Zhang, W., & MacFadyen, A. I. 2006, ApJS, 164, 255

15

http://dx.doi.org/10.1098/rspa.1950.0049
http://adsabs.harvard.edu/abs/1950RSPSA.201..159T
http://adsabs.harvard.edu/abs/1950RSPSA.201..159T
http://dx.doi.org/10.1051/0004-6361:20078051
http://adsabs.harvard.edu/abs/2008A&A...480...35V
http://adsabs.harvard.edu/abs/2008A&A...480...35V
http://dx.doi.org/10.1088/0004-637X/722/1/235
http://adsabs.harvard.edu/abs/2010ApJ...722..235V
http://adsabs.harvard.edu/abs/2010ApJ...722..235V
http://dx.doi.org/10.1111/j.1365-2966.2009.16109.x
http://adsabs.harvard.edu/abs/2010MNRAS.403..300V
http://adsabs.harvard.edu/abs/2010MNRAS.403..300V
http://www.arxiv.org/abs/1105.2485
http://dx.doi.org/10.1088/2041-8205/733/2/L37
http://adsabs.harvard.edu/abs/2011ApJ...733L..37V
http://adsabs.harvard.edu/abs/2011ApJ...733L..37V
http://dx.doi.org/10.1111/j.1365-2966.2010.17582.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.2016V
http://adsabs.harvard.edu/abs/2011MNRAS.410.2016V
http://dx.doi.org/10.1086/307705
http://adsabs.harvard.edu/abs/1999ApJ...523..177W
http://adsabs.harvard.edu/abs/1999ApJ...523..177W
http://adsabs.harvard.edu/abs/1997MNRAS.288L..51W
http://adsabs.harvard.edu/abs/1997MNRAS.288L..51W
http://dx.doi.org/10.1086/172359
http://adsabs.harvard.edu/abs/1993ApJ...405..273W
http://adsabs.harvard.edu/abs/1993ApJ...405..273W
http://adsabs.harvard.edu/abs/2003SPIE.4837..110W
http://adsabs.harvard.edu/abs/2003SPIE.4837..110W
http://dx.doi.org/10.1088/2041-8205/738/2/L23
http://adsabs.harvard.edu/abs/2011ApJ...738L..23W
http://adsabs.harvard.edu/abs/2011ApJ...738L..23W
http://dx.doi.org/10.1088/0004-637X/698/2/1261
http://adsabs.harvard.edu/abs/2009ApJ...698.1261Z
http://adsabs.harvard.edu/abs/2009ApJ...698.1261Z
http://dx.doi.org/10.1086/500792
http://adsabs.harvard.edu/abs/2006ApJS..164..255Z
http://adsabs.harvard.edu/abs/2006ApJS..164..255Z

	1. INTRODUCTION
	2. NUMERICAL JET SIMULATIONS
	2.1. Resolution and Refinement

	3. SCALE INVARIANCE OF THE JET
	4. LATERAL SPREADING AND JET DECELERATION
	5. “BOX”-BASED BROADBAND AFTERGLOW FITTING
	5.1. “Box” Summary of Simulations
	5.2. “Box” Interpolation
	5.3. Light Curves
	5.4. Fitting Methods

	6. GRB 990510: A CASE STUDY
	6.1. Fit Results

	7. DISCUSSION
	APPENDIX A. EMISSION AND ABSORPTION COEFFICIENTS
	APPENDIX B. SCALE-FREE FLUID EQUATIONS
	REFERENCES

