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ABSTRACT
A sufficiently powerful astrophysical source with power-law luminosity in time will give rise
to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a
forward shock moving into the surrounding medium. Once energy injection ceases and the
last energy is delivered to the shock front, the blast wave will transit into another self-similar
stage depending only on the total amount of energy injected. I describe the effect of limited
duration energy injection into environments with density depending on radius as a power
law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave
during injection is treated analytically, the transition following last energy injection with
one-dimensional simulations. Flux equations for synchrotron emission from the forward and
reverse shock regions are provided. The reverse shock emission can easily dominate, especially
with different magnetizations for both regions. Reverse shock emission is shown to support
both the reported X-ray and optical correlations between afterglow plateau duration and end
time flux, independently of the luminosity power-law slope. The model is demonstrated by
application to bursts 120521A and 090515, and can accommodate their steep post-plateau
light-curve slopes.

Key words: plasmas – radiation mechanisms: non-thermal – shock waves – hydrodynamics –
gamma-ray burst: general.

1 IN T RO D U C T I O N

Some cataclysmic astrophysical events, such as the merger of neu-
tron stars (Eichler et al. 1989; Paczynski 1991) or the collapse of
a very massive star (Woosley 1993; Paczynski 1998; MacFadyen
& Woosley 1999), can give rise to brief flashes of gamma rays
(‘gamma-ray bursts’, or GRBs) that can be detected at cosmolog-
ical distances. A common feature of GRB models is the launch
of collimated relativistic ejecta that interact with the surrounding
medium and produce an afterglow signal that can be detected from
X-rays to radio as the blast wave decelerates.

The classical fireball model for the afterglow (e.g. Meszaros,
Laguna & Rees 1993; Meszaros & Rees 1997a) describes the
relativistic hydrodynamical evolution after a mass and energy
(1048−51 erg, depending on the progenitor type) are injected ef-
fectively instantaneously into a small region. The fireball expands,
accelerates and ultimately decelerates, by sweeping up external
matter, with a self-similar relativistic fluid profile first described
by Blandford & McKee (1976) (hereafter denoted BM76). This
deceleration phase might be preceded by a brief phase where a
reverse shock (RS) runs into the original ejecta (see e.g. Sari &
Piran 1995; Sari 1997; Kobayashi, Piran & Sari 1999). The main
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observed emission component is synchrotron radiation from shock-
accelerated electrons interacting with small-scale shock-generated
magnetic fields, giving rise to a broad-band signal that follows a
power-law decay (or rise, at low observer frequencies) in time (e.g.
Blandford & McKee 1977). A standard GRB afterglow theory has
recently been reviewed by various authors, including Piran (2004);
Mészáros (2006); Granot (2007); Van Eerten (2013).

Since the launch of Swift (Gehrels et al. 2004), early time plateau
phases of shallow decay in afterglow X-ray light curves have been
revealed to be far more common than originally expected. These
plateaus are commonly attributed to prolonged injection of energy
(see e.g. Nousek et al. 2006; Zhang et al. 2006), which can take
different forms, such as ejecta with a range of velocities catching up
with the shock front (e.g. Panaitescu, Meszaros & Rees 1998; Rees
& Meszaros 1998; Sari & Mészáros 2000), long-term luminosity of
the source (e.g. Zhang & Mészáros 2001) or conversion of Poynting
flux from the ejecta (e.g. Usov 1992; Thompson 1994; Meszaros &
Rees 1997b; Lyutikov & Blandford 2003). When the blast wave is
continuously driven from the back, the impulsive energy injection
scenario no longer correctly describes the fluid evolution and the
blast wave will decelerate more slowly or not at all. Instead, for the
duration of injection of energy, a more complex system of shocks
will form similar to the brief RS stage for massive ejecta, with a
contact discontinuity (CD) separating the ejecta from the swept-up
ambient medium and a RS running into the ejecta, in addition to the
forward shock (FS) running into the medium that is also present in
the impulsive injection scenario.

C© 2014 The Authors
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The exact location and nature of emission during the plateau
phase is still not fully resolved. The observed emission will be a
mixture of forward and RS contributions, and either can be dominant
(see e.g. Zhang & Mészáros 2001; Nousek et al. 2006; Zhang et al.
2006; Butler & Kocevski 2007). Treatments of outflows with a long-
lived RS have shown that it is possible to account for a significant
part of the overall observed flux and light-curve features by emission
from the RS region (Uhm 2011; Uhm et al. 2012; Leventis, Wijers
& van der Horst 2014). Another strong indication that FS emission
alone is insufficient to explain observations is the abrupt drop in
luminosity that is sometimes seen at the end of the plateau phase
(e.g. Troja et al. 2007; Rowlinson et al. 2013).

In this study, I consider the dynamics, evolution and emission
from energy injection by a power-law luminosity from the cen-
tral source, which includes and generalizes the ‘thick-shell’ case
for massive ejecta. In the case of a sufficiently long-lived RS that
has become relativistic in the frame of the inflowing fluid, the full
RS/FS profile is self-similar and treated generally by BM76 (who
omit only the RS region density profile). Separate self-similar so-
lutions exist in the literature (e.g. Nakayama & Shigeyama 2005;
Nakamura & Shigeyama 2006), but for our purpose, the radial flow
with relativistic RS described in BM76 is sufficient. Since the injec-
tion of energy still lasts only for a limited time, the transition from
sustained to effectively impulsive injection (i.e. when the injection
time-scale becomes negligible again compared to the explosion du-
ration) is discussed in detail, including a numerical hydrodynamics
approach. Flux equations are derived for the emission that show the
relative contributions from forward and RS regions. These equations
can be applied directly to observational X-ray and optical data. The
RS emission is found to often be important, as is demonstrated using
‘typical’ long GRB afterglow parameters and short GRBs 090515
and 120521A.

In Section 2, the self-similar fluid profile during energy injec-
tion from a power-law luminosity source is derived and placed
in the context of the fireball model. In Section 3, the transition
after cessation of energy injection is discussed both analytically
and numerically (using the RAM relativistic hydrodynamics (RHD)
code, Zhang & MacFadyen 2006). Flux equations and the role of
the RS region for the observed emission are treated in Section 4,
including an application to GRBs 090515 and 120521A. A general
discussion follows in Section 5, a summary in Section 6, and some
technicalities are deferred to appendices.

In a separate study, Leventis et al. (2014) also find an important
role for the RS emission in shaping the observed flux. They con-
sider a homogeneous shell model for long-lived RSs and assume
a homogeneous circumburst medium, whereas this study considers
a generic power-law medium, a full self-similar fluid profile and
also examines the transition following energy injection using nu-
merical simulations. Earlier work by Uhm et al. (2012) considers
the case where energy injection results from shells with a range
of Lorentz factors catching up with the FS. There, the fluid profile
is not self-similar but calculated in detail using the ‘mechanical
model’ approach to afterglow blast waves from Beloborodov &
Uhm (2006).

2 SELF-SIMILAR SOLUTION FOR
RELATIVISTIC BLAST WAVE WITH ENERGY
I N J E C T I O N

In this section, I discuss the dynamics of purely radial flow during
energy injection.

2.1 Free-flowing relativistic wind

I take as starting point a prolonged injection of energy at time tin at
initial radius R0, according to

L = L0t
q
in. (1)

At the same time matter is injected according to

LM = LM,0t
−s
in . (2)

In case of a collimated outflow, these injection rates refer to isotropic
equivalent luminosities, since at early stages the flow is purely ra-
dial. These generalize the impulsive injection of the fireball sce-
nario, for which L → Lδ(t − t0) and LM → LMδ(t − t0). When the
time evolutions of mass and energy injections are the same, the ratio
between L and LM is given by a η ≡ L/LMc2, again generalizing
η ≡ E/Mc2 for the fireball, where E the total explosion energy, M
the total explosion mass and c the speed of light. I will consider
only cases where the baryon loading is small, and η � 1. Through-
out the paper, I will assume q = −s for simplicity. If q �= −s, but
η � 1 is maintained throughout the injection, the argument remains
essentially unchanged, albeit that an extra factor ts needs to be ac-
counted for in the RS density profile and in the flux equations. For
sources such as GRB’s, the true relative time evolution of energy
and matter injection is not known.

At small radii this results in an accelerating relativistic wind
profile, following the dynamics of the small Lorentz-contracted
shell of the impulsive energy injection fireball (Piran, Shemi &
Narayan 1993; Kobayashi, Piran & Sari 1999) throughout its radial
profile. At a radius RL ≡ ηR0, all internal energy in the outflow is
converted into kinetic energy (for the fireball shell analogue, see
Goodman 1986; Paczynski 1986; Shemi & Piran 1990; Kobayashi
et al. 1999) and the outflow will eventually proceed with fixed
Lorentz factor according to

γ = η, ρ = LM

4πcηr2
, p = LR

2/3
0

16πcη4/3r8/3
. (3)

These equations describe the fluid profile for a freely expanding
outflow in a dilute medium. However, in reality the expansion does
not occur in a total vacuum and at the surface of the sphere a
termination shock profile is formed consisting of a RS moving into
the freely expanding ejecta (but still moving outward in the ‘lab’
frame centred on the origin of the explosion), a CD separating the
wind from the environment and an FS moving into the circumburst
environment, likely a stellar wind profile shaped by the progenitor
system or a homogeneous interstellar medium (ISM) type profile.

2.2 Self-similar blast wave with energy injection

A self-similar profile for the RS–CD–FS system is provided by
BM76 for the case of a relativistic FS and relativistic RS. In BM76
(I will use ‘BM76’ to refer to the paper, ‘BM solution’ to refer to
the self-similar solution), the density profile inside of the CD is
not discussed, and indeed most information about the flow can be
derived assuming only equation 1, while remaining agnostic about
the mass flux (equation 2). In BM76, the similarity variable is given
by

χ = [1 + 2(m + 1)�2](1 − r/tc), (4)

increasing from 1 at the shock front to higher values downstream,
for a blast wave with an FS Lorentz factor � evolving in time t
according to �2 ∝ t−m.

MNRAS 442, 3495–3510 (2014)
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Self-similar relativistic blast waves 3497

Combining the shock-jump conditions for a strong relativistic FS
with the assumption of self-similarity one obtains

p = 2

3
ωFS+�2f (χ ),

γ 2 = 1

2
�2 g(χ ),

n′ = 2nFS+�2 h(χ ), (5)

between the FS and the CD, where the self-similar functions obey
f (1) = g(1) = h(1) = 1 at the shock front.1 For a cold medium,
enthalpy ωFS+ = ρFS+c2. The prime on the number density n′ refers
to the frame at which the origin of the explosion is at rest (i.e. the
frame of the circumburst medium or ‘lab’ frame) and is related to
the comoving number density n according to n = γ −1n′. Mass and
number density are related via ρ = mpn, where mp the proton mass.
The self-similar functions can be expressed as differential equations
when combining equations (5) with the equations of relativistic fluid
dynamics.

If we now assume η to be constant in time and consider only radii
r > RL, we can extend the analytical solutions for the differential
equations from BM76 to include the density profile in the RS region.
In terms of x ≡ gχ , the solution to the density profile equation, in
the case of ongoing injection, can be found to be

h(x) = C × A(x)−γ2 × B(x)μ1/γ1 × (2 − x)−μ2 . (6)

Here, A(x) and B(x) are functions of x obeying A(1) = B(1) = 1,
while γ 1, γ 2, μ1 and μ2 are determined by the power-law slope k of
the surrounding medium density profile (using ρ ≡ ρref(r/rref)−k)
and q. For completeness, these symbols and the analytical solution
for the full set of fluid quantities are defined in Appendix A. C is a
constant of integration whose value is determined by the boundary
conditions. In the FS region, C = 1, from h(1) = 1. For given q, k,
the positions of the CD and RS are fixed in self-similar coordinates
and can be shown to be given by xCD = g(χCD)χCD = 2 and xRS =
g(χRS)χRS = 4. The former follows from the constraint that all fluid
elements outside of the CD have to originate at the shock front, the
latter from the assumption of a relativistic RS (in the frame of the
inflowing wind).

However, at the CD the RS region is disconnected from the
forward region. Extending the solution from BM76, we define a
second function H(x) to describe the self-similar profile in the RS
region:

H (x) = C1 × A(x)−γ2 × B(x)μ1/γ1 × (x − 2)−μ2 , (7)

which differs from h(x) by a constant factor that is chosen such
that HRS+ ≡ 1. In some cases (e.g. the wind case with q = 0,
k = 0, m = 1), the density profile singularity at the CD has density
going up to infinity. This represents a breakdown of the underlying
assumption p �ρc2, meaning that the self-similar solution therefore
already ceases to be valid in the vicinity of this point and not just at
the singularity itself.

The FS Lorentz factor can be shown to be

�2 =
[

L0χ
1+q
RS ck−5

2q (m + 1)q16πρrefr
k
reffRS

] 1
2+q

t
q+k−2

2+q , (8)

1 The subscript ‘FS+’ implies that the a quantity is evaluated at radius
r ↓ rFS, i.e. approaching the FS radius from above. We will likewise use
‘FS−’ (approach from below) and ‘FS’ (exactly at) for FS, CD and RS.

by equating the energy influx through the RS to the total energy in
the RS and FS region. This also fixes m. Energy and matter injected
at time tin reach the RS at radius RRS at time

t = RRS/c + tin, (9)

leading to

t = tin2(m + 1)�2χ−1
RS . (10)

For the RS we have �RS = �/
√

χRS and

�̄RS = 1

2

(
�

√
χRS

γRS−
+ γRS−

�
√

χRS

)
, (11)

in the frame of the inflowing material at rRS− (i.e. directly ahead of
the RS shock front), denoted with a bar.

The shock jump condition for the number density behind the
(assumed relativistic) RS is given by

n̄RS+ = 2nRS−�̄2
RS, (12)

where nRS− is the number density of the inflowing material before
it crosses the RS (comoving, so denoting it with a bar would be
redundant). This can be expressed in the lab frame as

n′
RS+ = 2nRS−γRS−, (13)

where γRS− is the Lorentz factor of the inflowing material in the lab
frame. Here, however, we did use the assumption that γRS− � �RS,
a condition that is not met initially, when R � R0, but easily met
later on.

By construction, the density profile throughout the RS region is
therefore given by

n′ = 2nRS−γRS−H (x), (14)

where we maintain x ≡ gχ also throughout the RS region.
A quantity of interest is the ratio between densities behind the FS

and RS:

n′
RS+

n′
FS−

= ρRS−γRS−
�2ρFS+

= L0

4πρrefc5−kRk
refη

× tq
in × t k−2 × �−2

= 1

η

[
2qck−5f

1+q
RS L0

χRSπ(m + 1)ρrefR
k
ref

] 1
2+q

t
q+k−2

2+q . (15)

using R ∼ ct in the second step. For continuous energy injection
into a stellar wind environment (q = 0, k = 2, m = 0), this implies
that the ratio between densities at the RS and FS stays constant in
time. For a homogeneous circumburst environment (q = 0, k = 0,
m = 1), this implies a decreasing density in the RS region 3 relative
to FS region 2, with n′

RS+/n′
FS− ∝ t−1. Example fluid profiles for

the wind and ISM case are shown in Figs 1 and 2.

2.3 Typical values for GRB afterglows

We can now plug in some values we expect to be the representative
of Swift afterglows. If the total explosion energy in the blast wave
Ej = 1051 erg, for a pair of collimated blast waves that start out with
collimation angle θ0 = 0.1 rad, and is injected over the course of
Tin = 104 s at a constant rate (q = 0), we have

L = L0 = Eiso/Tin = 2Ej/(θ2
0 Tin) = 2 × 1049 erg s−1. (16)

Here, Eiso is the isotropic equivalent explosion energy, relevant for
radial flow. For a fireball starting at radius R0 = 1011 cm and with

MNRAS 442, 3495–3510 (2014)
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Figure 1. Self-similar fluid profile for a blast wave in a stellar wind envi-
ronment (k = 2) and continuous energy injection q = 0. In region 2, the
profiles as shown above are equivalent to self-similar functions f, g, h. In
region 3, f, g are still equivalent to what is plotted, while the density profile
differs from self-similar function H by a normalization factor. At fixed time
t, we have dr/ct = −dχ/2�2. The direction of the blast wave is to the left.
The relative values outside of the shocked region and across the contact dis-
continuity (for the density) are set according to the typical values discussed
in Section 2.3. In a stellar wind environment, the fluid profile as plotted here
remains completely unchanged over time.

Figure 2. Self-similar fluid profile for a blast wave expanding in a homo-
geneous medium (k = 0) and with constant energy injection (q = 0). The
relative density difference between FS and RS regions depends on time.
For this figure, we have used the ISM values described in Section 2.3, with
time t = 104 s. The interpretation of the fluid profile in terms of self-similar
functions f, g, h and H is the same as in Fig. 1.

η = 300 (also its peak Lorentz factor), we have a coasting radius
RL = 3 × 1013 cm. For these values of η and L, the mass-loss rate
LM = 1.18 M
 yr−1, with a total mass-loss M = 3.73 × 10−4 M

after 104 s. Note that, while we consider 300 to be typical here, there
is no unambiguous canonical value for η that one can infer from the
literature on GRB observations. There exists a range of methods for
estimating the initial Lorentz factors of GRB ejecta (see e.g. Zou &
Piran 2010; Racusin et al. 2011 and references therein), but these
are sensitive to underlying model assumptions about the prompt
emission and the initial nature of the outflow.

For q = 0 and k = 2, we obtain2 m = 0, χCD = 1.77, χRS =
2.51, fRS+ = 0.379, fCD = 0.645, gRS+ = 1.59 and gCD = 1.13.
The fluid profile in the wind case is shown in Fig. 1.

If we take nref = 29.9 cm−3 and Rref = 1017 cm so that ρrefR
k
ref =

5 × 1011 g cm−1, which follows for a progenitor stellar wind with
velocity 103 km s−1 and mass-loss of 10−5M
 yr−1 (Chevalier &
Li 2000; Granot & Sari 2002), we then obtain a constant FS Lorentz
factor � = 21.0 and a RS Lorentz factor �RS = 13.3. In the frame of
the inflowing wind (once RRS > RL), we have �̄RS = 11.3, which
is indeed relativistic.

For a stellar wind environment, the ratio of FS and RS densities
determined by equation (15) is constant and given by n′

RS+/n′
FS− =

0.89.
Using equation (10), we find that the last of the injected en-

ergy at Tin is delivered to the blast wave at T = 3.52 × 106 s,
at which point the outer radius of the explosion is R = 1.05 ×
1017 cm. This event is observed (ignoring redshift corrections) at
Tobs = T − RRS/c (if we take Tobs = 0 to coincide with the time of
the explosion. The expression otherwise merely states that emission
departing closer to the observer is seen earlier than simultaneous
emission from further distant). It therefore follows that Tobs = Tin (cf.
equation 9), such that the observed duration of the plateau in Swift
data can be interpreted directly in terms of duration of energy in-
jection (the argument is analogous to the link between observed
variability from internal shocks in the prompt emission and internal
engine variability). From this point on the blast wave will evolve
into an outflow described by the impulsive energy injection BM
solution with energy Eiso.

If we take as a measure of the width �R of the impulsive en-
ergy blast wave, the width of a homogeneous shell with density
determined by the relativistic shock jump condition at the FS and
total mass content equal to the total swept-up mass, we obtain
�R = R/[2(3 − k)�2] and χB = (7 − 2k)/(3 − k) for the self-
similar position of the back.

If the circumburst medium is homogeneous instead of a free-
flowing stellar wind environment, the relative fluid densities of the
FS and RS regions are time dependent. If we use the same explosion
energy and injection duration as above but set nref = 1 cm−3, typical
for values measured assuming a homogeneous ISM or stalled wind-
type environment with k = 0, we obtain the following.

The last energy injected at Tin = 104 s is delivered to the blast wave
at T = 1.07 × 107 s. At this point, the FS front is at radius R = 3.20 ×
1017 cm. The FS has Lorentz factor � = 26.8, the RS has �RS =
16.3, �̄RS = 9.21. Auxiliary quantities have the values m = 1, χCD =
1.81, χRS = 2.70, fRS+ = 0.449, fCD = 0.709, gRS+ = 1.48 and
gCD = 1.10. At time T, the density ratio between FS and RS is
equal to n′

RS+/n′
FS− = 0.160. The ISM fluid profile (at an earlier

time than T) is shown in Fig. 2.

3 T R A N S I T I O N A F T E R E N E R G Y I N J E C T I O N

After the last energy injected at Tin has crossed the RS, the fluid
is expected to evolve from the self-similar energy injection profile
to the instantaneous energy injection profile at t � Tin. Using the
sound crossing time according to the BM solution as an estimate
for the duration, the resulting transition time should be fairly quick.

2 In table I of BM76, the corresponding entry for K, setting the square of the
FS Lorentz factor, is wrong by a factor of

√
3 and should be K = 1.486. The

same
√

3 term is lacking in their equation 71, but included in their equations
58, 59 and 72.

MNRAS 442, 3495–3510 (2014)
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Table 1. Arrival time factors X for arrival at the shock front
or CD for sound waves departing from RS or CD. The arrival
times themselves are then given by tstop = Xtstart. The factors
in the RS → FS column also follow from multiplying the
values in the RS → CD and CD → FS columns.

RS → FS RS → CD CD → FS

k = 2, q = −1/2 5.05 1.57 3.22
k = 2, q = 0 4.05 1.55 2.61
k = 2, q = 1/2 3.69 1.54 2.39
k = 0, q = −1/2 2.38 1.29 1.84
k = 0, q = 0 2.11 1.28 1.65
k = 0, q = 1/2 2.01 1.28 1.57

The comoving speed of sound is cs ≡ 1/
√

3 in the relativistic limit,
and in the lab frame we have

c′
s ≈ 1 − 1 − cs

1 + cs

1

g(χ )�2
≡ 1 − αs

g(χ )�2
. (17)

Using this value for dr/ dt to rewrite dχ/ dt, we arrive at

dx

(1 + xQ(x))(2αs − x)
= (m + 1)

dt

t
, (18)

with Q(x) defined by

Q(x) ≡ (7m + 3k − 4) − (m + 2)x

(m + 1)(4 − 8x + x2)
. (19)

In the impulsive energy case, where g(χ ) = 1/χ , the arrival time
tstop at the front (χ = 1), for sound waves departing from χ start at
tstart, is then given by

tstop = χ
−1

(1+m)(2αs−1)
start tstart. (20)

A sound wave departing from the ‘back’ of the shock χB will arrive
at 1.35tstart when k = 0, and at 1.55tstart when k = 2. The analytical
expression in the energy injection case is less clean, but some re-
sults are shown in Table 1 for sound waves departing from the RS
at x ≡ 4 and the CD at x ≡ 2. Note also that in the above, the limit
αs↓0 corresponds to replacing cs by the speed of light, yielding
tstop = χ

1/(m+1)
start tstart, for both impulsive and sustained energy injec-

tion profiles. This is the absolute minimum amount of time that the
front of the shock will remain unaffected by changing conditions
at the back. The other limit as↑1 corresponds to advective motion
away from the shock front(s).

Once the cessation of energy injection has been communicated
to the front of the shock, it is expected that the further evolution
of the blast wave will start to resemble the impulsive energy in-
jection scenario. The most important characteristics of the blast
wave are its Lorentz factor and radius (also in terms of its observa-
tional signature, since a homogeneous shell approximation yields
the correct temporal behaviour and a flux level that differs from a
more detailed approach by a constant factor). When all energy is
injected, the shock Lorentz factor will eventually evolve according
to (BM76):

�2 = (17 − 4k)Eiso

8πρrefc5−kRk
ref

t k−3, (21)

which should be compared to equation (8). The ratio between the
two Lorentz factors, �FS from equation (8) and �I from equation
(21), at time t = XTlast (obtaining Tlast using equation (10) and X
from Table 1), is found to be

�2
FS

�2
I

= (m + 1)(q + 1)Xq+1

(17 − 4k)fRS+
, (22)

which is independent of injection duration, explosion energy and
circumburst structure. For k = 2, q = 0, we find �2

FS/�2
I ≈ 1.2 and

for k = 0, q = 0, we find �2
FS/�2

I ≈ 0.55. It follows that at the
time the sound wave reaches the front, the Lorentz factors for the
two asymptotic regimes are already comparable. Based on that, no
sudden jump or drop in fluid Lorentz factor is expected as the blast
wave transits from one regime to the other.

3.1 Transition simulations in one dimension

Using the numerical approach described in Appendix B, a num-
ber of RHD simulations have been run in one dimension of q = 0
energy injection into either a wind-shaped or homogeneous environ-
ment. In order to test the analytical predictions from the preceding
section, four scenarios were explored, corresponding to different
combinations of k = 0, 2 and Tin = 104 s, ∞.

In Figs 3 and 4, fluid profiles have been plotted for the case of
sustained energy injection at time t = Tlast for k = 0 and k = 2. The

Figure 3. Stellar wind profile for sustained injection scenario (Tin = ∞),
at the time the last energy would have been delivered if Tin had been 104 s.
The direction of the blast wave is to the right, pressure profile p, Lorentz
factor-squared γ 2 and lab-frame density have been scaled to 10−1, 1, 10 at
the FS, respectively. The radius had been scaled to the analytically expected
FS radius. Thick light coloured lines indicate the analytical solution.

Figure 4. Same as Fig. 3, now for an ISM environment.
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3500 H. van Eerten

Figure 5. Peak pressure p for a typical blast wave in a stellar wind environ-
ment, with limited injection of energy for Tin = 104 s. The peak pressure
is analytically expected to occur right behind the FS, and the solid black
curve therefore shows the evolution of the FS. The thick grey lines denote
the analytical sustained and impulsive energy injection BM solutions. The
vertical lines indicate analytically calculated times of potential interest, from
left to right: the point where the last energy is delivered across the RS, the
point where this event would be communicated to the FS with the speed of
light, the point where a sound wave communicating this event reaches the
FS.

radial shifts between the simulation and analytical fluid profiles that
are clearly visible on the plots, are of the order of 10−2 per cent of
the FS radius, and translate to a few per cent in terms of the total
width of the RS–FS system. Velocity and pressure are reproduced
excellently for both wind and ISM scenarios. In the wind case,
the infinite spike in mass (where the hot fluid assumption breaks
down as well, see Section 2.2) cannot be reproduced numerically
by definition. The RS position is well captured by the analytical
solution (accounting for the overall shift). The mass in the RS region
(and not in the spike) exceeds the analytical value between 10 and
15 per cent. The difference between densities for the simulation
with 21 levels of refinement shown on the plot and one with 20
levels is far smaller, so this deviation is likely genuine for these
explosion and medium parameters, although part of the explanation
lies in the density change across the shock jump for the RS, which
tends to be diffused numerically when not manually kept at peak
refinement.

In the ISM case, the RS position lies a little ahead of its ana-
lytically prediction position (the difference being about twice the
overall shift). The RS is captured more sharply, so the jump val-
ues for density match better than in the wind case. However, the
RS region is smaller while containing the same amount of mass,
leading again to higher densities in the simulation profile than ana-
lytically predicted. The singularity at the CD is inevitably diffused
by the simulation. Nevertheless, both in the wind and ISM case,
the profiles demonstrate how the approximate self-similar solution
provides a reasonable prediction for the fluid behaviour.

In Figs 5 and 6, we turn to the time-evolution of the blast wave
with limited energy injection. The peak pressure is analytically
expected at the FS front in both cases, so plotting this quantity
provides us with information on the behaviour of the shock front.
As expected by causality, both plots confirm that the shock front
remains unaware of the cessation of energy injection through the
RS until after a light crossing time across the RS–FS region. In

Figure 6. Same as Fig. 5, now for the ISM case.

Figure 7. Wind case profile, same as Fig. 3, now for finite energy injection
with Tin = 104 s and taken at the time where a sound wave leaving the RS
at the moment of last energy delivery reaches the FS, here 1.43 × 107 s.

both cases, the FS does start to deviate from sustained energy in-
jection dynamics slightly before the theoretically predicted times.
The discrepancy is most clearly seen in the ISM case, reflecting
the fact that the simulation RS–CD–FS profiles are slightly thinner
than analytically predicted, allowing a sound wave to get to the FS
earlier.

The implications of this for the post-transition fluid profile are
shown in Figs 7 and 8. A small overall shift remains in the ISM case,
but no longer in the wind case. The remaining large-scale feature is
the FS and the fluid profiles for p, density and γ are all moving to
their new asymptotic self-similar values. When looking at the den-
sity profile (in green), it can be seen how far this transition is along
and the steep drop away from the analytical solution, slightly be-
hind the shock front and seen for both wind and ISM, marks a newly
formed CD, separating external fluid shocked since the cessation of
energy injection was communicated to the front, from previously
shocked external medium. Its existence separately confirms that the
cessation of energy injection is communicated slightly ahead of
the analytically predicted time, given that the snapshot times were
chosen to match this predicted time. Across this new CD, pressure
and velocity remain continuous, as they should. The ISM case also
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Self-similar relativistic blast waves 3501

Figure 8. ISM case profile, same as Fig. 4, now for finite energy injection
with Tin = 104 s and taken at the time where a sound wave leaving the RS
at the moment of last energy delivery reaches the FS, here 2.26 × 107 s.

shows a newly formed RS still within the plot, which runs into the
old FS region and communicates backwards the existence of the FS
(now in a new decelerating phase consistent with impulsive energy
injection).

In all, one can estimate the point where the transition is completed
fully, to the extent that even the fluid profiles match the impulsive
BM solution, as follows. First, take the sound crossing time, then
allow for the newly formed CD to advect with the flow until the
approximate ‘back’ of the blast wave at χB. The latter takes a fac-
tor X = χ

1/(4−k)
B to complete (cf. equation 20). Following constant

energy injection with q = 0, this implies that, according to our esti-
mate, the transition is completed at Tcomp = 2.11 × 1.15 Tlast for the
ISM case and at Tcomp = 4.05 × 1.22 Tlast for the wind case, where
Tlast is the time when the last injected energy crosses the RS, given
by equation 10.

4 LI G H T- C U RV E P R E D I C T I O N S FO R E N E R G Y
I N J E C T I O N FL OW S

In order to link the dynamical energy injection model to GRB after-
glow observations, it can be combined with a synchrotron radiation
module. In the afterglow phase, synchrotron emission, by shock-
accelerated electrons interacting with local small-scale magnetic
fields (presumably also shock-generated), is typically the dominant
emission mechanism. In the standard approach (e.g. Meszaros &
Rees 1997a; Wijers, Rees & Meszaros 1997; Meszaros et al. 1998;
Sari, Piran & Narayan 1998; Granot, Piran & Sari 1999; Gruzinov
& Waxman 1999; Rhoads 1999; Wijers & Galama 1999), a fraction
εe ∼ 0.1 of the local energy density is assumed to reside in the
accelerated electron population, a fraction εB ∼ 0.01 in the mag-
netic field. A fraction ξN ∼ 1 of the available electrons are assumed
accelerated into a power-law distribution over energies with slope
−p ∼ −2.2 (see e.g. Curran et al. 2009, Ryan et al. 2013, Ryan
et al., 2014).

In brief, the peak synchrotron flux Fpeak in the observer frame
is proportional to the number of radiating particles and the (co-
moving) field strength B according to Fpeak ∝ �2ξNnBV, where
the volume of the thin shell V ∝ R3/�2. The synchrotron break
frequency νm in the observer frame is given by νm ∝ �γ 2

mB, with
γ m ∝ εee/(ξNn) (the ratio between comoving energy density and
number density). In these equations B2 ∝ εBe. The cooling break

frequency in the observer frame νc ∝ �γ 2
c B, with γ c ∝ γ /(B2t).

Including νm and νc, but ignoring the synchrotron self-absorption
characteristic frequency typically associated with radio emission,
the different orderings of observer frequency ν, νm and νc lead to
the observation of different spectral regimes, which in this study are
labelled according to

FD ≡ Fpeak(ν/νm)1/3 : ν < νm < νc,

FE ≡ Fpeak(ν/νc)1/3 : ν < νc < νm,

FF ≡ Fpeak(ν/νc)−1/2 : νc < ν < νm,

FG ≡ Fpeak(ν/νm)(1−p)/2 : νm < ν < νc,

FH ≡ Fpeak(νc/νm)(1−p)/2(ν/νc)−p/2 : νm, νc < ν.

This follows the same naming conventions as Granot & Sari (2002);
Van Eerten & Wijers (2009).

Both the self-similar solutions and the simulations are used as
input for the linear radiative transfer approach to synchrotron emis-
sion described in Van Eerten & Wijers (2009), Van Eerten et al.
(2010), Van Eerten, Zhang & MacFadyen (2010). In Van Eerten
et al. (2010), the exact equations of the implementation used in
this paper can be found, and the approach to electron cooling from
that paper is applied as well, where we treat the fluid as a single
steady-state plasma with a global cooling time (subtleties regarding
electron cooling are discussed in Van Eerten 2013 and Section 5.1
of this paper).

The dependences of the flux equations on the model parameters
can be calculated analytically for each spectral regime and are tab-
ulated in Tables 2 and 3. In these tables, fluxes, frequencies and
times are all expressed in the observer frame. In order to translate
the observer time tobs, the energy injection duration Tin,⊕ and the
peak flux to the burster frame where redshift z = 0, they need to be
divided by (1 + z). Frequencies need to be multiplied by (1 + z).
Note that in Van Eerten & MacFadyen (2012), times and frequencies
are expressed in the burster frame in order to simplify the equations;
the equations here are directly applicable to observations.

Not included in the Tables 2 and 3 are the numerical pre-
factors that fix the absolute flux levels. These have been deferred to
Appendix C and can be included if one wishes to directly compare
model predictions to data.

As described for impulsive energy injection in Van Eerten &
MacFadyen (2012), the dynamical scale invariance between total
explosion energies and circumburst densities (Van Eerten, van der
Horst & MacFadyen 2012) carries over to light curves, albeit dif-
ferently for each spectral regime. The κ and λ columns of Table 2,
showing the energy and density scalings for the impulsive energy in-
jection stage (drawn from Van Eerten & MacFadyen 2013), remain
unchanged when considering sustained energy injection instead. A
simulation-based evolution curve for any given characteristic quan-
tity, say νm, can be scaled to different energies and densities even
when it includes a transition from energy injection to impulsive in-
jection: plateau flux and transition time just scale along. Scaling up
the total explosion energy without co-scaling Tin, requires adding
an extra dimension to parameter space, as does including different
q values.

4.1 Application to typical afterglow parameters

The plots of Fig. 9 show optical and X-ray light curves for the typical
values of the model parameters discussed in Section 2.3. In addition,
I have taken a redshift z = 2.23 (the average Swift sample redshift in
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Table 2. Flux scalings for the characteristic quantities of the synchrotron spectrum. κ and λ are defined as in Van Eerten
et al. (2012); Van Eerten & MacFadyen (2012).

F or ν scalings κ (energy) λ (density)

Fpeak,I
(1 + z)

k−8
2(k−4)

d2
L

ξNε
1
2
B

(
nrefR

k
ref

) −2
k−4 E

−8+3k
2(k−4)

iso t
k

2(k−4)
obs κ

3(k−2)
2(k−3) λ

−3
2(k−3)

νm,I (1 + z)
1
2 ξ−2

N ε2
e ε

1
2
B E

1
2

isot
− 3

2
obs κ

k
2(k−3) λ

−3
2(k−3)

νc,I (1 + z)
4+k

2(k−4) ε
− 3

2
B

(
nrefR

k
ref

) 4
k−4 E

4−3k
2(k−4)

iso t
4−3k

2(k−4)
obs κ

4−3k
2(k−3) λ

5
2(k−3)

Fpeak,FS
(1 + z)

k−8
2(k−4)

d2
L

ξNε
1
2
B

(
nrefR

k
ref

) −2
k−4

(
EisoT

−(1+q)
in,⊕

) −(8−3k)
2(k−4)

t
4k−8−8q+3kq

2(k−4)
obs same as I same as I

νm,FS (1 + z)
1
2 ξ−2

N ε2
e ε

1
2
B

(
EisoT

−(1+q)
in,⊕

) 1
2

t
q−2

2
obs same as I same as I

νc,FS (1 + z)
k+4

2(k−4) ε
− 3

2
B

(
nrefR

k
ref

) 4
k−4

(
EisoT

−(1+q)
in,⊕

) 4−3k
2(k−4)

t
−(2+q)(3k−4)

2(k−4)
obs same as I same as I

Fpeak,RS
(1 + z)

3k−14
2(k−4)

d2
L

η−1ξNε
1
2
B

(
nrefR

k
ref

) −1
k−4

(
EisoT

−(1+q)
in,⊕

) 3k−10
2(k−4)

t
2k−4−10q+3kq

2(k−4)
obs same as I same as I

νm,RS (1 + z)
8−3k

2(k−4) η2ξ−2
N ε2

e ε
1
2
B

(
nrefR

k
ref

) −2
k−4

(
EisoT

−(1+q)
in,⊕

) k
2(k−4)

t
k(q+2)
2(k−4)

obs same as I same as I

νc,RS same as FS same as FS, I same as FS, I

Table 3. Flux scalings for the fluxes in the various spectral regimes.

Regime Scalings

FD,FS d−2
L (1 + z)

k−10
3(k−4) ξ

5
3

N ε
− 2

3
e ε

1
3
B

(
nrefR

k
ref

) −2
k−4

(
EisoT

−(q+1)
in,⊕

) 4k−10
3(k−4)

t
7k+4kq−10q−16

3(k−4)
obs ν

1
3

FE,FS d−2
L (1 + z)

k−14
3(k−4) ξNεB

(
nrefR

k
ref

) −10
3(k−4)

(
EisoT

−(q+1)
in,⊕

) 6k−14
3(k−4)

t
9k+6kq−14q−16

3(k−4)
obs ν

1
3

FF,FS d−2
L (1 + z)

3
4 ξNε

− 1
4

B

(
EisoT

−(q+1)
in,⊕

) 3
4

t
2+3q

4
obs ν

−1
2

FG,FS d−2
L (1 + z)

k−12−4p+pk
4(k−4) ξ

2−p
N ε

p−1
e ε

1+p
4

B

(
nrefR

k
ref

) −2
k−4

(
EisoT

−(1+q)
in,⊕

) 5k−12−4p+pk
4(k−4)

t
10k+5kq−12q−24−4pq−2pk+8p+pkq

4(k−4)
obs ν

1−p
2

FH,FS d−2
L (1 + z)

2+p
4 ξ

2−p
N ε

p−1
e ε

p−2
4

B

(
EisoT

−(1+q)
in,⊕

) 2+p
4

t
4+2q−2p+pq

4
obs ν− p

2

FD,RS d−2
L (1 + z)

3k−13
3(k−4) η− 5

3 ξ
5
3

N ε
− 2

3
e ε

1
3
B

(
nrefR

k
ref

) −1
3(k−4)

(
EisoT

−(1+q)
in,⊕

) 4k−15
3(k−4)

t
2k+4kq−15q−6

3(k−4)
obs ν

1
3

FE,RS d−2
L (1 + z)

k−11
3(k−4) η−1ξNεB

(
nrefR

k
ref

) −7
3(k−4)

(
EisoT

−(q+1)
in,⊕

) −17+6k
3(k−4)

t
−17q+6k−10+6kq

3(k−4)
obs ν

1
3

FF,RS d−2
L (1 + z)

3k−8
4(k−4) η−1ξNε

− 1
4

B (nrefRref )
1

k−4

(
EisoT

−(1+q)
in,⊕

) −16+3k
4(k−4)

t
−16q−2k+3kq

4(k−4)
obs ν− 1

2

FG,RS d−2
L (1 + z)

−20+5k+8p−3pk
4(k−4) ηp−2ξ

2−p
N ε

p−1
e ε

1+p
4

B

(
nrefR

k
ref

) −p
k−4

(
EisoT

−(1+q)
in,⊕

) −20+5k+pk
4(k−4)

t
−20q+2k−8+5kq+2kp+kqp

4(k−4)
obs ν

1−p
2

FH,RS d−2
L (1 + z)

−32+10k+8p−3pk
4(k−4) ηp−2ξ

2−p
N ε

p−1
e ε

p−2
4

B

(
nrefR

k
ref

) 2−p
k−4

(
EisoT

−(1+q)
in,⊕

) −16+2k+pk
4(k−4)

t
−16q−4k+2kq+2pk+pkq

4(k−4)
obs ν− p

2

2009, see Evans 2009) and luminosity distance dL = 5.6 × 1028 cm,
but took the value 104 for Tin s as referring to the burster frame
duration, such that Tin(1 + z) = 3.23 × 104 s. The plots show the
light curves generated both directly from the analytical solutions
for the dynamics and from the numerical simulations that cover
the transition stage. For the early emission from the simulations,
from before they numerically established the expected self-similar
injection profile, analytical fluid profiles were used.

The light curves of Fig. 9 demonstrate a few key points.

(i) The RS contribution can be significant or dominant. In our
‘typical’ scenarios, we have assumed the same magnetization for
both regions. Even so, the RS flux dominates the FS flux in the
optical for 102 s in the ISM case, and both flux levels are com-
parable in the wind case. The magnetization of the FS region is a
result from magnetic field generation at the shock front, and to a

(presumably) lesser extent, compression of the ambient magnetic
field. The original ejecta (i.e. the RS region) can be magnetized to
a far higher degree (see e.g. Zhang & Kobayashi 2005; Giannios,
Mimica & Aloy 2008; Mimica, Giannios & Aloy 2009). As a result
of this difference in magnetization, emission from the RS region
can easily be made to dominate the overall flux output, especially
when the FS region magnetization is, in turn, weak (see e.g. Kumar
& Barniol Duran 2010; Santana, Barniol Duran & Kumar 2013)

(ii) When the flux contributions from FS and RS region are
comparable, the light-curve slope will reflect both contributions.
Examples of this are given by the X-ray and optical emission for
the typical ISM case and the early time optical emission for the
typical wind case.

(iii) The transition between regimes in the light curve occurs
around when cessation of energy injection is communicated to the
shock front. A number of grey vertical lines in Fig. 9 indicate
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Self-similar relativistic blast waves 3503

Figure 9. Optical (ν = 4.56 × 1014 Hz ‘R-band’, upper blue curve) and
X-ray (ν = 3.63 × 1017 Hz, lower red curve) light curves for typical wind
(top plot) and ISM (bottom plot) scenarios. Thick light grey curves plot the
analytical solutions for both sustained and impulsive energy injection. Thick
dashed light grey curves plot the FS region emission only, thick dotted light
grey curves the reverse shock region only. From left to right, the grey vertical
lines indicate (1) the arrival time of emission from the jet back, sent at the
moment when the last injected energy passes through the RS and (2) the
arrival time of emission from the jet front, sent at the moment where the last
injected energy arrival is communicated to the front via a sound wave. The
solid vertical lines are arrival times of emission along the jet axis for these
two events, the dashed vertical lines correspond to arrival times of emission
from an angle θ = 1/γ .

characteristic times for the typical scenarios. A deviation from the
sustained energy injection asymptote is first seen when the last of
the energy is delivered across the RS. Due to differences in arrival
times between different emission angles, the initial change is small.
The transition nears completion when the high angle emission is
seen that is emitted at time the sound wave from the RS reaches the
FS. Here, the upper angle is defined by the width of the beaming
cone (i.e. θ ∼ 1/γ ; for narrowly collimated ejecta one should use θ0

instead). The equations for the two arrival times using the on-axis
emission are

t0,⊕ = (1 + z)Tin/χRS,

t1,⊕ = (1 + z)TinX/χRS, (23)

where X the corresponding factor from Table 1. For emission from
the edge of the beaming cone, we have

t0,⊕ = (1 + z)Tin(2m + 3)/χRS,

t1,⊕ = (1 + z)TinX(2m + 3)/χRS. (24)

These differences in arrival times between on- and off-axis emission
are related to the well-known curvature effect, putting a limit on the
steepness of light-curve decay even if the emission were suddenly
switched off at the source (see e.g. Kumar & Panaitescu 2000).
Once the highest angle emission from the jet edges has arrived, the
subsequent drop in flux can be arbitrarily steep.

(iv) The optical light-curve peak does not necessarily mark the
onset of the deceleration stage of massive ejecta. This point was
also raised by Leventis et al. (2014). In Fig. 9, this is illustrated
by the peak at ∼500 s, which is due to a spectral transition (the
passing of νm through the observer band), rather than the onset of
deceleration.

In addition to the points made above, the flux equations also
demonstrate the following:

(v) RS emission in a wind environment is usually in the fast-
cooling regime, RS emission in a homogeneous environment in the
slow-cooling regime. For slow cooling νm < νc, for fast cooling
νc < νm. In the typical ISM case, νm,RS will remain fixed at 1.2 ×
1012 Hz, while νc,RS will decrease according to νc,RS ∝ t−1

obs and
meet νm at 1.3 × 107 s �Tin, passing through 1.5 keV at 43 s
and the V band at 2.8 × 104 s. This implies that X-ray afterglow
light curves (e.g. from Swift’s XRT) will have ν > νc, νm, while
optical light curves (e.g. from Swift’s UVOT) have νm < ν < νc,
consistent with the spectral slopes typically found in both regimes
(see e.g. Liang et al. 2008; Racusin et al. 2009; Li et al. 2012). It also
implies an observationally motivated upper limit on η, given that
νm,RS ∝ η2 will easily lead to νm >ν in the optical, which seems hard
to reconcile with reported spectral slopes. For otherwise standard
parameters, this limit lies around η ∼ 6 × 103, although this can
be offset by a strong decrease in circumburst density or magnetic
field strength, according to νm,RS ∝ ε

1/2
B n

1/2
ref , both parameters that

are poorly constrained by observations.
In a wind environment, the situation is different. Now, with q = 0,
it is νm,RS that decays according νm,RS ∝ t−1

obs, while νc,RS ∝ t1
obs.

Typically, νm,RS crosses the optical bands around 90 s (which can
be mistaken for the onset of deceleration, as mentioned previously).
Both frequencies meet at 3 × 103 s, close to the end of the plateau.
In this case, the strong dependence of νm,RS ∝ η2 means that fast
cooling will persist longer, and well past the plateau phase, for larger
values of η. If for the X-rays we insist on ν > νc, νm at least from
102 s onward, this implies η < 8 × 103 for otherwise typical wind
parameters.
For p ∼ 2.2, the shape of the spectrum looks very similar regard-
less of which critical frequency is highest. Add to this that the RS
emission will dissipate post-plateau, leading to a light curve even-
tually dictated by an impulsive injection FS, and it follows that
conclusions about the nature of the spectrum (i.e. slow versus fast
cooling) at late times cannot be automatically extrapolated to early
plateau times, such that it becomes hard to dismiss out of hand a
fast-cooling scenario during the plateau phase.
Finally, combining the observed temporal slopes for X-rays and
optical with the flux equations presented here, one finds that the
conclusion remains unaltered that observationally q < 0 (like −0.5
for an FS analysis, Zhang et al. 2006). In order for the light curve
to decay for a wind scenario in fast-cooling regime F, q < −0.4.
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Table 4. Relation F ∝ t . . . between flux F and time t, at the point where
t = Tin, for the different spectral regimes. In addition to the general case
with unspecified p and k, the ISM and wind cases are listed separately.
In the last two columns, �p ≡ p − 22/10 is used to emphasize the value
around p ≈ 2.2. Superscript a marks those entries consistent with the Fb−tb
correlation for optical emission, superscript b marks those consistent with
the X-ray Fb−tb correlation. For both, we assumed the range of p to be
2.07−2.51 (Ryan et al., 2014).

Regime p, k k = 0, �p k = 2, �p

FD,FS
k−2
k−4 0.5 0

FE,FS
3k−2

3(k−4) 0.167 −0.67

FF,FS − 1
4 −0.25 −0.25

FG,FS
5k−12+12p−3pk

4(k−4) −(0.9 + 0.75�p)b −(1.4 + 0.75�p)

FH,FS
2−3p

4 −(1.15 + 0.75�p)b −(1.15 + 0.75�p)b

FD,RS
−2k+9
3(k−4) −0.75a −0.833a

FE,RS
7

3(k−4) −0.583 −1.167

FF,RS
−5k+16
4(k−4) −1b −0.75a

FG,RS
12−3k+pk

4(k−4) −0.75a −(1.3 + 0.25�p)

FH,RS
16−6k+pk

4(k−4) −1b −(1.05 + 0.25�p)b

(vi) The observational Fb−tb correlations are fully supported by
long-term energy injection. This issue has been discussed by Lev-
entis et al. (2014) for homogeneous environments. From measure-
ments of the optical flux Fb at the observed end time tb of the plateau
phase, a correlation Fb ∝ t−0.78±0.08

b , has been found (Panaitescu &
Vestrand 2011; Li et al. 2012). In X-rays, a similar correlation but
with different negative index 1.07+0.09

−0.14 has been reported (Dainotti,
Cardone & Capozziello 2008; Dainotti et al. 2010, 2013; Grupe
et al. 2013; Margutti et al. 2013). As the flux equations of Table
3 demonstrate, these kind of correlations naturally emerge in a q-
independent fashion when the flux is measured at time t = tb ∼ Tin.
At this point in time, all energy is added to the blast wave and the
relevant parameters are no longer L0, q and Tin, but Eiso instead. In
Table 4, the dependences of flux on time when t = Tin are listed for
all spectral regimes. For the FS emission, these are identical to the
impulsive energy injection flux time dependences; something which
naturally follows from dimensional analysis using Eiso and t. For the
RS emission, the time dependences are different due to additional
dimensionless factors introduced by the density ratio between FS
and RS region (cf. equation 15). For the correlation to follow from
this model, no implicit cross-correlations between model parame-
ters can exist. Eiso and Tin need to be independent parameters (i.e.
instead of L0 and Tin). Uncertainties and the intrinsic range of all
model parameters (Eiso, εB, n0, etc.) will lead to scatter in the cor-
relation, but not impact its slope. For X-rays, we can combine the
observed correlation with the observation by Racusin et al. (2009)
that during the plateau phase the spectral slope is broadly clustered
around −1 (see the distribution for ‘segment II’ in fig. 2 of the cited
paper). This implies that F(t ∼ Tin) ∝ t−1.07ν−1., most consistent with
ν > νm, νc. It should be noted here that the spectral transition across
the cooling break is very smooth (Granot & Sari 2002; Van Eerten
& Wijers 2009; Uhm & Zhang 2014), so the asymptotic power-law
limit for the slope might not actually be applicable. Regardless, a
spectral slope of −1 seems hard to reconcile with the expected slope
∼−0.5 expected when ν < νc. This points us towards the entries for
FH in Table 4, where we see that both FS and RS can account for the
observed X-ray correlation, both in the wind and ISM case. Out of
the four possibilities, RS shock emission for a blast wave running

into a stellar wind environment gives a prediction marginally closer
to the observed value than the others. It still depends on p, but this
dependence is only weak, �p/4, where �p ≡ p − 2.2
None of the FS emission regions supports the optical Fb−tb corre-
lation within 1σ , although FG in the ISM case gets close within 2σ .
According to Table 4, the RS options for the ISM case are ν < νm <

νc (D) and νm < ν < νc (G). For the wind case, they are ν < νm <

νc (D) and νc < ν < νm (F). The measured spectral slope in the op-
tical is usually negative (see e.g. the collected results in Liang et al.
2008; Li et al. 2012 and references therein; although these values
might not fully reflect early plateau time values and evolution of
the spectral slope during early times), which, if taken at face value,
would rule out D and leave us with either the slow-cooling (ISM)
or fast-cooling option (wind). Both would yield a negative spectral
slope of 0.5 (assuming p ∼ 2.2). The reported values from Li et al.
(2012) are often consistent with this slope, but also often lie higher,
around 0.75. The latter implies either a larger value for p, or that ν

approaches the (smooth) spectral break towards spectral regime H
(i.e. approaches νc for ISM or νm for wind).
At this point, the optical correlation therefore seems weakly sug-
gestive of the RS being the dominant emission region. However, it
remains to be tested whether this holds once the flux equations from
the model are tested in a more realistic fashion, where biases and
error margins due to instrumental systematics or underlying popu-
lation distributions realized in nature are fully taken into account.
This is the topic of a follow-up study (van Eerten 2014).

4.2 Application to GRB 090515 and 120521A

In Leventis et al. (2014), it is demonstrated how the prolonged
energy injection scenario can be used to explain the observations
of regular afterglow plateaus, using GRB’s 080928 and 090423. To
further test the range of the applicability of this type of model, we
now turn to two more extreme cases, GRB120521A and 090515,
characterized by an inferred strong post-plateau decline. A number
of recent papers explain short GRB plateaus from a magnetar model
(Rowlinson et al. 2010, 2013; Gompertz et al. 2013), and it is
instructive to see if these light curves can in principle be accounted
for by an RS-FS system, while remaining agnostic about the nature
of the power source (it can also be a magnetar-driven FS-RS system,
which are argued to have q = 0, Dai & Lu 1998; Zhang & Mészáros
2001).

Fig. 10 shows a comparison between BM solution-based light
curves and Swift XRT data and optical upper limits for GRB
120521A. The synthetic light curves were obtained using the an-
alytical solution described in Section 2 in combination with the
synchrotron radiation module from Van Eerten & Wijers (2009);
Van Eerten et al. (2010) and the synchrotron prescription from Van
Eerten et al. (2010) (as was done at the start of this section). Once
the last injected energy passes through the RS, the RS emission is
turned off in the lab frame, leading to post-plateau slopes dictated
by the curvature effect. In this case, I assumed spherical emission,
but the flux would be identical for collimated flow unless the jet
were very narrow (θ0 < ∼1◦).

The figure illustrates that it is indeed possible to describe the data
using plausible model parameters, if one accepts a low magnetic
field for the FS (low being a relative term, these values are fully
consistent with e.g. Kumar & Barniol Duran 2010; Santana et al.
2013). The emission from this burst was argued to require a magne-
tar origin (as opposed to synchrotron emission from a blast wave)
by Rowlinson et al. (2013) based on their inferred steep post-plateau
slope and assumed difficulty to account for the optical upper limit
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Self-similar relativistic blast waves 3505

Figure 10. X-ray and R-band light curves for GRB 120521A. The black data
points are Swift XRT measurements at 1 keV, the horizontal grey bar indicates
an optical upper limit. The red curves represent model-based X-rays, the blue
curves optical flux. The RS shock contributions are shown by dotted lines, the
plateau FS contribution by a dashed lines and the impulsive FS emission by
dash–dotted line. The resulting combined fluxes (solid lines) are obtained by
adding the RS contribution to the FS contribution, switching between plateau
and injected FS when these cross each other. The RS emission is switched
off in the lab frame of the explosion once the last injected energy has passed
through the RS. The model parameters are z = 0.4, dL = 6.3 × 1027 cm,
Eiso = 9 × 1050 erg, Tin = 180 s, εe = 5.6 × 10−2, εB,RS = 7.9 × 10−3,
εB,FS = 3.2 × 10−6, ξN = 1, nref = 2 cm−3, η = 1.1 × 105, p = 2.2, k = 0,
q = 0. These values do not represent the best possible fit, but demonstrate a
proof of principle. The actual redshift for this burst is not known.

from a synchrotron spectrum. Because the inferred steep plateau
for this burst is based mainly on a single data point with large er-
ror in time, results consistent with the data can also be achieved
without equally steep slope. The optical upper limit was considered
inconsistent with a synchrotron model based on assuming at most
the presence of the cooling break νc between optical and X-rays. In
our case, the issue is avoided by high values for νm. As discussed
previously, this is naturally expected when RS emission dominates
in the plateau phase. For a smooth spectral break, it is not even
necessary that νm > ν in the optical.

The case of GRB 090515, shown in Fig. 11, is more challeng-
ing, even though the inferred post-plateau slope is far less extreme
than that of GRB 120521A. But here the post-plateau slope is not
set by a single data point (although it requires a re-binning of
the automatically generated light curve presented on the XRT web
site to bring this aspect to the surface; for 120521A, the photon
arrival times are spread out too much for re-binning to make a
difference). The figure presents two alternatives for qualitatively
reproducing the features of this burst. In both cases, it is neces-
sary to circumvent the limitation on the maximum steepness of the
post-plateau slope imposed by the curvature effect (i.e. the spread
in arrival times of emission from different angles, even when RS
emission ceases at a single lab-frame time). Since the curvature
effect only applies as long as the jet nature of the outflow is not
apparent to the observer, it is necessary that the burst is observed at
a time when the blast wave has decelerated at least beyond the point
where γ ∼ 1/θ0 (see Section 5.2 below and e.g. Granot 2007; Van
Eerten 2013 for extensive discussions of the nature of jet breaks). In
other words, either γ or θ0 has to be such that this is the case already
around 102 s.

Figure 11. Same as Fig. 10, now for GRB 090515. For the top plot, the
model parameters are z = 0.4, dL = 6.3 × 1027 cm, Eiso = 1.2 × 1051 erg,
Tin = 102 s, εe = 0.5, εB,RS = 3.9 × 10−2, εB,FS = 10−6, ξN = 0.79,
nref = 0.16 cm−3, η = 2.4 × 104, p = 2.2, k = 0, q = 0, θ0 = 0◦

. 86. For
the bottom plot, the differing model parameters are Eiso = 2.1 × 1051 erg,
Tin = 2 × 102 s., εB,FS = 4 × 10−6, εB,RS = 10−9, ξN = 1, nref = 1 ×
105 cm−3, η = 1.2 × 104, θ0 = 5◦, with nref dropping to 0.1 cm−3 at radii
beyond ∼6 × 1014 cm, associated with the arrival of the last injected energy.
These values do not represent the best possible fit, but demonstrate a proof
of principle. The actual redshift for this burst is not known.

The top plot of Fig. 10 uses a very narrow jet with θ0 = 0◦
. 9.

On the one hand, narrow jets of a few degrees (e.g. five degrees or
lower) have actually been inferred for multiple short GRBs (Stratta
et al. 2007; Fong et al. 2012; Nicuesa Guelbenzu et al. 2012; Berger
2014). On the other hand, it is not easy to come up with a plausible
mechanism to create a narrow jet from a neutron star merger, the
preferred scenario for short GRBs.

Short GRBs are often found at an offset from their host galaxies
(see e.g. Fong, Berger & Fox 2010), providing a natural explanation
for the low circumburst densities that are often inferred from after-
glow modelling (e.g. Belczynski et al. 2006; Berger 2014). It should
however be kept in mind that, on the whole, short GRB circumburst
densities are poorly constrained due to lack of full broad-band cov-
erage (that would need to cover all spectral regimes in order to
fully constrain the model). Also, the distance ∼1013−14 cm, covered
by the blast wave during the short GRB plateau phase is still very
close to the progenitor system and therefore sensitive to its history.
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When probed at later times and further distant from the source (e.g.
∼1015 cm for GRB 050724, Berger et al. 2005), the local density
will more likely resemble the environment density more closely and
the effect of density perturbations closer to the source will be neg-
ligible compared to the total integrated density that shapes the blast
wave evolution. In the bottom plot of Fig. 10, I fixed the opening
angle of the jet to 5◦. The early jet break is now achieved with a
circumburst density out to cTlast of nref = 105 cm−3. Integrated over
radius, this is about 10−5M
. Since the Lorentz factor of the out-
flow is determined by the total amount of swept-up mass, the same
effect can be reached by having more circumburst mass within a
smaller radius. The total amount of mass remains tiny compared to
the ∼ 0.1M
 expected to be ejected closely before the merger oc-
curs (see e.g. Rosswog, Piran & Nakar 2013). Once the blast wave
pierces the massive shell and emerges in the dilute environment,
the FS is expected to speed up essentially instantaneously to a new
Lorentz factor dictated by the ratio between the two densities (Gat,
van Eerten & MacFadyen 2013).

5 A D D I T I O NA L D I S C U S S I O N

5.1 Charged particle acceleration and emission

The detailed physics of charged particle acceleration and magnetic
field generation in relativistic blast waves and turbulent flows are
an incredibly complicated subject that is still poorly understood,
and far beyond the scope of this paper. Instead, I have used the
(commonly applied) simplifying parameters εB, εe and ξN, along
with some implicit assumptions about their downstream evolution
(see Van Eerten 2013 for details). Furthermore, a global approach
was used to obtain a single cooling time for the entire plasma, rather
than accounting for changing cooling times for fluid parcels as they
advect away from acceleration sites. A more detailed treatment will
shift the position of νc within the RS and FS spectra (see also
Van Eerten et al. 2010). Such a treatment, however, would need
to address the question at which place(s) electrons are accelerated
into a non-thermal distribution. Maybe the dominant process is
Fermi shock acceleration at the FS and RS shock fronts. Local
cooling could then, in principle, be calculated within the self-similar
BM framework using the advection equation (18) from Section 3.
However, a (relativistic) FS–CD–RS system can easily be Rayleigh–
Taylor unstable at the CD (see e.g. Duffell & MacFadyen 2013 for a
recent demonstration). Particle acceleration can then also take place
throughout the turbulent region, which will spread out through the
RS and FS regions.

5.2 Sideways spreading

Once causal contact is established among all angles of the colli-
mated blast wave, deviations from radial flow can be expected. This
sideways spreading is partially responsible for what is observed as
the ‘jet break’ in the afterglow light curve (the other part being
the edges of the outflow becoming visible). The onset of spreading
can be calculated as the arrival time of a relativistic sound wave
moving from edge to tip along a shock front decelerating according
to � ∝ t−m/2. For non-zero m, this yields θ0 = 1/[(3 − k)�] (Van
Eerten 2013; MacFadyen & van Eerten, in preparation). For our
typical ISM scenario with q = 0 and opening angle 0.1, this leads
to � = 10, which puts the onset of spreading well after � = 26.8,
when the last energy has been delivered to the shock front. In the
typical wind scenario, m = 0, so we cannot use � as a measure of
the amount of time that has passed. In this case, t = t0exp [4θ0�],

for a sound wave departing from the edge at t0. Since t0 ∼ R0/c,
causal contact along the shock front is therefore expected already
early on during the injection phase.

Another way of assessing the importance of sideways spreading
is by comparing injected energy and sideways energy loss, in terms
of luminosities LIN, LOUT, respectively. Using the time derivative
of the collimation-corrected amount of energy within the blast wave
(approximated as a cylinder with homogeneous pressure set by the
shock-jump conditions and width set by χ = 1, χRS) and sideways
energy flux F = √

2�pcβ ′
⊥ (where β ′

⊥ is the sideways velocity
in the radially comoving frame, somewhere between sound speed
1/

√
3 and light speed 1), we obtain

LIN

LOUT
= α(3 − k − m)

√
2

χRSβ
′
⊥

θ0�, (25)

where α is a term of the order of unity, whose definition can be found
in BM76. Since the other terms are also of the order of unity, the
balance between energy flows is essentially set by θ0�. The result
is therefore similar to what is inferred from looking at sound waves
along the shock front. For constant injection with q = 0, ISM blast
waves remain radial until the jet break. Constant injection wind blast
waves remain radial throughout the energy injection stage, except
for a minor bow shock (if � > θ0), or start spreading immediately
until θ ∼ �−1, which effectively puts a lower limit on how narrowly
energy injection can be collimated when m = 0 (as is the case for a
wind with q = 0, k = 2; note that the narrow jet treatment of GRB
090515 from the preceding section was done in the context of an
ISM-type environment where m = 1).

In a practical sense, this implies that the results obtained in this
paper, both analytical and numerical, are approximately applicable
even for blast waves that spread out at a later stage and no two-
dimensional energy injection simulations are required. Simulation-
based fit codes based on templates for impulsive energy injection
blast waves (Van Eerten & MacFadyen 2012; Van Eerten et al.
2012) can be extended to include an energy injection stage by
attaching a series of one-dimensional simulation-based templates
for various injection durations. As discussed previously in Section 4,
it is straightforward to extend scale invariance to include this stage.

What this does not mean, however, is that no jet break-like effect
can be seen in the light curve during energy ejection. For non-zero
m, there remains the effect of increasing relativistic beaming cone
width even while the outflow remains radial. Given that afterglows
are typically observed off-axis (Ryan et al. 2013, Ryan et al., 2014),
it is even likely that the onset of this type of jet break even occurs
during the injection phase of the blast wave.

5.3 Energy injection by massive ejecta

There exists an extensive literature on afterglow emission from
massive ejecta (e.g. Sari & Piran 1995; Kobayashi et al. 1999;
Kobayashi & Sari 2000; Ramirez-Ruiz, Celotti & Rees 2002; Wu
et al. 2003; Peng, Königl & Granot 2005; Zou, Wu & Dai 2005; Yi,
Wu & Dai 2013; Leventis, Wijers & van der Horst 2014). Prolonged
energy injection can be understood as a generalization of massive
ejecta. In the latter case, the cold ejecta will stratify into a cold
wind-type outflow (see also Section 2.1) of width �R ∝ R/�2. As
long as the RS has not fully crossed the ejecta, this situation is
identical to a constant energy input (in the form of ejecta kinetic
energy) with q = 0 (and in the ‘thick-shell’ case, where the RS
becomes relativistic in the frame of the ejecta before completing
its crossing, the self-similar profiles described in this paper will
also arise). Therefore, the flux equations derived in this paper will
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reduce to those presented e.g. by Yi et al. (2013), if one takes
q = 0. For ultrarelativistic ejecta, characteristic moments in the
ejecta evolution like the completion of the RS crossing and the
deceleration radius are expected to occur in the observer frame
on a time-scale far smaller than the typically observed plateau end
times of 103−4 s. Less relativistic massive ejecta, such as the cocoon
surrounding the collapsar jet, will have comparable time-scales to
the observed plateau durations. In that case, the RS is likely to
remain non-relativistic, so the full self-similar BM profile will not
emerge. Nevertheless, equating the end-time of the plateau to the
deceleration time and measuring the flux at this time will pick out
the same point in the characteristic evolution across bursts, in the
same way as measuring the flux at Tin does.

5.4 The Lorentz factors of the outflow

Right now, the solutions presented in this work are based on a
number of (connected) assumptions: the free-flowing relativistic
wind is ultrarelativistic with Lorentz factor significantly exceeding
that of the FS. The engine activity is long lived, allowing for a
relativistic RS to emerge. The Lorentz factor of the free-flowing
wind remains fixed at η, restricting the applicability of the solution
to radii >ηR0 and requiring an unchanging ratio between mass-loss
and luminosity of the engine. It should be noted that there are other
ways of generalizing the standard fireball model of instantaneous
massive ejecta, that do not necessarily lead to a relativistic RS. It
is possible to relax the constraint that η remain fixed. If η changes
over time, but the wind Lorentz factor at the RS remains larger than
the FS Lorentz factor, the BM solution described in this paper still
applies. The only difference then becomes that the time dependence
of η needs to be carried over to the density profile. If η ∝ t sin, this can
be implemented in the flux equations by replacing η → ηref(tobs/tref)s

(ignoring redshift effects; once again the factors �2 cancel in going
from emission at the source to arrival at RS and from there to
observer time). Relaxing the requirement that the engine remains
active for a long time, quickly leads to a situation where the RS is not
relativistic. At this point, the flux equations for the RS region (but
not the FS region) quickly become qualitatively different. Under
specific assumptions for the density profile of the ejecta and its
acceleration behind the RS, self-similar solutions with Newtonian
RS remain possible. An example can be found in the paper by
Nakamura & Shigeyama (2006) mentioned in the introduction. The
flux equations for non-relativistic RS systems in general density
profiles are provided by Yi et al. (2013).

6 SU M M A RY

The self-similar FS–RS profile arising from a powerful astrophysi-
cal source, with long-term luminosity depending on time according
to a power law, is studied in detail. A treatment of the density profile
and evolution in the RS region is added to the self-similar solution
for the fluid profile from BM76, which is valid as long as the Lorentz
factor of the relativistic wind carrying the injected energy greatly
exceeds that of the FS. The ratio of downstream densities behind the
RS and FS remains fixed for constant energy injection into a wind-
type environment, and decreases linearly for constant injection into
a homogeneous environment. For typical long GRB afterglow pa-
rameters, the FS Lorentz factor � will be around 20–30 by the end
of the plateau stage around 104 s, with the Lorentz factor in the
wind case having remained unchanged over time. The self-similar
fluid profile obeys the same scale invariances as in the impulsive
energy injection case (Van Eerten & MacFadyen 2012; Van Eerten

et al. 2012), although the Lorentz factor η of the inflowing ultra-
relativistic wind and the coefficient of the power-law luminosity q
increase the dimensionality of the parameter space.

The self-similar profile is confirmed by high-resolution numer-
ical simulations in one dimension of power-law injection on to a
computational grid. The simulations also confirm that the transition
to an impulsive energy injection profile, following the cessation of
energy injection, takes about a sound-crossing time. This crossing
time can be calculated exactly from the analytical solution. The
assumption of radial flow within a cone of angle θ0 remains valid
up until the jet break in case the FS Lorentz factor decreases over
time (e.g. ISM-type environments with constant injection) and re-
quires energy injection angle θ0 � �, if � remains constant (e.g.
constant injection in the wind case). In the latter case, if θ0 < �, the
jet initially spreads quickly and an effective energy injection angle
θ ∼ �−1 is maintained.

When combined with a standard synchrotron approach to radi-
ation from shock-accelerated electrons (e.g. Sari et al. 1998), the
resulting model dependences of the flux equations for all spectral
regimes of FS and RS emission, as well as the flux levels, can be
calculated. These are provided in tables. The flux equations and an
application using ‘typical’ afterglow parameters reveal the follow-
ing properties of the combined emission from these systems.

(i) The contribution from the RS region can easily be significant
or even dominant, certainly when different magnetizations for both
regions are taken into account.

(ii) The observed light-curve evolution will show a complex in-
terplay between changing FS and RS contributions

(iii) For limited injection duration, the transition from a light
curved shaped by sustained injection to one shaped by impulsive
energy injection occurs around the point when the cessation of
energy injection is communicated to the shock front, although dif-
ferences in arrival time of emission from different angles will spread
out this feature over time.

(iv) Because the synchrotron break frequency νm depends
quadratically on η for RS emission, it tends to be shifted to high
frequencies and can be seen crossing the optical bands during the
plateau phase for certain combinations of model parameters.

(v) For constant energy injection, the RS emission for a blast
wave moving into a wind environment tends to be in the fast-
cooling regime during the plateau stage, while RS emission in the
homogeneous case tends to be in the slow-cooling regime. Conclu-
sions about the regime based on post-plateau FS emission cannot
be extrapolated back into the plateau stage when RS emission is
dominant at that time. In addition, for a power-law distribution of
accelerated particles with slope −p ∼ −2.2, the spectra for both
regimes are close to identical.

(vi) The observational optical and X-ray Fb–tb correlations be-
tween flux at the end of the plateau and the plateau duration follow
naturally from RS-dominated emission and values consistent within
2σ can be obtained for FS-dominated emission. The wind scenario
leads to values marginally closer to the prediction, but the differ-
ence is very small. The correlation emerges even across bursts with
otherwise differing values for model parameters (Eiso, εB, n0, etc.),
as these differences will lead to scatter in the correlation, but not
impact its slope. The correlations are not affected by the value of q,
but do require Eiso and Tin to be independent. A comparison between
the correlation predictions and model fluxes in a more realistic set-
ting, using population studies of synthetic afterglows, is the topic
of a follow-up paper (van Eerten 2014).

MNRAS 442, 3495–3510 (2014)

 at U
niversity of B

ath on D
ecem

ber 16, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3508 H. van Eerten

Finally, it is shown that the model of synchrotron emission from
a blast wave with sustained energy injection up to ∼102 s can in
principle be used to explain short GRBs 090515 and 120521A, that
were previously argued to be inconsistent with a synchrotron model
and require radiation directly from a magnetar instead (Rowlinson
et al. 2013). In our demonstration, a power-law slope q = 0 was
shown consistent with the data. This is actually consistent with
energy injection from a magnetar into an FS–RS system, but the
generic power-law luminosity assumption allows one to remain
agnostic about whether or not 090515 and 120521A were caused
by magnetars. The sudden cessation of energy injection required in
the FS–RS explanation can be understood from a magnetar source.
Or it might result from complex fluid behaviour once the power law
for the luminosity drops below −1, which becomes asymptotically
equivalent to impulsive energy injection. The profile at the back
end of the injected material can be steepened by rarefaction waves,
depending on the shape of the transition.
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APPENDIX A : ADDITIONAL SYMBOLS SELF-SI MI LAR SOLUTI ON

For completeness, I define in this appendix some symbols used in expressing the self-similar solution in Section 2.2. Straight out of BM76
we have

A ≡ x2 + 2α1x − 8β1

1 + 2α1 − 8β1
, B ≡ (x + α1 + γ1)(1 + α1 − γ1)

(x + α1 − γ1)(1 + α1 + γ1)
. (A1)

α1 = m − 3k + 12

2
, β1 = m + 1

2
, γ1 =

√
α2

1 + 8β1, (A2)

α2 = −(m + k − 4)

2
, β2 = (m − 3k)(m + k) + 8(3m + 4k − 8)

4
, γ2 = −(m2 + 4mk + 3k2 − 13m − 19k + 24)

2(m + 3k − 12)
, (A3)

μ1 = 2(7m2 + 34mk − 118m + 15k2 − 82k + 96) + (m − 3k + 12)(m2 + 4mk + 3k2 − 13m − 19k + 24)

4(m + 3k − 12)
, (A4)

μ2 = m − k

m + 3k − 12
. (A5)

In addition to the analytical solution equation (6) for the density profile, we have for the pressure profile f and Lorentz factor profile g:

f = A(x)−α2 × B(x)β2/γ1 , g = A(x)
1
2 +β1 × B(x)[α1(β1−1/2)+8β1]/γ1 . (A6)

A P P E N D I X B : D E S C R I P T I O N O F N U M E R I C A L C O D E A N D S E T T I N G S

All simulations were performed using the parallel adaptive-mesh refinement (AMR) RHD code RAM (Zhang & MacFadyen 2006, 2009). RAM

makes use of the PARAMESH amr tools (MacNeice et al. 2000) from FLASH 2.3 (Fryxell et al. 2000). The code allows for various solvers and
coordinate systems. For this study, spherical coordinates are used. The RHD equations are solved using a piecewise linear method (a practical
approach in the presence of strong shocks). A relativistic equation of state is used with adiabatic index �ad = 4/3 (all relevant parts of the
outflow are ultrarelativistic, the BM solution also makes use of this).

The same grid size is used for each simulation. The lower and upper radial boundaries are at 2.998 × 1013 cm (103 ls) and 1.499 × 1018 cm
(5 × 107 ls), respectively. This grid is divided into two base-level blocks of eight cells each and further dynamically subdivided up to 21
levels of refinement (aside from lower refinement consistency checks), where and when needed. As a result, the effective resolution δcell is
8.934 × 1010 cm (2.980 ls). For comparison, the width �R of the shell at t = Tlast is 1.804 × 1014 cm (6.016 × 103 ls) for the typical k = 2
case and 1.887 × 1014 cm (6.300 × 103 ls) for the typical k = 0 case. The RS–CD–FS system is therefore well resolved at all relevant times.
The refinement level of the RS–CD–FS system is manually kept at peak level, while regions at small radii, compared to either the RS radius
or the current radius of the last injected energy, are automatically derefined.

The grid is set up with a cold fluid with the appropriate profile (i.e. k = 0, 2) and the energy is injected via a boundary condition on the
lower boundary, given by equations (3). After a time Tstop (corresponding to an energy injection duration Tin and accounting for the fact that
the last injected energy has to be beyond the inner boundary), the luminosity is decreased exponentially according to Ldrop = L(exp [− (t
− Tstop)/(100 Tstop)] + 10−5). The mass inflow LM is equally decreased, while η is kept fixed. As long as the energy injection is decreased
sufficiently fast, the exact post-injection evolution of L, LM and η will not impact the outcome and the current set-up is chosen for numerical
reasons.

APPENDIX C : H EURISTIC FLUX FIT FUNCTI ONS

The equations in Tables 2 and 3 show how the flux depends on the model parameters, but do not give the absolute flux levels. An approximate
heuristic function to the flux levels is provided in Table C1, calculated from the asymptotic limits for cases where νm � νc. The lines in this
table specify the coefficients αi of the function

C(p, q, k) ≡ α0 + αpp + αkk + αqq + αkqkq + αkkk
2 + αqqq

2

+ αpkpk + αpqpq + αkkqk
2q + αkqqkq2 + αpqkpqk + αpkkpk2 + αpqqpq2. (C1)

For Fpeak,FS, this yields C(p, q, k) = 8.080 + 0.338p − 3.798k. . . , etc.
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Table C1. Coefficients to heuristic functions for approximating the flux level. See the main appendix
text for instructions on usage.

Fpeak,FS νm,FS νc,FS Fpeak,RS νm,RS νc,RS

Pre-factor [(2 − p)/(1 − p)]2 [(2 − p)/(1 − p)]2

0 7.968 −4.646 −4.136 3.691 0.538 −1.668
p 0.381 0.063 0.122 0.393 0.110 −0.118
k −3.484 1.522 5.512 −1.173 −2.057 3.984
q 3.577 2.339 −1.565 6.359 −0.065 −2.387

kq −1.200 −0.696 1.055 −1.751 −0.525 1.525
k2 0.126 −0.325 −0.443 −0.006 −0.106 −0.234
q2 0.135 0.101 0.158 −0.720 0.043 0.348
pk −0.123 −0.099 −0.185 −0.142 −0.158 0.196
pq −0.029 −0.085 −0.028 −0.030 −0.089 0.074

k2q 0.004 −0.010 −0.022 −0.008 −0.007 −0.008
kq2 −0.133 0.045 −0.003 0.150 −0.010 −0.103
pqk 0.016 0.039 0.108 0.024 0.071 −0.043
pk2 0.022 0.064 0.044 0.026 0.077 −0.048
pq2 −0.000 0.023 −0.081 0.006 0.017 −0.009

Table C2. Same as Table C1, now for impulsive injection.

Pre-factor p k k2 pk pk2

Fpeak,I 1 4.340 0.508 −2.443 0.133 −0.149
νm,I [(2 − p)/(1 − p)]2 −7.299 0.456 2.192 −0.173 −0.181
νc,I 1 −2.659 −0.037 4.829 −0.464 −0.338

The values of the characteristic quantities are then given by

Fpeak,FS = pre-factor × 10C(p,q,k)/(4−k) (1 + z)
k−8

2(k−4)

d2
L,28

ξN,0ε
1
2
B,−2

(
nref,0R

k
ref,17

) −2
k−4

×
(
Eiso,53T

−(1+q)
in,4

) −(8−3k)
2(k−4)

t
4k−8−8q+3kq

2(k−4)
obs,0 mJy,

νm,FS,15 = pre-factor × 10C(p,q,k)/(4−k)(1 + z)
1
2 ξ−2

N,0ε
2
e,−1ε

1
2
B,−2

(
Eiso,53T

−(1+q)
in,4

) 1
2
t

q−2
2

obs,0, (C2)

etc. Here, I use the notation X−2 ≡ X × 10−2 etc., in cgs units (except for observer time in days), in order to express the characteristic
quantities and table entries relative to a given base level. Using the tabulated values will yield the characteristic frequencies in the units of
1015 Hz (i.e. ν15) and peak fluxes in mJy. The base-level values of the model parameters are dL = 1028 cm, η = 1000, ξ = 1, εe = 10−1,
εB = 10−2, nref = 1 cm−3, Rref = 1017 cm, Eiso = 1053 erg, Tin = 104 s, tobs = 1 d, hence the notation Eiso,53, ξ 0, etc. in equations (C2) above.
Note that these base-line values are not always identical to the typical values first used in Section 2.3.

The heuristic functions have no physical meaning and are merely the combination of a straightforward polynomial divided by the (4 − k)
factor common to many other terms in the expressions for the characteristic quantities. Their dependence on p is not strong (and only terms
up to first order in p are therefore used). In a homogeneous shell model, the dependence on p drops out of the characteristic quantity equations
completely (see e.g. Leventis et al. 2014). Nor does p occur in the exponents of the model parameter dependences in the characteristic
equations for a non-homogeneous profile (see Section 2). When not ignored in the pre-factors too (e.g. in Van Eerten & MacFadyen 2012,
2013), the residual p-dependence in the pre-factors is the result of the measured characteristic quantities being the weighted average of their
values at all simultaneously observed positions in the fluid, with the weighing function being the p-dependent local synchrotron spectrum.

The heuristic functions have been determined by minimizing their differences to the simulation-derived values at all 27 permutations
of k = (0, 1, 2), q = (− 0.5, 0, 1) and p = times(2.1, 2.5, 3). With the values from Table C1, the differences always remain at or below
3 per cent.

For comparison, I also provide in Table C2 heuristic functions describing the flux level for impulsive energy injection blast waves. These
can be combined with flux equations in the various regimes, constructed from Table 2 or taken from Van Eerten & Wijers (2009). Note that
in Van Eerten & Wijers (2009), a different approach was taken to the synchrotron function, leading to differences in flux levels between that
study and Table C2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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