

Citation for published version:
Roscow, J 2015, 'Modelling Porous Ferroelectrics to Assess Piezoelectric Energy Harvesting Capabilities' 13th European Meeting on Ferroelectricity, Porto, Portugal, 29/06/15 - 3/07/15, .

Publication date: 2015

Document Version Publisher's PDF, also known as Version of record

Link to publication

University of Bath

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. May. 2019

Modelling Porous Ferroelectrics to Assess Piezoelectric **Energy Harvesting Capabilities**

J. I. Roscow, R. W. C. Lewis and C. R. Bowen. Email: j.i.Roscow@bath.ac.uk

Aim: To evaluate the effect of porosity and porous structure on the energy harvesting capabilities of ferroelectric ceramics using a Finite Element Modelling

Novel Energy Materials: Engineering Science and Integrated Systems

Context

approach.

Porous piezoelectric ceramics are of interest for energy harvesting applications due to porosity causing significant reductions in permittivity, ε_{33} , compared with relatively small reductions in longitudinal strain coefficient, d_{33} , leading to increases in energy harvesting figures of merit, where $FOM_{33} = d_{33}^2/\varepsilon_{33}$ [1]. The development of an FE Model will allow different porous structures to be evaluated for their energy harvesting capabilities.

Fig. 1: (a) 30³ cells randomly designated material properties of either unpoled BaTiO₃ (blue) or air (empty), depending of density defined for run and (b) post-poling procedure with poled (red) and unpoled BaTiO₃ (blue) and air (empty). BaTiO₃ elements are poled when local E-field exceeds coercive field.

Fig. 2: Flow diagram of modelling process used to generate randomly distributed porosity with piezoelectric ceramic (adapted from [2])

Initial Results

Fig. 3: FE model data (blue) compared to experimental data BaTiO₃ (red) for (a) d_{33} , (b) relative permittivity and (c) FOM₃₃, all plotted as a function of relative density. Experimental data measured from BaTiO₃ ceramics with range of porosities obtained using the burned out polymer spheres (BURPS) process.

Discussion & Outlook

- Want to bring model and experimental data closer together
 - More accurate input data required
- Use model to investigate EH capabilities of different structures/ connectivities
 - Currently, only randomly distributed porosity (3-0/3-3) generated
 - Structure has effect on key properties, i.e. d_{33} , ε_{33} and S^{E}_{33} (elastic compliance)

Acknowledgement

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. European Research Council 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS).

References

- [1] Islam, R. A., & Priya, S. J. Am. Ceram. Soc., 2006, 89, 3147–3156.
- [2] Lewis, R. W. C., Dent, A. C. E., Stevens, R., & Bowen, C. R. (2011). Smart Mater. and Struct., 2011, 20, 085002.