

Citation for published version:
Padget, J, Elakehal, E, Li, T & De Vos, M 2016, InstAL: An Institutional Action Language. in Social Coordination
Frameworks for Social Technical Systems. vol. 30, Law, Governance and Technology Series , Springer Verlag,
pp. 101.

Publication date:
2016

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161916938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.bath.ac.uk/en/publications/instal-an-institutional-action-language(074f7054-20f8-493a-91ad-7206993772f1).html

InstAL: An Institutional Action Language

Julian Padget, Emad ElDeen Elakehal, Tingting Li, and Marina De Vos

Dept. of Computer Science, University of Bath, United Kingdom

1 Introduction

InstAL denotes both a declarative domain-specific language for the specification of col-
lections of interacting normative systems and a framework for a set of associated tools.
The computational model is realized by translating the specification language to Ans-
Prolog [6], a logic programming language under the answer set semantics (ASP) [16],
and is underpinned by a set-theoretic formal model and a formalized translation process.

There are two novel features that InstAL offers: one theoretical and one technical.
The theoretical is the explicit treatment of external events and institutional events, which
both makes clear when a physical world action “counts-as” [21] as a valid cyber world
action and ensures that the institutional action functions as a guard for associated revi-
sions of the institutional state. The technical contribution is that by using Answer Set
Programming an InstAL specification can serve as (i) a model in which to capture and
validate (exhaustively) requirements as part of a design process – this is what InstAL
was originally developed to do – and (ii) a runtime requirements monitoring mechanism
as part of a deployed system – which happens simply as a result of evaluating a model
one step at a time.

InstAL supports the specification of both regulative and constitutive norms and in-
corporates the well-known deontic notions of permission and obligation (but not full-
scale prohibition) [37], along with the institutional notion of power [21].Given a norma-
tive specification and some initial conditions (fluents), an ASP solver allows the testing
of properties of specifications over finite time frames as part of a design process, or
the monitoring of agents’ normative positions as part of a simulation [26,5] or a live
system [35].

The key elements of the InstAL language, as shown in its metamodel (see Figure 1),
are the two kinds of data represented, namely events and fluents1 – a set of fluents
constitutes a state – and the three kinds of rules that capture the progression of the state,
namely generation rules, consequence rules and non-inertial rules. These elements are
brought together in a set-theoretic formal model along with a set of rules to translate
the elements of the formal model into AnsProlog.

1.1 Brief history

InstAL was initially conceived as a tool for the off-line verification of properties of nor-
mative specifications, taking advantage of the capacity of answer set solvers – tools

1 A fluent is a term that is true by virtue of its presence (in the institutional state) and false when
absent.

Institution

may contains
0 *

Institutional State

Fluent Progression Rule

*

Generation
Rule

is a group of

*
is a set of

Event

0 *

1 *

requires the occurrence of

Institution
al Power

associated with

Member

has

1 *

possesses

0 *

1 *

0 *

PermissionPower

Obligation
0 *

Domain
0 *

0 * 0 *

Consequence
Rule

Non-inertial
Rule

0 *

Fig. 1. InstAL metamodel in UML notation

that take an AnsProlog program and compute its answer sets – to generate finite event
traces from a model, given some initial condition, and so construct a form of institu-
tional model-checker. The benefit of using ASP is that it offers forward and backward
reasoning and planning, all using the same program.

The first full description of InstAL appears in Cliffe’s dissertation [9], while an
overview of the main concepts is given in [10]. Subsequently, the model was extended to
account for a first attempt at interacting institutions [12], then called multi-institutions.
The full model for interacting institutions is outlined in [29]

The first implementation of the InstAL to ASP translator was written in Perl and
designed to work with the then state-of-the-art ASP solver SMODELS. The current
version is written in Python and supports interacting institutions and an improved more
general AnsProlog translation that works with the Clingo solver [15].

Variant models The ESI framework [38] proposes a variant InstAL’s formal model.
ESI combines state- and event-based norms by combining features from InstAL and
Opera/Operetta [1]. Compared to InstAL, ESI offers an explicit representation of scenes,
landmarks and roles. These can be indirectly modelled in InstAL as discussed in [11].
ESI models violation fluents and negative obligations, allowing for a full representation
of deontic notion of prohibition. InstAL and ESI also differ in the way empowerment is
used: the former models it for internal events only while the latter only considers it in
respect of external events.

Tendering Use Case We apply the current standard version of the framework to the
tendering use case.

1. Each phase of the use case is modelled as an individual institution, each specifica-
tion comprising the events that it handles and the states (institutional facts) that it
uses

2. The interactions between the individual institutions are choreographed by a special
kind of institution, called a bridge institution, that specifies how events and states
in one institution map to events and states in another

3. We illustrate the operation of the interacting institutions, using two tendering sce-
narios to show how some aspects of the requirements are met, by visualizing the
corresponding traces.

1.2 Applications

InstAL can be helpful, as much in the early stages of system development in support of
exploratory design, as it is for deployed in support of monitoring and self-adaptation.
The kind of systems for which it has been used are characterized by at least several
and perhaps even large numbers of autonomous entities which may needs guidance on
correct action selection or whose individual goals may be at odds with some of the
system goals. We summarize a few examples of such systems:

1. Balke et al [4] shows how a normative framework can be used to govern the be-
haviour of handsets in an imagined 4G deployment to enable mesh networking of
handsets as a way to ameliorate load on the insfrastructure network.

2. Lee et al [26] illustrates how a normative framework can be used to guide the
behaviour of intelligent-agent controlled avatars in a virtual environment to bring
about more plausible behaviours for non-player characters in Second Life.

3. Bibu et al [7] and Pieters et al [31] use normative specifications to explore and to
establish security properties.

4. Balke et al [5] demonstrates the use of a normative framework to explore the pa-
rameter space for an enforcement policy and so establish appropriate levels for fines
and (cost) effective levels of policing.

5. Li et al [29] applies InstAL to the modelling of legal frameworks (building on [28])
to consider conflict detection between different jurisdictions.

6. Baines and Padget [3] applies normative guidance to (Jason) agents that control
vehicles in a traffic simulation environment that combines SUMO [24] with Open
Street Map and actual traffic data [36] to be able to explore the consequences of
communication and reasoning about intentions.

2 Metamodel

2.1 Overview

Overview The meta-model in Figure 1 provides an overview of all the components in
an InstAL specification or model. In this section, we briefly describe its components.
An InstAL model is a collection of interacting institutions. Each interacting institution
consists of a number of individual institutions and one or more bridge institutions that
specify the (cross) generation and consequence relations between the individual ones.

Environment

ObsEva0 ObsEva1 ObsEva2 ObsEva3

Specification A

S0 S1

InstActa0
S2

InstActa1

Specification B

S0 S1

InstActb0
S2

InstActb1

Bridge Specification

Generation Rules

Consequence Rules

Cross-Specification
Generations Rules

Cross-Specification
Consequence Rules

Fig. 2. Interacting institutions progression diagram

Each institution is determined by a set of possible states, a set of fluents that will
determine to the make-up of each state, a set of progression rules and an initial state. The
set of fluents available to an institution consists of two sub-sets: inertial and non-inertial.
The former can be further broken up in domain fluents, that describe the environment in
which the institution is active, and normative fluents. These latter ones, indicate which
event-based fluents are active at any given time, based on their presence or absence
from the state. InstAL models empowerment, permission and obligation. Any event that
is not permitted is prohibited. There are two types of events: external and institutional
actions. The former are events observed by the institution (i.e actions of participants
or environmental events). The latter are actions generated by the institution itself as a
consequence of the occurrence of an event. This allows for a representation of the count-
as event generation as detailed by [20]. State change in our model is triggered by the
occurrence of a single external event. The institutions progression rules are responsible
for the creation of the next state. Generation rules collect all the events that are caused
by the single external event. The consequence rules determine which fluents need to be
added/deleted from the current state to produce the next one and non-inertial rules are
responsible for the presence of non-inertial fluents.

The bridge institution consists of cross generation and cross consequence rules that
act across individual institutions. These determine if an event in one institution trig-
gers an event in another institution, or adds or deletes a fluent in the state of another,
respectively.

Figure 2 shows how interacting institutions can progress over time through the oc-
currence of a number of external events.

An InstAL specification is a collection of interacting institutions that individually
define a collection of event-based norms, i.e. norms that specify which events/actions
are permitted, empowered or obliged. The meta-model is made concrete through InstAL’s
formal and computational model which support institutional collections where:

1. Each institution functions independently of one another, but may nevertheless affect
one another, by establishing conflicting normative positions for an agent subject

2. The institutions are coupled, so that an action in one may bring about an event or
a state change in another – these interactions are specified by a bridge institution –
and, as above, conflicting normative positions can arise, and

3. The institutions are effectively unified, such that there are no conflicting normative
positions: this can be the result of careful design or through a computational process
of conflict detection and revision [28,29,27].

The formal model is a set-theoretic formulation based around sets of events and
sets of facts with relations for the (cross-) generation and (cross-) consequence rules. A
detailed description of the formal model can be found in [29] and [27].

The computational model is realised through translation to Answer Set Prolog (com-
monly also referred to as AnsProlog or ASP) and the subsequent use of an answer set
solver, such as Clingo [15]. Full details of the translation can be found in [10].

For ease of use, the framework offers an action language, also referred to as InstAL,
that allows the specification of institutions using a restricted semi-natural language. Full
details of the language can be found in [9].

The InstAL metamodel is supported by a collection of (command-line) tools for pro-
cessing specifications (pyinstal), verifying their properties (instql and clingo),
visualizing traces (pyviz) and incorporating them into distributed applications (the in-
stitution manager). An eclipse plug-in is available for modelling single institutions.

2.2 Assumptions

The InstAL language derives from the Situation calculus [32], the Event calculus [23]
and the action language A [17] and consequently has several features in common with
the above, such as classical negation, negation as failure, default (non-monotonic) rea-
soning, the use of inertia to handle the frame problem and circumscription. The formal
model is implementation agnostic. We chose to implement our model using answer
set semantics in order to be able conveniently to reason about all traces, perform ab-
duction, deduction and planning within a single implementation. The use of the action
language allows an extra level of abstraction for ease of use by designers unfamiliar
with a declarative logic programming language.

The premise behind InstAL is that observable events – and the effect they have on
some system state – are a sound basis on which to build models appropriate to all of
cyber, physical and cyber-physical systems. Thus, the fundamental building block of an
InstAL model are the events that can be observed and consequently the orders in which
they can be observed. A sequence of events is called a trace. The response by a model
to an event – that it is designed to recognize – is a new (model) state, which is typically
a modification of the state that pertained prior to the observation of the event. Model
states are labelled and the labels are ordered, giving an approximation to the passage of
time in terms of the occurrence of events.

By focussing on events as the driving force, InstAL enables the modelling of existing
physical and computational systems, mixed systems and the modelling of “what-if”
systems, as illustrated in [4].

2.3 Main Constructs

We discuss the main features of InstAL under the following headings: (i) ontology:
what is the ontology of the metamodel and how is the domain ontology established
(ii) events, activities and institutions: how are activities recognized through events and
the role of institutions in establishing context (iii) concurrency and coordination: how
is the observation of several events handled and how is coordination between activities
achieved (iv) organizational structures: how are these modelled (v) implementation and
deployment: how can InstAL tools be integrated with other applications (vi) regulation
and governance: what forms of regulation are then and how are regulations expressed
and communicated (vii) norm revision/evolution: how does InstAL cope with changes
in the regulatory framework.

Ontology The ontology of the model is implicitly established by the design process.
The author identifies actors, events and facts in the domain to be modelled and uses
whatever names they choose to correspond to these elements in the specification. The
modelling process might start from (physical world) events, leading to institutional
events and then the facts (fluents) that are used to identify key elements of the institu-
tional state. In addition to those fluents that pertain to the domain being modelled, there
are three important kinds of fluents that underpin the core concept of the metmodel,
namely permission, power and obligation. Permission and power are used to indicate
attributes of events, that is, whether they are permitted or empowered. The obligation
fluent is used to capture that a certain event should occur or a state be achieved before a
certain (deadline) event occurs or a state is achieved, otherwise a special kind of event, a
violation event, occurs. The connection between physical events and institutional events
is established by the generation rules, named after the notion of conventional gener-
ation, established by Searle in the context of his work on speech acts [34,20]. The
connection between (institutional) events and institutional facts is established by conse-
quence rules which either initiate (add) or terminate (remove) fluents in the institutional
state. Thus, the author introduces the domain ontology informally through the naming
convention adopted for the events and fluents.

Events, Activities and Institutions The progression of the model is determined by the
observation of an external event; if this is recognized by the institution (it can ignore it,
depending on the conditions associated with the generation rule), then an institutional
event – which maybe a violation – occurs. Through the consequence rules, the institu-
tional event may affect the fluents (including obligations) in the institutional state.

Activities are connected in part by the rules in the specification and in part by the
semantics of Answer Set Programming. However, the activities that occur can be con-
strained by what is observed in the query program. InstAL was conceived purely for
the purpose of modelling institutions and a fresh institution must be instantiated for
each set of actors – in effect, grounding a copy of the specification – so that each such
(grounded) institution carries out one of the functions of an organization. That is, we
see institutions as constituents of organizations and each institution as an instantiation
of an institutional specification that collectively form the set of patterns that govern
participant behaviour in the organization.

Concurrency and Coordination Institutions are coordinated using bridge rules that
communicate events from one institution to another or cause a fluent to be added in an-
other institutional state. The tendering scenario is specified in this way, with individual
institutions for the different activities of publication (discussed in detail in Section 2.5),
review, decision and notification, while the interactions between them are governed
by bridge rules (also discussed in detail in Section 2.5). Abstraction is thus achieved
through composition.

Participation in an institution is typically represented by some (domain) fluents in
some institutional state, so an agent can be present in more than one institution at the
same time. In effect, each institution offers a perspective on an agent’s actions as ob-
served through external events. The progression of each institution can take place con-
currently and activities can overlap, but in the context of any single institution, (ex-
ternal) events are considered to be totally ordered, which is a necessary condition to
compute a stable model.

Organizational structures It is not surprising, given the institutional focus of InstAL,
that there are no organizational artefacts, such as groups or roles, explicit in the InstAL
syntax. Roles are added to the formal model in ESI [38] and such properties can readily
be modelled as arbitrary relations/facts in InstAL, e.g. plays(agent1, author), but
changing associated permissions and powers when an agent start or stops playing a role
requires additional supporting mechanisms if it is not to be cumbersome.

Implementation and Deployment As noted in Section 2.1implementation is achieved
via the translation of the InstAL components to AnsPrologand then the use of an an-
swer set solver, e.g. CLINGO, (i) to establish global properties of the specification (at
design time), (ii) to provide monitoring for compliance (at run time), and (iii) to provide
a normative oracle for agents (at run time). The realization of run-time services depends
upon the deployment environment. The institution manager component provides these
services in conjunction with the Bath Sensor Framework 2 [25] which allows for the
connection to an agent platform, such as Jason [8]. The institution manager can also be
deployed as a RESTful web service, using the software developed in [14].

Regulation and Governance The two constraints on the action afforded by the model
are permission and power [21]. In the absence of permission, an event is considered
to be prohibited, but there is no explicit annotation for prohibition. The occurrence
of an event that is not permitted leads to the occurrence of a violation event. On the
other hand, the occurrence of an event that is not empowered simply has no effect (on
the institutional state). Obligations are expressed as a combination of three elements:
(i) either an event that ought to happen, or a condition on the institutional state that ought
to be satisfied, (ii) either an event that might happen or a condition on the institutional
state that might be satisfied, denoting a deadline for the first element (iii) a (violation)
event that occurs if the first element is not satisfied before the deadline specified by the

2 https://github.com/mas-at-bath/bsf

https://github.com/mas-at-bath/bsf

second. These language elements, along with domain fluents, allow for the expression
of event-based (subject to state) regulatory norms and state-based norms.

It must be emphasized that the detection and handling of violations and obligations
are the responsibility of the actors that participate in the institution; the sole purpose of
the framework is to observe and maintain (through its progression rules) the social state
pertaining to the perspective on events for which the institution has been designed.

Norm revision/evolution The InstAL tools as described here aim to provide the means
for the specification of static governance and monitoring mechanisms. The (provably)
correct (minimal) revision of an institutional specification is the subject of on-going
research (see this series of papers: [28,29,2,13]). Separately, on-going too are the related
tasks of norm recognition and norm evolution [33].

2.4 Operations

There are three ways in which to use the InstAL tools, depending whether the objective
is model development or deployment and, in the latter case, whether the objective is
system monitoring or system direction.

Model-checker InstAL was firstly developed as a language for specifying and model-
checking institutional specifications, and depends upon the computation of answer sets –
that represent model traces – by means of an answer set solver. Answer sets are returned
from solvers as sets of textual representations of atoms, and can be both large and many
in number, depending on the number of time steps over which the solver is run and the
number of possible orderings of events arising from the specification and the query pro-
gram. Thus, the InstAL suite of programs provide functions that prepare input for and
process the output of the answer set solver: (i) a high-level domain-specific language
for institutional specifications which is translated into AnsProlog and combined with
some institutional support code, and (ii) a renderer for answer sets to support the visual
inspection of the interplay of events and states. The query program, in conjunction with
the specification and the solver, can be sufficient to establish whether some model con-
dition is specified, but in practice, models and conditions can become complicated quite
rapidly and visualization of the answer set becomes a useful step in the development of
the specification. The query program is an arbitrary AnsProlog program, which is used
to validate the model against its requirements by such things as: (i) certain sequences
of events and (ii) the presence or absence of state traces (answer sets) that satisfy cer-
tain conditions. The query program can be written directly in AnsProlog or generated
using the InstQL querying language [19] (see Section 3) which allows expression of the
query in a form that is aligned with the institutional specification.

Social Sensor The second use of InstAL is as a monitor of the social state, providing in
effect a kind of “social sensor” that uses observations of agent actions to progress the
institutional model(s). Those agent actions may result in obligations being added to the
social state and so the output function of the wrapper program in this usage, extracts

any (fresh) obligations from the single answer set that is produced and delivers them
to the agent platform for perception by agents. In this way, agents become aware of
the normative consequences of their actions and can decide whether to comply with the
obligation or not [4,26,35]. In this mode of operation, InstAL can be used in conjunction
with agent-based simulation, virtual environments or live systems.

Social Oracle The third way in which to use InstAL is as an institutional oracle, where
the model can be used to extrapolate from the current institutional state to answer
queries, such as: (i) whether an action – or a sequence of actions – is norm compli-
ant (ii) whether an action – or a sequence of actions – results in a state satisfying a
particular condition, and (iii) what (norm-compliant) action(s) results in a state satisfy-
ing a particular condition. These kinds of queries describe a fairly conventional usage
of a finite-horizon model checker, but through the use of a domain-specific language
and support for normative concepts, provides functionality suitable for multiagent and
cyber-physical systems.

2.5 Languages

Models are expressed in InstAL, a semi-natural action language, which is implemented
in AnsProlog. The implementation language for InstAL is AnsProlog and therefore
much of the semantics may be assumed from a knowledge of (Ans)Prolog, including in
particular the syntax and treatment of variables (denoted by an upper-case initial letter,
e.g. Agent) and constants, e.g. requester. Figure 3 depicts the encoding of the pub-
lication institution which is part of InstAL’s implementation of the tendering use-case.
It demonstrates how a single institution can be modelled in InstAL. Figure 4 shows the
tendering bridge institution as an example of how InstAL supports the communication
of events and states between institutions. A more detailed description of the language
can be found in [27].

3 Tools and Platform

The purpose of InstAL is to provide the functions described in section 2.4, namely
model-checker, social monitor and social oracle. We now describe how each of these
functions is realized, using a collection of command-line tools.

3.1 Model-Checker

InstAL is a domain-specific action language whose computational model is realized by
its translation to AnsProlog and the subsequent solving to generate answer sets, which
is realized by the use of an Answer Set Solver, subject to a query program that de-
scribes constraints on the answer sets. The translation is implemented by a command-
line Python program, pyinstal3, while for solving we use clingo4. The query

3 pyinstal is available from http://www.cs.bath.ac.uk/instal
4 clingo is available from http://potassco.sourceforge.net/

http://www.cs.bath.ac.uk/instal
http://potassco.sourceforge.net/

Publication institution

An institutions has a name (publication), some types for the parameters to events and fluents and
some (selected) non-inertial fluents:

1 institution publication;
2 type RFT;
3 type Agent;
4 type Bid;
5 type Role;
6 fluent roleOf(Agent, Role);
7 fluent bidSubmitted(RFT, Bid, Agent);

One of the external observables, its corresponding institutional event, some facts for the initial
state permitting both events, assigning some roles and the generation rule that implements counts-
as, subject to Agent playing the role requester:

8 exogenous event publishRFT(Agent, RFT);
9 inst event intPublishRFT(Agent, RFT);

10 initially perm(publishRFT(Agent, RFT)),
11 perm(intPublishRFT(Agent, RFT)),
12 initially roleOf(ting, requester),
13 roleOf(alice, bidder),
14 roleOf(bob, bidder);
15 publishRFT(Agent, RFT) generates intPublishRFT(Agent, RFT)
16 if roleOf(Agent, requester);

The occurrence of the institutional event to publish the RFT has consequences for the institutional
state, permitting and empowering any bidder agent to bid:

17 intPublishRFT(Agent, RFT) initiates
18 perm(registerBid(Agent1, Bid, RFT)),
19 perm(intRegisterBid(Agent1, Bid, RFT)),
20 pow(intRegisterBid(Agent1, Bid, RFT))
21 if roleOf(Agent1, bidder);

An agent is obliged to submit a bid before intSubmissionDue or it triggers the violation
lateSubmission:

22 violation event lateSubmission(Agent, Bid, RFT);
23 obligation fluent obl(submitBid(Agent, Bid, RFT),
24 intSubmissionDue(RFT),
25 lateSubmission(Agent, Bid, RFT));

A non-inertial fluent is used in this example to implement a separation of roles:

26 noninertial fluent violated(Agent);
27 violated(Agent) when
28 roleOf(Agent, bidder), roleOf(Agent, requester);

Fig. 3. Example InstAL specification for the publication phase

Tender institution

The propagation of events in coordinated institutions is achieved by specifying a cross-generation
rule, linking an institutional event in one institution with an external (exogenous) event in another.
Here we see several such rules from the tendering scenario that link the four constituent institu-
tions:

1 intSubmissionDue(RFT) xgenerates reviewStarts(RFT);
2 intReviewDue(RFT) xgenerates decisionStarts(RFT);
3 lateReview(Agent, Bid) xgenerates waitForReview(Bid);
4 intDecisionDue(RFT, Bid) xgenerates notificationStarts(RFT, Bid);
5 intDecisionDue(RFT, Bid) xgenerates acceptBid(RFT, Bid)
6 if bidResult(RFT, Bid, accepted);
7 intDecisionDue(RFT, Bid) xgenerates rejectBid(RFT, Bid)
8 if bidResult(RFT, Bid, rejected);

The propagation of facts between coordinated institutions is achieved by specifying cross-
consequence rules, linking the presence of a fact in one institution with either the initiation or
termination of a fact in another.

9 intSubmitBid(Agent, Bid, RFT) xinitiates
10 readyForReview(RFT) if bidsReceived(RFT, n1);
11 intSubmitBid(Agent, Bid, RFT) xinitiates
12 bidInfo(RFT, Bid, Agent);
13 intReviewStarts(RFT) xinitiates bidDetails(RFT, Bid, Agent)
14 if bidInfo(RFT, Bid, Agent);
15 intMakeDecision(RFT, Bid, Decision) xinitiates
16 bidDecided(RFT, Bid, Agent)
17 if not reviewMissing(RFT, Bid), bidDetails(RFT, Bid, Agent);

However, some housekeeping is required to empower one institution to generate events for an-
other:

18 cross fluent gpow(Inst, reviewStarts(RFT), Inst);
19 cross fluent gpow(Inst, decisionStarts(RFT), Inst);
20 cross fluent gpow(Inst, waitForReview(Bid), Inst);
21 initially gpow(publication, reviewStarts(RFT), review);
22 initially gpow(review, decisionStarts(RFT), decision);
23 initially gpow(review, waitForReview(Bid), decision);

And to empower one institution to initiate fluents in another:

24 cross fluent ipow(Inst, readyForReview(RFT), Inst);
25 cross fluent ipow(Inst, bidInfo(RFT, Bid, Agent), Inst);
26 cross fluent ipow(Inst, bidDetails(RFT, Bid, Agent), Inst);
27 initially ipow(publication, readyForReview(RFT), review);
28 initially ipow(publication, bidInfo(RFT, Bid, Agent), review);
29 initially ipow(review, bidDetails(RFT, Bid, Agent), decision);

Fig. 4. Example InstAL bridge specification for the tendering scenario

program can be written directly in AnsProlog, but we also provide a query specifica-
tion language called InstQL. The translation of InstQLqueries to AnsProlog is imple-
mented by a command-line Python program, pyinstql5. For single institutions there
is also an Eclipse plug-in available that integrates all the command-line tools and offers
support to the user.

Careful expression of constraints is a critical aspect of using the solver effectively:
on the one hand in order to limit the number of answer sets generated, which in the worst
(unconstrained) case is exponential in the number of events, and on the other to restrict
the number of answer sets to those that are of interest because they satisfy particular
properties of concern to the designer. But even with one or a few answer sets, it can
be difficult to identify key features of an answer set as generated by clingo, so we have
developed a vizualizer, called pyviz6, also implemented as a command-line Python
program, that generates a pdf image of the trace using the TikZ drawing package.

These four components: translator, query generator, solver and visualizer, together
support the model-checking function.

3.2 Social Monitor & Social Oracle

The provision of these two functions is achieved by the same framework, so we describe
them together. The functions are delivered through the combination of two components:
(i) the institution manager and (ii) a publish-subscribe interface. The pub-sub interface
provides a facade for the institution manager and is present for the purpose of con-
necting the institution manager to the Bath Sensor Framework7 [25], and thence, to an
agent platform. The objective of the institution manager is to provide an interface to the
model-checking mechanism that offers the following operations:
1. creation of a new instantiation of an institution, that is grounding it with the identi-

ties of the actors and entities it should govern
2. delivery of an external event to a given instantiation and running it for one cycle

to produce the single answer set that characterises the next state of the institutional
model

3. extract any obligations established by the event.
In the context of the BSF interface, the institution manager subscribes to events from
the environment, which are then presented to the relevant institution and publishes obli-
gations back to the environment. In this way, we achieve an agnotic interface for insti-
tutions and institution management in a distributed setting.

4 InstAL in use

The modelling methodology of the institutions is the same regardless of whether the
model is used in model checking, social monitor or oracle or any combination thereof.
What differs is possible the granularity of the domain description and the consideration
of enforcement. A detailed discussion of differences can be found in [5].

5 pyinstql is available from http://www.cs.bath.ac.uk/instal
6 pyviz is available from http://www.cs.bath.ac.uk/instal
7 The Bath Sensor Framework provides distributed communications through the use of a XMPP

server and is available from https://github.com/mas-at-bath/bsf

http://www.cs.bath.ac.uk/instal
http://www.cs.bath.ac.uk/instal
https://github.com/mas-at-bath/bsf

4.1 Modelling and Implementation

InstAL models are built around events, who is permitted/empowered to cause them and
the effects they have on institutional states, therefore the informal methodology for
model specification is to examine the use case for actors, events and facts that need to
be remembered. The events typically become external events in the specification, pa-
rameterised by relevant information, such the actors responsible for them, while facts
become fluents, again parameterised by relevant information, that are initiated or termi-
nated by (institutional) events subject to the institutional state at the time. Some scenar-
ios contain more than one activity, in which case, it can be appropriate to map each ac-
tivity to a separate institution and then specify cross-generation and cross-consequence
rules to capture the interactions between them.

In the case of the tendering scenario, it is clear there are several phases, each of
which we have chosen to map to a separate institutional specification, namely publi-
cation, review, decision and notification.Various events can be identified from the sce-
nario description associated with each of the phases, which become external events in
the specification. Taking the publication phase as an example (see Figure 3), there are
also exceptional events, such as a submission after the deadline, which is captured as
a violation event, if an actor does not meet the obligation to submit a bid before the
end of the submission phase. Lastly, an institutional state or condition can be captured
through the use of a non-inertial fluent, in this case to signal that a separation of roles
has not been observed.

Once a specification comprises several institutions, it becomes necessary to consider
how they may affect one another. This aspect is expressed using cross-generation and
cross-consequence rules, as illustrated in Figure 4. In particular, the figure shows that
the institutional event intSubmissionDue in the publication institution generates
the external event reviewStarts in the review institution, with corresponding simi-
lar cross-generation rules connecting review and decision and decision and notification.
Similarly, an event in one institution can bring about a change of state in another, such
as the submission of a bid (intSubmitBid) in publication leading to the initiation of
the fluent readForReview in the review institution.

As with conventional programming, an incremental, test-driven approach can be
more productive than attempting to model everything first and then test it in its en-
tirety. The same principle is at work in the use of interacting institutions that can be
tested independently first and then integrated and tested further, as outlined in the ten-
dering scenario. Visualisation of the answer sets as event/state sequences provides a
mechanism of interpreting the answer sets within the problem domain. Issues with the
modelling can become a more apparent this way. When writing the specification it is
often useful to visualise specific traces as to see if all works as envisaged. This can be
achieved by providing providing the solver with a specific of external events encoded
as AnsProlog facts.

Figures 5 and 6 are partial visualisations based on the external events provided to the
solver. These events are provided at the top of the figure. Clearly several intermediate
states have been left out, but also the state has been omitted in several places (S0, S1

and S23) because it is large either in itself or in respect of the volume of changes that
take place. The visualisation of trace should be read as follows:

1. Events are written in italic and labelled with the institution in which they are de-
fined.

2. States are labelled in order as Si. State descriptions are lists of selected fluents
(specified by terms in the query program), again labelled with the institution in
which they are defined. Fluents initiated in Si are written in bold, persisting fluents
in normal font and terminated fluents are struck through.

3. Transitions between states are labelled with the events that have brought about that
transition. In this case, the external event observed is listed in the code block above
and its occurrence, along with any generated institutional events is shown above
the transition.
The trace illustrates how the tendering scenario has been filled in with actors and

entities to explore the tendering process for a building contract. The events listed at the
top of Figures 5 and Figure 6 show how the process unfolds:
1. ting publishes a request for tenders (RFT) for westBuilding and artCentre
2. alice registers a bid, then submits one, which is followed by a notification of its

receipt. These actions are then repeated by Bob.
3. then, towards the end of the scenario
4. marina submits a review of bid b3 for westBuilding in time for the deadline

(indicated by reviewDue, leading to the start of the decision phase
5. with all the reviews received (review of bid b1 was submitted earlier), the deci-

sions are made and b1 is accepted and b3 is rejected, leading to the start of the
notification phase

6. a contract is set up with alice for b1 and a rejection notice is sent to bob in
respect of b3, concluding the process.

4.2 Discussion

The use case serves well to illustrate of the capabilities of the InstAL framework be-
cause it shows how the designer can utilise several interacting institutions. In this way,
the designer can focus on the events associated with each activity – a form of modular-
isation – then focus on connecting up institutions through the bridge specification – a
form of choreography.

As it is illustrated here, there is a degree of artificiality, in that we are working in
isolation on the design, for the purpose of validating the static properties of the specifi-
cation. This is a benefit, because it allows for the validation of a set use cases through
a form of unit testing. What this does not illustrate is the deployment of such a model
in either a simulated or live environment, where the events are generated by the actors,
either agents or humans, or both.

This illustration, for sake of space, only shows a single (partial) trace of observed
events that corresponds to a correct ordering, for the purpose of showing how a desired
outcome is achieved. The trace shown is just one of the many possible paths from the
initial state. In this case the answer set solver is constrained by the specification of
those particular events in that particular order, such that there is only one result. The
specification can be used equally to find all traces for all permutations of events, subject
to any desired constraints, such as ones in which a particular final state is achieved and
perhaps additionally, ones in which certain sub-sequences of events occur. Clearly, this

2 observed(publishRFT(ting, artCentre))
3 observed(registerBid(alice, b1, westBuilding))
4 observed(submitBid(alice, b1, westBuilding))
5 observed(notifyReceipt(alice, b1, westBuilding))
6 observed(registerBid(bob, b3, westBuilding))
7 observed(submitBid(bob, b3, westBuilding))

S2 S3 S4

bidsReceived(artCentre, 0):
publication

bidsReceived(westBuilding, 0):
publication

bidsReceived(artCentre, 0):
publication

bidsReceived(westBuilding, 0):
publication

obl(submitBid(alice, b1,
westBuilding),
intSubmissionDue(
westBuilding),
lateSubmission(alice, b1,
westBuilding)): publication

bidInfo(westBuilding, b1,
alice): review

bidSubmitted(westBuilding,
b1, alice): publication

bidsReceived(westBuilding, 1):
publication

bidsReceived(artCentre, 0):
publication

obl(notifyReceipt(alice, b1,
westBuilding),
intReceiptDue(alice, b1,
westBuilding),
lateReceipt(alice, b1,
westBuilding)): publication

publishRFT(ting, artCentre)
intPublishRFT(ting, artCentre):

publication

registerBid(alice, b1,
westBuilding)

intRegisterBid(alice, b1,
westBuilding): publication

submitBid(alice, b1,
westBuilding)

intSubmitBid(alice, b1,
westBuilding): publication

notifyReceipt(alice, b1,
westBuilding)

intNotifyReceipt(alice, b1,
westBuilding): publication

S5 S6 S7

bidInfo(westBuilding, b1, alice):
review

bidSubmitted(westBuilding, b1,
alice): publication

bidsReceived(westBuilding, 1):
publication

bidsReceived(artCentre, 0):
publication

bidsReceived(westBuilding, 0):
publication

bidInfo(westBuilding, b1, alice):
review

bidSubmitted(westBuilding, b1,
alice): publication

bidsReceived(westBuilding, 1):
publication

bidsReceived(artCentre, 0):
publication

bidsReceived(westBuilding, 0):
publication

obl(submitBid(bob, b3,
westBuilding),
intSubmissionDue(
westBuilding),
lateSubmission(bob, b3,
westBuilding)): publication

bidInfo(westBuilding, b3, bob):
review

bidInfo(westBuilding, b1, alice):
review

bidSubmitted(westBuilding, b1,
alice): publication

bidSubmitted(westBuilding,
b3, bob): publication

bidsReceived(westBuilding, 1):
publication

bidsReceived(artCentre, 0):
publication

bidsReceived(westBuilding, 2):
publication

obl(notifyReceipt(bob, b3,
westBuilding),
intReceiptDue(bob, b3,
westBuilding),
lateReceipt(bob, b3,
westBuilding)): publication

readyForReview(westBuilding):
review

notifyReceipt(alice, b1,
westBuilding)

intNotifyReceipt(alice, b1,
westBuilding): publication

registerBid(bob, b3,
westBuilding)

intRegisterBid(bob, b3,
westBuilding): publication

submitBid(bob, b3, westBuilding)
intSubmitBid(bob, b3,

westBuilding): publication

notifyReceipt(bob, b3,
westBuilding)

intNotifyReceipt(bob, b3,
westBuilding): publication

Fig. 5. A partial example event sequence for the start of the tender scenario (events 2–7)

22 observed(submitReview(westBuilding, b3, marina))
23 observed(reviewDue(westBuilding))
24 observed(makeDecision(westBuilding, b1, accepted)).
25 observed(makeDecision(westBuilding, b3, rejected))
26 observed(decisionDue(westBuilding))
27 observed(formContract(westBuilding, b1, alice))

S22 S23 S24

obl(submitReview(westBuilding,
b3, marina), intReviewDue(
westBuilding), lateReview(
marina, b3)): review

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

obl(decided(westBuilding, b1),
intDecisionDue(
westBuilding, b1),
lateDecision(westBuilding,
b1)): decision

obl(decided(westBuilding, b3),
intDecisionDue(
westBuilding, b3),
lateDecision(westBuilding,
b3)): decision

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

submitReview(westBuilding, b1,
marina)

intSubmitReview(westBuilding,
b1, marina): review

submitReview(westBuilding, b3,
marina)

intSubmitReview(westBuilding,
b3, marina): review

reviewDue(westBuilding)
decisionStarts(westBuilding):

decision
intDecisionStarts(westBuilding):

decision
intReviewDue(westBuilding):

review

makeDecision(westBuilding, b1,
accepted)

intMakeDecision(westBuilding,
b1, accepted): decision

S25 S26 S27

bidDecided(westBuilding, b1,
alice): notification

bidResult(westBuilding, b1,
accepted): decision

decided(westBuilding, b1):
decision

obl(decided(westBuilding, b1),
intDecisionDue(westBuilding,
b1), lateDecision(westBuilding,
b1)): decision

obl(decided(westBuilding, b3),
intDecisionDue(westBuilding,
b3), lateDecision(westBuilding,
b3)): decision

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

bidDecided(westBuilding, b1,
alice): notification

bidDecided(westBuilding, b3,
bob): notification

bidResult(westBuilding, b3,
rejected): decision

bidResult(westBuilding, b1,
accepted): decision
itemdecided(westBuilding,
b3): decision

decided(westBuilding, b1):
decision

obl(decided(westBuilding, b3),
intDecisionDue(westBuilding,
b3), lateDecision(westBuilding,
b3)): decision

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

bidDecided(westBuilding, b1,
alice): notification

bidDecided(westBuilding, b3,
bob): notification

bidResult(westBuilding, b3,
rejected): decision

bidResult(westBuilding, b1,
accepted): decision

decided(westBuilding, b3):
decision

decided(westBuilding, b1):
decision

readyForReview(westBuilding):
review

sufficientBids(westBuilding):
publication

makeDecision(westBuilding, b1,
accepted)

intMakeDecision(westBuilding,
b1, accepted): decision

makeDecision(westBuilding, b3,
rejected)

intMakeDecision(westBuilding,
b3, rejected): decision

decisionDue(westBuilding)
acceptBid(westBuilding, b1):

notification
intAcceptBid(westBuilding, b1):

notification
intDecisionDue(westBuilding,

b3): decision
. . .

intNotificationStarts(
westBuilding, b3): notification

. . .
intRejectBid(westBuilding, b3):

notification
notificationStarts(westBuilding,

b3): notification
. . .

rejectBid(westBuilding, b3):
notification

formContract(westBuilding, b1,
alice)

intFormContract(westBuilding,
b1, alice): notification

Fig. 6. A partial example event sequence for the end of the tender scenario (events 22–27)

latter usage, being exhaustive is potentially computationally expensive, but does provide
the means to prove up to the length of the trace of the correctness of the specification
against the events that the model recognizes. It also therefore supports the verification
of the model against against all possible event sequences that might occur in practice in
a live system.

5 Critical Assessment

The main strength of the framework lies in how it forces the analysis of the situations
being modelled to focus on the identification of the significant events – the ones that
are deemed to have an impact on the model – and the recognition of critical states
brought about by those events. This imposes quite a high level of abstraction on the
analysis process, which might create an impression of disconnection from a concrete
application, but at the same time, this can potentially be beneficial precisely because of
the enforced focus on the essential events (and states) divorced from implementation
and technical choices.

A particular aspect of the modelling that can appear problematic is the absence of
any explicit notion of advancing time, on the one hand, and the incapacity of the model
to accommodate infinite event horizons, on the other. The former forces the designer
instead to identify events that signify, for example, the end of a period, rather than say-
ing something lasts 5 seconds, a day or a week. For the modeller, the absence of time
units can initially be frustrating, but it eventually has a positive impact because it de-
mands the explicit identification of a corresponding event, leading to a model expressed
only in terms of the (asychronous) occurrence of events – which can obviously include
externally generated time-dependent events – rather than one that has to account for
both synchronous and asynchronous events. InstAL models are not without time, be-
cause an event occurs at a given time instant (as in Figures 5–6), but the time period
(between events) is elastic and the instants are enumerated (and ordered). Thus, it is
possible to specify the duration of an activity, in terms of a number of time instants, but
the chronological duration is kept outside the model.

Future work The InstAL language is currently being extended to handle meta-norms [22],
but the implications of this for the formal model have yet to be explored. Several issues
of a technical nature are identified in [38] and summarised in section 1.1. These will be
addressed in the short term.

A substantive extension to the toolset is under development for conflict detection
and resolution for coordinated institutions, based on the principles outlined in [13],
illustrated by application in [28,29] and described in detail in [27]. These tools allow
for the specification of normative positions through use cases comprising a (partial)
sequence of events and a (partial) state description and the consequent synthesis using
inductive logic programming of a minimal self-consistent rule set. We currently use this
to revise an existing rule set to accommodate institutional conflicts, but we propose to
investigate how the same technology could be used against an initially null rule set to
synthesize norms from examples.

We see two major challenges to be addressed both in InstAL and by the wider norm
research community. Both issues involve making normative systems more accessible

to non-specialists, firstly in authoring them and secondly in evaluating the impact of
changes:

1. Writing specifications in InstAL requires substantial knowledge of (computational)
logic and a good understanding of logic programming and the semantics of InstAL.
The approach sketched above is one possible step towards a more user-oriented ap-
proach, but is still quite technical. Ghorbani [18] has prototyped a semi-structured
web-based authoring environment, which suggests another more accessible ap-
proach. Similarly, Behaviour Driven Development [30] and the Relax [39] spec-
ification language offer stylised natural language specifications forms. More chal-
lenging technically is the question of whether natural language processing could
identify events, states and actors in a policy specification and thereby synthesize a
first approximation specification. The second challenge could be one way in which
to refine and revise the outcome of the linguistic analysis process.

2. Understanding the full range of implications of a specification can be quite hard,
since humans do not have high capacity for reasoning over combinatorial order-
ings and quantified formulae. A more effective approach for human expression of
intentions is the use case – which is why we see it adopted in software engineer-
ing as a means to capture requirements – that describes a particular situation and
how the model should behave given those conditions. However, a use case cap-
tures a situation in isolation, whereas in practice the properties that matter (safety,
correctness, liveness, depending on the application) are consequential on the inter-
action of several requirements, some of which may conflict with one another, at
some time or in some circumstances, or just all the time. The conflict detection and
resolution approach outlined above can potentially help to construct conflict-free
combinations of specifications, but it still requires a human to choose between the
proposed revisions, so an effective way of presenting the effect of a set of norms
and to differentiate between them seems essential.

6 Key references

The following four papers document the principal contributions underpinning InstAL:

1. Formal and computational model: Cliffe et al [10] first sets out the formal model
for an individual institution, identifying and separating out: (i) external and in-
stitutional events and (ii) generation (counts-as) and consequence relations, then
proceeds to develop a mapping from the formal model to answer set semantics,
thus realising the computational model. A more detailed discussion appears in [9].

2. Multiple institutions and Action Language: Cliffe et al [12] then extends the sin-
gle institutional model to multiple institutions, introducing the notions of: (i) the
propagation of events from one institution to another (ii) that one institution may
have power (in the Jones and Sergot sense) over another (iii) how one institution
may initiate or terminate facts in another. To facilitates the design of these multi-
institutions, [12] proposes the action language InstALwhich can describe the formal
model and maps to an answer set program. Again, a more detailed discussion ap-
pears in [9].

3. Norm conflict detection and revision: Li et al [28] addresses the problem of find-
ing whether norms in different institutions conflict with one another and proposing
a revision – by means of inductive logic programming – of one to be compatible
with the other. For the purpose of the (automatic) detection process, two notions of
conflict are identified: (i) weak conflict, in which a fact is be true in one institution
and false in the other, and (ii) strong conflict, in which an action is not permitted
in one institution, but is obliged in the other. Consequently, the model traces con-
taining examples of these conflicts are used as negative examples for the inductive
logic program, leading to proposals for the revision of the rules that give rise to the
conflicts. A more detailed discussion appears in [27].

4. Interacting institutions: Li et al [29] builds on all the above to offer a general
solution to institutional interactiwith the notion of the bridge institution which in-
troduces: (i) cross institutional powers (ii) cross generation of events, and (iii) cross
initiation and termination of institutional facts. The conflict detection and revision
process is then applied to the circumstance of interacting institutions to revise the
rules that give rise to the conflicts. A more detailed discussion appears in [27].

References
1. Aldewereld, H. and Dignum, V. Operetta: Organization-oriented development environment.

In Dastani, M., Fallah-Seghrouchni, A. E., Hübner, J., and Leite, J., editors, LADS, volume
6822 of Lecture Notes in Computer Science, pages 1–18. Springer, 2010.

2. Athakravi, D., Corapi, D., Russo, A., De Vos, M., Padget, J. A., and Satoh, K. Handling
change in normative specifications. In Baldoni, M., Dennis, L. A., Mascardi, V., and Vascon-
celos, W. W., editors, Declarative Agent Languages and Technologies X - 10th International
Workshop, DALT 2012, Valencia, Spain, June 4, 2012, Revised Selected Papers, volume 7784
of Lecture Notes in Computer Science, pages 1–19. Springer, 2012.

3. Baines, V. and Padget, J. A situational awareness approach to intelligent vehicle agents. In
Behrisch, M. and Weber, M., editors, Modeling Mobility with Open Data, Lecture Notes in
Mobility, pages 77–103. Springer International Publishing, 2015.

4. Balke, T., De Vos, M., and Padget, J. Analysing energy-incentivized cooperation in next
generation mobile networks using normative frameworks and an agent-based simulation.
Future Generation Computer Systems, 27(8):1092–1102, 2011.

5. Balke, T., De Vos, M., and Padget, J. I-ABM: combining institutional frameworks and agent-
based modelling for the design of enforcement policies. Artificial Intelligence and Law,
pages 371–398, 2013.

6. Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,
2003.

7. Bibu, G., Yoshioka, N., and Padget, J. System security requirements analysis with answer set
programming. In Requirements Engineering for Systems, Services and Systems-of-Systems
(RES4), 2012 IEEE Second Workshop on, pages 10–13, 9 2012. http://dx.doi.org/
10.1109/RES4.2012.6347689.

8. Bordini, R., Wooldridge, M., and Hübner, J. Programming Multi-Agent Systems in AgentS-
peak using Jason (Wiley Series in Agent Technology). John Wiley & Sons, 2007.

9. Cliffe, O. Specifying and Analysing Institutions in Multi-agent Systems Using Answer Set
Programming. PhD thesis, University of Bath, 2007.

10. Cliffe, O., De Vos, M., and Padget, J. Answer set programming for representing and rea-
soning about virtual institutions. In Inoue, K., Satoh, K., and Toni, F., editors, CLIMA VII,
volume 4371 of Lecture Notes in Computer Science, pages 60–79. Springer, 2006.

http://dx.doi.org/10.1109/RES4.2012.6347689
http://dx.doi.org/10.1109/RES4.2012.6347689

11. Cliffe, O., De Vos, M., and Padget, J. Embedding landmarks and scenes in a computational
model of institutions. In Sichman, J. S., Padget, J., Ossowski, S., and Noriega, P., editors,
COIN, volume 4870 of Lecture Notes in Computer Science, pages 41–57. Springer, 2007.

12. Cliffe, O., De Vos, M., and Padget, J. Specifying and reasoning about multiple institutions.
In Vazquez-Salceda, J. and Noriega, P., editors, COIN 2006, volume 4386 of Lecture Notes
in Computer Science, pages 63–81. Springer, 2007. ISBN: 978-3-540-74457-3. Available
via http://dx.doi.org/10.1007/978-3-540-74459-7_5.

13. Corapi, D., Russo, A., Vos, M. D., Padget, J., and Satoh, K. Normative Design using Induc-
tive Learning. Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic
Programming (ICLP’11) Special Issue, 11(4–5), 2011.

14. Duan, K., Padget, J., and Kim, H. A. A light-weight framework for bridge-building from
desktop to cloud. In Lomuscio, A., Nepal, S., Patrizi, F., Benatallah, B., and Brandic, I.,
editors, ICSOC Workshops, volume 8377 of Lecture Notes in Computer Science, pages 308–
323. Springer, 2013.

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Schneider, M.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):107–124,
2011.

16. Gelfond, M. and Lifschitz, V. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3-4):365–386, 1991.

17. Gelfond, M. and Lifschitz, V. Action languages. Electron. Trans. Artif. Intell., 2:193–210,
1998.

18. Ghorbani, A. Structuring Socio-technical Complexity: modelling agent systems using insti-
tutional analysis. PhD thesis, Technical University of Delft, 2013. Available via http:
//aminehghorbani.weblog.tudelft.nl/, retrieved 20140730.

19. Hopton, L., Cliffe, O., Vos, M. D., and Padget, J. A. Instql: A query language for virtual
institutions using answer set programming. In Dix, J., Fisher, M., and Novák, P., editors,
CLIMA, volume 6214 of Lecture Notes in Computer Science, pages 102–121. Springer, 2009.

20. John R. Searle. The Construction of Social Reality. Allen Lane, The Penguin Press, 1995.
21. Jones, A. J. I. and Sergot, M. J. A formal characterisation of institutionalised power. Logic

Journal of the IGPL, 4(3):427–443, 1996.
22. King, T. C., van Riemsdijk, M. B., Dignum, V., and Jonker, C. M. Supporting request ac-

ceptance with use policies. Presented at Coordination Organizations Institutions and Norms,
2014 (COIN@AAMAS). Available via http://homepages.abdn.ac.uk/n.oren/
pages/COIN14/papers/p15.pdf, retrieved 20140730., May 2014.

23. Kowalski, R. A. and Sergot, M. J. A logic-based calculus of events. New Generation Com-
put., 4(1):67–95, 1986.

24. Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker, L. Recent development and appli-
cations of SUMO - Simulation of Urban MObility. International Journal On Advances in
Systems and Measurements, 5(3&4):128–138, December 2012.

25. Lee, J., Baines, V., and Padget, J. Decoupling cognitive agents and virtual environments. In
Dignum, F., Brom, C., Hindriks, K. V., Beer, M. D., and Richards, D., editors, CAVE, volume
7764 of Lecture Notes in Computer Science, pages 17–36. Springer, 2012.

26. Lee, J., Li, T., and Padget, J. Towards polite virtual agents using social reasoning techniques.
Computer Animation and Virtual Worlds, 24(3-4):335–343, 2013.

27. Li, T. Normative Conflict Detection and Resolution in Cooperating Institutions. PhD thesis,
University of Bath, December 2014.

28. Li, T., Balke, T., De Vos, M., Padget, J. A., and Satoh, K. A model-based approach to
the automatic revision of secondary legislation. In Francesconi, E. and Verheij, B., editors,
ICAIL, pages 202–206. ACM, 2013.

http://dx.doi.org/10.1007/978-3-540-74459-7_5
http://aminehghorbani.weblog.tudelft.nl/
http://aminehghorbani.weblog.tudelft.nl/
http://homepages.abdn.ac.uk/n.oren/pages/COIN14/papers/p15.pdf
http://homepages.abdn.ac.uk/n.oren/pages/COIN14/papers/p15.pdf

29. Li, T., Balke, T., Vos, M. D., Padget, J., and Satoh, K. Legal conflict detection in interact-
ing legal systems. In Ashley, K. D., editor, JURIX, volume 259 of Frontiers in Artificial
Intelligence and Applications, pages 107–116. IOS Press, 2013.

30. North, D. Introducing BDD. Available via http://dannorth.net/
introducing-bdd/, retrieved 20140730.

31. Pieters, W., Padget, J., Dechesne, F., Dignum, V., and Aldewereld, H. Effectiveness of qual-
itative and quantitative security obligations. Journal of Information Security and Applica-
tions, 22:3–16, 2015.

32. Pinto, J. and Reiter, R. Reasoning about time in the situation calculus. Ann. Math. Artif.
Intell., 14(2-4):251–268, 1995.

33. Savarimuthu, B. T. R., Padget, J., and Purvis, M. Social norm recommendation for virtual
agent societies. In Boella, G., Elkind, E., Savarimuthu, B. T. R., Dignum, F., and Purvis,
M. K., editors, PRIMA, volume 8291 of Lecture Notes in Computer Science, pages 308–323.
Springer, 2013.

34. Searle, J. R. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, 1969.

35. Thompson, M., Padget, J., and Battle, S. Governing Narrative Events With Institutional
Norms. In Finlayson, M. A., Lieto, A., Miller, B., and Ronfard, R., editors, 2015 Work-
shop on Computational Models of Narrative, OpenAccess Series in Informatics (OASIcs),
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. To appear.

36. UK Highways Agency. Traffic flow database system. Accessible via https:/trads.
hatris.co.uk. retrieved 20160124.

37. von Wright, G. Deontic logic. Mind, 60:1–15, 1951.
38. Vos, M. D., Balke, T., and Satoh, K. Combining event-and state-based norms. In Gini, M. L.,

Shehory, O., Ito, T., and Jonker, C. M., editors, AAMAS, pages 1157–1158. IFAAMAS, 2013.
39. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and Bruel, J.-M. Relax: Incorporat-

ing uncertainty into the specification of self-adaptive systems. In RE, pages 79–88. IEEE
Computer Society, 2009.

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/
https:/trads.hatris.co.uk
https:/trads.hatris.co.uk

	InstAL: An Institutional Action Language

