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We investigate theoretically the interplay between the effects of a perpendicular electric field and
incommensurability at the interface on the electronic properties of a heterostructure of bilayer graphene and
a semiconducting substrate with a unit cell almost three times larger than that of graphene. It is known that the
former introduces an asymmetry in the distribution of the electronic wave function between the layers and opens
a band gap in the electronic spectrum. The latter generates a long wavelength periodic moiré perturbation of
graphene electrons which couples states in inequivalent graphene Brillouin zone corners and leads to the formation
of minibands. We show that, depending on the details of the moiré perturbation, the miniband structure can be
tuned from that with a single band gap at the neutrality point and overlapping minibands on the conduction/valence
band side to a situation where a single narrow miniband is separated by gaps from the rest of the spectrum.

DOI: 10.1103/PhysRevB.94.165437

I. INTRODUCTION

Since the seminal paper by Esaki and Tsu [1], the idea
of tailoring the electronic properties of materials by form-
ing superlattices has had a huge impact on semiconductor
physics [2]. More recently, various works studied the possi-
bility of modulating the electronic properties of graphene by
applying a lateral periodic potential [3–7]. Experimentally,
a one-dimensional artificial graphene superlattice has been
fabricated using electrostatic gates [8]. However, a two-
dimensional superlattice can also be produced by placing
graphene on a hexagonal substrate/surface facet such as hexag-
onal boron nitride (hBN) [9], Ir(111) [10], or Ru(0001) [11]. In
this case, the superlattice, known as a moiré pattern, arises due
to the mismatch between the graphene and the substrate lattice
constants and misalignment of the crystalline directions of the
two materials. For graphene on hBN, a heterostructure which
attracted considerable attention because of, for example, the
observation of the fractal spectrum of magnetic minibands
known as Hofstadter’s butterfly [12–14] and detection of
topological valley currents [15], weak coupling between the
two crystals and close match of the reciprocal lattice vectors in
the two materials allow a continuum model description of the
perturbation using only harmonic functions of the six smallest
reciprocal lattice vectors of the superlattice [16]. The Bragg
scattering of graphene electrons by reciprocal lattice vectors
of hBN leads to the formation of minibands due to an effective
coupling of states in the vicinity of the same graphene Brillouin
zone (BZ) corner [16,17].

A contrasting case of coupling electronic states in the
vicinity of the inequivalent graphene BZ corners can be
achieved by engineering a

√
3 × √

3 superlattice [18–22],
also called the Kekulé lattice of graphene, for example by
an appropriate choice of the substrate. For such superlattice, a
band gap is opened at the Dirac point [18,19]. It has also been
suggested that for specific superlattice parameters a single-
valley quadratic band crossing appears in the spectra [20–22].

*D.J.Leech@bath.ac.uk

If the substrate is not ideally commensurate, a long wavelength
moiré pattern similar to that for graphene on hBN and shown
schematically in Fig. 1(a) appears and the intervalley coupling
oscillates in space with the moiré period. As shown recently,
in such a case the electron states at the Dirac point remain
unaffected but typically gaps are open between the first and
second miniband on the conduction/valence side [23].

In this article we investigate theoretically the electronic
properties of a heterostructure of bilayer graphene (BLG) and
a semiconducting almost commensurate

√
3 × √

3 substrate.
We use the form of the moiré perturbation derived previously
for monolayer graphene to study the miniband spectrum,
in particular in the presence of an external electric field
perpendicular to the graphene layers. This electric field
modifies the BLG electronic spectrum [24–26] which is folded
into minibands by the moiré perturbation and redistributes the
electronic wave function between the two layers, influencing
the impact of the superlattice on the electronic spectrum. We
show that, for a large range of moiré perturbation parameters,
the miniband spectrum can be tuned via the external potential
from a system with a single band gap to one with a narrow
miniband separated by a band gap on each side from the
rest of the spectrum. Such an effect was not predicted for
BLG on hBN, for which the behaviors of the first and second
miniband edges were essentially unaffected by the external
electric field [27].

II. ELECTRONIC HAMILTONIAN

We consider bilayer graphene [28], two coupled honey-
comb layers of carbon atoms in an AB (Bernal) stacking,
placed on a substrate with a lattice constant as = √

3(1 + δ)a,
|δ| � 1, where a = 2.46 Å is the lattice constant of graphene,
with an angle θ between the crystalline directions of the two
materials. The BLG unit cell contains four atoms A1, B1, A2,
and B2, where A and B denote the two sublattices within a
single layer and the numbers 1 and 2 indicate the bottom and
top layer, respectively. To describe the electronic properties
of BLG, we use the four-band model for the π electrons,
applicable in the vicinity of the BZ corner (often referred to as
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FIG. 1. (a) Schematic of the moiré superlattice, with graphene
(gray) and an incommensurate

√
3 × √

3 substrate (red). Also shown
is the Kekulé lattice of graphene (blue). For clarity we choose a large
δ, set θ = 0, and do not show the top graphene layer of BLG. While
the mismatch δ between the substrate (red) and the graphene Kekulé
lattice (blue) results in a superlattice periodicity set by A, a shorter
periodicity Ã of the local atomic arrangement surrounding a carbon
atom (gray) always exists (see the text and the Appendix for details).
(b) The two periodicities set by A and Ã result in two sets of basic
reciprocal vectors, β̌m and b̌m, m = 0,1, . . . ,5, respectively, and two
superlattice Brillouin zones that can be used to describe the miniband
spectrum. For the larger BZ set by the reciprocal vectors b̌m, we
introduce the high-symmetry points γ , μ, and κ . (c) Spectrum of
bilayer graphene folded onto the sBZ set by vectors b̌m. States from
the K+ (K−) valley are shown in magenta (yellow).

valley) K ξ = ξ ( 4π
3a

,0), where ξ = ±1 distinguishes between
the two inequivalent BZ corners. Because of the exponential
decay of the 2pz orbital wave function with increasing
distance [29], we assume that the influence of the substrate
on BLG is effectively limited to the bottom graphene layer
which is closer to the substrate. We follow the symmetry-based
analysis performed for monolayer on an incommensurate√

3 × √
3 substrate [23] and use the six shortest reciprocal

lattice vectors of the moiré given by the difference between the
reciprocal lattice vectors of the substrate and the Kekulé lattice
of graphene, {βm} = R̂ 2πm

6
[1 − R̂θ /(1 + δ)]( 4π

3a
,0), shown in

Fig. 1(b), to write the Hamiltonian

Ĥ =
(

ĤMLG + u
2 + δĤ T̂

T̂
†

ĤMLG − u
2

)
,

ĤMLG = vσ · p,

T̂ = 1

2
γ1(τzσx − iσy),

δĤ = UE′vβF (β̌)σz + UGv[∇F (β̌)] · [σ × lz]

+UG′v[∇F (β̌)] · σ ,

F (β̌) = f1(β̌)τx + f2(β̌)τy,

f1(β̌) =
∑

m=0,...,5

eiβm·r ,

f2(β̌) = i
∑

m=0,...,5

(−1)meiβm·r . (1)

Above we have written the Hamiltonian Ĥ in the ba-
sis of Bloch states {ψK+

A1 ,ψ
K+
B1 ,ψ

K−
B1 ,−ψ

K−
A1 ,ψ

K+
A2 ,ψ

K+
B2 ,ψ

K−
B2 ,

−ψ
K−
A2 }T . We have also set � = 1 and introduced a unit

vector along the z axis lz, and two sets of Pauli matrices σi ,
σ = (σx,σy), and τi , acting in the sublattice and valley space,
respectively, as well as their direct products τiσj ≡ τi ⊗ σj .
The diagonal intralayer blocks ĤMLG with Fermi velocity [30]
v � 106 m s−1 and electron momentum p measured from the
center of the valley, correspond to the Dirac-like Hamiltonian
for electrons in monolayer graphene. The off-diagonal block
T̂ , with γ1 � 0.38 eV [31], describes the coupling between the
layers and u denotes the interlayer asymmetry due to an exter-
nal perpendicular electric field. The moiré perturbation is cap-
tured by the term δĤ which appears in the top left block of the
Hamiltonian Ĥ , corresponding to the bottom graphene layer.

In the absence of the perturbation δĤ = 0, and for u = 0,
the Hamiltonian in Eq. (1) results in four bands, two of
which are degenerate at the points K+ and K− at the energy
corresponding to the position of the chemical potential in the
charge neutral structure (the neutrality point) which we use as
the zero of our energy scale. The other two bands are split
by ±γ1 away from the neutrality point [28]. The external
perpendicular electric field breaks the layer symmetry and
induces an on-site energy difference between the two graphene
layers described by u. This leads to opening of a band gap
Eg ≈ u (if u < γ1) in the electronic spectrum [24].

To arrive at a form of the moiré perturbation as in Eq. (1), we
assumed that the hexagonal monoatomic layer directly under
graphene has inversion symmetry (interaction with atoms
deeper in the bulk of the substrate are neglected because of the
rapid decay of the 2pz wave functions). We also do not consider
any intravalley terms as these were studied before [27,32]. The
relative strength of the perturbation, measured here in the units
of

√
3vβ, β = |β i |, is set by three dimensionless parameters

UE′ , UG, UG′ . Their exact values depend on the substrate as
well as the misalignment angle θ and are difficult to determine
due to the van der Waals nature of the interaction between the
two constituent materials (for example, multiple models with
different outcomes have been suggested to describe the moiré
perturbation in the graphene/hBN heterostructure [17,33]).
However, we assume that the perturbation parameters are
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small, such that |Ui | � 1. Finally, we note that for θ = 0
the reflection axes of the graphene and substrate unit cells
coincide and hence these directions remain reflection axes for
the superlattice. As a result, θ = 0 requires UG′ = 0 [23].

The reciprocal lattice vectors {βm} correspond to the real
space periodicity set by the lattice vectors of the substrate
and the Kekulé lattice of graphene, depicted by vector A
in Fig. 1(a). However, we demonstrate in the Appendix
that a shorter periodicity of the local atomic arrangement
surrounding a carbon atom, indicated in Fig. 1(a) by vector
Ã, always exists. This shorter periodicity corresponds to
primitive reciprocal lattice vectors {bm} = √

3R̂ π
2
βm, shown

in Fig. 1(b), which define a larger superlattice Brillouin zone
(sBZ), shown in black in Fig. 1(b), than the vectors {βm} [23].
Existence of the two periodicities gives rise to the particular
combination of functions f1(β̌) and f2(β̌) in Eq. (1) which
always leads to an exact cancellation of half of the terms in
the sums over vectors {βm}. As a result, a state |+,n, p〉 with
momentum p in the vicinity of the valley K+ and with n

indexing one of the four BLG bands, is directly coupled by the
moiré perturbation to three states |−,n′, p + βm〉, m = 1,3,5
[shown in green in Fig. 1(b)], in the vicinity of the valley
K−. Equivalently, a state |−,n, p〉 is coupled to the states
|+,n′, p + βm〉, m = 0,2,4 [shown in red in Fig. 1(b)]. Hence,
in the reduced zone scheme, the center of the K− valley is
folded onto momentum β0 in the vicinity of the valley K+.

We focus first on the sBZ set by the vectors {bm} and
denote its high-symmetry points, as shown in Fig. 1(b). In
order to treat both valleys on an equal footing, we choose
the position of the sBZ which reflects best the symmetry of
the lattice: the center of the valley K+ is at the point κ and
K− is mapped onto κ ′ [23]. The result of such folding of
the unperturbed BLG spectrum is shown in Fig. 1(c), where
we depicted bands from the K+ (K−) valley in magenta
(yellow). To present the dispersion in the smaller sBZ, set
by {βm}, requires additional folding of the bands. This results
in the two valleys K+ and K− being mapped onto the γ

point, and leads to valley degenerate dispersion surfaces [23].
In general, nesting of minibands makes it more difficult to
visualize the dispersion in the smaller sBZ and so, for clarity,
in this work we show the minibands within the larger sBZ. We
calculate the miniband spectra like the one shown in Fig. 1(c)
by numerical diagonalization of the Heisenberg matrix built
of 31 points coupled by the moiré perturbation, including
the initial point |+,n, p〉 (mixing of the valleys ensures that
the miniband structure calculated for the choice of the initial
point |−,n,k〉 is identical). We take into account states in all
four of the BLG π bands and to set the geometry we choose
In2Te2, a semiconductor with a band gap of ∼2 eV [34], as
the intended substrate (a list and a short discussion of other
potential substrates can be found in Ref. [23]). This sets the
lattice mismatch δ = −0.007 [20,34] and the characteristic
energy of the moiré

√
3vβ = vb = 0.134 eV.

III. EFFECTIVE HAMILTONIANS
AT HIGH-SYMMETRY POINTS

In this section we assume that vb
γ1

< 1 (which requires small
lattice mismatch δ) and, because we are interested in the
reconstruction of the electronic spectrum at the boundary of

the first and second miniband, we ignore the high-energy split
bands. We also assume that θ = 0 and hence UG′ = 0 [35].
We write the unperturbed plane wave state |ξ,s, p〉 in the
conduction (s = 1) or valence (s = −1) band, with momentum
p = (px,py) �= 0 in the vicinity of the valley K ξ ,

|+,s, p〉 = 1√
Cp

(|+〉 ⊗ u+
|+〉 ⊗ v+

)
ei p·r ,

|−,s, p〉 = 1√
Cp

(|−〉 ⊗ σxu−
|−〉 ⊗ σxv−

)
ei p·r ,

uξ =
(

1
1
vp

(
ε0
p,s − u

2

)
eiξφ

)
,

vξ =
(
ε0
p,s − u

2

)2 − v2p2

γ1

⎛
⎜⎝

1

vp
eiξφ

1(
ε0
p,s+ u

2

)eiξ2φ

⎞
⎟⎠,

ε0
p,s = s

√√√√γ 2
1

2
+ u2

4
+ v2p2 −

√
γ 4

1

4
+ v2p2

(
γ 2

1 + u2
)
,

where tan φ = py/px , p =
√

p2
x + p2

y , |+〉 = (1,0)T , |−〉 =
(0,1)T , and Cp is a normalization constant.

At the μ point, zone folding brings together two degenerate
states |+,s,

β0

2 〉 and |−,s,−β0

2 〉. Applying degenerate pertur-
bation theory to these two states leads to a 2 × 2 matrix,

Ĥμ =
(

ε0
β/2,s �μ,s

�μ,s ε0
β/2,s

)
,

�μ,s = − 2vb√
3Cμ

{
4
√

3UE′

(
ε0
β/2,s − u

2

)
vb

−UG

[
12

(
ε0
β/2,s − u

2

)2

v2b2
+ 1

]}
,

and yields the perturbed energies

ε±
μ,s = ε0

β/2,s ± |�μ,s|. (2)

At the γ point, the six following degenerate states are mixed
together by the perturbation: |+,s,β5〉, |−,s,β0〉, |+,s,β1〉,
|−,s,β2〉, |+,s,β3〉, and |−,s,β4〉. Only the neighbors in
the effective ring of six points are directly coupled and the
couplings are related by a phase, yielding a 6 × 6 matrix,

Ĥγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε0
β,s �γ,sw

∗ 0 0 0 −�γ,s

�γ,sw ε0
β,s �γ,sw

∗ 0 0 0
0 �γ,sw ε0

β,s −�γ,s 0 0
0 0 −�γ,s ε0

β,s �γ,sw 0
0 0 0 �γ,sw

∗ ε0
β,s �γ,sw

−�γ,s 0 0 0 �γ,sw
∗ ε0

β,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

�γ,s = 2vb√
3Cγ

{√
3UE′

(
ε0
β,s − u

2

)
vb

− UG

[
3

(
ε0
β,s − u

2

)2

v2b2
+ 1

]}
,

w = exp
(
i
π

3

)
.
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As a result of the perturbation, the six levels split into two
degenerate pairs of levels and two nondegenerate states,

ε±,deg
γ,s = ε0

β,s ± |�γ,s |, ε±
γ,s = ε0

β,s ± 2|�γ,s |. (3)

Finally, at the κ/κ ′ point, two (degenerate for u = 0) states
at the center of the valley ξ ,

|ξ,0〉i =

⎛
⎜⎜⎝

|ξ 〉 ⊗
(

δi,1δξ,1

δi,1δξ,−1

)

|ξ 〉 ⊗
(

δi,2δξ,−1

δi,2δξ,1

)
⎞
⎟⎟⎠, i = 1,2,

where δij is the Kronecker delta, are each coupled to six
points |−ξ,±1,βj 〉, where j is odd if ξ = 1 and even for
ξ = −1. However, the moiré perturbation acts only on the
bottom graphene layer, see Eq. (1), while the state |ξ,0〉2 is
located exclusively on the top layer and, hence, is effectively
uncoupled from the other states, its energy, ε = − u

2 , not
affected by the moiré perturbation. The remaining seven points
lead to the matrix

Ĥκ =

⎛
⎜⎝

u
2 T̂ 1 T̂ 2

T̂
†
1 Ĥ

0
κ,1 0

T̂
†
2 0 Ĥ

0
κ,−1

⎞
⎟⎠, Ĥ

0
κ,s =

⎛
⎝ε0

β,s 0 0
0 ε0

β,s 0
0 0 ε0

β,s

⎞
⎠,

T̂ 1 = (�κ,1w −�κ,1 �κ,1w
∗),

T̂ 2 = (�κ,−1w −�κ,−1 �κ,−1w
∗),

�κ,s = 2vb√
3Cβ

{√
3UE′

(
ε0
β,s − u

2

)
vb

− UG

}
.

For both u � ε0
β,s and |�κ,s | � ε0

β,s we can use the Schrieffer-
Wolff transformation [36] to project the Hamiltonian above
onto the low-energy state |ξ,0〉1. As a result, we obtain the
shift of its energy from ε = u

2 due to the perturbation

εκ ≈ u

2
+ 8

√
3vbUE′UG. (4)

IV. MINIBAND SPECTRUM

We are interested in determining the conditions for which
the first and second miniband on the conduction/valence-
band side are separated by a gap. In what follows, we
discuss the valence-band side; the respective conditions for
the conduction-band side can be obtained by taking advantage
of the symmetry of the miniband spectrum,

ε
UE′ ,UG,UG′ ,u
k = −ε

−UE′ ,UG,UG′ ,−u

k . (5)

In the presence of a weak perturbation, in order to confirm
the presence of a band gap between the first and second
miniband, it is enough to analyze energy states at the high-
symmetry points. Ignoring the Mexican-hat features created
at the valence band edge by nonzero interlayer asymmetry
u [24], the highest (closest to the neutrality point) point in
the first miniband is the center of the valley at κ/κ ′ at energy
ε = min(εκ,− u

2 ). Because the unperturbed BLG dispersion
has circular symmetry and electron energy in the valence band
decreases away from the center of the valley, the point with
the lowest energy in the first miniband is that furthest away
from the center of the valley, the γ point, with energy ε+

γ,−1,

FIG. 2. (a)–(c) Moiré miniband spectra and density of states
(DoS) corresponding to characteristic behaviors of the miniband
spectrum, as discussed in the text.

Eq. (3). In turn, the point with the highest energy in the
second miniband is the μ point which lies in the middle of
the shortest line segment connecting two valleys, with energy
ε−
μ,−1, Eq. (2).

In contrast to monolayer graphene [23], in BLG the energies
of the extremal points of a miniband can be modified by tuning
the interlayer asymmetry parameter u through application of
an external electric field perpendicular to the graphene layers.
Nonzero u is known to open a gap at the neutrality point.
Here, depending on the sign and magnitude of u, one could
open and close an additional band gap in the band structure,
between the first and second miniband. An example of such
tuning of the miniband spectrum is shown in Fig. 2, where we
show the miniband spectra for UE′ = 0.12, UG = 0.04, and
UG′ = 0 and three different values of u, with the additional
band gap visible in the spectrum in (c). For u = 10 meV,
Fig. 2(a), the miniband spectrum contains a single band gap
at the neutrality point Eg ≈ u. As the interlayer asymmetry is
decreased, the band gap decreases and for u = 0, Fig. 2(b), this

165437-4
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gap is due only to the moiré perturbation Eg ≈ 8
√

3vbUE′UG.
Reversal of the sign of u leads to a closure of the band gap
when the effect of the electric field cancels that of the moiré
perturbation. Further increase of the magnitude of u, Fig. 2(c),
again opens a band gap at the neutrality point. However, it also
opens a band gap E′

g ≈ |�μ,−1| + 2|�γ,−1| between the first
and second miniband in the valence band.

The presence of band gaps in the miniband spectrum can be
further confirmed through investigation of the density of states
(DoS), shown to the right of each of the miniband spectra in
Fig. 2. Accordingly, in Fig. 2(c) the DoS vanishes both in the
vicinity of the neutrality point as well as below the first Van
Hove singularity in the valence band.

In Fig. 3 we show the results of our study of the miniband
spectrum for a generic moiré perturbation described by
parameters UE′ and UG for various u. The blue-colored region
(I) shows the range of parameters UE′ and UG for which a
band gap between the first and second miniband in the valence
band exists. The region (II) in white corresponds to the case of
overlapping minibands. While the diagram has been produced
by inspecting numerically calculated miniband structures, the
red dashed line indicates the boundary between regions (I) and
(II) as predicted by the analytical considerations presented in
the previous section and inspection of the energy states at the
high-symmetry points. The miniband spectra shown in Fig. 2
correspond to the moiré parameter set indicated by the green
dot in the diagrams in Figs. 3(a)–3(c).

In general, greater magnitudes of the perturbation param-
eters promote appearance of the band gap between the first
and second miniband for smaller u. However, the effect of
the parameter UG, describing sublattice-conserving part of
the moiré perturbation, is more significant than that of the
parameter UE′ , characterizing the sublattice-exchange part of
the perturbation. Also, the threshold value of the interlayer
asymmetry u necessary to open the band gap between the first
and second miniband for a set moiré perturbation is different
for different signs of u.

V. SUMMARY

We have discussed the generic miniband structure of
the van der Waals heterostructure of bilayer graphene and
a semiconducting substrate almost commensurate with the
tripled unit cell of graphene. We showed that the combination
of an external electric field normal to the graphene layers,
which modifies the band structure in the vicinity of the
neutrality point, and the miniband formation due to the
substrate allow a new degree of tunability in the graphene
band structure: the miniband structure can be tuned from
the gapless form to that displaying two band gaps, one at
the neutrality point and one between the first and second
miniband on the conduction/valence-band side, hence isolating
a single miniband from the rest of the spectrum. For the
case of the lattice mismatch δ = −0.007, corresponding to
the choice of In2Te2 as the substrate, and mismatch angle
θ = 0, such an isolated miniband could be realized by using
relatively weak, experimentally accessible electric fields. For
this particular substrate, the isolated valence miniband would

FIG. 3. Regimes of miniband spectra in the (UE′ ,UG) parameter
space for the heterostructure of BLG and In2Te2 (δ = −0.007) and
(a) u = 10, (b) u = 0, and (c) u = −20 meV. For the region in blue,
a global gap separates the first and second miniband on the valence
side. The white region corresponds to the overlapping first and second
minibands. The dashed red line represents the boundary between the
blue and white regions as obtained using first order perturbation
theory analysis of the high-symmetry points in the sBZ. The green
dot represents point in the (UE′ ,UG) space for which miniband spectra
are shown in Fig. 2.
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have a width of t ∼ (vb)4

9γ 2
1 |u| and accommodate carrier density

n0 =
√

3b2

4π2 ≈ 1.9 × 1011 cm−2.
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APPENDIX: SUPERLATTICE PERIODICITIES
FOR GRAPHENE ON INCOMMENSURATE

√
3 × √

3
SUBSTRATE

In this Appendix we demonstrate that presence of the moiré
superlattice set by the graphene Kekulé lattice and the substrate
implies that a superlattice with a shorter period, generated by
the substrate and the graphene lattice, also exists.

The substrate is almost commensurate with the Kekulé
lattice of graphene and as a result, a long wavelength
periodicity forms at the interface between the two crystals.
A continuum model can be constructed if the structure is close
to a commensurate geometry [16,37] and here we assume that
the unit vector A of the superlattice can be expressed in terms
of the lattice vectors of the substrate and graphene Kekulé
lattice so that

A = m(2a1 + a2) + n(a1 + 2a2)

= √
1 + δ R̂θ(pã1 + q ã2),

(A1)

where a1 = a( 1
2 ,

√
3

2 ) and a2 = a( 1
2 , −

√
3

2 ) are the unit vectors

of graphene, ã1 = a( 3
2 ,

√
3

2 ) and ã2 = a( 3
2 ,−√

3
2 ) are the unit

vectors of the Kekulé lattice of graphene, and m, n, p, and q are
integers. This periodicity gives rise to the primitive reciprocal
vectors {βm}.

The above condition can be cast in the matrix form(
m

n

)
= √

1 + δ

(
cos θ + 1√

3
sin θ 2√

3
sin θ

− 2√
3

sin θ cos θ − 1√
3

sin θ

)(
p

q

)
,

mapping one pair of integers to another. The necessary and
sufficient condition for that [38] is that the elements of the
matrix above assume rational values,

√
1 + δ

1√
3

sin θ = i1

i3
,

√
1 + δ cos θ = i2

i3
. (A2)

Let us now investigate a vector Ã, equivalent to the vector
A from Eq. (A1) rotated by π

6 and shorter by 1√
3
. We have for

the left-hand side

Ã = 1√
3

R̂π/6{m(2a1 + a2) + n(a1 + 2a2)}

= (m + n)a1 + na2.

For the vector above to describe a periodic structure formed
by the lattice of the substrate and the lattice of graphene, we
require similarly to Eq. (A1) that

(m + n)a1 + na2 = √
1 + δ R̂θ (P ã1 + Qã2),

where P and Q are integers. This can be also written as(
m

n

)
=√

1 + δ

(
cos θ+√

3 sin θ − cos θ+√
3 sin θ

cos θ−√
3 sin θ 2 cos θ

)(
P

Q

)
.

Notice that the entries in the matrix above have to be rational
because, from Eq. (A2),

√
1 + δ

√
3 sin θ = 3

i1

i3
,

√
1 + δ cos θ = i2

i3
. (A3)

Hence, if the substrate and Kekulé lattices form a superlattice
with a unit vector A, then the substrate and graphene lattices
form a superlattice with a unit vector Ã = 1√

3
R̂π/6 A, as

shown in Fig. 1(a). The primitive reciprocal lattice vectors
corresponding to the latter, shorter periodicity are rotated by
π
6 with respect to {βm} and

√
3 times longer what is equivalent

to the definition of the vectors {bm} in the main text.
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