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Abstract
Pixel art is a modern digital art in which high resolution images are abstracted into low resolution pixelated outputs using
concise outlines and reduced color palettes. Creating pixel art is a labor intensive and skill-demanding process due to the
challenge of using limited pixels to represent complicated shapes. Not surprisingly, generating pixel art animation is even
harder given the additional constraints imposed in the temporal domain. Although many powerful editors have been designed
to facilitate the creation of still pixel art images, the extension to pixel art animation remains an unexplored direction. Existing
systems typically request users to craft individual pixels frame by frame, which is a tedious and error-prone process. In this work,
we present a novel animation framework tailored to pixel art images. Our system bases on conventional key-frame animation
framework and state-of-the-art image warping techniques to generate an initial animation sequence. The system then jointly
optimizes the prominent feature lines of individual frames respecting three metrics that capture the quality of the animation
sequence in both spatial and temporal domains. We demonstrate our system by generating visually pleasing animations on a
variety of pixel art images, which would otherwise be difficult by applying state-of-the-art techniques due to severe artifacts.

1. Introduction

Pixel art is a form of digital art where the details in a high resolu-
tion image are abstracted using a small number of pixels. This art
form was originally invented in the 1980s to adapt to the limited
graphics capabilities of computers and video games. At that time,
artists showed delicate skills to organize and color pixels, one at a
time, such that the pixel art image can perceptually depict the orig-
inal one. Such an intriguing feature has rendered pixel art a popular
contemporary art form that is widely used from computer games to
advertisements [VSS12], even though the hardware constraints no
longer exist in the modern graphics systems.

Since pixel art is characterized with limited resolution and reduced
palette, a subtle change of a single pixel (e.g., position and color)
can drastically affect the perceived image. This makes the creation
of pixel art a labor intensive and skill-demanding process. Not
surprisingly, the production of pixel art animation is much more
complicated due to additional coherence constraints imposed in
the temporal domain across frames. While there are popular edi-
tors, such as Spriter [PM12] and Piskel [Des], that support intuitive
key-frame animation with rigid motions (i.e., translation and rota-
tion), the results generated therein often suffer from severe artifacts
such as broken outlines and temporal jitters due to the naive near-
est neighbor sampling of individual frames. Moreover, users are
usually required to manually tweak pixels within deficient frames,
which is thus a tedious and error-prone process.

Motivated by the retro charm of pixel art, decades of research
have investigated automatic algorithms to optimize the aesthetics
of pixel art images during the creation process, such as the pixe-
lated feature lines and color regions in-between [Yu13]. Although

state-of-the-art methods have shown impressive results by either
rasterizing vector graphics into high quality pixel line arts or com-
puting optimal color palettes out of raster images, they were de-
signed for still pixel art images. There is a lack of an effective and
efficient system to produce appealing pixel art animation with mul-
tiple frames.

In this work, we present a novel animation framework tailored to
pixel art images. The ultimate goal is to provide the user with in-
tuitive control as well as efficient generation of smooth animation
sequences that preserve the features of input pixel art images. To
this end, our system adopts the interface of traditional key-frame
based animation system and allows the user to intuitively manip-
ulate the shape represented in the input image using a few control
anchors. Once the user has specified key-frames, the system then

Figure 1: An example pixel art animation sequence created by our
system. Two highlighted sequences show the quality improvements
of prominent feature lines in terms of shape and temporal coher-
ence. The red boxes indicate the initial sequence, while the blue
boxes are the optimized results (Input image: “Dove” c©WhyMe).
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automatically interpolates the intermediate frames and optimizes
the full animation sequence respecting the pixel art quality in both
spatial and temporal domains. Figure 1 shows a typical example
created using our system.

Our system differs from the existing ones in two aspects. First,
rather than working directly on the low resolution images, our
system converts the input pixel art image to a representation that
enables shape-preserving image deformation. Specifically, we fo-
cus on the shape of the prominent feature lines, which are ex-
tracted from the input image and vectorized into polylines. The
input image along with the vectorized feature lines are then
embedded into a triangular mesh. With such a hybrid repre-
sentation, our system achieves intuitive key-frame specification
and smooth intermediate-frame interpolation using conventional
warping-based shape manipulation. Second, the rasterized feature
lines of individual frames are jointly optimized respecting the qual-
ity measurement of individual frames and the spatial coherence be-
tween frames, resulting in a smooth animation sequence that is vi-
sually pleasing. We evaluated our system by using a variety of pixel
art images to generate animations of different complexity. Experi-
mental results show that our system can produce plausible anima-
tion sequences without noticeable artifacts as those introduced by
state-of-the-arts.

To summarize, we highlight here the main contributions of our
work. (i) A novel animation framework for producing high-quality
animation sequences for pixel art images. To the best of our knowl-
edge, our work is the first attempt in the field. (ii) A set of quality
metrics for capturing the aesthetics of feature lines within individ-
ual frames as well as the temporal coherence between consecutive
frames. (iii) A joint optimization that bases on the quality metrics
to refine the shape of individual feature lines and the configuration
between feature lines.

2. Related Works

Pixelated shape abstraction. How to abstract geometric shapes
using pixels has been studied extensively in computer graphics
for decades. Early efforts focused on rasterizing simple 2D pa-
rameteric curves, such as lines [Bre65], circles [Bre77], etc. An-
tialiasing techniques were introduced to make the rasterized shapes
visually smoothing [Wu91]. Shape abstraction dedicated to pixel
art style has also received increasing attention. For example, Ger-
stner et al. [GDA∗12] converted an input image to a pixelated
output image by jointly optimizing a mapping of features and
a reduced color palette. A general image downscaling filter by
Kopf et al. [KSP13] incorporated a content-adaptive downsampling
kernel to yield sharper and more detailed pixelated abstraction. In-
glis and Kaplan [IK12] proposed a novel algorithm to pixelate vec-
tor line art where artifacts, such as jaggies and broken lines, are
deliberately handled to fulfill the style of pixel art. This method is
further improved in [IVK13] by preserving symmetry and adopt-
ing manual antialiasing. Recent work also investigated how to fab-
ricate pixelated shape using physical building blocks [KLC∗15].
Our work is essentially different from previous ones, and focuses
on how to produce high-quality animation sequence from an input
pixel art image, rather than generating pixelated abstraction from
vector lines or raster images.

Image vectorization. Extracting resolution-independent vector
representations from images plays a key role in various appli-
cations, including image compression, transmission, deformation,
etc. Our work also relies on the vector representation to model the
shape and structure of feature lines during the optimization. Vari-
ous free/commercial image vectorization tools are available online,
including Potrace [Sel03], Adobe Live Trace [ADO10], and Vector
Magic [Vec10]. It is also worth mentioning that Kopf and Lischin-
ski [KL11] presented a vectorization algorithm that specifically tar-
gets pixel art images. While the previous approaches/tools have
shown impressive results, we find that a simple polyline-based vec-
torization followed by feature-aware optimization already achieves
satisfactory results in our experiments.

Stylized video and animation. Our work is closely related to
the research topic of non-photorealistic rendering of 2D videos
or 3D animations. Although several previous works were pro-
posed in various domains such as painting [BNTS07,OH12], hatch-
ing [NSC∗11], line drawing [BCGF10], they all share a common
objective of enforcing temporal coherence according to the under-
lying stylization. Interested readers may refer to [BBT11] for a
comprehensive survey. Our work also models the temporal coher-
ence but aims at a novel stylization, pixel art. To the best of our
knowledge, this has never been investigated before.

3. System Overview

Given an input pixel art image, our system provides intuitive
tools for generating key frames and interpolating the intermediate
frames. More importantly, all the frames are consecutively opti-
mized respecting the quality of the prominent feature lines of in-
dividual frames and the spatial coherence between frames, making
the final animation sequence visually pleasing. Figure 2 shows an
overview of our system, which mainly comprises three major com-
ponents as detailed below.

Preprocessing. In this step, we extract the prominent feature points
(pixels) of the input pixel art image and reconstruct a set of feature
lines for the subsequent stages (see Figure 2(a)). As pixel art images
are usually generated creatively and may appear in various styles,
we focus on a particular yet popular style where the pixelated fea-
ture lines are composed of nearly black pixels [Yu13]. Specifically,
we set a threshold of 20 for R/G/B channel. We further filter out
the outliers with only a single pixel. Then we group the feature
points into a set of feature lines as follows. First, we identify all
the terminal pixels, each of which has one (ending) or more than
two (junction) neighboring pixels in its local 8-connected neigh-
borhood. Then individual feature lines are formed by pixels along
a path connecting two terminal pixels. We further merge adjacent
feature lines that are continuously connected at the shared terminal
pixel, if the difference between tangent directions is less than 45◦.
In rare cases where the above assumptions (i.e., color, thickness,
and connectivity of pixel lines) are violated, the user is expected
to infer the shape of feature lines and resolve the ambiguous con-
nectivity between feature lines. Note that such preprocessing only
needs to be executed once for each input image.

Keyframe-based animation. To generate the initial animation se-
quence based on the extracted feature lines, we follow the tradi-
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... ...

(a) Preprocessing
Input pixel art Feature points Feature lines

(b) Keyframe-based animation
Key frame 1 Intermediate frame Key frame 2

(c) Feature-aware optimization
Initial pixel lines Individual line optimization Junction optimization Postprocessing

Figure 2: Overview: Given an input pixel art image, our system first (a) extracts all feature pixels and constructs a set of feature lines in a
preprocessing step. (b) Based on as-rigid-as-possible shape deformation and interpolation, key frames and intermediate frames are created
as the initial animation sequence. (c) The feature lines of all the frames are further optimized to improve the visual quality and temporal
coherence of the animation sequence. Finally, our system fills colors in the region bounded by feature lines (Input image: “Dove” c©WhyMe).

tional key-frame based animation framework to first specify a few
key frames via interactive warping tools. Then the intermediate
frames are smoothly interpolated between consecutive key frames
(see Figure 2(b) and supplementary video). Specifically, each fea-
ture line is converted into a compact vector representation using
polylines (see Appendix A for details). All the polylines are then
embedded into a triangle mesh generated by applying Delaunay
triangulation [She96] to the smoothed boundary pixels. For speci-
fying a key frame, the user simply picks few anchors on mesh ver-
tices and then performs intuitive drag and drop actions on arbitrary
vertices. Then our system automatically updates the shape using as-
rigid-as-possible deformation [IMH05]. Once all the key frames
are set, the intermediate frames are interpolated using the method
by [ACOL00]. The polylines of individual frames are reconstructed
using the encoded barycentric coordinates. Finally, the initial ani-
mation frames are generated by rasterizing the reconstructed poly-
lines using Bresenham’s line drawing algorithm [Bre65]. Note that
for each frame, we also generate a deformed image of the input
pixel art image, which will be used for mapping colors to the pixels
in-between feature lines after the optimization in the next stage.

Feature-aware optimization. Since the resolution of pixel art im-
ages is very low, the initial animation sequence usually contains
severe artifacts, such as spiky and jaggy patterns. To improve the
quality of the final animation sequence, we further optimize the
shape of feature lines with respect to the visual quality and tem-
poral coherence of the animation sequence (see Figure 2(c)). For
this purpose, we design several tailor-made quality metrics that (i)
preserve the deformed shape when updating feature lines; (ii) reg-
ularize the pixels of feature lines to ensure the quality of pixel art;
and (iii) enforce the temporal coherence across frames. (see Sec-
tion 4.1). Based on the above metrics, we optimize the shape of
individual feature lines and the configuration of junctions that join

feature lines using a set of local pixel-level refinement operators
(see Section 4.2). Note that the initial rasterization and subsequent
optimization are performed only on the feature lines. We employ
a simple nearest neighbor color interpolation based on the warped
pixel art image to recover pixel colors in-between feature lines and
obtain the final results.

4. Feature-Aware Optimization

Formulation. The input to our feature-aware optimization is an
animation sequence S = {s1,s2, ...,sN}, where sn (1 ≤ n ≤ N)
denotes the n-th frame which contains M feature lines Ln =
{ln

1 , l
n
2 , ..., l

n
M}. We formulate feature-aware pixel art animation as

a feature line optimization problem, which refines the shape of in-
dividual feature lines and the configuration of the junctions among
them. The objective function of the optimization is carefully de-
signed to improve the visual quality and temporal coherence of the
animation. We propose several local refinements at pixel level to
mimick the pixel manipulations performed by the artists to help
explore the solution space.

4.1. Quality metrics

We first define a set of quality metrics that measure the shape and
appearance of feature lines for individual frames, along with fea-
ture line consistencies between neighboring frames. The proposed
metrics serve as basic elements to compose the overall objective
function for the subsequent optimization.

Shape similarity. This metric is defined per frame. It measures the
similarity between the current feature lines under optimization (ob-
jective) and the corresponding deformed feature lines (reference)
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Figure 3: The shape similarity is defined by referring the raster-
ized feature lines (left) to the corresponding feature lines without
rasterization (right).

without rasterization. This is to preserve the underlying shape dur-
ing the optimization. Please note that the initial (rasterized) feature
lines of the optimization are not used as reference because they
usually contain artifacts as explained before.

Suppose ln
m is the m-th feature line of the n-th frame and ln

m
′ repre-

sents the corresponding reference feature line. ln
m
′ is also generated

based on shape deformation and interpolation, but without rasteri-
zation (see Figure 3), and it will be fixed during the optimization.

Since ln
m and ln

m
′ are either polyline or can be easily converted to

polyline, we employ polyline-based metrics for the similarity mea-
surement. For simplicity, we still use ln

m and ln
m
′ for the polyline

representation. We consider two aspects for polyline similarity, ori-
entation and location. The orientations of individual edges along
a polyline can be represented using a turning function, where the
dip angle at each point is represented as a function of the corre-
sponding arc length [ACH∗90]. The difference between two turn-
ing functions is defined as the area bounded by two function curves
(see Figure 4). Note that ln

m and ln
m
′ are both with arc-length param-

eterization. By taking all polylines into consideration, the overall
orientation similarity metric of the n-th frame is defined as:

En
so =

M−1

∑
m=0

Area[T (ln
m),T (l

n
m
′
)], (1)

where T denotes the mapping which maps a polyline to its turning
function. Area( , ) represents the area bounded by two curves.

The above metric only preserves the orientation of feature lines and
is invariant under polyline translation and scaling. To address this,
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Figure 4: We represent the orientation of a polyline using a turning
function. The difference between two turning functions is measured
by the area bounded by two function curves (in gray).
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Figure 5: (a) To accurately measure the coverage between ln

m and
ln
m
′, we scale ln

m
′ followed by high resolution rasterization to gen-

erate Ln
m
′. (b) Different weights are assigned to pixels of Ln

m
′ to

indicate the importance of feature preserving with respect to Ln
m (in

red). (c) The weight distribution over the pixels corresponding to a
single pixel in the original resolution.

we also involve the second metric to further preserve pixel locations
along the polyline. The basic idea is to measure the coverage of ln

m
with respect to ln

m
′ so that the shape of ln

m
′ could be preserved by ln

m
during the optimization. To ensure estimation accuracy, we perform
the computation at a higher resolution as follows. We up-sample ln

m
(10x) and achieve Ln

m, in which each pixel of ln
m corresponds to

100 pixels. To up-sample ln
m
′, the simplest way is to perform ras-

terization first and then scale the image to high resolution, which
however causes zig-zag artifacts. Instead, we up-sample the feature
lines from the original pixel art image, then apply the image warp-
ing transformations for generating ln

m
′ to the up-sampled image, re-

sulting in high resolution warping result Ln
m
′ (see Figure 5(a)). For

each pixel of Ln
m
′, we assign a weight using its Manhattan distance

to the boundary, indicating the importance for preserving Ln
m
′ (see

Figure 5(b)). For each pixel pi of ln
m, the coverage ratio ci is mea-

sure by first accumulating the weights from pixels in Ln
m
′, where

those pixels overlaps the corresponding pixels of pi in Ln
m. Then

we normalize the coverage value using the sum of all weights cor-
responding to one pixel in the original resolution (see Figure 5(c)).
The overall coverage of ln

m according to ln
m
′ is defined as:

En
sc =

M−1

∑
m=0

∑i(1− ci)

|ln
m|

, (2)

where |ln
m| is the number of pixels in ln

m. Please note that we discard
the pixels with ci < 0.5 to favor improvements over pixels with less
coverage.

Pixel art quality. We measure feature line quality per frame to
avoid two types of artifacts, i.e., spiky and jaggy effects. The for-
mer is caused by implausible local extrema, while the latter is due
to nonmonotonic slopes (see Figure 6).

Spiky Jaggy

Figure 6: Artifacts can be easily generated in the initial animation
sequence, including spiky effects with implausible local extrema,
and jaggy effects with nonmonotonic slope.
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W
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(a) (b)

ln
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ln
m
′

Figure 7: (a) To resolve spiky effects with implausible extrema, we
extract all the extrema (red dots) for each feature line. The height of
an extremum is defined as the minimum vertical distance to neigh-
boring extrema. The width of an extrema is the horizontal range
with 0.5 pixel height variation. (b) The spiky effect of ln

m is mea-
sured by comparing the extrema of ln

m with those of ln
m
′ within a

short distance (2 pixels). We only show vertical extrema here, while
horizontal extrema are processed analogously.

Similar as before, we measure the spiky effect of feature line ln
m by

comparing it with ln
m
′. Suppose ln

m is already converted to the poly-
line representation, we first find the local extrema of ln

m vertically
and calculate the height and width therein as shown in Figure 7(a).
The smoothness at an extremum is simply defined as its width. The
above procedure is also applied for ln

m
′. For ln

m
′, we filter out the

extrema where the height is less than one pixel by perturbing ex-
treme pixels one step towards their neighboring pixels. Then for
each extremum ei in ln

m, we search for the corresponding extremum
e′i in ln

m
′ within a distance threshold (2 pixels in our experiments),

and store i into a set P if the corresponding extremum exists (see
Figure 7(b)). The quality metric for avoiding spiky effect is defined
as:

En
qs =

M−1

∑
m=0

[ ∑
i∈P

|Width(ei)−Width(e′i)|
Width(ei)+Width(e′i)

+ ∑
i /∈P

1
Width(ei)

], (3)

where Width(·) denotes the width of an extremum.

To measure the quality of feature line ln
m to avoid jaggy effect,

we first use the identified extrema to divide ln
m into a set of sub-

polylines (see Figure 8(a)). For each sub-polyline, we further split
its associated pixels into a sequence of horizontal or vertical seg-
ments, each of which is called a span (see Figure 8(b)). We measure
the slope monotonicity within each sub-polyline by considering the
slopes of every three consecutive spans (see Figure 8(c)). We count
the total number of triplets with nonmonotonic slopes within ln

m,

(a) (b) (c)
Figure 8: (a) To resolve jaggy effects with nonmonotonic slopes,
we divide a feature line into a set of sub-polylines (in green) us-
ing pixels at extrema (in red). (b) The associated pixels of each
sub-polyline are further split into horizontal or vertical segments
(called spans) highlighted using blue boundary lines. (c) The slope
monotonicity is measured by the slopes of every three consecutive
spans. One of the triplets is highlighted in gray here.

denoted by Nonmono(ln
m). Then the quality metric regarding jaggy

effect is defined as:

En
q j =

M−1

∑
m=0

Nonmono(ln
m)

Span(ln
m)

, (4)

where Span(·) indicates the total number of spans within the initial
feature line.

Temporal coherence. One fundamental requirement for an anima-
tion sequence is the smooth motion transition between frames. This
is rather important for pixel art animation because only limited pix-
els can be used to discretize the dynamic shape. In practice, artists
need to pay significant efforts to fine tune pixels across frames,
which is very expensive and error-prone. In this work, we carefully
design a temporal coherence metric to ensure smooth shape motion
between consecutive frames.

The temporal coherence between two consecutive frames sn−1 and
sn relies on corresponding feature lines ln−1

m and ln
m. The simplest

way to measure coherence between two feature lines is to use dis-
tance based metric, e.g., Hausdorff distance. However, this is not
sufficient for pixel art animation due to its low resolution nature.
Hence we present a fine-grained temporal coherence metric at pixel
level which quantitatively measures the cost of bringing all pixels
of ln−1

m to those of ln
m. More specifically, as shown in Figure 9, we

define a set of pixel manipulation operators for a single span, in-
cluding add, delete, substitute, merge, and split, each of which is
assigned a cost value according to the change on the involved pix-
els. Then the temporal coherence between ln−1

m and ln
m is defined

as the minimal cost caused by a series of operators that map ln−1
m

to ln
m. In our experiments, we perform an exhaustive search to enu-

merate all solutions with corresponding costs. Then the temporal
coherence metric is defined as:

En−1,n
tc =

M−1

∑
m=0

costmin(l
n−1
m , ln

m)

cost(ln−1
m ,∅)+ cost(∅, ln

m)
, (5)

where cost(·, ·) indicates the cost of pixel line conversion using the
proposed operators, and ∅ denotes empty pixel set. Note that we
normalize the minimal cost with a brute-force cost by simply delet-
ing all the pixels in ln−1

m and adding all the pixels in ln
m.

P i xel  ma n i p u l ati on  op erators
Add / De lete Substit ute Merge  / Split

Figure 9: The fine-grained temporal coherence metric is based on
a set of pixel manipulation operators defined on a single span, in-
cluding add, delete, substitute, merge, and split. A cost value is
assigned to each operator based on the change of the involved pix-
els (highlighted in red), such as the size of the added/deleted span,
the magnitude of displacement between the old and new spans, the
movement when merging/spliting spans respectively.
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4.2. Optimization

Based on the proposed metrics in the previous section, we perform
an optimization on each frame sn to refine the pixels of each feature
line ln

m. The objective function guiding the optimization is defined
as a weighted combination of the above quality metrics:

E(sn) = wsoEn
so +wscEn

sc +wqsEn
qs +wq jE

n
q j +wtcEn−1,n

tc . (6)

In practice, the optimization is performed from the starting frame
s0 to the ending frame sN−1 consecutively. Note that when n = 0,
the temporal coherence term En−1,n

tc is not included in the objective
function since it is not well defined.

Given an input frame, we apply a set of pixel refinement operators
to help explore the solution space and refine the result by minimiz-
ing the objective function. In order to preserve the topology of fea-
ture lines, the operators are firstly performed on individual feature
lines and then on the junctions between feature lines. The overall
optimization procedure is described in Algorithm 1. The following
paragraphs elaborate the key components of the optimization.

Algorithm 1 Optimization Procedure

1: Initial animation sequence S = (s0,s1, . . . ,sN−1)
2: Initialize parameters wso = 1.0,wsc = 0.5,wqs = 1.0,wq j =

0.5,wtc = 2.0
3: n = 1
4: while n≤ N do
5: Select frame sn
6: m = 1
7: while m≤M do
8: Select feature line ln

m
9: repeat

10: Choose operator op∗ ∈ {add, delete, shift, merge,
split}(see Figure 10) and apply to ln

m such that E(sn) decreases
the most

11: Apply op∗ to ln
m and update sn

12: until E(sn) cannot be decreased
13: m← m+1
14: end while
15: n← n+1
16: end while
17: repeat
18: Locally perturb a new junction between feature lines
19: Optimize relevant feature lines using refinement operators

such that E(sn) can be decreased
20: Update sn
21: until E(sn) cannot be decreased

Refinement operators
Add Delete Shift Merge Split

Figure 10: We propose a set of refinement operators to explore the
solution space during the optimization.

Figure 11: Individual line optimization optimizes individual fea-
ture lines while fixing all the junction pixels (in red) according to
the objective function.

Figure 12: Junction optimization optimizes the location of junction
pixels (in red) according to the objective function.

Refinement operators. To explore the solution space, we define a
set of refinement operators, including add, delete, shift, merge, and
split (see Figure 10). These operators are similar as those proposed
for temporal coherence metric. The difference is that the operators
here are defined on a single pixel other than on a span. This is to
allow pixel refinement at the lowest level.

Individual line optimization. This step optimizes all feature lines
separately. For each feature line ln

m, we fix all the junction pixels
and try all possible refinement operators on all pixels. To update
the current solution, we select the refinement operator (on a specific
pixel) with the most significant decrease of the objective function
value. The above procedure repeats until no pixel can be refined.
Figure 11 shows the effect of individual line optimization.

Junction optimization. After optimizing the individual lines, we
perform an optimization on all the junctions between feature lines.
Specifically, we iterate each junction and perturb its location in a 8-
connected neighborhood while fixing other junctions. The relevant
feature lines of this junction are then refined as in feature line op-
timization. If the objective function value decreases, we accept the
result and further optimize the neighboring junctions. The whole
process repeats until no junctions can be refined. Figure 12 shows
the effect of junction optimization.

5. Results and Evaluation

We have tested our system on a wide range of pixel art images
from different categories (human, animal, man-made object, etc.),
resulting in 31 appealing pixel art animations with varying degrees
of complexity. A few examples can be found in Figure 13. Since the
best visual experience of our results can be achieved by displaying
all the frames consecutively, we refer the reader to supplementary
material for the complete animation sequences of all 31 examples.
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Figure 13: Eight pixel art animations created by our system. Here we only show five intermediate frames for each sequence. The complete an-
imation sequences can be found in the supplementary material (Input images: “Bunny” c©KennaLeeStratton, “Wolf” c©Coranila, “Saber”
c©Manning Leonard Krull, “Scorpion” c© ShimmeringDream, “Dog” c© SkyeFatty, “Ogremon” c©BANDAI Co., Ltd, “Fox” c©Mixellulu,

“Man” c©Derek).

5.1. Evaluation

We also conducted several experiments to quantitively and qualita-
tively evaluate the performance of our system. First, we compare
the visual quality of our animation sequence with those generated
by three alternative methods via a user study. Then we validate our
tailor-made quality metrics by comparing the results with or with-
out a particular metric during the optimization. Lastly, we report
the runtime performance of our system.

User study. Since the dominant factor to the quality of our results
is the feature-aware optimization (Section 4), we evaluate its per-
formance via a comparison with three alternative rasterization al-
gorithms as follows. (i) Down-scaling the image comprises feature
lines Ln

m
′ (1 ≤ m ≤ M) using the nearest neighbor sampling. (ii)

Applying a simple down-sampling approach which first groups pix-
els in the original resolution that are covered by Ln

m
′ (1≤m≤M) at

high resolution (10x), and then sorts pixels in the descending order
based on its coverage ratio. The final result is obtained by itera-
tively removing pixels with the least coverage ratio while keeping
feature lines connected. (iii) Applying a state-of-the-art vector line
rasterization algorithm designed for pixel art, called Superpixela-
tor [IVK13], to ln

m
′ (1≤ m≤M). Note that the above methods are

performed for each frame sn separately. There were 15 examples
used in the designed user study. For each example, four animation
sequences generated from different methods were displayed with
no specific layout. The subjects were requested to pick the most
visually pleasing one. Each example was evaluated by 50 subjects.

Figure 14 shows the normalized votes for the four methods. We
further conducted two-proportion z-tests to verify the statistical sig-
nificance of the difference between the normalized votes for all the
examples. The result indicates that our system significantly out-
performs the other three methods with overall p-value < 0.01. As

shown in Figure 15, we can easily see that the nearest-neighbor
method leads to severe artifacts of broken lines, while simple
down-sampling and Superpixelator generate pixel lines with only
mediocre quality. Moreover, all three alternatives result in notice-
able temporal jitter during playback of the animation sequences.
Our algorithm in contrast can generate high-quality pixel art anima-
tion that is visually pleasing and with guaranteed temporal smooth-
ness. The complete animation sequences of this comparison can be
found in the supplementary material.

Performance of quality metrics. In this experiment, we evaluate
the effectiveness of our tailor-made quality metrics by comparing
the results generated with different parameter settings as: (i) using
only shape similarity metric (wqs = wq j = wtc = 0.0); (ii) disabling
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Our Superpixelator Downsample Nearest

Figure 14: Normalized votes for the visual quality of the animation
sequences generated by our algorithm and three alternatives on 15
examples.
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Figure 15: Comparison of our results with the other three alternatives. Our system generates superior results (bottom row) than the
other three alternatives, which suffer noticeable artifacts such as broken outlines (top row), spiky and jaggy effect (red boxes in the 2nd
and 3rd rows), and temporal inconsistency (see supplementary material for complete animation sequences) (Input images: “Elephant”
c©LimboNoBaka, “Kitten” c© Iceyspade).

temporal coherence metric (wtc = 0.0); and (iii) using full model
with all metrics. The results show noticeable improvements on the
visual quality as we augmenting the model of using only shape sim-
ilarity metric (see Figure 16(a)) and adding only the pixel art qual-
ity metric (see Figure 16(b)). Using the full model leads to a further
quality boost which significantly reduces the temporal jitter effects

(a)

(b)

(c)

Figure 16: Comparing results with different quality metric settings
in the optimization. (a) Using only shape similarity metric. (b) Dis-
abling the temporal coherence metric. (c) Full model. Noticeable
quality improvements are highlighted within red and blue boxes
(Input image: “Dog” c©Karijn-s-Basement).

(see Figure 16(c)). Please refer to the supplementary material for
the complete animation sequences of this experiment.

Timing performance. Our system can generate high-quality ani-
mation within a reasonable amount of time. The preprocessing step
takes less than one second on average. The timing of manually re-
solving the ambiguities (if necessary) depends on the complexity
of the input pixel art, especially the junctions. Note that the prepro-
cessing only needs to be performed once for each input image. The
major computation cost of our system is due to feature line opti-
mization. The running time here is proportional to the input image
resolution as well as the structural complexity of the extracted fea-
ture lines. For example, for the wolf image shown in Figure 11,
which contains 50×50 pixels, 13 feature lines, and 12 junctions, it
took 30 seconds to resolve ambiguities and 5 seconds per frame on
average during the optimization.

5.2. Limitations

The performance of our system is subject to the following limi-
tations. (i) The feature lines extraction is currently heuristic and
fails to handle pixel art images with strong antialiasing (see Fig-
ure 17(a)). Such images require more manual efforts to resolve am-
biguities. (ii) The spatial relationship between feature lines is not
modeled in the current formulation. Therefore, two nearby feature
lines can merge or intersect with each other after the reconstruc-
tion (see Figure 17(b)). However, this problem rarely occurs in our
experiments. (iii) The system does not account for the symmetry
of input shapes, and may generate asymmetric shapes in the final
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(a) (b) (c)
Figure 17: Limitations. (a) Feature line extraction can be tricky
with pixel art images containing antialiasing patterns. (b) The sys-
tem fails to preserve the spatial relationship between nearby pixels
from different feature lines. (c) The system does not take into ac-
count the symmetry of input shapes during the animation (Input im-
ages: “Pikachu” c©Pokémon Ltd, “Dog” c©Karijn-s-Basement,
“Lizard” c© cesarloose).

results (see Figure 17(c)). (iv) The feature-aware optimization is
formulated based on the condition that the structure of feature lines
is consistent and the correspondences between feature lines are ex-
plicit between frames. Thus the system dose not support animated
shapes with varying topology (e.g., heart breaking, a star-like shape
evolves from a single pixel).

6. Conclusion and Future Work

How to produce a high-quality animation from a given pixel art
image is an important but non-trivial problem. In this work, we
present a novel key-frame based animation framework tailored to
pixel art images. With the help of our system, the users can quickly
generate key-frames through a set of intuitive tools. The system au-
tomatically interpolates intermediate frames and optimizes the vi-
sual quality of the prominent feature lines of individual frames, as
well as the temporal coherence between frames. Such tasks could
otherwise demand tremendous manual efforts using the existing
systems. We demonstrate the efficiency and efficacy of system by
generating high-quality pixel art animation sequences on various
examples. Our system would be a practical tool for artists to gener-
ate plausible animation sequences that only require minor efforts,
making the animation production process much more efficient.

In the future, it would be interesting to explore the following direc-
tions. (i) Since the potential users of our system are professional
artists, we plan to conduct user study and fine tune the system ac-
cording to their feedback. (ii) We would like to investigate other
characteristics of pixel art, such as color dithering and antialias-
ing patterns, for further quality improvements. (iii) The robustness
of feature line extraction can be further improved using sophis-
ticated image vectorization method [KL11]. (iv) It is also worth
exploring how to enhance the current system with 2.5D model-
ing [RID10, YJL∗15] and more advanced deformation tools (e.g.,
[YFW12]), such that animations with part occlusion and topology
change can also be handled.
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Appendix A: Feature Line Vectorization

In our implementation, we employ a simple feature line vector-
ization algorithm to construct a compact geometric representation
of the underlying 2D shape for subsequence warping and interpo-
lation. More specifically, the feature line vectorization follows a
three-step procedure as shown in Figure 18. First, we divide each
feature line composed by pixels into a set of horizontal/vertical seg-
ments, each of which is called a span. Second, we extract all the
points connecting neighboring spans and link these points within
each span using a straight line segment, resulting in an initial vec-
torized polyline. Finally, we insert additional points into the poly-
line at each extremum span by creating a new point at the center of
each pixel. Note that after vectorizing individual feature lines, we
further connect each vectorized feature line to its associated junc-
tion pixels to form the final vectorization result of the entire shape.

Figure 18: Three-step polyline vectorization.
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